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Abstract 

This thesis focuses on a model which has great potential for application, namely the 

longer-queue-serve-first queueing model with unequal arrival rates. Our goal is to 

obtain the tail asymptotic behavior for the stationary distribution, which is useful in 

computing performance measures observed over a long period of time. We demon

strate in detail how to apply the kernel method with multiple kernel equations to 

locate dominant singularities, and to determine the detailed behaviors of unknown 

generating functions at their dominant singularities according to analytic character

istics. The main contributions made in this thesis are: (1) characterization of exact 

tail asymptotic behavior of this model, which has not be given in the literature; (2) 

application of the kernel method to multiple kernel equations, which extends the 

possibility of solving random walks in the quarter plane into that in the half plane. 
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Chapter 1 

Introduction 

1.1 Motivations 

Multidimensional queueing systems related to networks have been introduced and 

widely studied. Performance measures over a long period of time aid practitioners in 

designing systems and evaluating their performance. Usually, our primary interest is 

the stationary distribution, from which performance measures over a long period of 

time can be computed. 

However, except for special cases, obtaining a simple analytic or closed form solu

tion of the stationary distribution of even a simple stochastic network is not feasible. 

Thus, we may turn our focus to some characteristics which are still useful in assessing 

performance, which include tail asymptotic behavior of the stationary distribution. 

Though the analysis of tail asymptotics is still a hard problem, it is greatly simpler 

than working with the stationary distribution itself. This motivates the study of ex

act tail asymptotic behavior of the stationary distribution. 

In this thesis, we consider exact tail asymptotic properties of a longer-queue-serve-first 

preemptive model with unequal arrival rates (see Chapter 2 for the detailed model 

description). Longer-queue-serve-first (or longest-queue-serve-first) models vary in 

1 
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model preemption/ dimensions arrival service time 
non-preemption rates distribution 

Cohen [16] non-preemption 2 unequal general 
Zheng and Zipkin [18] preemption 2 equal exponential 

Flatto [15] preemption 2 equal exponential 
Zipkin [19] preemption > 2 equal exponential 
Adan [17] preemption > 2 equal exponential 

Table 1.1: Models in the literature 

the literature, with variation on preemption/non-preemption description, queueing 

dimensions, unequal/equal Poisson arrival rates, exponential/general service time dis

tributions; see Table 1.1 for a summary. 

In the literature about longer-queue-serve-first (or longest-queue-serve-first) models, 

authors have used complex analysis to determine the generating function, the station

ary distribution, or tail asymptotic properties, such as Flatto [15] and Cohen [16]; and 

have made queueing comparisons to obtain performance bounds, such as Adan [17]. 

The model with equal Poisson arrival rates and exponential service time has been 

studied in Zheng and Zipkin [18], where an explicit solution of the distribution of the 

difference between queue lengths is obtained directly from the balance equations. In 

Flatto [15], the same model has been analyzed. The approach via generating functions 

is used to derive exact tail asymptotic formulas and to study the interdependence of 

the two queue lengths. For the model with more than two queues, Zipkin [19] pro

posed an approximation method. The non-preemptive model with unequal Poisson 

arrival rates and general service time distribution has been studied in Cohen [16], via 

the use of a translation into a Riemann boundary value problem. 

For the tail asymptotic analysis, four approaches are normally used in the literature, 

namely brute force approach, large deviations approach, Markov additive approach 

and analytic function approach. A detailed literature review of these four approaches 

can be found in Miyazawa [9]. 
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1.2 Background 

Tail asymptotics along coordinate directions and Taubarian-like theorems are intro

duced here. Analytic continuation, singularities, branch points, etc, are standard 

concepts in analysis. For more details, readers may refer to [8] and [2]. 

1.2.1 Tail asymptotics of probabilities 

In this thesis, we consider the exact tail asymptotics behavior of a 2-dimensional 

model (with state space S = Z+ x Z = — 0,1,2, ...,j = 0, ±1, ±2,...}) 

along coordinate directions. 

Definition 1.1 L e t  { X , Y )  b e  a  2 - d i m e n s i o n a l  r a n d o m  v e c t o r  w i t h  X  = 0,1,2,... 

and Y = 0, ±1,±2, The exact tail asymptotic functions of the tail probabilities 

along three directions: along the x direction and along the y direction (either the y 

positive direction or the y negative direction), can be defined as follows: 

( 1 )  T h e  t a i l  p r o b a b i l i t y  a l o n g  t h e  x  d i r e c t i o n  w i t h  t h e  o t h e r  d i m e n s i o n  f i x e d ,  i s  s a i d  

to have exact tail asymptotic function if it can be written as: 

lim P ^ X  —  =  b ( y ) >  f o r  a  g i v e n  y ,  y  =  0, ±1,±2,..., 
X-+OC 

where b is a positive constant and h is a positive-valued function. 

( 2 )  T h e  t a i l  p r o b a b i l i t y  a l o n g  t h e  y  p o s i t i v e  d i r e c t i o n  w i t h  t h e  o t h e r  d i m e n s i o n  f i x e d ,  

is said to have exact tail asymptotic function if it can be written as: 

P ( X  =  x , Y  =  y )  
lim = b ( x ) ,  f o r  a  g i v e n  x ,  x  =  0 , 1 , 2 , ,  
y - t-oo n { y )  

where b is a positive constant and h is a positive-valued function. 

The tail probability along the y negative direction with the other dimension fixed, is 
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said to have exact tail asymptotic function if it can be written as: 

P ( X  =  x , Y  =  y )  L ,  v  
lim r-r-r = b l x ) ,  f o r  a  g i v e n  x ,  x  —  0 , 1 , 2 , ,  

y-+-oo n(?/) 

w/iere b is a positive constant and h is a positive-valued function. 

Remark 1.1 A generalized version of the definitions of exact tail asymptotic func

tions along any direction for a p-dimension model is provided in Miyazawa [9]. 

1.2.2 Taubarian-like theorems 

The following theorem is from Bender [10], which can also be found in Flajolet and 

Sedgewick [11]. 

Theorem 1.1 (With multiple dominant singularities) Suppose A(z) = 

^n>0anz" is analytic near zero. Let ak, k = 1,... ,m, be all singular points on its 

circle \z\ = cT > 0 of convergence, and for each k, there exists u>k and g^, such that 

lim (1 - z / a k Y k A { z )  =  g k ,  
z->afc 

where Uk is a complex number not equal to 0,1,2,3,..and gk is a non-zero constant. 

Then, 

1 gkn 

where 3?(z) is the real part of z. 

Theorem 1.2 (With a single dominant singularity) Suppose A(z) = Y^n>Qo,nZn 

is analytic in A(0, e) \ {1}, where A(0, e) = {z : \z\ < 1 + e, |Arg(z — 1)| > <j>} with 
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e > 0, 0 < <p < 7r/2, and 

5 

A { z )  r s j  g( 1 — zf as z —> 1 in A(0, e) 

for some complex number u, as n -> oo, (i) if u £ {0,1,2,...}, then 

(ii) if ou is a nonnegative integer, then 

an = o(n~u'~1). 

Tauberian-like theorems offer a possible method to obtain exact tail asymptotics with 

the following procedure: firstly, locate the dominant singularities of an unknown gen

erating function, namely ak, k = 1,... ,m; secondly, find u)k such that for each «*;, 

k = 1,..., m, limz_>ajfc(l — z/ak)u'kA(z) exists. In this thesis, there is only one domi

nant singularity and the second version of the Tauberian-like theorem is applied. 

Theorem 1.1 and Theorem 1.2 are referred to as Tauberian-like theorems instead of 

Tauberian theorems in the thesis. This is because one of the conditions in classi

cal Tauberian theorems is monotonicity of the coefficients. In our case, there are 

an unknown sequence of probabilities on which we do not have monotonicity infor

mation. In the Tauberian-like theorems, this condition is replaced by some extra 

requirements on the analyticity of the unknown function which can often be verified. 

I n  T h e o r e m  1 . 2 ,  t h e  f u n c t i o n  i s  r e q u i r e d  t o  b e  a n a l y t i c  o n  t h e  r e g i o n  A { 4 > , e )  \  { 1 } ,  

which is an indented disk shown in Fig 1.1. 

Remark 1.2 I f  A ( z )  =  Y l n > o a n z n  ( o r  M z )  =  E n>ifln^ ), k = I, e R and 
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analytic area 

/ dominant 

singularity 

Figure 1.1: Indented analytic area 

cji €E R, then 

a„ ~ 
9\nl U>\ — 1 

r(wi)(ai)»' 

Remark 1.3 I f  A ( z )  =  X ^ n > i  a n z n >  ^  =  1 ,  « i  6  M ,  W i  6  

and lim2_+Ql(l — z/ai)UlA(z)' = gk, then 

a n  ~ 
9\n 

uj\— 2 

n r(Wl)(ai)n-1' 

PROOF. Since A ( z ) '  =  n a n z n  1 = £n>0((n + !)AN+i)^", we have (n + l)an+1 

g!""1-1 Thus a ~ gi(n—l)"1-1 

nr(wi)(ai)': r(wi)(ai)rl 

1.3 Contributions 

This thesis focuses on a longer-queue-serve-first queue model with unequal arrival 

rates, which has great potential for application. Our goal is to obtain asymptotic be

havior for the stationary distribution, which is helpful for computing the performance 
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measures observed over a long period of time. 

The main contributions made in this thesis are: (1) characterization of exact tail 

asymptotic behavior of this model; and (2) application of the kernel method to mul

tiple kernel equations, which extends the possibility of solving random walks in the 

quarter plane into that in the half plane. The tail asymptotic behavior of the model 

with equal arrival rates has been studied in Flatto [15], with a method using the con

cepts of Eiemann surfaces and uniformization theory, while tail asymptotic behavior 

of the model with unequal arrival rates has not been given in the literature; the latter 

case, for which we use the kernel method, is the focus of this thesis. The kernel 

method with one kernel equation can be used to obtain tail asymptotic properties of 

random walks in the quarter plane, for example, see Li and Zhao [3, 4, 5, 6, 7], while 

work using multiple kernel equations is very limited and has not been reported in the 

literature. 

1.4 Organization 

This thesis is organized as follows: Chapters 1 and 2 form the first part of the thesis. 

Chapter 1 provides a brief introduction to the problem, presenting some background 

to the subsequent chapters. In Chapter 2, a longer-queue-serve-first model is formally 

introduced and presented as a random walk in the half plane. Then generating func

tions are defined, and two series of important relationships among these generating 

functions axe obtained. One consists of recursive equations and the other provides 

fundamental forms. 

With all the material available, the remaining part focuses on how to apply the kernel 

method and the Tauberian-like theorems to obtain exact tail asymptotic properties. 

Chapter 3 concentrates on the exact tail asymptotic analysis along the ^-direction, 

while Chapter 4 and Chapter 5 are combined to complete the exact tail asymptotic 
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analysis along the x-direction. 

In Chapter 3, according to the recursive relationship derived in Chapter 2, we can 

find explicit expressions for the generating function ^(y), i — 0,1,2,... (see 

(2.12) and (2.13) for the definition), from which dominant singularities are located 

and behavior of the unknown generating function at the dominant singularity is stud

ied. The object of Chapter 4 is to demonstrate how to apply the kernel method to 

locate the dominant singularity of <Pj(x), j = 0, ±1, ±2,..., (see (2.11) for the def

inition). In Chapter 5, the behavior of <fj{x), j = 0, ±1,±2,..., at the dominant 

singularity is detailed and tail asymptotic results along the x-direction are given. 



Chapter 2 

Longer-queue-serve-first Model 

and Generating Functions 

A continuous-time longer-queue-serve-first model described in this chapter is the focus 

of this thesis. This queueing system consists of two queues and one server, following 

l o n g e r - q u e u e - s e r v e - f i r s t  p o l i c y  w i t h  p r e e m p t i o n .  T h e  o r i g i n a l  m o d e l  { ( L i ( t ) ,  L 2 ( t ) ) }  

a n d  a  m o d i f i e d  m o d e l  { ( m i n { L i ( £ ) ,  L 2 ( t ) } ,  L 2 ( t ) - L \ { t ) ) }  a r e  i n t r o d u c e d ,  w h e r e  L \ ( t )  

and L2(t) are the numbers of customers in the two queues including the one in service 

at time t. After the model description, generating functions are defined. According 

to balance equations, two kinds of important relationships among these generating 

functions are obtained: one is a set of linear homogeneous second order recursive 

equations, and the other is a set of fundamental forms. 

2.1 Preemptive longer-queue-serve-first model 

The continuous-time longer-queue-serve-first model described in this chapter con

sists of two queues and one server, following longer-queue-serve-first policy with 

preemption. Customers arrive to these two queues according to two independent 

Poisson processes with rates Ai and A2 respectively, and the service time is exponen-

9 
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Qi 

. x .  fv, +v 

x< I_*.v 

I a / t n /2 

x, t 
n <—1—• \ 

Vv / 
/ 

'' X t 
X * 

u I X | 
P 4 I » ' » 

Q, 

Figure 2.1: Transitions of P 

tially distributed with the mean service time Without loss of generality, assume 

Ai + A2 + /i = 1. 

According to the longer-queue-serve-first policy, the server works on the longer queue 

when queue lengths are not equal and chooses either one to serve with probability ^ 

when they are of equal length. The service policy is preemptive, which means when

ever the queue not being served becomes the longer one, service will be interrupted 

and switches to the new longer queue. 

Let L i ( t ) and L 2 ( t )  be the numbers of customers in the two queues including the 

one in service at time t. {(Li(t), £2(2))} is a continuous-time Markov chain whose 

state space is S = Z x Z = {(i,j)',i,j = 0,1,2,...}, which is stable if and only if 

/x > Ai + A2. Let Q be the infinitesimal generator of the continuous-time Markov 

chain {(Li(i), L2(t))}. Then, P = I + Q is the transition probability matrix for the 

uniformized discrete-time Markov chain and the transition diagram of P is shown in 

the Fig 2.1. 

We notice that { ( L i ( t ) ,  L 2 ( t ) ) }  is not a random walk in the quarter plane in the 

usual sense, since instead of one it has two regions on which transitions are homoge
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neous. Motivated from this, we define a different Markov chain { ( L i ( t ) ,  L 2 ( t ) ) } ,  where 

Lx(t) = min{Li(t), L2(t)} and L2(t) = L2(t) - Lx{t). {(Li(t), L2(t))} is a continuous-

t i m e  M a r k o v  c h a i n  w i t h  s t a t e  s p a c e  S  =  Z +  x  Z  =  =  0 , 1 , 2 =  

0, ±1, ±2,...}, which is a random walk in the half plane. L 2 ( t )  —  L \ { t )  is used instead 

of \L2(t) — Li(t)| here, because the process {(min{Li(t), L2(t)}, \L2(t) — Li(t)\)} will 

no longer be a Markov chain. (Li(t), L2(t)) is equivalent to L2(t)) in the sense 

that L 2 ( t ) )  and L 2 ( t ) )  are uniquely determined by each other. 

Let the system be in state (L \ { t )  =  m ,  L 2 ( t ) = n). For m  > 0 and n  > 0, suppose 

the next transition is due to an arrival, then an arrival on the shorter queue leads 

to (L\{t + 1) = m + 1, L2(t + 1) = n — 1), and one on the longer queue leads to 

(Li(t + 1) = m, L2(t + 1) = n + 1). Also, suppose the next transition is due to a de

parture, then the departure from the longer queue leads to (L\{t) = m, L2(t) = n — 1). 

There is no departure from the shorter queue according to the longer-queue-serve-

first policy. For other values of m and n, the transition situations can be similarly 

analyzed. Let Q be the infinitesimal generator of the continuous-time Markov chain 

{(Li(t), L2(t))}. Then, P = / + Q is the transition probability matrix for the uni

formized discrete-time Maxkov chain; the transition diagram of P is shown in the Fig 

2.2. 

We denote by 7ritj the limiting probabilities for the process { ( L i ( t ) ,  L 2 ( t ) ) } ,  and by 

7Tjj the limiting probabilities for the process {(Li(t), L2(t))}. The stability condi

t i o n  o f  { ( L \ ( t ) ,  L 2 ( t ) ) }  i s  t h e  s a m e  a s  t h a t  o f  { ( L i ( t ) ,  L 2 ( t ) ) } ,  n a m e l y ,  n  >  A j  +  X 2 .  

These two Markov chains have the same stability condition. To see this, assume 

{(Li(t), L2(t))} is stable (ergodic), which is equivalent to the existence of the unique 

probability solution to its stationary equations n = iP. These same equations can be 

also viewed as the stationary equations of {(Li(t), L2(t))} since there is a one-to-one 

c o r r e s p o n d e n c e  b e t w e e n  v a r i a b l e s  L 2 ( t ) )  a n d  v a r i a b l e s  L 2 ( t ) ) .  

For convenience, S is partitioned as S = S,t+ U S,- U 5+i0 U S0,0, or S = S+^+ U S+<o U 
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' k Q:-Q| 

12 

min{Qi,Q:! 

—• 

t 
Figure 2.2: Transitions of P 

S + -  U 5o,+ U 5o,o U So,- where 

S+,+ - {(m, n); m  =  1 , 2 , . . .  n  =  1 , 2 , . . . } ,  

5+i0 = {(m,0);m = l,2,...}, 

S+,_ = {(m, n); m = 1,2,... n = -1, -2,...}, 

S0,+= {(0,n);n = 1,2,...}, S0,0 = {(0,0}, So,-= {(0, n);n =-1,-2,...}, 

and 

S.,+ = SQ,+ U S+,+, 5 _ = So,- U S+-. 
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The balance equations based on the transition diagram in Fig 2.2 are the following. 

^i,j — Ai7Ti_iJ+i + i > 1, j > 2, (2.1) 

""i, 1 
if 

= Ai7Tj_jt2 + A27Tiio + 2 + ^ > 1, (2.2) 

— Ai^i-i,! + A27ri_i,_i + + /WTi,-l, i > 1, (2.3) 
o

 
©

 = //7To,l + ̂ 7T0-l, (2.4) 

= A27To,j-l +/X7Toj+i, j > 2, (2.5) 

7T0,1 
. H 

— A27To,0 + ^0,2 + (2.6) 

^O.-l 
V 

— Ai7T0l0 + ̂ 0-2 + 2?ri'0' (2.7) 

= -^l^oj+i + j < ~  2, (2.8) 

T»,—1 
A4 

= A27Tj_ii_2 + Ai7rij0 + 2 + — TTj+1,0, 2 > 1, (2.9) 

^i,j = A27rj_ij_i + Ai7Tjj+i +/i7Tij_i, Z > 1, j < —2. (2.10) 

2.2 Generating functions 

Analytic function approach is one of the possible approaches to derive the multidi

mensional tail asymptotics. This approach is to apply the theory of analytic functions 

to fundamental forms. Before we give fundamental forms, generating functions need 

to be defined. 

Define generating functions as follows: 

+oo 

V j ( x )  =  j  = 0,±1,±2,...; (2.11) 
i~\ 
+ 00 

^t(y) = Ifl < « = 0,1,2,...; (2.12) 
3 = 1 

—oo 

C( y )  =  5Z ^ y ~ j ' M < *' « = 0,1,2,...; (2.13) 
j=-1 
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n P , q { x , y )  =  <  

7TijxV, |x| < l, |t/| < l, if pe{,+,o}, ge{+,0}, 
( i , j } & S p t q  

^ 2  T T i j x ' y ' 1 ,  |x| <  1, \ y \  < 1, if pe{.,+,0}, q  =  
{i>j)esp,q 

Remark 2.1 V* (?/)> i = 0,1,2,..., is defined as ^> instead of 

, and 7Tm(x,y), p € {.,+,0}, q = is defined as £(ij)€sPl, ̂ i,jXly^, 

instead of j)eSpq'ITi,jXzy:' in this thesis. In this way, when we add two kernel 

equations (see (2.23) and (2.24) for the detail), some terms will be cancelled out, 

which makes our tail asymptotic analysis along the x-direction easier. Also, we will 

see that we do not need to infer 7Tjj directly from itPA(x,y), not to use ip?(y) and 

tp~(y) together to obtain tail asymptotics either. Therefore, we can still separate 

and apart. 

Remark 2.2 We also use <pj(x), j = 0, ±1, ±2,..for the analytic continued func

t i o n  o f  K i j Z 1  o n  Q e ,  w h e r e  C x  i s  t h e  c o m p l e x  p l a n e  f o r  x .  ( o r  i l ) ~ { y ) )  

is also for the analytic continued function of ° Vijyj (or 071 ^y> 

where Cy is the complex plane for y. 

Using balance equations of the random walk, we can obtain recursive relationships 

for ipi~(y), i = 0,1,2,... and ifj{y), j = 0,±1,±2,— These recursive re

lationships enable us to work out expressions of ip? ( y )  and ip~ ( y ) ,  and derive tail 

asymptotic properties along the x-direction after we obtain the tail asymptotics for 

7rnio, with large n. 
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Lemma 2.1 1. The recursive relationship for ^(y), i = 0,1,2,..can be listed as: 

( n y ' 1  ~  1 + A2 y)4>o(y) = —(^^i,o + ̂ 2^o,ojy + ̂ o,ii (2-14) 

- 1 + a2 y ) ^ t ( y )  + ^iy'l^t-\{y) = -(^*+1,(^27^0)?/ + 

i > 1; (2.15) 

2. The recursive relationship for ip~{y), i = 0,1,2,..., can be listed as: 

{ n y ~ l  - 1 + Aiy)V>o(!/) = + Ai7r0,O)y + ̂ 0,-1, (2-16) 

( f i y ' 1  -  1 +  Ai y ) i p ~ ( y )  +  A2trVt_i(2/) = ~^i+i,o+^i,ojy + ̂ ,-1. 

i > 1; (2.17) 

3. The recursive relationship for <fj(y), j = 0, ±1, ±2,... can be listed as: 

( f i  +  X i x ) t p J + i ( x )  -  < p j { x )  +  \ 2 < p j - i ( x )  =  -A^OJ+IX, j  > 2, (2.18) 

(/i + \ x x ) i p 2 { x )  -  < f i i ( x )  +  (^_1 + A2) <PO ( X )  =  —AI7R0I2X + ^1,0, (2.19) 

( H  +  X i x ) i p i ( x )  -  ( p 0 ( x )  +  ( f x  +  \ 2 x ) t p - i ( x )  =  -AI7R0,IA; - A27r0 _IX, (2.20) 

^|X_1+AI) ( p 0 ( x )  -  < P - 1  ( x )  +  ( n  +  \ 2 x ) < p - 2 ( x )  = -X2 T T 0 < - 2 x + ^ T T h 0 ,  (2.21) 

Xi< p j + i ( x )  - i p j ( x )  +  (n +  X2 x ) i p j - i ( x )  =  -A27t0j-iX, j < -2. (2.22) 

PROOF. Proofs of the recursive relationships for i p f ( y ) ,  i P T i y ) ,  i  =  0 , 1, 2 , . . . ,  and 

<Pj(y)i j = 0, ±1, ±2,..., are similar. We only provide details for the proof of the 

relationship for i p ^ ( y ) ,  i  —  1,2, 

In order to proof (2.15), recall (2.1) and (2.2), 

^i,j = Ai7Ti_iJ+i + A27Tjj_i + /Z7Tjj+i, 1 > 1, j > 2, 

^i,! = Ai7Tj_ii2 + A^^Q + [ I K i , 2 + ^i+lfi, i > 1. 
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Thus, for i > 1, 

+oo 

+ + W j + i W  + ̂ j+uoy 
j=i 

= M y  + Ait/-1 ( i P t i ( y )  -

+ ~ *i,iy) + ̂ m+i,oy-

Namely, 

(ny~ l  - 1 + A2 y )  i i>i~{y)  +  X i y ' ^ t - i i y )  = -  +  A 2 7 r i -° )  V  +  •  

Prom the recursive relationship for i p f ( y )  and tp~(y) ,  i  —  0,1,2,..., the exact tail 

asymptotic behavior for joint probabilities along the ^-direction can be derived di

rectly, which will be shown in Chapter 3. Tail asymptotic properties along the x-

direction is more challenging, since we cannot directly obtain the tail asymptotics for 

7Tj 0i which requires a different method (see Chapter 4). 

After the asymptotic property for the generating function i p $ ( x ) and the tail asymp

totic property for the boundary probabilities 7rt!o are obtained, the recursive relation

ship for ipj(x), j = 0, ±1, ±2,..., will enables us to carry out the asymptotic analysis 

for all <fj(x), which will lead to a determination of the exact tail asymptotics for 

the joint probabilities along the x-direction. Details will be given in Chapter 4 and 

Chapter 5. 

Another series of important relationships consists of two equations. One is derived for 

the positive region, and the other one for the negative region. The exact tail analysis 

for the boundary probabilities along the x-direction starts from these two equations 

using the kernel method. 

Lemma 2.2 A set of two equations are listed as: 
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- i r . < + ( x , y ) h + { x , y )  =  ( p 0 { x ) h £ { x , y )  +  f p _ i ( x ) h t i ( x )  

+ *o,oho,o(y) + *0,-1^0,-i{x), (2-23) 

and 

- n ^ ( x , y ) h ~ { x , y )  =  <PO{ x ) h ^ { x , y )  +  ( p - ^ h Z ^ x )  

+  To,0^0 ( y )  + t o - i K - d x ) ,  (2.24) 

where 

h + ( x ,  y )  =  A i x y ' 1  +  \ 2 y  +  n y ~ l  -  1 ,  h £ ( x ,  y )  =  A 2 y  +  ̂ x ~ l y  -  1 ,  

h t x { x )  =  \ 2x + /j,, h^0(y) = \2y + n - 1, h^^x) = \2x + 

h ~ ( x ,  y )  =  A 2 x y ~ l  +  \ x y  +  n y ' x  -  1 ,  ( x ,  y )  =  A x y  +  ̂ x ' l y ,  

h Z i ( x )  =  - h t i ( x )  = -(A2X + n ) ,  h , Q 0 ( y )  =  \ x y ,  

ho,-i(x) = = ~(A2® + /i). 

Following Flajolet and Sedgewick [11], we call these functions (2.23) and (2.24) the 

fundamental forms. 

Remark 2.3 It can be noticed that (2.23) and (2.24) are asymmetric. In fact, we 

put equations in these forms for the advantage that when we add them together, some 

terms can be cancelled out. 

PROOF. Proofs of these two fundamental forms are similar, and only the proof of 

(2.23) is shown as follows: 
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Recall that 

Ai7Tj—ij-t-i "I" — l "t" A^Ttj-fli i ^ 1) 3 ^ 2, 

7Ti,l — -^1 TTj—1,2 + ^2^,0 + + ^7ri+1,0) i > 1. 

Thus, 

E 
i>l,j>l 

= E (Al^-l,j+l + A27TU_1 +/X7TiJ+1)xV + E (|Ti+ll0)^V. 
i>l,j>l i>lj=l 

We know 

E 7ri_1J+1®V 
t>i,j>i 

=xv~l E KijxY 
i>0,j>2 

( E + E ^ijsV - ( E 7rijxV + E I Mmmmmrn rnmmmmm \ mmmmm j 

\ . » > l j > l  i = 0 , j > l  i > l , j = l  i= 0 , j = l  

=xy~1(^r+,+(x,y) + 4>o{y) ~ (<^i(*)z/ + 7ro,iy) j-

Similarly, 

E 7ri,i-i^V = y(n+,+fav) + <Po(®)); 
:ij>i 

E P»ij+i®V" = y_1(fl+I+(a;,y) -v?i(®)y); 
i>lj>l 

E 7Ti+i,oxy = a:_1y^0(x) — 7rii0x^. 
i>lj>l 
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Thus, 

( l  -  A i x y ~ l  -  A 2 y  -  f i y ' ^ n + ^ x ,  y )  

= i p ^ { y ) X i x y ~ 1 + i p Q ( x ) { X 2 y  +  ̂ x ~ f y ) - y > i ( s ) ( A i x  +  n ) - ( X i x i r Q A  +  ̂ y n h 0 ) .  

(2.25) 

Recall (2.14) and (2.20), we have 

0 = (n y ~ l  -  1 +  X 2 y ) t p £ ( y )  + (7^1,0 + A27R0,O)?/ - ̂7R0>I, (2.26) 

(H + X\x)ipi(x) = (f0(x) -(/* + A2x)(^_i(x) - (Ai7t0,ix + A27r0_ix). (2.27) 

Also, recall (2.6), 

A"r0,1 = (1 - mWO ~ A^o-i- (2.28) 

Plus (2.26) and (2.25), replace (// + Aix)<pi(x) by using (2.27), and replace /x7r0,i by 

using (2.6), we can get (2.23). • 



Chapter 3 

Tail Asymptotic Analysis along the 

(/-Direction 

The analysis of exact tail asymptotics along the y direction relies on the analysis of the 

locations of dominant singularities and local asymptotic properties at the dominant 

singularities of the generating function ipf(y) and ip~(y), i = 1,2, — According to 

the recursive relationships for ijjf (y) and ?/>"(y),i = 0,1,2,..., we can find the explicit 

expressions for the generating functions i>f{y) and i — 0,1,2,..., from which 

the dominant singularities and the behaviors of these unknown generating functions 

at their dominant singularities are obtained. 

Lemma 3.1 

, + /  \  \  m , 0  +  A 2 7 T j — m , o ) y  +  .  n  ,  ^  / 0  ,  ̂ 
(W •' <3-» 

is valid on Cy, except at a zero of \^y2 — y + £t; 

= (W ,' = 0,1,2,..., (3.2) 

is valid on Cy, expect at a zero of Aij/2 — y + //. 

20 
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PROOF. We can use the mathematical induction to prove this lemma. Proofs of (3.1) 

a n d  ( 3 . 2 )  a r e  s i m i l a r ,  a n d  o n l y  t h e  p r o o f  o f  ( 3 . 1 )  i s  s h o w n  a s  f o l l o w s .  F i r s t l y ,  i p Q  ( y ) ,  

\y\ < 1, can be written in the form stated in the lemma. Also, assume that for i = i0, 

\y\ < 1, we have 

i + f  \  \ \m-(27r*o+l-"i,0 + A27ri0_m>o)y + ^7Ti0-m,l 
AM= (A*. ' (3'3) 

According to (2.15), we have 

, + , N _ (2^0+2,0 + A27rio+i,0) y  +  ̂ rio+M -  \ i y ~ l x p + ( y )  / o  ^  
V ) i n + l \ y )  ~  r ~ T  1  ,  . . . . - 1  "  10+1 \2y-l + ny-1 

Using (3.3) in (3.4), we get 

1 + / \ W \ \m (27rio+2_m'° ^^io+l-m.o)?/ + ̂ to+l-m.l 
= »!,(-A.) . „w+1 • (3-5) 

m=0 

Obviously, the left hand side of (3.5) is analytic in the whole complex plane except 

at a zero of Aiy2 — y + fx, thus ^+1(y), |y| < 1, can be at least analytically continued 

t o  C j , ,  e x p e c t  a t  a  z e r o  o f  A 2 y 2  —  y  +  f i .  m  

Lemma 3.1 implies that the zeros of A2 y 2  —  y  +  j i  are possible poles of '0t
+ ( y ) ,  i  =  

0,1, 2 , . . ., and the the zeros of Ax y 2  —  y  +  f i  are possible poles of i p ~ ( y ) ,  i  =  0,1,2, 

Let X 2 y 2  —  y  +  y ,  = 0, we get y f  = 1+v/
2

1
A2

4A2|U and y %  = 1~v/
2

1
Aa

4A2M. We can see that 

yf € R and y£ € R with 0 < 2/q" < 1 < yf. (y), i — 0,1, 2,..., is a generating 

function of probabilities, so ij)f (y) is analytic inside the unit circle. Hence is not 

a pole of it. Therefore, yf is the only pole of ij)f{y), since ipf (y) can be written as 

ip'itiy) ~ (y-yf)i+i' where F (y) is analytic on the disk \y\ < y± and it can be shown 

F{yt) ± Similarly, let Aiy2 - y + n - 0, we get yf = 1+v^Xlfl and % = 

1~'v/^4Al^-. Also, i/j" £ R, j/0" £ 1, 0 < |/j <!<?/{", and y± is the dominant 



CHAPTER 3. ALONG THE Y-DIRECTION 22 

singularity of ( y ) ,  i  = 0,1,2, — 

Lemma 3.2 Local asymptotic behaviors ofip~(y) and ip~(y), i = 0,1,2,..., are listed 

as follows: 

Remark 3.1 Denote a dominant singularity of a function ofy as ydom- All limits are 

taken in the region {y : | < 1 + e, \Arg(^—) — l\ > </>}, where e > 0,0 < (j) < 7r/2, 

according to the Tauberian-like theorem and the fact that yf (or y[) is the only pole 

o f i p t i v )  ( o r i ) ~ { y ) ) .  

In this case, tpf (y) (or t})~(y)), i = 0,1,2,..is analytic onCy/{y(or C„/{ y \ } ) -

PROOF. Proofs of (3.6) and (3.7) are similar, and only the proof of (3.6) is provided 

here. Take the limit in the region { y  : |-^r| < 1 + t A A r g { J ^ )  —  1| > 4>}, where 
V \  V \  

e  >  0,0 < 4 >  < 7r/2, we have 

V ^ V i  
(3.6) 

(3.7) 

where 

1 
x 2 y l  ( y t  - V o Y  
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Thus, 

(\ »+i 
1 ~ Z + )  

VI  /  

= lim ((1 - \ )  1 ) y { - Ai)' ( - (%n,o + A27r0,o)y + fWo,i ) 
y^yx

+v V i  a 2 V 2 - y  +  l i J  v J 

• (ww-i f l ) l  + X 2*^v t " W I )  • 

Lemma 3.3 (geometric decay multiplied by the factor \n\%) 

We have for fixed i, i = 0,1,..., and large n, 

(3'8) 

and for fixed i, i = 0,1,..and large |n| with n < 0, 

" (3.9) 

Remark 3.2 W e  w r i t e  f ( x )  ~  g ( x )  a s  x  — >  XQ to mean limx_,.Zo = 1 and the 

limit is taken over the defined region. 

PROOF. Proofs of (3.8) and (3.9) are similar, and only the proof of (3.8) is provided 

h e r e .  N o t i c e  t h a t  i p f i y )  i s  a n a l y t i c  i n  t h e  r e g i o n  { y  :  | - ^ |  <  1  +  e ,  { A r g ^ )  —  
V\ VI 

1| > 4>}/{y '• -+• = 1}? where e > 0,0 < <j> < -K /2. And according to Lemma 3.2, 
V\ 

~ CFIYFK 1  -  as ^ 1 in 0/ : < 1 + \A R9^)  ~ 1| > 4>}-

Therefore, according to Remark 1.2, ~ ' 1 ' + n • • 
' I (t-h 1) (yx ) 



Chapter 4 

Dominant Singularity Analysis of 

<Pj {x )  

This chapter focuses on the analysis of dominant singularities of the generating func

tions <Pj(x), j = 0, ±1, ±2,..which is the crucial step for using the Tauberian-like 

theorem. The kernel method is employed here. 

4.1 Kernel method 

The standard kernel method deals with the equation K ( x ,  y ) F ( x ,  y )  =  A ( x ,  y ) G ( x )  +  

B(x,y), where only F(x,y) and G(x) are unknown functions. The key idea of this 

m e t h o d  i s  t o  f i n d  a  b r a n c h  y  =  y o ( x )  s u c h  t h a t  K ( x , y 0 ( x ) )  i s  z e r o .  T h e n  f o r  x  e  

{x\F(x,y0(x)) < oo}, we have A(x,yQ(x))G(x) + B(x,y0(x)) = 0. Thus 

G ( x )  =  - B ( x , y 0 { x ) ) / A ( x , y 0 ( x ) )  

for x  G { x \ F ( x ,  y o ( x ) )  <  oo,A(x,y0(x)) ^ 0}; and 

- A ( x ,  y ) B ( x ,  y 0 { x ) ) / A { x ,  y 0 ( x ) )  +  B ( x ,  y )  
F { x ,  y )  =  r  

K ( x ,  y )  

24 
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for x  e  { x \ F ( x ,  y 0 ( x ) )  < oo, A ( x ,  y 0 ( x ) )  ̂  0, K { x ,  y )  ̂  0}. 

This idea has been generalized for random walks in the quarter plane to deal with a 

fundamental form with two unknown functions on its right hand side. In this thesis, 

this idea is generalized further by allowing two fundamental forms to be included. By 

choosing a proper branch in each fundamental form, we obtain relationships between 

<Po(x) and <fi(x), according to which explicit expressions of <po(x) and <fi(x) can be 

obtained. 

Define V0
+(a;) and Y y ( x )  as the branches of y h + ( x , y )  —  0, with |F0

+(x)| < lY^x)!. 

yh+(x, y) = 0, or equivalently X2y2 — y + (X\x + n) = 0, is a kernel equation. Namely, 

y/M =  1 " v / 1 " i i
4 ^ ( A ' x  +  / x ) ,  Y f ( x )  = 

1 + V/1 - 4A2
(A|I + ̂ ) (41) 

2a2 2a2 

Similarly, define yo~(x) and Yi~(x) as the branches of y h ~ ( x , y ) = 0, with |yo"(x)| < 

IVj
-(ar)|- yh~(x,y) = 0, or equivalently Xiy2 — y + (X2x + fi) = 0, is a kernel equation. 

Namely, 

Y 0 - ( x ) =  +  y f M =  +  ( 4 2 )  

2ai 2aj 

Let Xi = • According to (4.1), xf is the branch points of F+(x). Similarly, 

let . According to (4.2), is the branch points of Y~(x). Define the 

following cut planes: 

C +  =  C x  -  [ x t , o o ) ,  

CJ = Cx-[xj",oo). 

Lemma 4.1 1 .  F0
+ ( x )  (  Y ^ { x ) )  i s  a n a l y t i c  i n  C+ ( C~ ). 

2. There exists 1 > S > 0, such that |F0
+(x)| < 1 whenever |x| < S. 
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3. For {x : x € C, |x| < 5}, we have 

0 = (p0(x)h£ (x, F+ (x))+(p-1{x)h±1(x) (x)) +*"<),-lfyj-i (x); (4.3) 

and 

0 = (2:)(x,Y0-(x^+^-ifyhZi(x) + 7T0,0/*o,o(fc)) + fo, -1 K%_L(x). (4.4) 

PROOF. Proofs of 3 is obvious and thus omitted here. 

Proofs for F0
+ (x) and Y q ~ (x) in 1 are similar, and only the proof for YQ+ (X) is detailed 

here. The functions V0
+ (x) is meromorphic in the cut plane C+. In addition, yo

+ (x) = 

1 ^1 = 2{\ix+tx) ^ yJ~(x) has no poles and yo
+ (x) is analytic in 

*a2 i+y'1—4a2(aii+/i) 
c+. 

Proof of 2 goes as follows: since Y q  (X) is continuous and Y§ (0) = ^ 

there exists 1 > 5  >  0, such that |y0
+(0)| < 1 whenever |x| < <5. • 

4.2 Dominant singularity analysis of tpj(x) 

Lemma 4.2 1. 

_ 7ro,ox(A2yof (x) + Aiy0~ (x) + n - 1) 
X y0

+(x)(xA2 + f) + y0~(x)(xAi + |) - X 

holds in C+ n C~ n {x : yo
+(x)(xA2 + f) + yo~"(x)(xAi + f) - x 7^ 0}. 

2. Let Xdom be a dominant singularity of ipo(x), then one of the following two cases 

must hold: 

i) Xdom = or xdom — X\, which is a branch point ofY+(x) or Y~(x); 

H) Xdom is a zero point o/yo
+(x)(xA2 + f) + yo~(x)(xAi + ^) — x with |x| > 1. 
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PROOF. Plus (4.3) and (4.4), then for {x : x € C, |x| < 5}, 

0 = y 0 ( x ) { K ( x , Y 0
+ ( x ) )  +  h 0  (x,F0 ( x ) ) )  + n 0 , o { h l 0 ( Y j - ( x ) )  +  h 0 0 ( Y 0  (x))). 

Thus for { x  :  x  6 C, |x| < <5} fl { x  :  x(/ig (x, yo
+(x)) + h Q  ( x ,  Y 0  ( x ) ) )  ^ 0}, 

f v ^Q,ox(htfi(Y0
+(x)) + h^0(Y0-(x))) 

< P o X  x ( h £ ( x , Y 0
+ { x ) )  +  h o ( x , Y o ( x ) ) ) '  

Namely, for {x : x € C, |x| < 5} fl {x : yo
+(x)(xA2 + f) + Y^~(x)(xAi + |) — x ^ 0}, 

.. /RI 7ro,og(A2yo+ (x) + AIF0~(X) + f t  - 1) 

r0
+(x)(xA2 + f) + (x)ix^i + 2) — x 

The right hand side of (4.6) is analytic in CjnC~fl{x : yj)+(x)(xA2 + |)-(-Vo"(x)(xAi + 

|) — x 7^ 0}, thus ipo(x), {x : x 6 C, |x| < 5}, can be analytically continued at least 

to C^nCjn{x: 1Q+ (X)(XA2 + f) + f0
_ (^X^Ai 4-^)-i^0}. Therefore (4.6) holds 

for CjnC~n{x : >^+(x)(xA2 + |) +yo
_(x)(xAi + — x / 0}, which leads to a proof 

of 2. • 

Lemma 4.3 1. For xeC,  we have 

2A2(7r0j-_1 + y>j-1(x)) _ 

v' lx)-  L  +  J L - U . F R X  +  R I  J " 2 '  

holds except at a pole (if there is anyJ of< P j - i ( x ) ;  

(4.7) 

Mx) = 2MX^ + (2\ ,X + ̂ 0 (X)  _ (4 g) 

x ( l  +  \ J  1  -  4 A 2 ( A I X  +  f j ) )  

holds except at a pole (if there is any) ofipa(x); 

2A1x7i"o,o + (2AiX + n)(po(x) 
V ~ 1 ( X )  =  , ( l + 0-4A, (^  +  < . ) )  " <4'9) 
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holds except at a pole (if there is any) of ipo(x); 

i 2ai(7roj+i + < f j + i ( x ) )  .  . 
= 1  ,  A X  f :  .  ,  - *o j ,  j  <  -2 ,  (4 . io )  

1 + yl — 4Ai(A2£ + fA) 

holds except at a pole (if there is any) of ipj+i(x); 

2. The dominant singularity of(pj(x), j = ±1 ,  ±2 ,  ±3 , . . . ,  is the dominant singularity 

o f ( p o { x ) .  

PROOF. Firstly, we show (4.8) and (4.9). 

For a proof of (4.9), from (4.3), we have for {x : x € C, |x| < 5}, 

=  - < f o ( x ) h ^ ( x , Y ^ ( x ) )  -  71-0,0^0(VW) - (4.11) 

The right hand side of (4.11) is analytic in C+ except at a pole (if there is any) of 

ipo(x). Using (4.5) in (4.11), we have for {x : x E C, |x| < 6}, 

h +  (x) v  ,(i) _ ̂ ow.(vm) + ww)) h+( yu )] 

- *0FLHL 0 {YJ~(X))  -  7r0,-l^-l(x). 

Namely, 

/ , \ \ t \ 7ro,ox(a2yro+(a;) + ai^ct^) + m ~~ !)((a2 + 2i) Y Q { x )  -  l) 
(" + xmx) = ww + f) + vmri, + f) -1 

- 7To,o(A2Vro+(a;) + ̂  - !) -7T0,-l(A2X + /i). (4.12) 
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Also, 

(\2x + n)(p..i(x) 

7ro,o(A2y (x) + AiVq' (X)  + N - l)((A2x + f )V(x) - x) 

Y q{ x) ( x\2 +  f )  +  Y ^ { x ) { x A i  +  f )  -  x  

- 7ro,o(A2F0
+(a;) + V - !) - 7To,-I(A2X + M) 

7ro,o(A2yo
+(x)+A1yo"(x)+^-l)((A2x+f)yo

+(x)-x+yo~(x)(3;Ai + f)) 

^0+(;r)(:r^2+2)+^0 (x)(xAi + |)~X 

_ 7ro,o(A2yo
f(x) + Ax^ (x) + fx — 1)F0 (x)(xAt + |) 

yo
+(x)(xA2 + + F0 (x)(xAi + |) — x 

- 7To,o(A2Y 0
+(X)  + n  -  1) - 7r0,_i(A2x + f x )  

=ai7ro,0y0~ (x) 
7ro,o(A2V(x) + AiFq (x) + fx - l)yo (x)(xAi + f) 

y 0+(x)(xA2 + | )  +y 0~(x)(xAi + f) - x 

- 7To ,-i(A2x + n) 

A i 7 r o , o y o " ( x )  +  x _ 1  +  X i X S j < f 0 ( x ) Y 0 ' ( x )  -  i r 0  _ i ( A 2 x  +  f x ) .  

We know 

N _ 1 — \/l — 4Ai(A2x + ( x )  2(A2x + f x )  
*o \x) ~ 

2Ai 1 + -y/l — 4Ax(A2x + fi)) 

Thus, we have for { x  :  x  £  C, |x| < £}, 

,  ̂  2 A iX7t0 , o +  ( 2 A i x  +  f i ) < f i Q ( x )  

iX) = *(Wl-4A,(A2* + „)) " (4'13) 

The right hand side of (4.13) is analytic in CX  except at a pole (if there is any) of 

i p o ( x ) -  T h e r e f o r e ,  ( 4 . 1 3 )  h o l d s  i n  C x  e x c e p t  a t  a  p o l e  ( i f  t h e r e  i s  a n y )  o f  ( f n ( x ) .  

For the proof of (4.8), according to (2.20), we have for {x : x E C, |x| < 5}, 

( f x  + Aix)<£>i(x) = - Ai7To,ix - A27To_ix + < p o ( x )  -  ( f x  + A2x)</?_i(x). (4.14) 
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Input (4.12) and (4.6) into (4.14), we have for {x : x € C, |x| < <5}, 

30 

( H  +  X i x ) < p i ( x )  

7t0fix{X2Y^ (x) + aifq- (x)+fi- 1) 
— — XI 'KQ^IX — a27to,_i£ 

Y^+(X)(XA2 + |) + YQ (X)(XAI + |) — x 

KQ,Ox(X2YQ~(x)  + AiF0 (x) + N — 1) ((A2 + ^)YQ~(X) — l) 

yo
+(x)(xA2 + f) + y0"(x)(xAi + f) - x 

+  7ro,o(A2F0
+(x) +  f i ~  1) + 7r0)_i(A2x + /i) 

= - Ai7T0,IX 4- 7r0,o(A2Vr
0

+(x) + f * -  1) + 7r0 -in 

_ 7ro,ox(A2yo
f(x) + A1V0~(x) + /x - 1)(A2 + V(x) 

y0
+(x)(xA2 + §) + y0~(x)(xAi + f) - X 

= —ai7r0,ix+7r0,o(/i - 1)+tt0 ,-i/u+7ro,oa2yo
+(x)+x-vo(x) (a2x+|) Y^(X)  

= - (Axx + /x)7r0,I + (7r0,oA2 + X~VO(X)(A2X + |)) VO*)-

We know 

_ 1 - V^~^2(AlxT7i) _ 2(Aix + /i) 
v(®) = 

2A2 1 + -y^l — 4A2(AjX +  f l )  

Thus, for {x : x € C, jx| < 5}, 

2A2x7r0,0 + (2A2x + f i ) < p o { x )  ,  .  
< x > i { x )  —  .  — f o i *  ( 4 . 1 5 )  

x(l  +  y/ l  -  4A2(AiX + fJ,)) 

The right hand side of (4.15) is analytic in Cx except at a pole (if there is any) of 

< P o ( x ) .  T h e r e f o r e ,  ( 4 . 1 5 )  h o l d s  i n  C x  e x c e p t  a t  a  p o l e  ( i f  t h e r e  i s  a n y )  o f  ' - p o ( x ) .  

Secondly, we show (4.7) and (4.10). Since the proof of (4.7) is similar to that of 

(4.10), we provide details for (4.10). We show (4.10) for j = —2 first. Then, using 

the same procedure, we can show that if for j = k, k < —2, {x : x G C, |x| < <$}, 

< P k ( x )  =  2 ^ l k _ 4 x J \ 2 x + v )  ~  7 ^ 0 ' k ,  t h e n  { o r  3  =  k  -  I ,  { x  :  x  e  c >  l x l  <  < * } >  < P k - i ( x )  =  
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2Ai()ro.t+yfc(a)) 
l+'\/l-4ai(a2x+/i) 

— fo,fc—i• Therefore, for j < —2, {x : x G C, |x| < J}, we have 

= 2Ai(7Tqj+, + yJtl(x)) _ (  ) 
W ' 1 + X/1-4A1(A2x + /x) ^ 

The right hand side of (4.16) is analytic in Cx except at a pole (if there is any) of 

i p j + i ( x ) .  T h e r e f o r e ,  ( 4 . 1 6 )  h o l d s  i n  C x  e x c e p t  a t  a  p o l e  ( i f  t h e r e  i s  a n y )  o f  L p J + i ( x ) .  

The proof of (4.10) for j = —2 is provided as follows: 

According to (2.21), we have for {x : x G C, |x| < J}, 

x ( / x  +  \ 2 x ) ( p - 2 ( x )  = - ( ^  +  \ i x ^ i p 0 ( x ) + x ( p ^ i ( x ) +  ( - A27t0 -2x+^nh0^x. 

(4.17) 

Also, from (4.13), we have for {x : x G C, \x\ < <5}, 

2(^ + *ix)<po(x) = x(y>_i(x) +7r0l_i)(l + V1 -4Ai(A2x + /x)) - 27r0,oAia;. 

(4.18) 

Using (4.18) in (4.17), we have for {x : x G C, |x| < 5}, 

x ( f i  +  A 2 x ) < p - 2 ( x )  

T I  \  , \1 + x/1 ~ 4a!(a2X + FX) 
=  -  x ( ( p - i { x )  + 7T0 _i) h TTo.oAiX 

+  x < p - i ( x )  + (-A27To -2x + ^7Tii0)x 

/ / \ \ 1 + v/l — 4Ai(A2X + n) 
= - x(^_i(a;) + 7T0-1) h 7r0,oAia; 

+ XIF -i( x )  + (-A27t0 - 2X +  (tt0,—1 - Ai7t0,0 - n n 0 - 2 ) ) x  

< ( \ 1 ^ 1 - v^^ai^a^tti) /x , ^ 
=X{<P- 1 (X)  + 7T0,_i) (A2X + H)TTQ,-2X-
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Thus, for {x : x G C, |x| < J}, 

... 2AI(7TO_I + y?_i(x)) 
<P-2(X)  -  — / ===== - TTO-2- (4.19) 

1 + Y 1 — 4AI(A2X + N) 

The right hand side of (4.19) is analytic in Cx except at a pole (if there is any) of 

V?_i (X). Therefore, (4.19) holds in CX  except at a pole (if there is any) of 

Thus we complete the proof. • 

For convenience, define H ( x )  =  x ( h , Q  (X, yo
+ (x)) + /ip (X,F0

_(X))). 

Lemma 4.4 x = 1, x = (A i^A z ) 2  and x = _^(2(Al+A^+^Al A2^ ) are oniy pOSSibie 

z e r o s  o f  H ( x ) .  

PROOF. We can show that x = 1, x = (A l^A 2 ) 2 ,  x  =  _M(2tAl+A^+^Al A a )  )  are 

only possible zeros of H(x)H*(x), where 

H * { x )  =  x ( h ^  ( x ^  ( x ) )  +  ( x , Y { ~  ( x ) ) ) .  

We have 

H ( x )  = (XA2 + Y q  (X) + ^xAi + Y 0  (X) - x, 

H * ( x )  =  ( x \ 2  +  D  F j + ( x )  +  ̂ x A i  +  ̂  Y f ( x )  -  x .  

Thus, 

H { x ) H * ( x )  

=(xAl + 2) (xAa + + F° 

+ (XA2 + V0
+(x)y1

+(x) + (xA, + f) V0-(x)yf(x) 

- x(xa2 + |)(y0
+(x) + y^x)) + ^xAi + |)(y0-(x) + yf (x)) + x2. 
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Also, we have 

F0
+(x) +  Y + ( x )  =  j - ,  Y 0 ~ ( x )  +  Ff(x) = 1; 

V  ( z ) 5 ^ )  =  X l X  +  f J ' ,  Y Q  ( x ) Y f  ( x )  =  X 2 X  +  V  
A2 ' u w 1 A, ' 

1 - y/l — 4A2(AIX + n)y/l — 4AI(A2X + fx) 
Y 0

+ ( x ) Y f ( x )  + Y 0 - ( x ) Y + ( x )  =  2 A i ^  

Therefore, 

H ( x ) H * ( x )  

=  ̂ xAi +  ^ xA2  +  2A~A~^ ~ ~  ~  4A2 ( Aix +  f i ) y / l  —  4Ai(A2x + //)) 

+ { X X 2 + T Y ^ ; ( X X L + I Y ^  

- x ( ( z X * + 2 ) T 2  
+  ( x X i  +  2 ) T ) + x 2 -

Thus, if H ( x ) H * ( x )  = 0, we have 

4A?A* ̂  (IA, + |) (xA2 + £) ̂  + (IA2 + |) 

+ (xal +1) HE^T _ x((ia2 +1) j_ + (lal +1) _l) + 

=  4AjA2 ^ xAi +  ̂ ( xA2  +  ̂ ^  \ / l — 4A2(AiX+/i)\/l —4Ai(A2x+/u)^ , 

which is equivalent to 

2 2 2 
0 — A2)((Ax + A2)x + ~ ^-X^2AXA2X + /i(Ai + A2)^ 

— 4^AiA2x2 + T|(AI + A2)X + ^~(Ai — A2)2X 

2 
+ /x2 ^2AiA2x + /i.(Ax + A2)^ ((A2 + A2)X2 + + ̂ (Ai + A2)x^, 
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or 

/  ^  \2\ f  ^ ( 2 ( A  1+^2)+a« ( ai- a2)2] 
0  =  4AIA 2 (A 1+A 2 )  

Thus, the proof is complete. 

Lemma 4.5 (Al+A2 )2 i>s the only possible zero of H(x) with the modulus greater than 

1 ,  a n d  ( .  j " .  ) 2  i s  a  z e r o  o f  H ( x )  i f  a n d  o n l y  a / m a x f A i ^ }  <  

PROOF. It is easy to verify that: 

(0  # ( (ai+a;)2) = 0 if and only if max{Ai,Aa} < ^; 

(ii) ff(-M[2(Ai+A2HM(Ai-A2)a]j ^ and /j-^_A'[2(Ai+A2H^(Ai-A2)2]-) = q 

Denote x« = (A i^A z ) 2 ,  and recal l  x+ =  1̂ X2 and xi 1—4ai n 
4a1a2 

Lemma 4.6 

x x  <  x f ,  

x f  <  X i ,  

XDOM — X* <  min{xi",x1 }, 

x* =  x x  < xf ,  

x *  =  x t  <  x 7 ,  

^ ' Ai > A2 , 

if A2 > , Ai < A2 , 

if max{Ai, A2} < ^f, 

if A2 < Aj = , 

if Ai < A2 = • 

Proof. Recall X+ = 14x^x2 ' and = 00 8X6 the branch points of K+(x); and 

x j f  =  a n d  X 2  =  0 0  a r e  b r a n c h  p o i n t s  o f  Y ~ ( x ) .  

It is easy to have the following results: 

(i) xx > 1 and x\ > 1, since x± — 1 = ^Al^*' and xi ~~ 1 = ^4x^X2 ' 

(ii) Xj" = Xi, if Ai = A2; xt < Xi, if Ai < A2; X+ > x]~, if Ai > A2, since x\ — xj" = 

(ai-a2)m 
a1a2 
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(iii) x « < x ~ f ~ ,  and the equality holds if and only if A2 = . It is true since 

(2a2/j - (1 - N)Y 
X* Xl 4A1A2(A1 + A2)2 " ' 

and the equality holds if and only if A2 = • 

(iv) x* < X I ,  and the equality holds if and only if Ai = It is true since 

(2Aifi - (1 - n))2 ^ n 

x* ~ X l  ~ ~ 4A,A 2 (AI +  A 2 ) 2  S° '  

and the equality holds if and only if Ai = 

(v) If Ai = A2, then Xdom = £* < min{xi", It is true since Ai = A2 > is 

impossible,  otherwise,  Ai +  A2 > ^  > 1 — / / ,  which confl icts  Ai +  A2  = 1 — fJ>.  •  



Chapter 5 

Tail Asymptotic Analysis along the 

ir-Direction 

In this chapter, the behavior of < P j ( x ) ,  j  = 0, ±1, ±2,..at the dominant singularity 

is detailed and the tail asymptotic results along the x-direction are given. 

5.1 Asymptotic analysis of < p o ( x )  

Rewrite 

Y0
+ (x) = p+ +q+ - Jqr, Y0~(x) = p~ + q~^ 1 -

Yo ) - *o+ (x) = \Jl ~ Yo~ fai") - Y0~ (x) = -q~ ̂ 1 - 4:, 

I  X ~ ~  I  X  
H ( x )  =  p + 9i(x)J l - -T  + 9 2 (x)J l - - r ,  

V xi \ xi 

36 
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where p+, q+, p~, q~ and p  are constants; Q \ { x )  and q 2 { x )  are analytic in the region 

c+nc;. 

+ 1 + jXixt _ 1 _ I A2xJ~ 
p = ̂  q =-v^t' p = 2v9 = ~v~' 

H (  1 1 
p = 4 ' (i + i)' 9,{x)—)[^-(X2X+ 2)' q2{x)-'\f^(X'X+^) 

Define 

T ( x , Y 0
+ ( x ) , Y 0 - ( x ) ) ±  

a. fo,ox(A2Fo+ (x) + AiF0 (x)+n~ 1) 

Y0
+ (®)(®a2 + 2) + ̂ 0 ( x ) ( x X i  + — X  

Let Xdom be the dominant singularity of <po( x ) ,  or the singular point of tpo{ x )  with 

the smallest  modulus.  Clear ly ,  Xdom = x t ,  or  x d o r n  = xj ,  or  Xdom — x~\-

The following Lemma shows the behavior of (fio(x) at x^om-

Lemma 5.1 For the function ipo(x), a total of three types of asymptotics exist as x 

approaches to the dominant singularity of ipG(x) based on the detailed property of the 

dominant singularity. 

Case 1: I f x d o m  = x* < min{xi~,x x } ,  t h e n  

l im (1  — j IPO{X) = Cb,i(x«tom), 
x ~ * x d o m  \  % d o m  J 

where 

^0,0 ^a2vq (Xdom) ~l~ aivq (Xdom) h~ 1^ 
Co,l (Xdom) 

A 
dx 9i(xV1_#+9a(:rV 1 - 4 

X, 

%—%DOM 

Case 2: If Xdom = x, = X| < xx, or Xdom — x* = xx < x{, then 

lim y / l  - X / X d o m p o { x )  =  C o n d o m ) ,  
x *XDOM 
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where 

co,2(xdom) — ^ 

f 0 , 0Xdom  ̂ A j  V q (%dom)  ~t~  

Q l (Xdom)  

f  O f iXdom  ̂ - ^2^0  (Xdom)  M 

Q2 ( .XDOM) 

,  IFXDOM = ®* = xi" < xx , 

> XDOM — x* xj < xj + 

Case 3: If xdam = xf < x x ,  or  Xdom = xx <xx, then 

lim y / l -  x / x d c m i f ' Q { x )  -  ̂( X d o m ) ,  
x yxdOTn 

where 

^0,3 (XDOM) — 

dT 
2x+<9Y0

+(x) 
q~ dT 

2 x x  d Y 0  (x)  

( * d  o m  I V0
+ { x d  o m  ).*0 (^dom)) 

, «/xrfom = X* = xj" < Xj, 
) 

> Xdom =  X* =  x j  <  x t -

f a d  o m  i  

PROOF. Recall for x  € C+ N Cj. N {x : (x, Y0
+(:r)) + (x, Y 0  ( x ) )  7^ 0}, 

Vo(x) 
7ro,ox(A2F0

f(x) + AiFq ( X ) + H  -  1) 

H ( x )  

Case 1: If Xdom — x* < minlx^x! }, then 

H ( x )  =  H ( x )  -  H ( x t )  =  q * ( x ) ( l  -

where 

q * ( x )  =  —  x ,  
Oi(x)^/ l -^r-  gi(x»)^/ l  -  f t  

V X — X* 

®w^i-^-92(x.)v/r^| 

x — X, 
) •  
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Thus, 

x \  7 r o < 0 x ( \ 2 Y j ~ ( x )  + \ i Y 0  ( x )  + n - 1 )  
1 ~ ~— vo(®) -

XdomJ  q * ( x )  

Therefore, 

l im ( l  — |  ipo{x) 
X—*XDOM \  XDOM J  

= j. 7ro,ox(A2Fof (a) + XX YQ  ( X )  +  /x -  1) 

7r0,0^a2f0 + aivq {XDOM) ~t~ 

4 A3? 
X=Xdom 

Case 2: We provide details for x^ = x» = xf < xj~. Other cases can be similarly 

proved. 

If Xdom = x* = xf < xj", then #(x+) = 0. 

(x) = (x) -  tf(x+) =  q i ( x )  l l -± + q 2 (x)  l l  -  ±  -  totfd 1  -  4  
y 3^2 y y 3?^ 

x J x j 

where 

Q2 ( x ) x / T ^ J -Q 2 ( x t ) x f l ^ $  
92 (x)  =  - x i  i  -  1  -

x — x+ 

is analytic at x = x f .  

Thus, 

/1 x ^ = 7r0,0x(Aiy0 (x) +n-1) 

X d o m  °  q x ( x )  +  q $ ( x ) ^  
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Therefore, 

. .  f \  7 / \ fOfiZdomi^l ( x dom) M 1) 
lim y/1  -  X/XdomVo(x)  =  J 7 •  

x — t x j  om Q l y X d o m )  

Case 3: We provide details for Xdom = xi < x\. Other cases can be similarly 

proved. 

Recall 

T ( x ,  V W , y 0 " W )  ̂  +  W O r )  +  M  -  1 )  
Y0

+ (X)(XA2 + f) + V^~(x)(xAi + f) - x' 

Thus, 

d T ( g , y 0
+ ( g ) , y 0 - ( x ) )  _  d T  dT rfF0

+(x) 0T dYpjx) 

dx dx OYQ (X) dx ^ 8YQ (X) dx 

Also, 

dY0
+(x) = ^+

d\Jl ~ xf q+ 

dx dx 2 xt 

dY0
+(x) q~ 

dx 

lim y/l - X/Xdom— = 0, 
x ^%DOM C/X 

r, ;— dT dY0-(x) „ 
km ^ l -x/x^ =0.  

•J* fXaom U1 q } Uj JL 
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Therefore, 

lim y / l  -  x / x d o m i p ' 0 ( x )  
X—tXdom 

dT dY0
+(x) 

= lim 
CX q J UJu 

q+ &T 

2 x f  d Y o ' ( x )  
(Xd  om  ,Yq {Xdom)^0 {^dorr i ) )  

Remark 5.1 For random walks in the quarter plane, at most four types of exact tail 

asymptotics are obtained: exact geometric, geometric multiplied by a prefactor ofn" 2, 

3 
geometric multiplied by a prefactor ofn~2, and geometric multiplied by a prefactor 

of n. The fourth type is missing in our case, since xi = xi < x* is required for that 

type, while if Ai = A2, then xt < xi = x^. 

5.2 Asymptotic analysis of J ^ 0 

Lemma 5.2 For x e Cx, j = ±1, ±2,..we have 

< P j { x )  =  

j~l / U t  
2A, 

vf- , 
k_0 -*. + y/l — 4A2(AIX + n)' ^1 + \J 1 — 4A2(AIO; -I- /i) 

+1 , 2a2,. /
2a2+,"x."' ,»(4 

2a27r0j-fc-i 
f o  , j-kj 

1 + y /  1 - 4A2(AiX + f j ) '  1 + \/l — 4A2(AiX + n )  

if j > 1, 

- j ' - i  

S(r 
(i 

2Ai , X ( -  , 
k=0 *• + y/l — 4Ai ( X 2 x  +  f i ) '  ^  1 + y/l — 4Ai(A2x + n) 

2Ai \-j-i 2Ai + jix~l , . 

+ y/l — 4Ai(A2X + /i) '  1 + y/l — 4Ax(A2X + fl) 

if j < -1-

2ai7ro,j_/c+i 
^O.J - - kj 

(5.1) 
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Lemma 5.3 Case 1: If xdam = x, < minlx^xj }, then 

lim 1 -
x 

x—txdom V Xdom t  

Cj, l{pCdom)i  

where 

2Ao J-y 2a2 + /ixdc^ f( 1 +  y / l  —  4A 2 ( A i Xdom+ny 1 +  \ / l — 4 A 2 ( A i x f j om+/i) 
^  Q), l  (x  dam)i  

if 3 > 1, 

Cj, l{ x dom) — \  

2Ai -i~1/ 2ai + fJ,xdi r\ 
i 

om = ^c0,l(xdom)5 
+ \/^--4a7(a2xrf^+^' m + \/1—4ai(a2x<20m+//)' 

i f j  <  - ! •  

Cose 2: If xdom = x* = x^ < x1, or xdom = x„ = x l  <  x f ,  t h e n  

lim y / l  -  x / X d o m V j i x )  =  C j ^ X d a m ) ,  
% *x(lorn 

where 

(a) under Xdom = x* = xf < xj~, 

(2A2)J (2A2 + //xdom)co,2(xc(om), if 3 > 1. 

Cjy2{%doin) — \ ( 2Ai n 2ai + W d L  

1 + i / l—4Ai (A 2 xdom+v) 1  + y/l—4Ai(A 2x, iom+A t )  
:^co>2(^(iom)) 

»/i < -l; 
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(b) under Xdom — x* = x1 < X*, 

2Ao J-i ( 2X2 + nx^ 
f) (• V1 + y/l ~~ 4A2 (+/^y 1 + 4A2(Aixtj0m+/^) 

^^0,2(^0771)1 

C j ^ ( X d o m )  — \ 

(2Ai)  3  x ( 2 X 1 + H X j o J c o t i X d o m ) ,  

if j > 1, 

i f j  <  - 1 -

Case 3: If Xdom = x{ < xx, or Xdom = xx < xi, then 

lim y / l  -  x / x d o m i p ' A x )  =  C j ^ X d a m ) ,  
X—tXdom 

where 

(a) under xdom = xi <x^, 

2\ ̂  ^ 
(2A2)J-1(2A2 + Mxd(L)C0.3(Xdom) + 1 _ \\2n y^(2A2)fc(Pj-fc(a:dwn)> 

j-1 

i f j  >  1 ,  

^3 i^dorn) — \ 

(t 
2AI S-i( 2Xx+iixd

l
on 

n-1 + \/l — 4Ai (X2Xdom + ̂ Y + \/l—4Ax(A 2Xdom + (J>) 

i f j  <  - i ;  

(b) under Xdom = xx < xi, 

C j , 3 ( X d o m )  

2A, >-1/ 2A 2+MXdL 
f ) ( -^1 + \/l—4a2(ai xdom + m) 1 + \/l~4a2(aix(iom + af) 

^C0,3(Xd om)» 

i f j  >  1 ,  

9 a a 
(2A1)j_1(2Ai +/^^)c0,3(Zdom) + ./T.AX.,, S (2Al)V^(^om), 

- j - 1  

•\/l —4Ai/u 
fe=0 

i f j  <  - I -
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PROOF. Case 1 and 2: It can be easily concluded according to (4.7), (4.8), (4.9), 

(4.10) and (5.1) respectively. 

Case 3: According to (4.7), (4.8), (4.9) and (4.10), we have 

tp'Ax) = 

f 2A2^, 1 (X)+ 'rj iv / v/i-4a2(aix+^) 

1 + y/l — 4A2(AIX + fi) 

(2A2 + yx-l)ti(z) - (^)yp(x) + 

1 + y/l — 4A2(A^x + fi) 

(2a,+^--hw - ( 

1 + y/l — 4Ai(A2X + /J,) 

2AxA2y?j {x) 
(A2a;+/i) 

1 + v^^~4ai(a^x+7t) 

i f j  >2 ,  

ifj = 1, 

if 3 = -1, 

if j < —2-

Also, 

lirn y j  1 - x / x f -
y/l^AX^xTJl) y/iXj^xf 1-4A2^' 

1 1 

x->»r ^ ^ 1 >/l ~~ 4Ai(A2a: + ̂ ) ^4AIA2XI 1 - 4Ai// 

Therefore, under , we have 

Cj,z(z<lom) 2a2cj_i,3(x{fc)m) -(- _ 
Y I — 4A2^ 

2a a 
Cl,3(«rfom) = (2A2 + ^din)C0,3(^dom) + 1 2 

2al + VXdom 

2aia2 > 
t p j i Z d o m / i  3 — 2 ,  

C—1,3 (%dorn) 

Cj,z(Zdom) = 

1 + y/l ~ 4AI(A2Xdom + fi) 
2Ai 

1 + y/l — 4Ai(A2x (iom + (x) 

\/l — 4A2/i 

co,3(-c(iom) i 

yi(-^rfom)i 

('j+l,3(*^dotn)) j 5: 2. 
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Thus, 

9 \ \ 
(2A2)j_1(2A2 + /ix^n)c0,3(a;dom) + -—~~ ̂ (2A2)Vj-fc(^om), 

1 - 4a2^ 

j-i 

if j > 1, 

Cj,3(%dom) — * 

(t 
2AI n 2ai+//xd, om 

1 + \/l — 4Ai (A 2^dom +£«)' 1 + V^l- 4Ai(A2Xd0TO + (*) 
cq,3 (^rfom), 

if 3 < -!• 

Similarly, under =• xx < x*, we have 

C-j ,3{x dorri) 

£-1,3(^(tom) = 

2A2 

1 + \/l — 4A2(A1xdom + /i) 
2a2 + fix^L 

1 + y/l — 4A2(Ai Xdom + A4) 

C—\${%dom) = (2Ai + /^E£fom)Co,3('£dom) "I" 

C j — l . S ^ d o m ) )  j  ̂  2 ,  

^0,3 (^dom)) 

-1 \ i 2aia2 . . 
V — 1  \ - ^ d a m ) i  

Cjdfadom) — 2aicj + i)3(xdom) + 
2aia2 

y/l - 4Aifi 

y / 1  -  4ai// 

(Pj{^dom}i j — 2. 

Thus, 

Cj,zi%dom) — 

2Aa 

A 
2a2+/jxjm 

V1 + \/l—4A2(Aix<iom+^y 1 + v^l—4A2(AiXd0m+/i) 
c0,3 {xdom ) > 

2A A 
(2A1)J_1(2A1 + /iX^m)c0,3(Xdom) + 12 

\/l—4ai/i 

if j > 1, 

- j - i  

^ ] (2Ai) (Pj-k{,Xdam)i 
k=0 

i f  J  <  -1 -
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5.3 Tail asymptotic results 

Lemma 5.4 Case 1: (exact geometric decay): For xdam = x, < min{xi",x ^ } ,  

namely max{Ai, A2} < , we have for fixed j, j = 0, ±1, ±2,..and large n, 

fnj ̂  Cj,\(pCdam){ ^ i 
\Xdom' 

Case 2: (geometric decay multiplied by the factor n'1?2): For xd 0 m — x* = x* < x~[, 

namely Ax < A2 = or x^om = x* = x^ < xf, namely, A2 < Ai = we have 

for fixed j, j = 0, ±1, ±2,..and large n, 

^ cj,2(^0jn_1/2/_l\n+1, 

y/TT \X d o m) 

Case 3: (geometric decay multiplied by the factor n~3/2): For xdorn — xf < xj, 

namely, A2 > , Ai < A2; or Xdom = < xt, namely, Ai > Ai > A2, we have 

for fixed j, j — 0, ±1, ±2,..and large n, 

3/2 f 1 
'n,J 

Xdom ) 
Remark 5.2 All limits are taken in the region {x : < 1 + e, |Arg(-^^) — 1| > 

(j)}, where e > 0,0 < (j> < 7r/2. 

PROOF. Notice that (pj is analytic in the region A/{xdom}, namely {x : \j^\ < 

1  +  e ,  | A r g ( ^ )  -  1 |  >  ( ( > } / { x  :  =  1 } ,  w h e r e  e  >  0 , 0  <  < j )  <  T T / 2 .  

Case 1: According to Lemma 5.1 and Lemma 5.3, j — 0, ±1, ±2,..., 

X /  X \  ~  ̂ X 
< p j (  ) ~ C u i x d o n j l l  J as • 1 in A. 

Xdom Xdom'  Xdom 
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Thus, from Remark 1.2, 

Cj,l{Xdcnn) i_i / \  /  1 \n+l 

W n J ~ r( i ) (x d o m ) n + i n  )  

Case 2: According to Lemma 5.1 and Lemma 5.3, j = 0, ±1, ±2,. 

X  /  X  \  ~ X  
~ cji2(xdom)( 1 J as >• 1 in A. 

Jbflrvm ^ XW/vm '  JUst/vm 

Thus, from Remark 1.2, 

cj,2(xdom) ji1/2-1 
= 

C j f i ( x d o m )  —1/2 / ^ v n+1 

V2)(^rfom) v^F ^%dom' 

Case 3: According to Lemma 5.1 and Lemma 5.3, j = 0, ±1, ±2,. 

¥>j(——)^c j^(x d o m ) ( l  —) '  as — >1 in A.  
Xdom ^ Xdom' Xdom 

Thus, from Remark 1.3, 

c j ,3(xdom) 1/2—2 c j,3(xdom) -3/2 f ^ v 
r(i/2)(xrfom)"n 0F n WJ 



Chapter 6 

Conclusion 

In this thesis, we considered exact tail asymptotics of stationary probabilities for a 

longer-queue-serve-first preemptive queue model, which is formulated as a continuous 

time Markov chain in the half plane. We concluded that there are three types of 

exact tail asymptotics along the x-direction: exact geometric, geometric multiplied 

1 3 
by a prefactor of , and geometric multiplied by a prefactor of n~ 2. Along the 

y-direction (either positive or negative direction), the only type is exact geometric 

multiplied by |n|\ 

Possible future research on this model includes: 

1. Approximation of stationary probabilities of { ( L i ( t ) ,  L2(i))} , and some queueing 

measures, which could be obtained based on the results in this thesis. 

2. Rare event simulation of this model, which could be used to evaluate the efficiency 

of our results. 

3. Exact tail asymptotic properties for random walks allowing bulk arrivals and bulk 

services, and for multi-dimensional random walks, which are generalizations of the 

model studied in this thesis. 
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