
Low Power Parallel Rolling Shutter

Artifact Removal

by

Nick Stupich, B.Eng.

A thesis submitted to the Faculty of Graduate and Postdoctoral Affairs in

partial fulfillment of the requirements for the degree of

Master of Applied Science in Electrical and Computer Engineering

Ottawa-Carleton Institute for Electrical and Computer Engineering

Department of Electronics

Carleton University

Ottawa, Ontario

c©2014

Nick Stupich

Abstract

This work presents an algorithm capable of modeling and correcting video artifacts

caused by movements of a rolling shutter video camera. A distortion model is fit

to feature points extracted from pairs of frames to quantity camera movements

across image scanlines. An affine transformation is used to model full frame camera

movements, and sinusoids model high frequency camera movements and vibrations

in the x and y directions, as well as rotations. The model parameters that fit to

the extracted feature points are robust to outliers using an m–estimator solution

that is efficiently optimized by iteratively decreasing the m–estimator kernel width.

An exponential moving average filter is used to produce smooth output camera

motion before the distortion in individual frames is removed. Automated code

optimization is applied to inner model fitting loops to improve performance. An

implementation suitable for a low power parallel processing platform is presented.

The distortion model was found to be capable of accurately modeling rolling shut-

ter distortions, especially those caused by high frequency camera vibrations. The

m-estimator solution was found to accurately discount outlier features, and com-

bined with the iteratively decreasing kernel width the global optimum solution is

reliably and efficiently found. Automated code optimization decreased model pa-

rameter calculation time by 49 times by factoring out common terms from matrix

element computations.

Contents

Abstract . i

Contents ii

List of Tables v

List of Figures vi

List of Acronyms and Symbols viii

1 Introduction 1

1.1 Motivation . 1

1.2 Introduction to rolling shutter sensors 3

1.2.1 CMOS pixel circuits . 3

1.2.2 Pixel scanning circuit . 5

1.3 Thesis Organization . 6

2 Background 8

2.1 Types of distortions . 8

2.1.1 Skew . 9

2.1.2 Wobble . 9

2.1.3 Smear . 10

2.1.4 Partial Exposure . 10

2.1.5 Scope of Work . 11

2.1.6 Importance of Work . 12

2.2 Previous work . 12

2.2.1 Full frame video stabilization 12

2.2.2 Electronic global shutters 15

2.2.3 Gyroscope based software solutions 16

2.2.4 Software rolling shutter solutions 17

2.3 Summary . 19

3 Algorithm Design 20

3.1 Assumptions . 21

3.2 Extracting feature pairs . 22

3.2.1 KLT feature extractor . 22

3.2.1.1 Extracting features 23

ii

iii

3.2.1.2 KLT feature tracking 25

3.2.1.3 Sub-pixel resolution of features 28

3.2.2 Alternatives to the KLT algorithm 28

3.2.3 Division of images into sub-images 29

3.3 Distortion transfer function . 36

3.3.1 Full frame movement . 38

3.3.2 Row based x-translation . 39

3.3.3 Row based y-translation . 41

3.3.4 Row based rotation . 41

3.3.5 Summary . 43

3.4 Outlier rejection . 43

3.4.1 Least Squares . 45

3.4.2 RANSAC & variants . 46

3.4.3 Least Median of Squares . 47

3.4.4 M-estimators . 48

3.4.5 Use of m-estimators . 49

3.4.5.1 Kernel choice . 50

3.4.5.2 Optimization method 53

3.4.5.3 Levenberg-Marquardt Optimization 57

3.4.5.4 Ideal final kernel width parameter computation . . 60

3.5 Motion Filtering . 63

3.6 Image Warping . 65

3.7 Overall Model Fitting Algorithm 67

3.7.1 Model Fitting to Feature Pairs 69

3.7.2 Row-based Translation Model Fitting 70

4 Implementation 75

4.1 Automated code optimization . 75

4.1.1 Sub-expression selection strategy 79

4.1.2 Additional Optimizations 80

4.1.3 Stopping Criteria . 80

4.2 Parallelization . 81

4.2.1 Feature Extraction . 82

4.2.2 Feature Matching . 82

4.2.3 Distortion Transfer Function Computation 82

4.2.4 Motion Filtering and Image Warping 83

4.3 Fixed Point Implementation . 84

5 Results 88

5.1 Code optimization speedup . 88

5.2 Scalability . 89

5.2.1 Feature Extraction . 89

5.2.2 Distortion Transfer Function Calculation 89

5.2.3 Motion Smoothing and Image Warping 90

iv

5.3 Artificially distorted, noisy video 90

5.4 Real world video results . 92

5.4.1 Parliament Video . 92

5.4.2 Driving Video . 93

5.4.3 Walking Video . 94

5.4.4 House Video . 95

5.4.5 Street Video . 96

5.5 Fixed Point Implementation . 97

6 Conclusion 98

6.1 Contributions to Research . 98

6.2 Future work . 100

6.2.1 3D Camera Motion Model 100

6.2.2 Bicubic Pixel Interpolation 100

6.2.3 M-estimator width reduction 101

6.2.4 Motion Smoothing . 102

6.2.5 Removal of Motion Blur . 103

6.2.6 Fisheye lens correction . 104

List of References 106

List of Tables

3.1 χ2 values, counts of extracted features and average minimum eigen-
values for different sub-image grid dimensions 32

3.2 Results of the recursive sub-image feature extraction algorithm . . . 35

3.3 Model parameter symbols and descriptions 44

3.4 Several popular m-estimator kernels 49

3.5 Kernel treatment of inliers . 50

3.6 Kernel treatment of extreme outliers 51

4.1 Model Parameter scaling for fixed point implementation 86

4.2 Calculation of optimal fixed point variable scaling 87

5.1 Speedup of Levenberg-Marquardt (LM) iterations from code opti-
mizations . 88

5.2 Artificial test video results . 92

v

List of Figures

1.1 Active complementary metal oxide semiconductor (CMOS) pixel
with basic circuitry . 5

1.2 CMOS image sensor circuit architecture 6

2.1 Skew effect of a panning camera . 9

2.2 Wobble effect of a vibrating camera 10

2.3 An example of frame smearing . 11

2.4 A pixel circuit for an electronic global shutter 16

3.1 Sub-image feature extraction algorithm pseudocode 30

3.2 χ2 values, counts of extracted features and average minimum eigen-
values for different sub-image grid dimensions 33

3.3 Comparison of standard feature extraction and grid based extraction 34

3.4 Visualization of distortion and desired correction 36

3.5 Fitting errors with different numbers of sinusoid terms 38

3.6 x-Translation between video frames 40

3.7 Fitting of x-translation by sinusoids 40

3.8 Y shifts due to camera rotation . 42

3.9 Failure of a least squares fit . 45

3.10 Welsch kernel response . 52

3.11 Comparison of Welsch kernel and least squares 53

3.12 Optimization surfaces as w decreases. 56

3.13 Change in model parameters as w decreases 57

3.14 Monte carlo simulation to find an ideal w(x) 63

3.15 Monte carlo simulation to find an ideal full frame w(x) 64

3.16 Motion smoothing using an EMA filter 65

3.17 Frequency response of the motion EMA filter 66

3.18 Overall fitting process flowchart . 68

3.19 Frequency analysis of row based x-translation 73

4.1 Sub-expression generation for automated code optimization. 77

4.2 Automated optimization flowchart 78

4.3 Sub-expression frequencies in Hessian and Jacobian computations . 79

4.4 Number of temporary variables vs LM iteration time 81

5.1 Screenshot of the Parliament video 92

5.2 Screenshot of the Driving video . 94

vi

vii

5.3 Screenshot of the Walking video . 95

5.4 Screenshot of the House video . 96

5.5 Screenshot of the Street video . 96

6.1 Maximum Relative Error vs Grid spacing 103

6.2 Fisheye distortion caused by stabilization 105

List of Acronyms and Symbols

Gx Image derivative taken in the x-direction.

Gy Image derivative taken in the y-direction.

I An Image.

I(x, y) A pixel at location (x, y) in Image I.

Ids drain to source current.

Mcov Covariance matrix of a sub image used for feature extraction.

Mmin(λ) Matrix of the minimum eigenvalue of the covariance matrix of each pixel

in an image.

Vgs gate to source voltage.

λ Parameter used in LM optimization to interpolate between gradient descent and

the Newton Raphson method.

ψ(x) Influence function of an m-estimator.

ρ(x) Kernel function of an m-estimator.

σin Standard deviation of inlier data points.

σout Standard deviation of outlier data points.

fdistort frequency of distortion.

viii

ix

fframe frame rate.

frow row scanning frequency.

ncols number of columns.

nfeatures Maximum number of features to be extracted from a single image.

nin Number of inlier data points.

nlayers Number of pyramid layers used in the KLT tracking algorithm.

nout Number of outlier data points.

nrows number of rows.

nsubImages Number of sub-images used for feature extraction.

qualityLevel Minimum eigenvalue to be considered for a feature point, relative to

the max(Mmin(λ)).

w(x) Weight function of an m-estimator.

winSize Window size used to extract sub-pixel accurate features.

centerX The center x value, about which the image is allowed to rotate.

ADC analog to digital converter.

APS active pixel sensor.

ASIC application specific integrated circuit.

CMOS complementary metal oxide semiconductor.

CPU Central Processing Unit.

DFT discrete Fourier transform.

x

EKF extended Kalman filter.

EMA exponential moving average.

FFT Fast Fourier transform.

FPGA Field Programmable Gate Array.

FPU Floating Point Unit.

GPU Graphics Processing Unit.

IIR Infinite Impulse Response.

KLT Kanade-Lucas-Tomasi.

LM Levenberg-Marquardt.

LO-RANSAC Locally optimized RANSAC.

minDistance Minimum distance between any two feature points.

MLE maximum likelihood estimator.

MOSFET Metal Oxide Semiconductor Field Effect Transistor.

NaN Not a Number.

PPS passive pixel sensor.

PROSAC Progressive Sample Concensus.

RAM Random Access Memory.

RANSAC random sample consensus.

RMSE root mean squared error.

xi

SIFT Scale Invariant Feature Tracking.

SLR single lens reflex.

SURF Speeded-Up Robust Features.

SVD singular value decomposition.

Chapter 1

Introduction

1.1 Motivation

In recent years cameras are being found in more and more everyday devices, and

increases in technology are bringing high quality image sensors to the mass market.

Many of these cameras use a CMOS image sensor which features an electronic

rolling shutter that can cause artifacts in the captured video. These cameras are

often found on small devices or mounted on moving platforms, neither of which

are stationary, making them susceptible to rolling shutter distortions. Many high

end cameras also feature rolling shutters, but these cameras are typically much

larger and heavier and therefore more difficult to move quickly enough to cause

severe rolling shutter distortions. A system to correct rolling shutter distortions

is required to produce visually pleasing videos without the need for professional

grade equipment.

The goal of this work was to develop an algorithm to model and correct rolling

shutter distortions caused by camera movements during recording. The algorithm

will work with no prior knowledge of the camera settings or movements, and will

1

Chapter 1. Introduction 2

output a corrected video with the artifacts corrected. A parallel implementation

capable of running on a low power embedded system is also presented.

The distortion model used here is vastly different from those found in state of the

art algorithms. Sinusoids model the distortion caused by camera translation and

rotation instead of piecewise models that will scale with the image dimensions.

An efficient fitting method was used to calculate model parameters in the pres-

ence of outliers using m-estimators with a decreasing kernel width is presented.

Automated code development and optimization was used to efficiently and auto-

matically calculate Hessian matrix entries given only a cost function.

The original goal of this work was to implement this algorithm on a portable pro-

cessor designed for image processing. While this project did not end up happening,

this goal drove many decisions relating to the algorithm design. This particular

processor had a large number of individual processor cores, each with their own

memory. Hardware floating point arithmetic was not available, leading to the work

on a fixed point implementation in Section 4.3. The targeted system was a 32 bit

processor contained in a very small enclosure, requiring low power consumption

to avoid overheating.

Several contributions to research can be found within this work. The sub-image

based feature extraction work of Grundmann et al. was extended to an optimal

number of sub-images, allowing for more uniformly extracted features than stan-

dard feature extraction. A sinusoid based distortion model was developed to model

rolling shutter distortions. An efficient fitting method was used to provide accu-

rate distortion model parameter estimation in the presence of outlier features. An

iterative, m-estimator based solution was used with a decreasing kernel parameter

to reduce the contribution of outliers at each step. Automated code optimization

capable of factoring common terms out of matrix element computation is presented

to speed up iterations of LM optimization.

Chapter 1. Introduction 3

1.2 Introduction to rolling shutter sensors

Most modern digital cameras feature CMOS sensors, which use a rolling shutter to

capture frames [1]. This includes everything in the range of digital single lens reflex

(SLR) cameras, video cameras, and even the small cameras found in cellphones.

When a camera equipped with a rolling shutter moves quickly relative to the

subject of the video, several types of artifacts (described below) can be found in

the captured video. The goal of this work is to detect and remove many of these

artifacts.

1.2.1 CMOS pixel circuits

There are two main types of CMOS pixel circuits: active pixel sensor (APS)

circuits, and passive pixel sensor (PPS) circuits [2]. PPS circuits were the first

type of pixel circuits created, but are rarely used in modern cameras. APS circuits

are usually used in modern CMOS image sensors, as they provide a lower noise

level than the passive detectors previously used [3]. The main difference between

PPS and APS circuits is that the latter use a source follower buffer between the

photodiode and analog to digital converter (ADC), while the former do not.

A basic single pixel circuit is composed of the photodiode itself, a reset transistor,

a source-follower amplifier and a row addressing transistor [3]. The APS detector

circuit is shown in Figure 1.1. Other types of APS circuits are listed below, along

with a brief description of their notable attributes:

• Photogate APS: A photogate replaces the photodiode of a basic APS circuit,

resulting in lower noise [4]. These sensors are suited well to low light imaging

applications.

Chapter 1. Introduction 4

• Logarithmic APS: A logarithmic APS replaces the reset circuitry of each

pixel with a Metal Oxide Semiconductor Field Effect Transistor (MOSFET)

biased to operate in the sub-threshold region. The slow leakage of this tran-

sistor acts as a low pass averaging filter for the number of photons detected,

as opposed to counting the total number of photons in a typical APS cir-

cuit. Since the relationship between drain to source current (Ids) and gate

to source voltage (Vgs) is approximately exponential in this region, and the

photodiode current is proportional to the amount of incident light, the volt-

age across the photodiode is approximately proportional to the logarithm of

the light intensity [4]. Due to this logarithmic relationship, logarithmic APS

circuits are well suited to high dynamic range applications [2].

• Photodiode shutter APS: A capacitor is added to the gate of the source

follower circuit, and a MOSFET or transmission gate is inserted between

the capacitor and the photodiode [5]. The new gate acts as a global shutter,

where the voltage of each pixel can be transferred to a capacitor where it

is stored until it can be read. A shutter APS will not create rolling shutter

artifacts, at the expense of die area and cost required to include the extra

transistors and capacitors.

A single pixel exposure can be described in three main steps:

1. The reset transistor is driven high to reset the photo diode, setting the

voltage across the diode to Vdd

2. Incident photons cause the photo diode to conduct a small amount of charge

to ground, each one lowering the voltage drop across the diode.

3. The row select transistor is driven high so that the output of the source

follower can be read externally. The source follower buffers the voltage across

Chapter 1. Introduction 5

n+

p

Vdd

RST RS

Out

Figure 1.1: Active CMOS pixel with basic circuitry [3]. RST is the signal used
to reset the photodiode to a full reverse bias and RS is the row select signal used
to read the voltage on the photodiode. The diode formed by the n+ implant in
the p substrate is shown.

the photodiode, so reading the output voltage we can estimate the total

number of incident photons during the entire exposure time.

1.2.2 Pixel scanning circuit

CMOS image sensors use a two dimensional grid of pixel circuits, each of which

is composed of one or more photodiodes and a transistor based addressing circuit

[3]. In the vast majority of CMOS cameras, a rolling shutter circuit is used to

address individual pixels of the grid, while reducing the number of components in

order to reduce cost by reducing die area. First the row of pixels to be gathered

is selected with a vertical scan circuit, next the individual column is selected with

a horizontal scan circuit, as seen in Figure 1.2.

Chapter 1. Introduction 6

V
er

ti
ca

l
S
ca

n
C

ir
cu

it

Horizontal Scan Circuit

Photodiode(s)

Output

Photodiode(s)

Photodiode(s) Photodiode(s)

Figure 1.2: The architecture of the scanning circuit used to read individual
pixels in a rolling shutter CMOS image sensors. The circuit shown has only
four pixels, in reality there are hundreds of thousands or millions of pixels.

1.3 Thesis Organization

A brief background section first outlines the operation of CMOS image sensors and

explains the root cause of rolling shutter distortions. Apart from the operation

of CMOS sensors, Section 2 also summarizes some existing solutions to rolling

shutter distortion, including conventional full frame video stabilization, electronic

global shutters, gyroscope based solutions and purely software rolling shutter dis-

tortion correction algorithms. Section 3 outlines the algorithm design, including

assumptions made, feature pair extraction, the distortion transfer function, the

outlier robust fitting method and the method to filter camera motion. In Section

4, the implementation and parallelization method are presented. Several concepts

presented here drastically improve performance, but are not directly related to the

algorithms or models used. The results of the algorithm are presented in Section

Chapter 1. Introduction 7

5, including performance results, intermediate value results, and the output video

quality improvement for several test videos. This work concludes with Section 6,

where several important contributions are detailed, as well as possible future work

to improve results.

Chapter 2

Background

The delay in capturing rows of a single frame in a video can cause problems if

the scene has changed during the delay. Rotations or translations of the camera

itself or a change in the scene during the delay will produce various types of video

artifacts that are undesirable. Four major types of rolling shutter video artifacts

are described below in Section 2.1. Each of these can be found in both still images

and video, though some are more apparent in one or the other.

2.1 Types of distortions

There are four major types of rolling shutter distortions: skew, wobble, smear and

partial exposure. In order to describe these artifacts, some notation is required.

The row scanning frequency (frow) is the rate at which rows are scanned by the

vertical scan circuit, while the frame rate (fframe) is the rate at which frames

are recorded. nrows and ncols are the number of rows and columns in a frame

respectively. It is important to note that the exposure time is often adaptive

to lighting conditions, so in general frow 6= fframe nrows, but we assume that the

number of rows is fairly large, so frow� fframe. Finally, the frequency of distortion

8

Chapter 2. Background 9

(fdistort) is the highest frequency component of a frequency domain representation

of the motion of the camera relative to the scene. For each distortion description,

the assumption is made that pixel rows are scanned horitonally. If a camera is

held such that rows are scanned vertically, the effects will appear rotated from

how they are described below.

2.1.1 Skew

Skew occurs when the subject of a video moves relative to the viewpoint of the

camera. Skew is considered to be a linear motion, so we can say that the fdistort

� fframe. In the simple case of a camera panning horizontally while capturing a

frame, the last rows to be captured will be offset from the first rows in the direction

of motion. This effect is illustrated in Figure 2.1. If the camera pans in the vertical

direction during the capture of a frame, the image may be vertically compressed

or stretched. It is worth noting that skew will produce a shear transformation –

any parallel lines will be parallel in the distorted frame.

Figure 2.1: Skew effect of a camera panning horizontally to the left while
capturing a frame.

2.1.2 Wobble

Wobble occurs when there is a high acceleration of either the camera or the scene,

and the resulting fdistort > fframe. This is a particularly large problem in situations

where a small camera is non–stationary, such as one held by a person or mounted

Chapter 2. Background 10

on a vehicle [6]. Straight lines in a scene will occur curved, and different parts

of a single frame can be either compressed or stretched in the vertical direction.

In cases where the camera is rotating, different sides of the same row and be

compressed and stretched at the same time. Wobble distortions tend to be fairly

small and as such are often difficult to notice in a still image, but the oscillations

produced can be easily seen in video. This effect is illustrated in Figure 2.2, where

an image is distorted by a camera rapidly accelerating horizontally.

Figure 2.2: Wobble effect of a camera rapidly accelerating back and forth
horizontally during exposure.

2.1.3 Smear

Smear is a higher frequency artifact than wobble, and is essentially an aliasing

effect occuring between rows. This means that fdistort ≥ frow
2

, and in the most

obvious examples fdistort ≥ frow. When this occurs, portions of objects can appear

to be floating and disconnected from the rest of the object itself. Smear is usually

seen when an object in the scene is moving at high speed, rather than the camera

itself. Since it can be difficult to illustrate a ’typical’ example of smear, and

example photograph is shown in Figure 2.3.

2.1.4 Partial Exposure

Partial exposure occurs when the scene being recorded changes drastically during

the frame scan [7]. This will result in a two or more distinct portions of the image

Chapter 2. Background 11

(a) Stationary Fan (b) Moving Fan

Figure 2.3: An example of frame smearing. Figure 2.3a shows the fan blades
stationary, while Figure 2.3b shows a floating portion of a fan blade caused by
the aliasing smear effect of a rolling shutter camera. This was captured as a
photograph (not a video) using the camera in the LG Nexus 4 cellphone, with
8 megapixel resolution and an exposure time of 1/763 s.

that look strange when combined. An example of this would be having a flash go

off mid frame scan, resulting in a bright portion and dark portion of the image.

2.1.5 Scope of Work

The focus of this work is to correct rolling shutter wobble in videos, using an

approach that should help to correct skew as well. Smear violates the Nyquist-

–Shannon sampling theorem, which would essentially make it impossible to ac-

curately construct the motion of the distortion without prior knowledge or large

assumptions, and therefore difficult to reliably fix artifacts. Partial exposure will

not be considered in this work.

A basic full frame camera stabilization will also be implemented, as it is necessary

to stabilize the full frame in order to accurately calculate the motion of the camera

as it moves between row captures in order to accurately capture the smaller rolling

shutter distortions.

Chapter 2. Background 12

2.1.6 Importance of Work

Cameras are being found in more and more devices, many of which are very

susceptible to large camera movements that can degrade video quality. Examples

include cellphones, aerial drones, wearable devices such as Google Glass, and cars.

Each of these will often employ a rolling shutter CMOS camera to reduce cost or

power consumption compared to alternatives.

These devices are limited in size, requiring a low power solution that can correct

rolling shutter artifacts without consuming too much energy and producing too

much heat for a small, contained processor. Commercial image processing systems

exist to provide real time image processing in small, contained units that can be

one cubic inch or less in size[8]. An algorithm that can be run in parallel can

be helpful in reducing power requirements, as several processor cores can be run

simultaneously at a lower frequency than a single core while performing the same

calculations.

2.2 Previous work

Several types of video stabilization have been developed, for both stabilization of

the entire video frame and removal of rolling shutter artifacts. Systems involving

both hardware and software systems are discussed below.

2.2.1 Full frame video stabilization

Full frame stabilization is intended to remove large shaking from the entire video

frame, and is applicable to cameras with and without a rolling shutter image

sensor. In many cases, hardware systems designed to provide full frame video

Chapter 2. Background 13

stabilization will mitigate rolling shutter effects as well, since large camera accel-

erations are filtered from the camera path. They also help with issues such as

parallax that cannot be corrected using a global image transform for each frame.

Fully mechanical systems for video stabilization include devices such as tripods,

camera dollies and steadycams. These devices are typically large, expensive, and

difficult to use, making them impractical for small consumer cameras, such as

those found in most cell phones.

Hydrid mechanical– electrical stabilization systems, such as the STABiLGO have

been developed more recently [9]. A gyroscope is mounted on a small camera,

connected to motors that are able to control the orientation of the camera. By

monitoring the angular velocity, high speed camera shakes can be detected and

counteracted using the motors.

Many software–only solutions to full frame video stabilization have been developed,

and most employ the same three major steps: camera motion estimation, motion

smoothing and image warping [10].

Camera motion estimation is typically done in one of two ways: a feature based

approach where “interesting” points in the image are tracked from frame to frame,

or global pixel alignment methods where entire images are matched together [10].

Most modern stabilization algorithms use a feature based approach to calculate

video motion, as they tend to run much faster than global alignment methods [11].

All work described in this section uses a feature based approach to calculate the

overall video motion.

Once camera motion estimation has been performed, a smoothed output motion

must be calculated. This smoothed motion should be free from large accelerations;

any camera motions should be as smooth as possible.

Chapter 2. Background 14

Early methods computed integrals of camera motion over the past 10-15 frames

in the horizontal and vertical directions, and used this cumulative motion as the

camera path [12].

Litvin et al. used a Kalman filter to fully model the camera motion and zoom,

under the assumption of a static planar scene [13]. This motion model allows

superior shake rejection compared to previous translation– only models.

Bezier curves have been used to smoothly estimate true camera motion while

removing large accelerations [14]. In this work a single Bezier curve is fit to an

entire video sequence, though the order of the curve can be set. Long videos are

split into sub-videos, with a section of overlap to provide continuity. For each

video, an optimization process iteratively updates a Bezier curve to minimize an

objective function that is the weighted sum of three terms: the difference between

feature positions in successive frames, the absolute value of the acceleration of

the output motion, and the difference between the four corners of each pair of

successive frames (this last term is intended as a stability constraint when few or

no features are available in a frame).

An L1 optimized path algorithm was developed by Grundmann et al. in 2011 to

attempt to further smooth camera motions [11]. One distinction between their

work and others’ is that the crop region is predefined, and the motion path is set

according to the size of the crop. Output camera motion is to be divided into

three distinct types of path segments: a static non-moving camera, segments of

constant velocity, and segments of constant acceleration. L1 optimization is used

to force the camera path to follow one of those three path types exactly, rather

than following the path on average if L2 optimization were used. L1 optimization

attempts to minimize the absolute value of the difference between camera move-

ments between subsequent frames, while L2 will minimize the sum of the square

Chapter 2. Background 15

of camera movements. The objective function is the weighted sum of first, sec-

ond, and third derivatives of output camera motion through all frames. Linear

programming is used to perform this optimization, while constrained by the size

of the crop window. An affine transform is used to model camera motion, allow-

ing the algorithm to correct image skew. By adjusting the weight of first, second

or third derivatives different types of camera motion can be achieved (if greater

weight is given to the first derivative for example, camera motion will be perfectly

still for parts of the video, then move quickly). Saliency constraints were also

implemented, allowing certain parts of the video to be deemed more important,

making those object(s) more likely to appear within the crop region.

Kim et al. proposed an algorithm designed to provide video stabilization for CMOS

image sensors in 2011 [15]. This approach uses a seven degree of freedom camera

model to estimate motion from frame to frame. The exposure time of the camera

is calculated, and linear interpolation is used to calculate a transformation specific

to each row of pixels. LM optimization was used to estimate model parameters.

This approach was shown to be effective in reducing skew in the output video, but

is not able to correct wobble.

2.2.2 Electronic global shutters

As mentioned in Section 1.2.1, a global shutter can be created in hardware on a

CMOS sensor. This is essentially a sample and hold circuit for each pixel, allowing

all pixels to be exposed to light at the same time. A possible implementation of a

hardware global shutter pixel circuit is shown in Figure 2.4.

Chapter 2. Background 16

n+

p

Vdd

RST RS

Out

Shutter

Figure 2.4: A pixel circuit for an electronic global shutter [2]. The shutter line
for all pixels is a connected signal that will cause all pixels to hold their current
voltage levels. At this point each sample and hold circuit can be sampled using
regular rolling shutter readout circuitry. The shutter MOSFET can be replaced
with a CMOS transmission gate for improved performance at the expense of
added area.

2.2.3 Gyroscope based software solutions

Gyroscopes have been used to measure camera rotations while filming instead of

using video itself to estimate camera motion [16]. Karpenko et al. used the gyro-

scope inside of an iPhone 4 to measure the rotation of the camera while recording

videos, and used these rotations to correct rolling shutter artifacts in real time.

Translational camera shakes were not considered in their work, as accelerometer

data needs to be integrated twice to calculate the translation. This double inte-

gration yields a large amount of error, and correction of translational shakes is

more difficult due to parallax effects. A one time calibration video analysis using

extracted feature points is used to determine the delay between each line.

Hanning et al. developed an algorithm similar to that of Karpenko et al [17].

Their work uses the accelerometer on the iPhone as well as the gyroscope, using

an extended Kalman filter (EKF) to perform sensor fusion. The authors have

published an iPhone App called DollyCam using this algorithm.

Chapter 2. Background 17

2.2.4 Software rolling shutter solutions

Several purely software algorithms have been developed to correct rolling shutter

artifacts, without the need for a gyroscope or a global shutter. These attributes

make these methods far more convenient, as they can be applied to any previously

recorded video without special equipment.

Liang et al. estimate global translations from frame to frame, and interpolate

motion between frames to compensate for the rolling shutter effect [18]. Velocity

interpolation between frames is done using Bezier curves. This algorithm has two

main limitations: distortions occurring at frequencies higher than the frame rate

cannot be corrected, and the time delay between pixel rows must be known a

priori.

Baker et al. calculate the overall translation from frame to frame, but use ad-

ditional information to calculate transformations for individual rows [6]. Images

are broken into a grid of sub-images and an affine transformation is calculated

for each sub-image. Transformations are optimized to simultaneously minimize

the optical flow error for each sub-image and the difference in transformations be-

tween adjacent blocks, while requiring that the integral of all transforms are equal

to the overall motion from frame to frame. This approach requires the time delay

between pixels rows to be known, and is computationally intensive (∼100 seconds

per frame on a 2.0Ghz Dual-Core laptop).

Liu et al. take a different approach towards rolling shutter stabilization, where

feature are tracked over 50 frames, and placed into a sparse matrix of feature

trajectories. This matrix is factorized into two low rank matrices: a coefficient

matrix and an eigen-trajectories matrix. The coefficient matrix allows a combina-

tion of eigen-trajectories to be combined to calculate the transform at a particular

pixel location, and the eigen-trajectories matrix is a low rank matrix representing

the trajectory of objects within the video. The eigen-trajectories are smoothed

Chapter 2. Background 18

in one of three ways: simple low-pass filtering, polynomial path fitting (up to a

quadratic fit), or spline fitting. By multiplying the smoothed eigen-trajectories

matrix by the coefficients matrix, an ideal path for any location in the image can

be calculated. The input video is then smoothed using content preserving warps

developed by Liu et al. in 2009 [19]. This method does not require the time delay

between pixel rows to be known.

Grundmann et al. developed a stabilization technique using a mixture model of

homographies to model rolling shutter distortions [1]. An adaptive use of the

Kanade-Lucas-Tomasi (KLT) feature tracker is used, where the image is divided

into 4x4 sub-images. This helps to distribute feature points more evenly, providing

distortion information in regions of low contrast. Outlier rejections is performed

in each sub-image individually by first estimating a translation for that sub-image

using random sample consensus (RANSAC), and rejecting points that deviate from

that translation by more than two pixels. Inlier features from all sub-images are

then combined.

Ten affine transformations are calculated centered around regularly spaced pixel

rows by weighting the feature points according to a gaussian weight of the scan-

line to feature point distance. This smoothly interpolates the transformations

across scanlines. Singular value decomposition (SVD) is used to calculate the

transformation parameters. SVD is a method of factoring a matrix from which

rotation and scaling values can be extracted. To ensure robustness, a regularizer

of λ‖hk − hk−1‖ is used, where h is a vector of model parameters, k denotes the

affine transform number, and λ is a constant value chosen to be 1.5. After the

initial fit of model parameters, the regularizer is introduced and model parameters

are optimized using iterative least squares. Smoothed full frame camera motion is

calculated using an L1 optimized path algorithm developed by Grundmann et al.,

described here in Section 2.2.1. An implementation of this algorithm is used by

YouTube.

Chapter 2. Background 19

2.3 Summary

Several methods have been developed to stabilize video, either through hardware,

software or a combination of the two. Hardware and hybrid methods have been

successful, but cannot be applied post-recording and require hardware that can be

bulky, inconvenient and expensive compared to a simple CMOS camera. Software

methods have been proposed for full frame video stabilization, and rolling shutter

stabilization. Many rolling shutter stabilization systems require calibration of

the camera, which is especially difficult to do in changing light conditions where

exposure times are changing. These algorithms have a large number of degrees

of freedom, which can make optimal parameter fitting very difficult and prone to

errors, especially when objects are moving within the scene.

An algorithm is proposed which will estimate and correct rolling shutter distor-

tions from video. The proposed algorithm is intended to be efficient and easily

run in parallel. A sinusoid based distortion model is able to remove distortions,

while being robust to outliers caused by movement within the scene or feature

mismatch. This model is especially powerful on vehicle mounted cameras, where

camera movement tends to follow from engine vibrations. An iterative m-estimate

based approach to outlier rejection is used, with an increasingly aggressive outlier

criteria that allows the global minimum error to be found reliably and quickly.

Chapter 3

Algorithm Design

In this chapter, the algorithm design of the rolling shutter distortion detection

and correction system is explored. Assumptions made in the design process will

be explained and justified in Section 3.1.

The algorithm design can be broken down into several high level components.

Features are extracted in each frame, and their location in the next frame is

calculated. The extraction of feature pairs is discussed in Section 3.2. A distortion

model that attempts to capture the distortions between each pair of frames is

explained in Section 3.3. Outlier rejection is a large consideration in attempting

to obtain reliable model parameters, and is discussed in Section 3.4. Motion

smoothing and the integration of rolling shutter distortion is presented in Section

3.5. Finally, image warping to remove distortions is described in Section 3.6.

Algorithm development was programmed using of C++ using G++ 4.2 to compile,

and OpenCV 4.2. Python 2.7.3 was also used for development, especially testing

and visualization.

20

Chapter 3. Algorithm Design 21

3.1 Assumptions

Several assumptions were made in order to simplify algorithm design. These in-

clude the orientation and type of movements of the camera, as well as the content

of the scene being recorded.

The camera is assumed to be oriented in such as way that the image is scanned

row by row (each row being horizontal). Many cameras will automatically rotate

a video that was filmed in the portrait direction. The distortion transfer function

assumes that each video will be scanned row by row, so any video scanned column

by column should be rotated by 90 degrees before processing, then rotated back.

Camera motion is assumed to be purely rotational. This is frequently violated.

The algorithm is robust to some translational camera motion, but parallax effects

are not taken into account, and can cause errors in the calculation of the transfer

function. If the camera is translating, all objects in the scene are considered to be

in one plane, or equivalently, infinitely far away.

The majority of the scene being filmed is assumed to be static. Features detected

on moving objects will be ignored as long as the majority of the scene is static.

The motion of the camera is assumed to be slow enough that that majority of

successive frames will overlap. This is required so that features can be matched

between one frame and the next. The lighting conditions are assumed to be slowly

changing or constant with respect to the frame rate.

Motion of both the camera and any objects within the frame should be sufficiently

slow that it can be properly captured by scanning at frow. This means that no

smear should be present in any videos.

Chapter 3. Algorithm Design 22

Many assumptions made here are general, and frequently violated. While the

distortion model is not able to incorporate these phenomenon, the robust opti-

mization technique used will often consider these effects to be outliers, and ignore

any extracted features where these effects are present.

3.2 Extracting feature pairs

The first step in calculating a distortion transfer function is to collect data that

will be used to map locations in one frame to the next. This can be done using

many different algorithms, but most ultimately return a list of features found in

the first frame, and a second list of the location of those same features in the

second frame.

Several methods are commonly used to find these ideal features. In this work, the

KLT feature tracker is used. The operation of the KLT feature tracker is discussed

in Section 3.2.1, while some alternatives are discussed in Section 3.2.2. Section

3.2.3 explains how the KLT feature tracker can be modified to return features that

more evenly cover frames, simplifying the model fitting process.

3.2.1 KLT feature extractor

The KLT tracker can be broken down in three components: initial extraction of

features to track in a single frame, an optional step to improve feature locations

to the sub-pixel level, and finally the optical flow algorithm to find the location of

the features in the second image.

Each of these steps is typically done using a grayscale version of the two frames.

Grayscale conversion was performed using the OpenCV 2.4.8 function cvtColor

with code set to BGR2GRAY. This function turns each pixel value from color to a

Chapter 3. Algorithm Design 23

grayscale value according to Equation 3.1

Y = 0.299R + 0.587G+ 0.114B, (3.1)

where Y is the grayscale pixel value, and R G and B are the red, green and blue

pixel channels respectively.

3.2.1.1 Extracting features

Useful features to track from frame to frame can be extracted from images using a

variety of criteria, such as brightness and color, edges, or corners [20]. Kanade and

Thomasi proposed the idea that the quality of features should not be determined

by any predefined criteria, but rather by the ability of an algorithm to track these

features from frame to frame [21]. Their work led them to an algorithm that uses

the minimum eigenvalue of the covariance matrix of the image at small blocks as

a measure of the pixel’s tracking potential. The pixels are then sorted, and those

with a sufficiently large minimum eigenvalue are used for tracking. This algorithm

is described in detail below. An OpenCV 2.4.8 implementation of their work was

used by calling the function goodFeaturesToTrack.

To explain the operation of the corner extraction process, we must first define

some variables that will be used. Let I represent the image from which features

will be extracted, so that I(x, y) represents a single pixel location in the image.

The first step in extracting features is to calculate derivatives of the image at each

pixel location in both the x and y directions. This is calculated using the Sobel

operator, which will both calculate a derivative of discrete data and smooth out

noise by averaging in the direction orthogonal to the differentiation. The size of

the Sobel kernel was specified to be three pixels, producing the image derivatives

Chapter 3. Algorithm Design 24

Gx and Gy shown in Equations 3.2 and 3.3

Gx =
∂I

∂x
= I ∗

1 0 −1

2 0 −2

1 0 −1

 (3.2)

Gy =
∂I

∂y
= I ∗

1 2 1

0 0 0

−1 −2 −1

 . (3.3)

For each pixel in the image, a sub-block of 3 × 3 adjacent pixels was extracted

with the desired pixel in the center. The covariance matrix of each sub-block was

calculated, as shown in Equation 3.4 [22]

Mcov(x, y) =

x+1∑

ix=x−1

y+1∑
iy=y−1

G2
x(ix, iy)

x+1∑
ix=x−1

y+1∑
iy=y−1

Gx(ix, iy)Gy(ix, iy)

x+1∑
ix=x−1

y+1∑
iy=y−1

Gx(ix, iy)Gy(ix, iy)
x+1∑

ix=x−1

y+1∑
iy=y−1

G2
y(ix, iy)

 .
(3.4)

The eigenvalues λ1 and λ2 of the covariance matrix are calculated. In order to

be easily tracked, the eigenvalues of Mcov should be much greater than the noise

level (the average eigenvalues of difficult to track pixels), and the matrix should

be well conditioned [22]. If both eigenvalues are large, the corner contained within

the sub image is distinct, and if both eigenvalues are of similar magnitude then

the matrix is well conditioned. By storing the minimum of the two eigenvalues we

guarantee that the corner is distinct, and in practical cases the matrix Mcov tends

to be well conditioned when the smaller eigenvalue is sufficiently large. A matrix

Mmin(λ) is constructed of the minimum eigenvalue of the covariance matrix of each

sub image.

To prevent many features from being too close together, only the local maximum

eigenvalue is taken from each 3×3 neighborhood of Mmin(λ), others are discarded.

Chapter 3. Algorithm Design 25

To discard feature points with weak corners, any element in Mmin(λ) with a value

less than max(Mmin(λ)) qualityLevel are discarded. The value of qualityLevel

was chosen to be default value used by OpenCV of 0.02. Neither increasing nor

decreasing this value had a significant effect on the number of extracted features

in any analyzed video.

All remaining potential feature points are sorted by eigenvalue in descending order.

The top nfeatures points are kept, and others discarded. As a final check, if any

points fall within minDistance of each other, the one with the smaller eigenvalue

will be discarded.

It is worth noting that the majority of this process can easily be implemented into

hardware that can be run in parallel. The derivative calculation runs in O
(
npixels

)
,

where npixels is the number of pixels in the image. Each calculation can be run

simultaneously in either an application specific integrated circuit (ASIC) or Field

Programmable Gate Array (FPGA), as seen in [23]. Next is the calculation of

minimum eigenvalues of each window, which can once again easily be implemented

in hardware due to relatively low complexity. The sorting algorithm used to order

pixel locations by minimum algorithm runs in O
(
npixels log (npixels)

)
time, and

is more difficult to implement in hardware. A modification intended to provide

more uniform feature coverage introduced in Section 3.2.3 would decrease this

complexity and allow for some parallelization.

3.2.1.2 KLT feature tracking

What is now known as the KLT feature tracking algorithm was originally pro-

posed by Lucas and Kanade as a method to match feature for depth estimation

of stereoscopic images in 1981 [24]. It was later refined and a more efficient pyra-

midal algorithm was developed. The KLT algorithm works by finding an optimal

Chapter 3. Algorithm Design 26

translation for each feature point that will minimize the image difference within a

small window surrounding the point.

Within this section, wx and wy will be used to denote x and y values that fall

within a small window surrounding the point (x and y), the location of the feature

to be tracked. This window is also commonly called the integration window, as

we will be summing pixel values through this entire region [20]. I will continue

to denote the first image (from which the feature point was extracted), and J

will denote the second image. Our goal is to find an optimal dx and dy that will

represent the x and y components of a translation mapping the feature point from

image I to image J .

The error at a translation value is defined as the sum of the square of the difference

of all pixels in the integration window surrounding the points, as seen in Equation

3.5

e(dx, dy) =
∑
wx

∑
wy

(I(x, y)− J(x+ dx, y + dy))
2. (3.5)

A naive implementation of feature tracking could be to simply run an optimization

routine to minimize e(dx, dy) for each feature point individually. However, it is

assumed that many points will be moving in a similar trajectory due to camera

motion. Therefore, a pyramidal approach is taken to more efficiently calculate the

motion of multiple feature points. Each level of the pyramid, denoted IL will be

an image sub-sampled from the layer beneath it by a factor of 2. The number

of layers, nlayers was chosen to be five (though in low resolution videos it will

automatically decrease). The sub-sampling low pass filter used to calculate each

Chapter 3. Algorithm Design 27

level of the pyramid is recursive, and shown in Equation 3.6 [20]

IL(x, y) =
1

4
IL−1(2x, 2y)

+
1

8

(
IL−1(2x− 1, 2y) + IL−1(2x+ 1, 2y)

+ IL−1(2x, 2y − 1) + IL−1(2x− 1, 2y + 1)
)

+
1

16

(
IL−1(2x− 1, 2y + 1) + IL−1(2x+ 1, 2y + 1)

+ IL−1(2x− 1, 2y − 1) + IL−1(2x+ 1, 2y − 1)
)
.

(3.6)

Using this approach, we can start at the highest layer of the pyramid and find the

optimal translation at that resolution for each feature point. Then the previous

translation can be multiplied by two, and used as a starting point for the optimiza-

tion routine at the next level down. This algorithm allows for efficient computation

of many points that could each shift by a large amount. The optimization routine

used at each level is discussed next.

The core optimization routine used is essentially using the Newton-Raphson method

to iteratively minimize Equation 3.5. Using the pyramid based tracking system,

we can assume that the displacement at any given level is small, and therefore as-

sume that the image gradient is linear about the center of the integration window.

The use of the Newton-Raphson method is also a motivation behind the need for

a non-singular Mcov matrix that was described in Section 3.2.1.1. Full details of

the optimization derivation can be found in [20].

Many of the assumptions made by the KLT tracking algorithm can be violated,

which can result in a variety of problems. The assumption that the image gradient

is quadratic is violated nearly always to varying degrees. This can cause the New-

ton Raphson method to become unstable. Features can be lost to the boundaries

of an image, and can be either declared ”lost” or matched to an incorrect trans-

lation. Any problems in the optimization routine will result in incorrect, outlier

features that need to be ignored when calculating camera motion.

Chapter 3. Algorithm Design 28

3.2.1.3 Sub-pixel resolution of features

Sub-pixel accuracy is necessary to track features, both during feature extraction

and feature tracking [20].

During feature tracking, bilinear interpolation is used to determine IL(x, y) when x

and y are non-integers. With this simple modification, the iterative optimization

routine can determine the location of feature beyond integer accuracy at each

pyramid level.

Sub-pixel accuracy is gained during feature extraction by iteratively refining the

corner locations of each feature using bilinear interpolation as approximate values

between pixels. This allows us to approximate the image intensity as a contin-

uous function. Equation 3.7 is minimized using the Newton Raphson method

over a window with a half side length of winSize. The OpenCV 2.4.8 function

cornerSubPix() was used with winSize set to 5.

Cost =
winSize∑

i=−winSize

winSize∑
j=−winSize

Gx i+Gy j (3.7)

3.2.2 Alternatives to the KLT algorithm

Several alternatives to the KLT algorithm have been developed.

Scale Invariant Feature Tracking (SIFT) was developed by David Lowe to attempt

to provide feature extraction that is invariant to image translation, scaling, rota-

tion and partially invariant to more complex image transformations and illumina-

tion changes [25]. SIFT keys are extracted from each image where the difference

of Gaussian functions is at a maximum or minimum. Keys are matched together

using a nearest neighbor search algorithm implemented with a k-d tree algorithm,

and basic outlier rejection is performed using a Hough transform hash table that

looks for a minimum of three keys that agree.

Chapter 3. Algorithm Design 29

Speeded-Up Robust Features (SURF) is similar to the SIFT algorithm, but de-

signed to be much faster and more robust [26]. The feature extraction process is

similar to the method used in SIFT, except that Gaussian functions are replaced

with a box filter. A Hessian matrix of the convolution of the second derivative

of the image and a box filter is constructed, and features are extracted where

the determinant of the Hessian matrix exceeds a threshold. Images are iteratively

smoothed and reduced in size, with new features extracted at each iteration to pro-

vide scale-invariant features. The response of Haar wavelet transforms on features

is used to provide orientation matching information.

3.2.3 Division of images into sub-images

One significant problem with the features extracted using the basic KLT feature

tracker is that feature density is often non-uniform. Many features are found within

smaller areas with more texture, leaving large portions of the images without any

extracted features, which complicates motion model fitting. This same problem

was noted by Grundmann et al. in 2011 [1], whose solution was to use an adaptive,

local threshold approach to choosing features to track. This was done by dividing

the entire frame into a 4x4 grid of sub-images, and extracting features from each

sub-image individually. Here we determine an improved number of sub-images to

use, and present a recursive algorithm to determine an ideal number of sub-images

at runtime. Pseudocode to perform sub-image extraction is shown in Figure 3.1.

To improve feature distribution, we must first define a measure of the quality

of feature distribution. The image is divided into a fine grid, and the number of

features that fall into each grid is counted. The χ2 goodness of fit of the number of

feature points contained each grid segment is calculated, compared to a perfectly

uniform feature distribution. Our goal is to lower the χ2 value, closer towards the

value of 0, which is the result of a perfectly uniform feature distribution.

Chapter 3. Algorithm Design 30

Data: N = grid dimensions
Data: Img = Input Image
Result: L = list <feature point structure>
begin

for i ∈ 0..N do
for j ∈ 0..N do

Get the sub-image corners
left = Img.width * i / N

right = Img.width * (i+1)/N

top = Img.height * j / N

bottom = Img.height * (j+1) / N

Extract the sub-image from the input image
SubImg = ExtractSubImage(Img, left, right, top, bottom)

Extract features from the sub-image
SubFeatures = OpenCv::goodFeaturesToTrack(SubImg, ...)

Add SubFeatures to total list
L += SubFeatures

end

end

end

Figure 3.1: Sub-image feature extraction algorithm pseudocode

The work of Grundmann et al. was extended by determining an ideal number of

sub-images, denoted nsubImages, to use. This was done by evaluating the χ2 value

on an average of 10 frames, on several different videos, using a varying number

of sub-images. The result of this test is presented in Table 3.1. All tests were

run with nfeatures equal to 1000 (though due to the need for an integer number

of features per sub-image, this may be rounded down), and averaged over the

first 50 frames of each video. The number of bins in the x and y directions for

the χ2 fit were 40 and 25 respectively. The average minimum eigenvalue was

also recorded for each test, and is also shown. It can be seen that the average

eigenvalue decreases as the number of sub-images increases, meaning the average

feature quality has decreased. This means that although the feature distribution

will be more uniform, there is a higher probability of mismatched or lost features.

Chapter 3. Algorithm Design 31

This information is shown graphically in Figure 3.2.

Chapter 3. Algorithm Design 32

G
ri

d
d
im

en
si

on
s

D
ri

v
in

g
V

id
eo

P
ar

li
am

en
t

V
id

eo
F

or
es

t
V

id
eo

χ
2

n̄
f
ea
tu
r
es

m
in

(λ
)

χ
2

n̄
f
ea
tu
r
es

m
in

(λ
)

χ
2

n̄
f
ea
tu
r
es

m
in

(λ
)

1
78

37
.4

93
2.

9
0.

01
05

64
51

.2
10

00
.0

0.
04

88
51

77
.4

10
00

.0
0.

07
91

2
49

38
.3

10
00

.0
0.

00
85

61
12

.4
10

00
.0

0.
04

81
43

48
.9

10
00

.0
0.

07
78

4
46

35
.5

99
2.

0
0.

00
83

57
54

.2
98

5.
9

0.
04

39
36

01
.6

99
2.

0
0.

07
27

6
40

19
.7

97
1.

9
0.

00
78

41
55

.0
93

8.
2

0.
03

96
31

47
.2

96
1.

4
0.

07
10

10
33

45
.6

99
9.

4
0.

00
67

31
72

.0
99

0.
7

0.
03

54
25

79
.4

99
3.

6
0.

06
71

15
25

28
.2

89
9.

3
0.

00
58

24
20

.6
89

9.
5

0.
03

31
20

12
.4

89
7.

7
0.

06
51

20
19

18
.1

79
9.

2
0.

00
53

17
11

.9
79

8.
6

0.
03

11
15

99
.3

79
8.

6
0.

06
36

T
a
b
l
e
3
.1
:

S
u

m
m

ar
y

of
χ
2

va
lu

es
,

co
u
n
ts

of
ex

tr
ac

te
d

fe
at

u
re

s
an

d
av

er
ag

e
m

in
im

u
m

ei
g
en

va
lu

es
fo

r
d

iff
er

en
t

su
b

-i
m

a
g
e

g
ri

d
d

im
en

-
si

on
s.

A
st

at
is

ti
ca

l
te

st
is

p
er

fo
rm

ed
to

d
et

er
m

in
e

h
ow

u
n

if
or

m
ly

fe
at

u
re

s
ar

e
sp

re
ad

th
ro

u
g
h

o
u

t
th

e
fu

ll
fr

a
m

e
fo

r
d

iff
er

en
t

n
u

m
b

er
s

of
su

b
-i

m
ag

es
.

T
h

eχ
2

va
lu

es
w

er
e

ca
lc

u
la

te
d

b
y

p
la

ci
n

g
th

e
fe

at
u

re
s

in
to

a
gr

id
of

b
in

s
o
f

d
im

en
si

o
n

4
0
x
2
5
,

co
m

p
a
re

d
to

a
co

m
p

le
te

ly
u

n
if

or
m

fe
at

u
re

d
is

tr
ib

u
ti

on
.

T
h

e
n
u

m
b

er
of

d
eg

re
es

of
fr

ee
d

om
is

10
00

.
T

h
e
χ
2

va
lu

es
a
n

d
n
u

m
b

er
o
f

fe
a
tu

re
s

co
u

n
ts

w
er

e
av

er
a
g
ed

ov
er

th
e

fi
rs

t
50

fr
am

es
of

ea
ch

v
id

eo
.

S
ee

S
ec

ti
on

5.
4

fo
r

a
d

es
cr

ip
ti

on
an

d
sc

re
en

sh
ot

s
o
f

th
e

v
id

eo
s

u
se

d
h

er
e.

Chapter 3. Algorithm Design 33

Figure 3.2: χ2 values, counts of extracted features and average minimum
eigenvalues for different sub-image grid dimensions. See Table 3.1 for raw data
and details on how this data was found.

Based on the information found in Table 3.1 and Figure 3.2, as well as qualitative

analysis of the quality of rolling shutter stabilization, an ideal grid dimension of

15x15 was chosen for the tested videos. A large drop in minimum eigenvalue

was noticed in the driving scene when moving above 15x15, while the change in

χ2 value was found to decrease as the grid dimensions increase. The difference

in extracted features between a 15x15 grid and the standard feature extraction

process can be seen in Figure 3.3. In general, videos will strong corners more

evenly spread throughout the frames will benefit not benefit as much from the use

of sub-images, though the computational complexity is slightly reduced compared

to conventional feature extraction. Scenes with difficult to track features (such

as rapidly varying lighting conditions) would require fewer sub-images to be used

in order to increase the minimum eigenvalues and provide more easily tracked

features.

The use of sub-images in feature extraction can be used to speed up the initial

feature extraction, as well as parallelize it more easily. The feature extraction

is broken down from a single large problem to 225 identical small problem that

can easily be solved in parallel. Additionally, each feature extraction requires

the sorting of the minimum eigenvalue at all pixel locations, which runs with

O
(
npixels log (npixels

)
complexity. By dividing into sub-images, we must perform

Chapter 3. Algorithm Design 34

(a) Standard Procedure

(b) 15x15 Grid

Figure 3.3: Comparison of standard feature extraction and grid based extrac-
tion. The standard procedure is shown in Figure 3.3a, with a 15x15 grid based
feature extraction shown in Figure 3.3b. Note that the standard procedure finds
no features in the sky and very dense coverage over some buildings, while the
grid version is much more uniform

nsubImages sorts of a smaller amount of data. This results in total complexity of

O
(
nsubImages

npixels
nsubImages

log (
npixels

nsubImages
)
)
, which reduces to O

(
npixels log (

npixels
nsubImages

)
)
.

A recursive algorithm was also developed to determine a suitable grid depth to use

at runtime. This algorithm worked by first extracting features for an entire image,

then splitting the image into four squares and counting the number of features that

Chapter 3. Algorithm Design 35

appeared in each square. If any quarter had less than 10% of the total features,

the entire image would be split into four images, and features extracted from each

individually, and running the same check on each of those images. This recursive

algorithm continues until one of two conditions is met: each quarter of the image

contains more than 10% of all features, or the number of features to be extracted

is four or less. Using 1000 features, this results in a maximum recursive depth of

five. The results of this algorithm are shown in Table 3.2.

Metric Driving Video Parliament Video Forest Video
χ2 2770.7 5194.8 4140.2

nfeatures 962.8 1000 1000
min(λ) 0.0071 0.0488 0.0791
depth0 0 50 50
depth1 148 0 0
depth2 43 0 0
depth3 202 0 0
depth4 1832 0 0

Table 3.2: Results of the recursive sub-image feature extraction algorithm.
depthz denotes the number of times (over the entire 50 frame test window)
that the recursive algorithm reached a particular depth z. Note that for the
parliament and forest videos, the algorithm never descended beyond the top
level (full image feature extraction).

The recursive algorithm works well in the case of the driving video, but fails com-

pletely on the parliament and forest videos. All metrics aside, in the parliament

video no features are extracted from the sky portion of the frame, which ulti-

mately leads to a poorly fit model. This is due to the fact that these regions of

low contrast make up less than 1/4 of the screen, so there are still many trackable

features in each quarter. In the driving video, the average min(λ) and χ2 values

would fall above the curves of the simple grid feature extraction procedure shown

in Figure 3.2. However, the feature improvement is small in this case, and worse

in others. Additionally, the performance is worse than the grid based extraction

since we are performing the eigenvalue sort multiple times for some features. For

these two reasons, the recursive feature extraction algorithm was not used.

Chapter 3. Algorithm Design 36

Figure 3.4: Visualization of distortion and desired correction. An exaggerated
example of a distorted video frame from the parliament video, and lines showing
how the image should be corrected.

3.3 Distortion transfer function

Once feature points have been extracted from pairs of frames, we need to define a

transfer function that can model camera model and be used to distort frames to

remove rolling shutter artifacts. This function should be able to model the motion

of the camera as rows are scanned, such that the inverse transformation can be

applied to remove distortions, as demonstrated in Figure 3.4.

Previous work in the area used simple translations or affine transformations spread

across the images. These are calculated by a weighted sum of feature points,

typically weighted with a gaussian of the distance between a feature’s y-value

and the center of the image transformation. These allow for complex motion to be

modeled, but have a large number of degrees of freedom, and require feature points

to be spread evenly across rows of each frame for an accurate fit. A new sinusoidal

model is presented based on a Fourier series expansion of camera motion during

the exposure of rows of a frame. This model is able to capture translations in the

Chapter 3. Algorithm Design 37

x and y directions, as well as rotations that happen within the exposure time of a

single frame.

There are two main motivations behind the use of sinusoids to model camera

movement: cameras mounted on vehicles have a sinusoidal motion due to spinning

engines, and any arbitrary digital signal can be decomposed into a sum of sinusoids

[27]. While the decomposition of a signal into sinusoids can theoretically require

an infinite number of terms, in practice it was determined that only two terms

were required to model the distortions found in the test rolling shutter videos.

Qualitatively, we can expect that the number of terms required would be fairly

small since time delay is small between frames, and if camera motion was not fairly

smooth the video would be blurry, and unusable even if the distortion was perfectly

corrected. Additionally, the remaining uncorrected distortion was calculated with

a variety of terms, and is shown in Figure 3.5. The majority of the uncorrected

errors are due to a noise floor (typically caused by parallax, objects moving within

the scene, or interpolation errors introduced in the feature extraction step) and

fully removing this would result in severe overfitting when the image distortion

is corrected. Adding additional sinusoidal terms scales quadratically with the

number of terms, and should be kept to a minimum. Based on Figure 3.5 and

a desire to decrease the number of terms to improve performance, two sinusoid

terms were used in each direction of camera wobble.

There are four main components of the camera motion model used here. A full

frame movement model that encompasses translation and rotation of the full im-

age, as well as a translation and rotation that is a linear function of the row is first

described in Section 3.3.1. Two sinusoids are fit to the x-translation of the image,

as a function of the row, as described in Section 3.3.2. Section 3.3.3 describes how

the model fits the y-translations as a function of the row. Finally, a row based

rotation component of the model is described in Section 3.3.4.

Chapter 3. Algorithm Design 38

Figure 3.5: Fitting errors with different numbers of sin terms. The errors
shown are the squared errors in the x-direction only.

The fitting procedure used to calculate the parameters within this model will not

be discussed here. See Section 3.7 for this information.

3.3.1 Full frame movement

There are two main needs for full frame movement modeling: by subtracting overall

frame motion we simplify fitting of the more complex rolling shutter artifacts, and

this motion can be used to stabilize the overall motion in the output video.

The full frame motion is modeled by a rotational transformation and three ad-

ditional parameters that represent the translation the in x and y components, as

well as the rotation as a linear function of the row. This differs from the affine

transformation that is commonly used in several ways:

• The frame skew is only a function of y, and not both x and y like a regular

affine transformation. The justification for this is that frames are scanned

in the y-direction, so any skew should only be a function of y.

Chapter 3. Algorithm Design 39

• The size of the frame is kept constant. Camera motion being modeled is

assumed to be purely rotational, so we there should not be any change in

size of the scene being analyzed.

• We allow for a rotation to be a linear function of the row, allowing for a slow

changing rotation to be accurately taken into account.

The equations used to predict the x and y movements from frame to frame are

shown in Equations 3.8 and 3.9

x2 = x1 cos (pr0 + y1pr1)− y1 sin (pr0 + y1pr1) + pdx + ypdx2 (3.8)

y2 = x1 sin (pr0 + y1pr1) + y1 cos (pr0 + y1pr1) + pdy + ypdy2 (3.9)

respectively. Any symbol p represents a variable to be optimized. pdx and pdy are

the image translations in the x and y directions respectively. pdx2 is used to fit

horizontal skew where the image is shifted linearly as a frame is captured. pdy2

fits the vertical linear expansion or compress of the image caused by accelerating

the camera vertically during frame exposure. pr0 models the rotation of the frame

during the entire exposure, and pr1 linearly models the changing rotation of the

camera through the exposure of the entire frame.

3.3.2 Row based x-translation

A row based x-translation model is needed for camera rotation about the z-axis

at a rate greater that fframe. Figure 3.6 shows an example of camera motion

requiring a row based x-translation model to correct the rolling shutter distortion.

Two sinusoids are fit to this shift in x values between frames. The amplitude,

frequency and phase of the first curve is fit first, then all parameters of the second

Chapter 3. Algorithm Design 40

Figure 3.6: x-Translation between video frames, measured across all y values.
Each data point represents a feature matched between both frames, with y
values taken from the first frame. Note that this particular frame was chosen as
it contains few outliers, so the curve is easily visible. Note that the frequencies
of oscillation shown here are higher than is typical, and was also chosen so that
two distinct frequencies could easily be seen.

are calculated. By subtracting the sinusoid once fit, the leftover frame distortion

can be visualized, as seen in Figure 3.7.

Figure 3.7: Fitting of x-translation by sinusoids. On the left, the raw data is
seen, with an overlaid line showing the sinusoid calculated to fit the distortions.
In the middle, the first sinusoid is subtracted from the data, and another fit
to the residual wobble. On the right, the second sinusoid is subtracted. Note
that the optimization process will further reduce any leftover distortions by
performing a global optimization of both curves, as well as other parameters.

Chapter 3. Algorithm Design 41

The total row based translation transfer function is shown in Equation 3.10

∆x = pdx2 sin (y1pdx3 + pdx4) + pdx5 sin (y1pdx6 + pdx7) (3.10)

.

3.3.3 Row based y-translation

The row based y translation is very similar to the row based x-translation. Since

we are fitting a shift in y with respect to the y coordinate, the distortion will

appear as a compression or decompression of pixel areas, instead of a localized

skew. The math used to model this is the same as the x translation, and the

transfer function is shown in Equation 3.11

∆y = pdy2 sin (y1pdy3 + pdy4) + pdy5 sin (y1pdy6 + pdy7). (3.11)

3.3.4 Row based rotation

High frequency rotational wobble of the camera results in y-translational effects

that are most apparent near the sides of the frame. This is due to the frame

rotating about the center of the screen since we have already removed full frame

rotation and rotation as a linear function of y. By plotting the shifts on a 3D plot,

the rotation about the center of the screen can be seen in Figure 3.8.

Row based camera rotation could be fit by attempting to reduce the x and y

errors through a rotation matrix that is a sinusoidal function of the y value. The

assumption is made that the camera rotation will be small from row to row, so

the effect on x-values is minimal. This is due to the fact that ∆x = a cos (θy), and

limy→0
∂
∂θ

cos (θy) = 0. As a second simplification, we can consider the x value of

Chapter 3. Algorithm Design 42

Figure 3.8: Y shifts due to high speed oscillating camera rotation. The color
represents the shift in y value. Locations are interpolated using the nearest
feature match. To improve the visual, the 10% of pixels with the largest shift
are removed prior to plotting as a simple outlier rejection method.

each feature to be a feature weight for the sample fitting process used in Sections

3.3.2 and 3.3.3. These weights are normalized by the width of the image, so that

parameters found here on of a similar magnitude to parameters for the row based

translation parameters to avoid numerical errors. The equation used to model row

based rotation is shown in Equation 3.12. The variable centerX is used to denote

the x value of the middle of the screen, the point about which we allow pixels to

rotate

∆y = pr2 sin (ypr3 + pr4)
(x− centerX

2 centerX

)
+ pr5 sin (ypr6 + pr7)

(x− centerX
2 centerX

)
.

(3.12)

Chapter 3. Algorithm Design 43

3.3.5 Summary

A model is designed to incorporate four types of camera motion: a full frame trans-

fer function to calculate gross movements, and three transfer functions to remove

rolling shutter wobble from translation and rotation using two frequencies each.

The total transfer function equations for x and y shifts are shown in Equations

3.13 and 3.14

x2 = x1 cos (pr0 + y1pr1)− y1 sin (pr0 + y1pr1) + pdx + ypdx2

+ pdx2 sin (y1pdx3 + pdx4) + pdx5 sin (y1pdx6 + pdx7)

(3.13)

y2 = x1 sin (pr0 + y1pr1) + y1 cos (pr0 + y1pr1) + pdy + ypdy2

+ pdy2 sin (y1pdy3 + pdy4) + pdy5 sin (y1pdy6 + pdy7)

+ pr2 sin (ypr3 + pr4)
(x− centerX

2 ∗ centerX

)
+ pr5 sin (ypr6 + pr7)

(x− centerX
2 ∗ centerX

)
. (3.14)

A full list of parameters and their functions can be found in Table 3.3.

3.4 Outlier rejection

Outliers can result from a failure of the feature extraction process, objects moving

within the scene or parallax effects, and are a major problem when attempting

to accurately fit a model. Additionally, we are dealing with an unsupervised

problem since we cannot say for sure whether any individual data point should

be considered an inlier or outlier. A method for detecting and ignoring outliers is

necessary to accurately compute accurate model parameters.

Several different methods to deal with outlier data points were considered. The

basic least squares method to fit data is discussed in Section 3.4.1. RANSAC (and

its variants) are considered the gold standard in computer vision [28], and will be

Chapter 3. Algorithm Design 44

Symbol Description
pdx0 Full frame x shift
pdy0 Full frame y shift
pr0 Full frame rotation
pdx1 Full frame x skew
pdy1 Full frame y skew
pr1 Full frame linear rotation
pdx2 Amplitude of first x-translation sinusoid
pdx3 Frequency of first x-translation sinusoid
pdx4 Phase of first x-translation sinusoid
pdx5 Amplitude of second x-translation sinusoid
pdx6 Frequency of second x-translation sinusoid
pdx7 Phase of second x-translation sinusoid
pdy2 Amplitude of first y-translation sinusoid
pdy3 Frequency of first y-translation sinusoid
pdy4 Phase of first y-translation sinusoid
pdy5 Amplitude of second y-translation sinusoid
pdy6 Frequency of second y-translation sinusoid
pdy7 Phase of second y-translation sinusoid
pr2 Amplitude of first row based rotation sinusoid
pr3 Frequency of first row based rotation sinusoid
pr4 Phase of row first based rotation sinusoid
pr5 Amplitude of second row based rotation sinusoid
pr6 Frequency of second row based rotation sinusoid
pr7 Phase of second row based rotation sinusoid

Table 3.3: Model parameter symbols and descriptions.

discussed in Section 3.4.2. The least median of squares is a statistical technique

using medians, and is discussed in Section 3.4.3. M-estimates were ultimately

chosen, and are explained in Section 3.4.4. The kernel choice and parameter is

also presented, along with a fitting technique to reliably fit a model to the data.

In order to simplify visualization and algebra, data shown and discussed in this

section will come from a straight line in two dimensions, following the equation

f(x) = mx + b, where b is the y-intercept parameter, m is the slope parameter,

and x is an independent variable. Everything discussed here can be extended to

more complex problems with more dimensions.

Chapter 3. Algorithm Design 45

3.4.1 Least Squares

Least squares is a simple approach to solving a fitting problem. The algebraic dis-

tance squared between the estimated y value and the actual y value is minimized,

summed over all data points, as seen in Equation 3.15

R2 =
∑
i

(yi − f(xi))
2. (3.15)

By taking the partial derivative of the residual value R2 with respect to each pa-

rameter and setting to zero, we can often solve a least squares system algebraically.

Those that can be solved are called ordinary least squares problems, others that

require an iterative solution are called non-linear least squares problems.

Outliers can have a huge effect on a least squares fit since the residuals are squared

for each point, so a data point with a large error will have an even larger contri-

bution towards the fit. This makes a least squares solution impractical for use in

machine vision problems, where extreme outliers are frequently present. This is

seen in Figure 3.9, where a single outlier results in a poor fit.

Figure 3.9: Failure of least squares fit due to a single (fairly extreme) outlier.

Chapter 3. Algorithm Design 46

3.4.2 RANSAC & variants

RANSAC was first developed by Fischler and Bolles [29] in 1981 to deal with

outliers in computer vision problems. Since then, several variants have been pro-

posed to increase performance or accuracy such as locally optimized RANSAC and

Progressive Sample Concensus (PROSAC) [28].

RANSAC uses a minimum number of data points to estimate the true model pa-

rameters iteratively, each time with a random sample of data points. The number

of points selected each time is equal to the number of degrees of freedom of the

model. A score is calculated for each model, typically the proportion of total data

points that fall within a maximum distance of the calculated model. This is re-

peated until we find a model with a high enough score, or we reach a maximum

number of iterations. The maximum number of iterations is calculated from the

expected fraction of inliers in the data set, as seen in Equation 3.16 [30]. Here

u is used to denote the fraction of data points that are expected to be inliers, m

is the number of degrees of freedom of the chosen model, and p is the required

probability that at least one model is calculated using only inliers

N =
log (1− p)

log (1− (1− u)m)
. (3.16)

At the end of all iterations, a local optimization step takes place. The model is

recalculated using all data points that are considered inliers to the best model

found thus far.

In 2003, Chum, Matas and Kitler introduced Locally optimized RANSAC (LO-

RANSAC) to attempt to speed up computation. They observed that RANSAC

took longer than expected to find an acceptable model, since it makes the as-

sumption that any combination of inliers will lead to a good model, in essence

assuming that inliers do not have any noise [31]. Their solution to this problem is

Chapter 3. Algorithm Design 47

to perform the local optimization step done at the end of typical RANSAC dur-

ing iterations anytime a new best model is found. They found this modification

decreased running time by greater than 50%.

The PROSAC algorithm attempts to sample data points in such a way that there

is a greater than random chance of picking inliers. A small sample set is initially

constructed by looking at the similarity between data points. Samples are picked

from this sample set and models are constructed similar to regular RANSAC.

This is repeated while constantly adding more data into the sample set until an

acceptable model is found, following ordinary RANSAC criteria. This heuristic

was found to speed up computation by more than one hundred times in some cases

[32]. In some cases it will fall back to a normal RANSAC sampling method.

The basic RANSAC algorithm can be rewritten as an optimization problem where

we attempt to find the minimum of the problem shown in Equations 3.17 and 3.18

Cost =
∑
i

ρ(yi − f(xi)) (3.17)

ρ =

0 if εi < δ

1 otherwise

, (3.18)

where εi is the error associated with point i, and δ is a threshold on the maximum

distance between an inlier and the calculated model [33]. This formulation leads

to the use of m-estimators, described in Section 3.4.4.

3.4.3 Least Median of Squares

The least median of squares approach attempts to minimize the median residual

value [34]. Alternatively, the mean of several values surrounding the median can

Chapter 3. Algorithm Design 48

also be used. This approach is very robust, allowing up to 50% of data to be

outliers.

Unfortunately, there is no closed form solution to solve a least median of squares

minimization problem, so a monte carlo type approach must be used, similar to

RANSAC. For this reason, a least median of squares approach was not used here.

3.4.4 M-estimators

M-estimators are similar to least squares, except instead of squaring each residual

value we apply a kernel function ρ(x) to it [35]. ρ(x) can be chosen carefully such

that we minimize the contribution of outliers towards the final solution. Regardless

of the kernel function, we wish to minimize the sum of the kernel function over all

data points, as seen in Equation 3.19

Cost =
∑
i

ρ(ri). (3.19)

ρ(x) should be a symmetric, positive definite function with a minimum at 0 [34].

Several kernel functions have been used with m-estimators since the Huber function

was first published by Huber in 1964 [36]. Several common kernels are shown in

Table 3.4.

The derivative of the kernel function with respect to x is referred to as the influence

function ψ(x), and measures the influence of a particular data point on the final

solution. Dividing the influence function by x we can come up with a weighting

function w(x). This weighting function defines how heavily weighted each point

should be, and can be used as a weighting on each data point so that a problem

can be solved with a normal least squares approach.

Chapter 3. Algorithm Design 49

Name Kernel Function ρ(x)

L2 (Least Squares) x2

2

L1 (Least Absolute) |x|

Huber

{
x2

2
if|x| ≤ c

c(|x| − k
2
) if|x| > c

Cauchy c2

2
log (1 + (x

c
)2)

Welsch c2

2

(
1− exp (−(x

c
)2)
)

Tukey

{
c2

6

(
1− (1− (x

c
)2)
)

if|x| ≤ c

c2

6
if|x| > c

Table 3.4: Several popular m-estimator kernels [34]. Note that x is defined as
the Euclidean distance between a data point and the model’s prediction, and c
is a model parameter used to weight the influence of inliers and outliers.

M-estimators problems are typically solved in one of three ways [34]. Gradient

descent can be applied to the optimization function. We are guaranteed to find

a local minimum, but this process is often slow. The Newton-Raphson method is

commonly used to quickly find a local minimum, but this can be unstable if the

starting point is far from the minimum. Iterative re-weighted least squares is often

used, but this procedure requires both an ordinary least squares problem and a

kernel that is strictly convex.

An m-estimator solution was chosen instead of other outlier robust regression

methods. Basic least squares are not robust to outliers, especially in machine

vision where outliers can be severe due to mismatched features. Compared to

least median of squares problems they are much more efficient to solve. RANSAC

is susceptible problems caused by inlier noise, and can take a long time to run

when fitting a model with a large number of degrees of freedom.

3.4.5 Use of m-estimators

In this section, specific choices made within the m-estimator framework will be

discussed and justified. The kernel choice is discussed in Section 3.4.5.1. Our

Chapter 3. Algorithm Design 50

optimization method is shown in Section 3.4.5.2, and the calculation of an ideal

kernel parameter is presented in Section 3.4.5.4.

3.4.5.1 Kernel choice

Different kernel functions were considered for use and had to be evaluated on their

accuracy on inliers, robustness towards outliers, stability, and performance consid-

erations. The Welsch kernel was ultimately chosen as it had a good combination

of all desired criteria.

Looking exclusively at inliers, the least squares approach to parameter fitting

has optimal efficiency, since it is equivalent to the maximum likelihood estimator

(MLE). An ideal kernel would therefore be one that treats inliers as close as

possible to the L2 kernel. To determine a kernel’s treatment of inliers we can

take the limit of the kernel as its parameter goes to infinity, effectively making

all points considered to be inliers. These limits are shown in Table 3.5. We can

see that all the considered kernel functions except the least absolute kernel will

asymptotically treat inliers in the same way as the least squares approach. This

property also allows us to use the technique shown in Section 3.4.5.2 to efficiently

optimize the model parameters.

Name Kernel Limit as c→∞
L2 (Least Squares) x2

2

L1 (Least Absolute) |x|
Huber x2

2

Cauchy x2

2

Welsch x2

2

Tukey x2

2

Table 3.5: Kernel treatment of inliers. The limit of the kernel function is
taken as the kernel parameter c goes to infinity. This allows us to see how the
kernel will treat data composed entirely of inliers, and is meant to approximate
how the kernel will treat inliers of real data.

Chapter 3. Algorithm Design 51

KLT feature extraction can occasionally produce matches that deviate from inliers

by a large margin. For this reason, a kernel function to be used should be bounded

to avoid large effects from these outliers. Table 3.6 shows the value of each kernel

function as x → ∞, allowing us to see the result of each kernel to a significant

outlier. Only the Welsch and Tukey kernel functions are bounded, though all

kernels result in asymptotically smaller results than the least squares approach for

large x.

Name Kernel Limit as x→∞
L2 (Least Squares) ∞
L1 (Least Absolute) ∞

Huber ∞
Cauchy ∞
Welsch c2

2

Tukey c2

6

Table 3.6: Kernel treatment of extreme outliers. The limit of the kernel
function is taken x goes to infinity, allowing the effect of the kernel parameter
on outliers that deviate significantly from the proper model.

The stability and convergence is an important consideration in choosing a suitable

kernel function. To improve stability, the kernel function and its first and second

derivatives (depending on the convergence algorithm used) should be continuous.

The second derivative of the L1 has a discontinuity at x = 0, but all others kernels

should exhibit good stability.

For this project, performance considerations on a low power processor are of impor-

tance. Branching can be computationally expensive for a processor to implement,

especially simple processors that lack branch prediction. Any piecewise kernel will

require branching in the optimization routine, which would likely increase the time

required to run an iteration of any optimization routine. Additionally, a piecewise

kernel complicates the derivative optimization outlined in Section 4.1. For these

reasons, the Tukey and Huber kernels were not considered.

Chapter 3. Algorithm Design 52

Following these criteria, the most suitable kernel function was deemed to be the

Welsch function. With a proper kernel parameter it will provide a solution equiv-

alent to least squares on a dataset of exclusively inliers, and also has a bounded

response as x →∞, so large outliers will have a limited effect on the model. It is

a non-piecewise function with defined first and second derivatives, making it both

stable and efficient to implement. The response of the Welsch kernel is shown in

Figure 3.10. The influence function ψ(x) and weight function w(x) of the welsch

kernel are shown in Equations 3.20 and 3.21 respectively.

Figure 3.10: Welsch kernel response. The kernel parameter w = 1.

ψwelsch = x exp (−(
x

c
)2) (3.20)

wwelsch = exp (−(
x

c
)2) (3.21)

To illustrate the response of the Welsch kernel, a 2-D line fitting example with

outliers was created. The raw data, data parameters, and both Welsch and least

squares optimization surfaces are shown in Figure 3.11. The least squares solution

is far from the optimal parameters, while the Welsch fit appears to be close to

the true parameters. However, there are local minima on the Welsch plot which

complicate fitting compared to the quadratic least squares plot.

Chapter 3. Algorithm Design 53

(a)

(b) (c)

Figure 3.11: Comparison of Welsch kernel and least squares. 50 inliers follow-
ing a straight line with slope 3.4 and a y-intercept of 2.0, with gaussian noise
with a standard deviation of 0.5 added. 50 outliers are added following the same
line but with a standard deviation of 10.0 are added. The raw data is shown
in Figure 3.11a. Figure 3.11b shows the optimization surface of this problem
using a least squares kernel. Figure 3.11c shows the optimization surface of this
problem using a Welsch kernel with a width of 2.0. An ’x’ symbol marks the
true solution parameters on both optimization surfaces.

3.4.5.2 Optimization method

Iterative weighted least squares is commonly used to compute parameters of an m-

estimator model. However, this requires that the underlying model could be solved

using an ordinary least squares solution – the output must be a linear function of

all input parameters. In all sub-models used here and the overall model tuning

Chapter 3. Algorithm Design 54

this is violated – each contains at least one sinusoidal term. The Newton-Raphson

method is an alternative solution to least squares to solve an m-estimate problem

[34], and was used here.

The multivariable Newton Raphson method assumes that the optimization surface

is quadratic, and will iteratively compute a solution that will lie at a point where

the gradient in each direction is 0. The point can be a local minimum, maximum

or saddle point of the function.

The Welsch m-estimator kernel belongs to a family of redescending m-estimator

kernels [37]. While these are known to outperform bounded m-estimators, they are

typically non-convex and have multiple local minima. One heuristic to attempt

to find the local maximum is to use the solution to a convex m-estimate approach

as a starting point, and iterate from there. Instead of this approach, a solution is

described below where the problem is slowly modified from a convex least squares

solution to the final m-estimate problem by slowly varying the kernel parameter.

The Welsch kernel will asymptotically approach a least squares solution as the

parameter w(x) tends towards infinity. The least squares solution is quadratic, so

given a problem that can be solved using ordinary least squares, Newton’s method

will provide the exact solution after a single iteration (barring any numerical er-

rors). With a sufficiently large w(x), we are able to come close to the least squares

solution using a Welsch kernel and one iteration of the Newton Raphson method.

Additionally, it was observed that the area immediately surrounding the global

minimum was locally convex, and an optimization algorithm with a starting point

sufficiently close to the global maximum will move towards a better solution. The

Welsch kernel function is convex surrounding x = 0, so the sum of all features

shifts surrounding the solution (for a particular value of w) will produce a convex

solution space under the assumption that the majority of feature points are inliers.

Chapter 3. Algorithm Design 55

By decreasing the kernel parameter, an optimization algorithm can take advan-

tage of the global convexity of the least squares solution, and stay contained within

the local convexity of the global minimum as local minima begin to appear. The

changing surface as w decreases in shown in Figure 3.12. The contour line sur-

rounding the minimum can be seen to move towards the ’X’ marking the true

parameters as w decreases. Additionally, the area about the minimum where the

surface is convex decreases as we decrease w.

The proposed optimization algorithm is to start at a large value of w, and find

the global maximum that is expected to be close to the least squares solution.

From there, we iteratively decrease w by a small amount, and find the optimal

parameters using the previous optimum as a starting point. This is continued

until we reach our desired final value of w, which is determined in Section 3.4.5.4.

A least squares solution is desired for the first iteration. However, a Welsch kernel

is used with a large w. While this is more expensive computationally, it simplifies

the code and allows reuse through all iterations. This can be important on low

power processors where the code memory is limited.

As seen in Figure 3.12, changes in w do not appear to affect the solution surface

in a linear manner. Instead it was found that as w decreases, small changes will

have a greater effect. For this reason, discrete values of w were logarithmically

spaced. The choice to use logarithmic spacing is likely not ideal, and further work

required in this area is discussed in Section 6.2.3. Figure 3.13 shows the location

of the parameters as w is iteratively decreased and the problem is fit using a single

iteration of the Newton-Raphson method. The parameters begin near to the least

squares solution and slowly move toward the global minimum of the Welsch m-

estimator solution.

The starting value for the initial full frame movement model was chosen to be

1000. This value was determined experimentally by performing full frame video

Chapter 3. Algorithm Design 56

(a) Raw data and the least squares so-
lution.

(b) w = 100

(c) w = 60 (d) w = 20

(e) w = 10 (f) w = 1

Figure 3.12: Optimization surfaces as w decreases. The parameters a0 and
a1 were fit in the model y = a0x + a1 according to data shown in Figure
3.12a. The remaining figures show the optimization surface as w decreases from
100 to 1. Note that the surface is close to quadratic in Figure 3.12b. As the
width decreases, an increasingly smaller region is convex surrounding the global
minimum. In each plot, and ’X’ marks the true solution used to generate data.

stabilization with varying values of w. Smaller values of w were tested until frames

were found to contain incorrectly optimized solutions at w = 100. Due to the

logarithmic spacing of w values to be used, increasing the starting value by a large

Chapter 3. Algorithm Design 57

amount does not actually result in many more iterations, but may result in greater

stability in particularly difficult to track video sequences.

The number of discrete values for w was determined in a similar value to w. It

was determined that 10 values of w provided sufficient stability for the full frame

model, all sinusoidal models and the final full model optimization.

Figure 3.13 shows how the parameters progress are the value of w changes. While

the parameters used here do not exactly match those used in video motion models,

this serves to illustrate the way in which the parameters will trend toward the true

solution as w decreases.

Figure 3.13: Change in model parameters as w decreases. Here w goes from
100 to 2 in 20 logarithmically spaced steps. The true parameter values are shown
with dotted lines. The raw data for this problem can be seen in Figure 3.12a.
The parameters can be seen to slightly overstep their ideal path at iteration
8. This effect can cause problems when optimizing using the Newton-Raphson
method, but LM optimization will prevent the solution from overstepping to an
area of higher cost than the previous iteration. The parameters remain nearly
constant for the final five iterations, suggesting that the final kernel width is
smaller than ideal (this data was artificial, and an optimal ending value was not
calculated).

3.4.5.3 Levenberg-Marquardt Optimization

LM is commonly used to minimize non-linear least squares solutions that cannot

be solved using an algebraic solution [38]. LM optimization interpolates between

gradient descent and the Newton-Raphson method according to a parameter λ, as

Chapter 3. Algorithm Design 58

shown in Equation 3.22

~pn+1 = ~pn − (H + λdiag(H))−1 ~J, (3.22)

where ~pn is the vector of parameters at iteration n, H is the Hessian matrix of

second derivatives of the cost function with respect to all parameters and ~J is the

Jacobian vector of first derivatives of the cost function with respect to all param-

eters. As λ tends towards zero this algorithm approaches the Newton-Raphson

method, and as λ tends toward∞ we move towards basic gradient descent. λ can

be adjusted according to a number of heuristics designed to provide a small value

of λ where the solution space is convex and we can take larger steps and a large

value of λ on flatter portions of the space where the robustness of gradient descent

is needed [38].

Both LM optimization and the Newton-Raphson method require the construction

of Hessian and Jacobian matrices. In this case, matrix elements are set to the

sum of partial derivatives of the cost function over all feature points. The Hessian

matrix is a matrix of second partial derivatives of the cost function with respect

to parameters to be optimized, as seen in Equation 3.23

H =

∂2ρ
∂p21

∂2ρ
∂p1 ∂p2

· · · ∂2ρ
∂p1 ∂pn

∂2ρ
∂p2 ∂p1

∂2ρ
∂p22

· · · ∂2ρ
∂p2 ∂pn

...
...

. . .
...

∂2ρ
∂pn ∂p1

∂2ρ
∂pn ∂p2

· · · ∂2ρ
∂p2n

, (3.23)

where ρ is the cost functions, and pi is a parameter to be optimized. Similarly,

the Jacobian vector contains first derivatives of the cost function, as shown in

Equation 3.24

~J =

[
∂ρ
∂p1

∂ρ
∂p2

· · · ∂ρ
∂pn

]
. (3.24)

Chapter 3. Algorithm Design 59

Partial derivatives were computed using a symbolic math library, and were large

expressions due to the size of the cost function (Equations 3.13 and 3.14).

LM optimization was used instead of the Newton-Raphson method in the final so-

lution to provide further stability at a small performance cost. If the gap between

subsequent values of w would be too large for the Newton-Raphson method to re-

main stable, the gradient descent would begin to take over, and we are guaranteed

to take a (potentially very small) step in the direction of an improved solution.

The provides stability in two main ways:

• If the current solution falls outside the trust region of the Newton-Raphson

method, we can take a step in the correct direction and fall back within the

trust region for the next step of the algorithm.

• If the solution moves a large amount and we are far from any local minimum,

we are likely to take a small step. This contrasts with the Newton-Raphson

algorithm, which will often take large steps and can become unstable. While

such a solution is unlikely to ever find the global minimum, the final solution

will not be any worse than the solution at the step before we lost the local

minimum.

In this work, the following heuristic was used to adjust λ according to our position

in the solution space, according to [38]:

λn+1 =

2λn If Cost(~pn+1) > Cost(~p)

λn
2

Otherwise

. (3.25)

The solution is not allowed to step to a point where the cost is higher than it was

previously. Instead, we continue to increase λ by a factor of two until we find a

step such that the cost is decreased. This does not require recalculation of the

Hessian and Jacobian matrices, which are the most time consuming parts of each

Chapter 3. Algorithm Design 60

iteration. The value of λ begins at 0.01 for each optimization step. To choose

this value, the starting value of λ was swept while counting the number of times

this value had to be increased. The chosen value was the point at which λ had

to be increased the fewest number of times over the test videos. The results in

each optimization step being nearly equal to the Newton-Raphson method, which

tends to find the optimum using few iterations. In rare cases where the solution

cannot be found, λ will increase until we move in an improving direction according

to gradient descent.

In some cases, the Hessian matrix is ill conditioned, even with the added diago-

nal values. Inverting such a matrix will not work, and typically produces Not a

Number (NaN) in the resulting matrix. To avoid such conditions, diagonal values

are checked to ensure that they are greater than a minimum threshold value. If

diagonal values are less than 10−6, the diagonal value is replaced with 1.0, and all

values on the same row and column are set to zeros. The corresponding entry of

the Jacobian matrix is also set to 0. This allows the Hessian to be inverted as if

the problem parameter was not being updated. Since the Jacobian matrix is zero

for that element, that parameter will not be updated. In many cases, the next

iteration’s Hessian matrix will no longer be ill conditioned, either due to a change

in the Welsch kernel parameter or updated model parameters from the previous

iteration.

3.4.5.4 Ideal final kernel width parameter computation

The ideal kernel width for the Welsch function needs to be chosen properly – too

large and the computation will approach a least squares solution, too small and no

global optimum solution will exist. A method to determine optimal widths will be

presented, and two optimal widths will be calculated: one for the initial full frame

motion estimation (where pixels distorted by rolling shutter effects should still

Chapter 3. Algorithm Design 61

be considered inliers), and another for rolling shutter modeling and final model

tuning.

We first define the number of inliers and number of outliers as nin and nout re-

spectively. Both inliers are outliers are assumed to follow normal distributions

with standard deviations σin and σout respectively. The assumption that outliers

follow a normal distribution is likely incorrect in many cases, but outlier distribu-

tion is video-dependent, and it would be difficult to construct a single distribution

accurate in all cases.

One approach to parameter calculation is to maximize the sum of the weighting

function w(x) over all inliers, while minimizing the sum of w(x) over all outliers. To

do this, we first multiply the inlier distribution by the weight function, obtaining

another gaussian kin, as seen in Equation 3.26

kin =
nin

σin
√

2π
e
− x2

2σ2
in exp (−(

x

c
)2) =

nin

σin
√

2π
e
−x

2(c2+2σ2in)

2σ2
in
c2 . (3.26)

Next we integrate kin over all of x to find the sum of all inlier contributions:

jin =

∫ ∞
−∞

kin ∂x =
nc√

c2 + 2s2
, (3.27)

where jin has a maximum when c =∞, and a minimum when c = 0. This means

the inlier contributions will be maximized when c =∞. Using the same approach

with outliers, we find that they will also be maximized at c =∞. These opposing

goals would require us to set a weight on the importance of maximizing inlier

contributions vs. minimizing outlier contributions.

Instead of calculating an algebraic limit, a monte carlo type simulation was run to

simulate the accuracy of various kernel parameters on a translation and rotation

fitting model. The convergence method described in Section 3.4.5.2 was used to

find the solution optimum. By finding an appropriate kernel width on a simple

Chapter 3. Algorithm Design 62

problem with similar inlier and outlier distribution, we can determine a suitable

w(x) for use more complex models.

The inner simulation will be to calculate the R2 value over only inliers, using

a Welsch kernel fit on both inliers and outliers. For this test, we assumed that

80% of data would be inliers and the remaining 20% would be outliers, based

on visual examination of extracted feature points over several videos. Translation

and rotation values were generated according to random normal distributions with

a standard deviation of three pixels for translation and two degrees for rotation.

x and y values were generated to follow a uniform random distribution over the

entire video frame size. Inlier noise was added with a standard deviation of 0.1.

Outlier noise had a standard deviation of 10.0, based on visual examination of

feature points from video. This was done by plotting the point density of feature

shifts against x and y parameters, and comparing that density distribution to

a normal distribution. While this is a fairly arbitrary method, the problem is

unsupervised and additional information such as gyroscopic data is necessary to

calculate parameters. The distribution varied slightly between frames and videos

so an approximate mean was over all sources. Figure 3.14 shows the root mean

squared error (RMSE) over several different widths for the translation in x and y,

and the rotation of the frame.

The optimal values of w were 2.1, 2.1 and 2.4 for x, y, and R parameters respec-

tively. The final kernel parameter w was chosen to be 2.3 - an average of the

three minima. This value was used for the row based x-translation, row based

y-translation and row based rotation, and the final full model optimization.

To calculate an ideal initial frame fit (while rolling shutter distortions remain in

the frame), the noise on the inliers was increased to 2.0. This value was iteratively

refined by picking a w value, fitting models to the data, and inspecting the am-

plitudes of the sinusoids used to model the rolling shutter distortion. The inlier

Chapter 3. Algorithm Design 63

Figure 3.14: Monte carlo simulation to find an ideal w(x). A rotation and x
and y translations were calculated using simulated data containing 80 inliers and
20 outliers. The RMSE is calculated for 50 sets of data points for each kernel
width. The least squares solution errors were 0.091 pixels, 0.161 pixels and
0.00021 Rad for x, y and R respectively, each more than an order of magnitude
higher than the Welsch kernel fit.

noise value is equal to the standard deviation of data randomly sampled from the

sinusoids in the distortion model, which is equal to the amplitude divided by
√

2.

The same monte carlo simulation was run with increased inlier noise, resulting in

the data shown in Figure 3.15. The ideal full frame Welsch kernel parameter was

chosen to be 7.0, the average of the minima of 6.0, 7.0 and 8.0 for x, y and R

respectively. This value was used for the full frame movement, and also for initial

weights for the row based x-translation, row based y-translation and row based

rotation.

3.5 Motion Filtering

Once camera motion from frame to frame has been calculated, the motion must

be filtered before the frames are distorted to make motion appear smooth. This

filter should result in camera motion that has been low pass filtered to remove

high frequency movements.

Chapter 3. Algorithm Design 64

Figure 3.15: Monte carlo simulation to find an ideal w(x) for full frame pa-
rameters. Inlier noise was increased to 2.0 using the same simulation described
in Figure 3.14. Due to the added inlier noise, the advantage of a smaller kernel
parameter is less than with the decreased kernel noise shown in Figure 3.14.

Motion filtering was not a main focus of this work, but a solution had to be

developed in order to output videos. The output camera motion was chosen to be

an exponential moving average (EMA) filtered integral of the calculated motion.

This acts as a low pass filter, and can be computed very efficiently. The EMA filter

was chosen for its simplicity to implement and its computational efficiency. More

complex motion filtering algorithms are discussed in Section 6.2.4. The motion of

each pixel was calculated and decayed for each frame, according to Equation 3.28

In+1(x, y) = αIn(x, y) + T n(x, y), (3.28)

where In(x, y) is the shift applied to a pixel located at (x, y) at frame n, α is a

decay factor, and T n is the calculated transformation at time n.

α was set to 0.98, but could be adjusted by a user if a different balance between

stabilization quality and minimization of crop area is desired. Note that setting α

to a larger value will often result in a smaller output video after corners are clipped

(see Section 3.6 for details), while a smaller value will result in less smooth video.

The relationship between α and the crop size depends on the motion calculated

from the video.

Chapter 3. Algorithm Design 65

The result of the EMA filter can be seen in Figure 3.16. The calculated total

camera motion is shown, as well as the smoothed camera motion that will be seen

in the output video.

Figure 3.16: Motion smoothing using an EMA filter. Here the calculated total
camera motion is shown, along with the smoothed motion that will be present
in the output video. This data comes from the first 200 frames of the walking
video – each large spike is the result of taking a step while walking.

The integrating EMA filter is a special case of an Infinite Impulse Response (IIR)

filter, where a single recursive tap is used. The filter response is shown in Equation

3.29

S(ω) =
1

1− 2α cos (ω) + α2
, (3.29)

where ω is the angular frequency of the integral of camera motion. The frequency

response is also shown graphically using α = 0.98 in Figure 3.17

3.6 Image Warping

Image warping was performed by calculating the original pixel location of every

pixel in an output image, and using linear interpolation to calculate the pixel value

in the new image. For each pixel on a particular frame, the x and y coordinates

Chapter 3. Algorithm Design 66

Figure 3.17: Frequency response of the low pass motion EMA filter, using
α = 0.98. Note that the low frequency response is a significant amplification
since this filter is designed to provide a low pass filtered integral of the frame to
frame motion. The unstable region at higher frequencies is cause by aliasing.

of the original distorted video frame are calculated using the camera motion de-

termined in Section 3.5. If this original location is outside the video frame, the

clip region is adjusted since we have no information of what should appear in that

location.

Transformed pixel locations are no longer integer values, so a method is needed to

determine what pixel value to use. In this case, bilinear interpolation was used,

as shown in Equation 3.30

I(x, y) = I(xfloor, yfloor)(xceil − x)(yceil − y)

+ I(xfloor, yceil)(xceil − x)(y − yfloor)

+ I(xceil, yfloor)(x− xfloor)(yceil − y)

+ I(xceil, yceil)(x− xfloor)(y − yfloor)

, (3.30)

where xfloor and yfloor are the values of x and y rounded down to the nearest

integer, while xceil and yceil are the values of x and y rounded up.

Chapter 3. Algorithm Design 67

Bicubic interpolation is often used in image processing applications as it will give

a smoother result with fewer artifacts since the derivatives of the resulting inter-

polation are smooth. However, it takes longer to run and was not used for this

reason. In situations where accuracy is preferred to speed bicubic interpolation

could easily replace bilinear interpolation in this work.

3.7 Overall Model Fitting Algorithm

In this section, the overall fitting method will be presented. This will combine

details presented earlier in Section 3 to explain how the all of the subsections work

together. Figure 3.18 shows the overall fitting process that is explained below.

A series of image frames is first extracted from the video sequence, and grayscale

versions (since the KLT tracking algorithm operates only on grayscale images) of

each image are created for processing. Up to 1000 feature points are extracted

from each image and matched to feature points in the frame that follows is, using

the grayscale images. This number of feature points was suggested by Grundmann

as being an ideal number of features to use. Stabilization performed with fewer

features did not perform as well, and adding more features decreases performance,

but no improvement in video quality could be seen. A rolling shutter model is fit

to each set of feature pairs, using the method described below in Section 3.7.1.

A shift matrix for each direction (x and y) is created to be the size of the image

in pixels, initialized to all zeros. Starting from the first transform model, the shift

for each pixel is added to that index of the matrix for both the x and y directions.

This produces two matrices showing where each output pixel should be taken

from. These matrices are used to implement the motion filtering algorithm. Due

to the non-linearity of the distortion model, a simple additive approach cannot be

taken. These shifts are used with a bilinear interpolation algorithm to distort a

Chapter 3. Algorithm Design 68

x Translation y Translation Rotation

Grayscale Grayscale

Frame n+1Frame n

Feature Extraction

and Matching

Feature

Pairs

Full Frame

Motion Fit

Sinusoid Sinusoid Sinusoid

x Translation y Translation Rotation

Sinusoid Sinusoid Sinusoid

Full Model

Optimization

Motion

Filtering

Image

Warping

Output

Image

Figure 3.18: Overall fitting process flowchart

Chapter 3. Algorithm Design 69

color input frame to produce an output image, which is stored in memory. The

required crop window is recalculated as each output image is created. Once all

output images have been created the crop window is applied to each frame, and

all frames are saved as a video.

3.7.1 Model Fitting to Feature Pairs

The fitting of the distortion model is complex and requires the optimization of

parameters to a non-convex cost function. A fast yet robust optimization approach

is required to fit the model. Several sub-models (individual sinusoids) are created

and applied onto the result of the previous sub-model, resulting in several simple

models that can be fit quickly and largely in parallel.

The full frame camera motion model is first applied to remove full frame camera

motion. Subtracting this motion makes the parameter fitting of the other models

easier, since the full frame motion is considered noise by those models, and we

are removing noise through the full frame fit. This fit must be completed before

any of the next steps. This is performed using 10 iterations of LM optimization

using a Welsch kernel. The kernel width is decreased from 1000 to 7 using 10

logarithmically spaced points (see Section 3.4.5.2 for details).

The three row based translation models are then fit, and could be done in parallel.

The first of the models is fit to x shifts of the data, and is completely separate

from the y shifts of the next models. The first of the y models fits compression

or expansion of entire rows, while the second models the rotation of pixels about

the center of the frame. By assuming the mean of all feature’s y values is centered

in the frame (the feature extraction algorithm presented in Section 3.2 does this

well) the two y shift models will produce orthogonal corrections and can therefore

be fit in parallel. Each individual fit has two frequency components that must be

performed in sequence, otherwise the single largest frequency would be fit twice.

Chapter 3. Algorithm Design 70

The method used to fit each of these row based translation models is described in

detail in Section 3.7.2.

Once each of these three sub-models have been fit, the entire model is optimized

using 10 iterations of LM optimization and a Welsch kernel of decreasing width.

The kernel width is decreased from 7 to 2 using 10 logarithmically spaced points.

3.7.2 Row-based Translation Model Fitting

In each of the row based translation models, the amplitude, frequency and phase

of two sinusoids are being fit to weighted data. Data is extracted from feature

points in such a way that the same code can be reused for all three sinusoidal

models.

Starting weights for each feature point are calculated using the optimized param-

eters of the the full frame model fit, and denoted ~d. The m-estimator weight func-

tion is calculated for each point using the final parameter values. These weights

allow us to have some prior knowledge of outliers as we move to a model that

is more difficult to fit than the full frame model. These weights are normalized

so that the mean weight is one to avoid requiring normalization in each model

calculation, since several model fits will be performed using the same weights.

For the row based x-translation, the x-shift between features pairs is taken with

all previously calculated camera motion subtracted and labeled as the vector ~a.

Note that for the second sinusoidal fit, this previously calculated camera motion

includes the first sinusoidal fit. The y position of each feature point in the first

frame is used as the vector ~b. An additional vector ~cweights is provided with all

values set to 1.

Chapter 3. Algorithm Design 71

The row based y-translation is similar to the x-translation, with the only difference

being that the vector ~a is equal to the y-shift between feature pairs with previous

camera motion subtracted.

The row based rotation is slightly more complex, but can be fit using the same

function by using the ~cweights vector, which is set to (x− centerX)/(2 ∗ centerX)

using the x values from the first frame. The denominator is not required, but

normalizes data to provide greater stability for different video resolutions. The

numerator expression projects the y shift of a rotation into a two dimensional

space by normalizing out the x dimension. ~a is set to the y-shift between feature

pairs, and ~b is set to the y value of each feature in the first frame.

The actual fitting of the data has two main steps: a brute force discrete Fourier

transform (DFT) – like step intended to find the approximate parameter values,

and several iterations of LM optimization to refine those parameters and decrease

the Welsch kernel width to reduce the significance of outliers.

In the first step, we calculate the sum of the product of sin and cos terms at

different frequencies with ~a at discretely spaced frequencies, as seen in Equation

3.31

Sfsin =
∑

i sin (~b[i] f) ~a[i] ~d[i] ~cweights

Sfcos =
∑

i cos (~b[i] f) ~a[i] ~d[i] ~cweights,
(3.31)

where i is the feature point index, and Sf is the total power of a particular sinusoid

at frequency f . Specific frequencies used are described below.

Each frequency’s signal power is calculated as the sum of the squares of sin and

cos terms, as seen in Equation 3.32

Sf = (Sfsin)2 + (Sfcos)
2. (3.32)

Chapter 3. Algorithm Design 72

The frequency with the maximum power is taken as the starting point for the

iterative optimization routine.

This procedure is very much like the DFT. The more efficient Fast Fourier trans-

form (FFT) could not be used here, since the data points are not equally spaced

or equally weighted. For this reason the number of frequencies are kept low. Fre-

quencies between 0.002Rad
row

and 0.1Rad
row

at 20 linear spaced steps were used. Lower

frequencies than 0.001Rad
row

were not used since a linear fit and constant offset were

previously subtracted in the full frame model, and frequencies below 0.002Rad
row

are

within approximately 3% of a linear fit. The upper limit was chosen by examining

the test videos described in Section 5.4, and finding the upper limit before signif-

icant motion blurring starts to happen in the video. At this point, even perfectly

compensated videos will not appear smooth since significant amounts of motion

blur will still be present.

The number of frequency steps was chosen by examining the output of several

frequency analyses. An example from the Parliament video is seen in Figure 3.19.

Each frequency peak is blurred from two main causes: noise present on data points,

and spectral spillage caused by non– integer cycle frequencies. Noise on each data

point causes a small amount of spreading on each peak. The sinusoidal terms

used in Equation 3.31 do not complete an integral number of cycles during the

frame window, resulting in sinusoidal spreading of each peak. This effect could be

mitigated by using a window function in Equation 3.31, at the expense of accuracy

of each frequency’s power, and a small decrease in performance. The spread caused

by these effects limits our frequency resolution, so we only check 20 points to save

time.

Once a frequency starting point has been chosen, it is used as a starting point for

the iterative Welsch kernel-based optimization routine. The amplitude, and phase

are calculated from the sine and cosine and total powers as seen in Equations 3.33

Chapter 3. Algorithm Design 73

Figure 3.19: Frequency analysis of row based x-translation. A finely sampled
frequency analysis is shown along with the coarse sampling used in the final
system.

and 3.34

pamplitude =
2
√
Sf

‖~d‖2
(3.33)

pphase = tan−1
(Sfcos
Sfsin

)
. (3.34)

Once a starting point has been found, LM iterations are used to improve the fit

using a Welsch kernel of decreasing width. The objective function is shown in

Equation 3.35

Cost =
∑
i

~ai − ~cweights pamplitude sin (pfrequency ~bi + pphase). (3.35)

The welsch kernel width parameter begins at 7.0 – the width that resulted in the

initial starting weights used for the first part of the fit. The final parameter value

is 2.0 which was previously calculated in Section 3.4.5.4 as the final parameter

value for all fits. 10 steps were used with values spaced logarithmically. This

value was chosen by starting with a large value, and decreasing it until the LM

optimization frequently had to increase the λ parameter to remain stable – in

Chapter 3. Algorithm Design 74

other words when the parameters routinely fell outside the convex trust region

surrounding the global minimum when the step size was decreased.

Chapter 4

Implementation

In this chapter several concepts intended to improve code performance of the prede-

termined algorithm are discussed. An algorithm for automated code optimization

designed to speed up iterations of LM optimization is discussed in Section 4.1.

Next, an approach to parallelization of the algorithm is discussed in Section 4.2,

aimed at a system with a large number of processing cores. Finally, an approach to

fixed point conversion is discussed in Section 4.3 which would allow the algorithm

to efficiently run on an embedded platform lacking floating point hardware.

4.1 Automated code optimization

Iterations of LM optimization can be slow, especially for the full model optimiza-

tion with 24 parameters to be optimized simultaneously. Here an algorithm to

optimize code to calculate the Hessian and Jacobian matrices will be presented.

While this method does not asymptotically improve speed with respect to the

number of model parameters or feature points, for the optimization problems in

this work the iteration time decreased dramatically.

75

Chapter 4. Implementation 76

The calculation of a single element in either the Jacobian or Hessian matrix in-

volves a sum over all feature pairs in this problem (1000 data points). Additionally,

the size of the Jacobian and Hessian matrices are 1× np and np × np, where np is

the number of parameters. For the final full model optimization with 24 parame-

ters this results in 600 individual equations, each of which is a sum over all data

points. One approach to simplify this computation is to approximate the deriva-

tives using forward difference approximations. Using only the basic cost function

call, np+n2
p/2 calls are required, which remains slow. In this approach, derivatives

were calculated algebraically for each matrix element.

To derive these equations, automatic differentiation was performed on the cost

function and code was generated to compute the Hessian and Jacobian. It was

observed that matrix elements are similar, and common terms could be factored

out to decrease run time.

An iterative process was created to find suitable sub-expressions to precompute.

A sub-expression here is considered any part of an equation that could be removed

from the equation and replaced with a single term. That expression is then re-

placed with the temporary value wherever it appears in the Hessian or Jacobian

matrices.

Sub-expressions were calculated by considering each equation as a tree. The ex-

pression implemented by each node was counted in a hash table as the tree was

traversed. This was repeated for each matrix element equation. In expressions

taking an arbitrary number of parameters (such as multiplication) an expression

was added for every combination of parameters, with each combination sorted

alphabetically. For example, the expression abc would produce sub-expressions

abc, ab, bc and ac, which allows a common temporary variable to be shared with

something like sin (ac). Pseudocode to create a list of sub-expressions is shown in

Figure 4.1.

Chapter 4. Implementation 77

Data: E = Pointer to root node of expression tree
Result: L = list <Sub-expressions>
Function GetSubExpressions(E)
begin

for argument A in E.arguments do
L += GetSubExpressions(A)

end
return L

end

Adds extra nodes for combinations of arguments in the case of multiplication or
addition
Data: L = list <Sub-expressions>
Result: R = list<Sub-expressions>
Function AddCombinations(L)
begin

for sub-expression S in L do
if S is multiplication or addition then

Add all combinations of arguments
for sub-expression C in Combinations(S) do

R += C

end

else
R += S

end

end
return R

end

Figure 4.1: Sub-expression generation for automated code optimization.

Once a list of sub-expressions and their respective counts has been gathered, the

list is sorted (by a strategy described below). Beginning at the ’best’ expression to

replace, each matrix equation has all instances of that expression replaced with a

temporary variable. This continues until we reach the stopping criteria described

in Section 4.1.3. A flowchart depicting the process is shown in Figure 4.2.

Chapter 4. Implementation 78

Cost Function Parameters

Create Equations

Matrix Equations

Find Best Sub-Expression Temp Variables

Check Stop Criteria

Stop

Continue

Check for equal elements Equal Elements

Remove Constants Constants

Generate Code

Optimized Code

Figure 4.2: Automated optimization flowchart. The cost function is sum
of the Welsch error of the distortion function (sum of Equations 3.13 and 3.13)
summed over all feature points. The parameters are the list of model parameters
found in Table 3.3.

Chapter 4. Implementation 79

Figure 4.3: Sub-expression frequencies in Hessian and Jacobian computations.
At each iteration, the most common sub-expression is replaced with a single tem-
porary variable. The number of occurences of the most common sub-expression
is plotted against the iteration number.

4.1.1 Sub-expression selection strategy

The sub-expression selection strategy was to look for the node that appears the

most times over all equations. This is continued until no expression occurs more

often than a predetermined threshold. The number of occurrences of the most

common expression as they are replaced is shown in Figure 4.3.

Many alternative expression selection strategies exist, and may prove to be more

effective than looking only a sub-expression counts. On a simple processor where

a definite number of clock cycles are required for a given computation, this knowl-

edge could be taken advantage of to select slower expressions first. One such

strategy could be to sort sub-expressions by the total clock cycles required to eval-

uate them – the number of times that expression exists multiplied by the number

of cycles required for a single evaluation. The node selection strategy would be

especially important on platforms where few terms could be used due to memory

constraints. In this work, memory usage was not a priority so a simple strategy

Chapter 4. Implementation 80

could be used without a significant performance penalty. A simple strategy also

decreases the optimization time before code compilation.

4.1.2 Additional Optimizations

In additional to node pre-computation, several other techniques were used to im-

prove performance:

• Any constant equations were removed from the loop and multiplied by the

number of loops

• Any multiplicative factors at the root node of equations (Ex: 2 sin (x) would

qualify but sin (2x) would not) were removed from the inner loop and the

sum was multiplied post-loops.

• Many Hessian matrix elements across the matrix are equal. These are copied

over after the inner loop instead of adding to both matrix elements for each

data point.

4.1.3 Stopping Criteria

A constant threshold was chosen for all model optimizations to be a minimum of

nine occurrences of a particular sub-expression. This was chosen by sweeping over

different minimum sub-expression occurrences, generating optimized code, and

timing multiple runs of the code (100 runs were used for less-optimized solutions,

and this was increased as speed increased such that the full run took approximately

10 seconds). Note that these results were performed on a laptop with an Intel i7

processor, and should be repeated to determine an optimal stopping point based

on available memory and processor speed.

Chapter 4. Implementation 81

Figure 4.4: Number of temporary variables vs LM iteration time. A significant
speedup is seen as we move from no temporary variables to a minimum located
near 150 temporary variables, after which a small decrease in performance is
seen. Note that without the speedups listed above the code takes approximately
75ms per iteration.

A plot of the number of temporary terms vs the average iteration time is shown in

Figure 4.4. The optimal number of terms was found to be approximately 150 tem-

porary terms, which corresponds to a minimum of nine occurrences of a expression

to be factored out. These minimum value will depend on several factors such as

processor and Floating Point Unit (FPU) speed and availability, and processor

cache and Random Access Memory (RAM) speed and availability.

4.2 Parallelization

Segments of the algorithm can be parallelized in to improve performance on a

multicore platform. These segments can be broken down into feature extraction,

feature matching, distortion transfer function computation, and motion filtering

and image warping. The algorithms presented here are tailored towards a platform

with a large number of computation cores.

Chapter 4. Implementation 82

4.2.1 Feature Extraction

The use of sub-images in the feature extraction algorithm makes parallelization of

this step simple. Each computation core is tasked with the feature extraction on a

small number of sub-images. Cores do not need to communicate with each other,

and the memory required to be transfered to each core is minimal.

4.2.2 Feature Matching

Efficient use of multiple cores in the KLT feature matching algorithm is more

complex than the feature extraction step. To avoid recomputing the pyramid of

images used by KLT, these images could be computed once. Each processor core

would follow the pyramidal tracking procedure for each of the features previously

calculated on that core in the feature extraction step. If care is taken to ensure

that a single core contains features from adjacent sub-images only, memory transfer

between cores can be reduced, since each core will only need portions of the lower

pyramid images.

If the maximum displacement of features is limited, the memory transfer can be

further reduced since each core will only need to consider features immediately

surrounding the features it previously extracted.

4.2.3 Distortion Transfer Function Computation

The majority of the time spent computing transfer function parameters is spent

calculating the Jacobian and Hessian matrices used in the LM optimization. For

example, for the full model tuning it takes approximately 1230µs to calculate these

matrices, but only 50µs to solve the linear system to calculate parameter updates.

Chapter 4. Implementation 83

With this in mind, the parallelization of this component was designed specifically

to minimize the time required to compute the Hessian and Jacobian matrices.

Each computation core will calculate the Jacobian and Hessian matrices for the

points previously extracted and matched on that core alone. Once this has been

completed, the individual elements from matrices are added together to produce

a single Hessian and Jacobian matrix from which the parameter updates will be

computed. The addition of matrix elements can be added together using a binary

tree topology to reduce the number of non-parallel additions. The solving of

the linear system can then be performed on a single computation core, and new

parameter values are then calculated. These parameter values are pushed to each

computation core, where the matrix computations can begin for the next iteration.

4.2.4 Motion Filtering and Image Warping

The motion filtering and image warping algorithms can easily be parallelized to use

a large number of cores efficiently. In the first step, the displacement of each pixel

to correct distortion is calculated. This involves the evaluation of Equations 3.13

and 3.14 for each pixel of the frame. This operation can be performed in parallel

on a large number of processing cores simultaneously. Next, the motion is filtered

using an EMA moving filter that is once again applied to each pixel location,

and can be performed in parallel by assigning a number of pixel locations to each

processing core.

Image warping involves copying pixel values from a location in the raw video frame

to a different location in the corrected output video. A number of pixel locations

can be assigned to each computation core, allowing a large number of cores to

correct video simultaneously.

Chapter 4. Implementation 84

4.3 Fixed Point Implementation

Many low power embedded platforms do not have hardware that allows for efficient

operations on floating point numbers. A fixed point implementation of part of the

algorithm was created to allow the system to be run on a parallel embedded system

with no hardware to perform floating point operations. This work was focused

around the calculation of the distortion model parameters using LM optimization.

The extraction of feature points using fixed point math was not investigated in

this work. The motion filtering and image warping stages were implemented by

simply replacing floating point numbers with 32 bit fixed point numbers with good

results. A semi-automated algorithm was developed to generate code to calculate

full frame model parameters.

The fixed point implementation was intended to be used alongside the paralleliza-

tion method discussed in Section 4.2.3. Each processing core calculates its own

Hessian and Jacobian matrices using fixed point operations. When adding ma-

trices together, they are both converted to floating point, and the linear system

solving is performed using floating point LU decomposition to increase stability

and accuracy.

Two large difficulties exist in implementing a floating point algorithm in fixed

point: avoiding overflow while still maintaining numbers large enough that nu-

merical precision does not suffer. 32 bit numbers were used in this fixed point

implementation (the register size of the hardware for which this work was origi-

nally targeted), with 16 bits used for the integer portion of the number, and 16

bits of decimal precision. This produces a maximum range of numbers from -32768

to 32767.99998. The step between adjacent numbers is constant throughout this

range, with a distance of approximately 3.1e-5 between adjacent values. Floating

point numbers are able to represent a much larger range of numbers, and maintain

Chapter 4. Implementation 85

consistent relative accuracy throughout their range. The fixed point implemen-

tation must keep numbers within the allowed range at all times, but also keep

numbers as large as possible to increase relative accuracy.

Fixed point number sizes were kept reasonable through two methods: model pa-

rameters were normalized such that parameters averaged absolute values near 1,

and intermediate values were scaled up or down. All normalization and scaling

values were chosen to be powers of two. This can be implemented efficiently for

both fixed point and floating point numbers: fixed point numbers can be arith-

metically shifted left or right, and the exponent component of a floating point

number can be added or subtracted from.

The full frame motion model was changed from the model presented in Section

3.3.1 to a more conventional affine model. While this does not model the camera

motion as accurately, the parameter pr1 was found to be too small to be accurately

used with fixed point numbers with 16 bits of decimal precision. The output x

and y positions for the affine model used are shown in Equations 4.1 and 4.2

respectively

x2 = (1 + pm1)x1 + pm2y1 + pdx (4.1)

y2 = pm3x1 + (1 + pm4)y1 + pdy. (4.2)

Parameter normalization values were calculated by taking the inverse of the mean

absolute parameter values over several frames. Rounding to the nearest powers of

two, the values shown in Table 4.1 were obtained.

Next individual expressions had to be properly scaled to prevent overflow while

maximizing numerical accuracy. To achieve this, a brute force approach was taken

to achieve ideal variable scaling. An approach was taken starting from the first

temporary variable, and swept through all temporary variables and then the ex-

pressions directly adding to the Jacobian and Hessian matries. The approach

Chapter 4. Implementation 86

Parameter Scaling Value
pdx 1
pdy 1
pm1 210

pm2 210

pm3 210

pm4 210

Table 4.1: Parameter scaling values for fixed point implementation of the LM
parameter optimization of full frame model parameters.

taken for each variable is explained below.

To determine optimal scaling values for operands in the calculation of a single

temporary variable, a sweep of scaling values are tested for each operand. At each

combination of scaling values, the accuracy of the temporary variable is compared

to the value obtained using floating point math. Scaling values are swept in

increasing order. Moving in this direction, a new solution is taken if the relative

error decreases by at least 1% over the previous best solution. This results in

a relatively accurate solution where values stay as far as possible from overflow

conditions. An example of this process is shown in Table 4.2.

This process is iteratively repeated for each temporary variable and expression

contributing to the Hessian and Jacobian matrices. In the case of temporary

variables, when the optimal total scaling value is not 1, instances of that temporary

variable are scaled by the inverse of the total scaling value. For expressions adding

to the Jacobian or Hessian matrices, those matrix elements are scaled by the inverse

of the total scaling value after being converted to floating point before solving the

linear system.

Chapter 4. Implementation 87

Scaled Expressions Total Scaling Relative Error
pm2(y1 >> 4) 2−4 9.3e− 5

(pm2 >> 1)(y1 >> 3) 2−4 7.3e− 4
(pm2 >> 2)(y1 >> 2) 2−4 7.3e− 4
(pm2 >> 3)(y1 >> 1) 2−4 7.3e− 4

(pm2 >> 4)y1 2−4 7.3e− 4
pm2(y1 >> 2) 2−2 9.0e− 5

(pm2 >> 1)(y1 >> 1) 2−2 7.4e− 4
(pm2 >> 2)y1 2−2 7.4e− 4

pm2y1 1 8.9e− 5
pm2(y1 << 2) 22 8.9e− 5

(pm2 << 1)(y1 << 1) 22 8.9e− 4
(pm2 << 2)y1 22 8.9e− 4
pm2(y1 << 4) 24 8.9e− 5

(pm2 << 1)(y1 << 3) 24 8.9e− 5
(pm2 << 2)(y1 << 2) 24 8.9e− 5
(pm2 << 3)(y1 << 1) 24 8.9e− 5

(pm2 << 4)y1 24 7.3e− 4
pm2(y1 << 6) 26 1.9

(pm2 << 1)(y1 << 5) 26 0.73
(pm2 << 2)(y1 << 4) 26 8.9e− 5
(pm2 << 3)(y1 << 3) 26 8.9e− 5
(pm2 << 4)(y1 << 2) 26 8.9e− 5
(pm2 << 5)(y1 << 1) 26 8.9e− 5

(pm2 << 6)y1 26 8.9e− 5

Table 4.2: Testing to find optimal variable scaling values to calculate a tem-
porary variable equal to pm2y1. The expression pm2(y1 >> 2) is chosen as
optimal, as it combines a low error with the largest average value. Note the
overflow when y1 is shifted left by five or more places it overflows (y1 can be
up to than 1080, multiplied by 32 or 64 can exceed 2**15 or 32767), resulting
in large errors.

Chapter 5

Results

5.1 Code optimization speedup

Code optimized to perform iterations of LM optimization was found to be much

faster than non-optimized generated code. Table 5.1 shows the results of speeding

up the different model fitting algorithms. Note that there is a constant time

associated with iterating through feature points that cannot be removed through

this type of optimization. In each case a significant speedup was obtained using

this code optimization.

Fitting Algorithm Standard time (us) Optimized time(us) Speedup
Full Frame Motion 1804 90 20x

Sinusoidal Translation 361 47 7.7x
Full Model Tuning 75,000 1230 61x
Total (6 Sinusoids) 78970 1602 49x

Table 5.1: Speedup of LM iterations from code optimizations. Each standard
iteration time was averaged over 1000 fits, while the optimized iteration times
were averaged over 10,000 fits to obtain a more precise answer.

These optimizations allowed the model fitting time to be reduced to approximately

24ms per frame on a single core of an i7 processor. This includes performing 10

88

Chapter 5. Results 89

iterations of the full frame motion fit, 10 iterations on each of the six sinusoids,

and 10 iterations of the full tuning fit.

5.2 Scalability

The proposed algorithm has four main sections: feature extraction, distortion

transfer function calculation, motion smoothing and image warping. Here the

scalability of each section is discussed with emphasis on the increasing video res-

olution appearing in electronics.

5.2.1 Feature Extraction

The feature extraction step is expensive to implement on a Central Processing

Unit (CPU), and increases in complexity as video resolution increases. Two main

steps are involved here: the computation of eigenvalues of the covariance matrix

of each pixel, and the sorting of eigenvalues of the matrices. The complexity of

the eigenvalue calculation scales linearly with the number of pixels in the image

(ignoring edges which are negligible in a high resolution image). This can be

easily implemented in parallel, and is a simple task which makes it well suited

for implementation on an FPGA or ASIC if high performance is needed. The

sorting process scales with complexity O
(
npixels log (

npixels
nsubImages

)
)
, which is improved

by using the image division algorithm presented in Section 3.2.3. This complexity

is manageable thanks to highly optimized sorting routines.

5.2.2 Distortion Transfer Function Calculation

The distortion transfer function calculation’s complexity does not depend at all

on the input video size. In much larger videos however, it may be useful to use

Chapter 5. Results 90

greater than two sinusoidal distortion functions in one or more directions, or to use

more feature pairs to match frames. Therefore, the complexity of the algorithm

with respect to those parameters will be discussed.

The sinusoidal transfer functions are entirely self contained, and the overall time

required to fit an arbitrary number of sinusoids is directly proportional to the

number of sinusoids to be fit. The final model tuning, which already takes approx-

imately 75% of transfer calculation time will become more costly as the number

of sinusoids increases. The computation of the Hessian and Jacobian matrices will

scale as O
(
n2
params

)
. The matrix inversion required scales as O

(
n3
params

)
using the

typical Gauss-Jordan elimination, though asymptotically more efficient algorithms

have been developed. At the current number of parameters the matrix inversion

time is negligible compared to the calculation of the Hessian and Jacobian matri-

ces, taking approximately 3% of a single iteration time. Complexity with respect

to the number of feature pairs is linear.

5.2.3 Motion Smoothing and Image Warping

Motion smoothing and image warping both scale linearly with the number of pixels.

Both operations are fully parallelizable and could be efficiently implemented in

parallel on a Graphics Processing Unit (GPU), FPGA or ASIC.

5.3 Artificially distorted, noisy video

During development, an artificial test video was created to allow for quantitative

error analysis. This video was created by shifting and distorting a single image with

added noise. This test video was not meant to provide a quantitative comparison

of algorithms that would provide a real world error estimate, but rather a simple

test for development purposes in a near-ideal environment.

Chapter 5. Results 91

A 720p (1280x720) video was created using a starting image with dimensions

1600x1067 pixels. By applying different transformations to the starting image be-

fore cropping, frames are generated and stored in a video format. To model true

rolling shutter distortion, the rotation and translation parameters of the transfor-

mation are modified after every row of pixels is copied. Additionally, a delay is

simulated between the final row of pixels in a frame and the first row of pixels in

the next frame. Random gaussian noise is added to each pixel with a standard

deviation of 20 (using 1-byte RGB values).

Translation and rotation parameters are modified using a combination of two sinu-

soids and a source of random noise. A slow moving sinusoid was used to simulate

full frame camera motions with an amplitude of 4.0 pixels and 3.6 pixels in the

x and y directions respectively, and a rotational magnitude of 0.0001 Rad. Fre-

quencies of 0.002Rad
row

, 0.0015Rad
row

and 0.001Rad
row

were used in the x, y and rotational

axis respectively. Higher frequency sinusoids were used to simulate rolling shutter

distortion. Amplitudes of 3.0 pixels, 2.3 pixels and 0.01Rad were used for the x,

y and rotational directions with frequencies of 0.007Rad
row

, 0.011Rad
row

and 0.004Rad
row

respectively. At each row, the translation and rotation were corrupted by gaussian

random noise with standard deviations of 0.1 pixels, 0.05 pixels and 0.0002 Rad in

the x, y and rotational directions. All phases were initialized with random values.

To evaluate the quality of distortion calculations, the true distortions relative to

the first frame were stored. To reduce computation time and storage, the true

distortions were stored only for pixels falling on a 5x5 grid. The true x and y

shifts were stored for these values, and the estimate of these shifts was computed

using the distortion transfer function. The RMSE was used to compute the overall

accuracy, and was averaged over the first 50 frames.

The RMSE was compared between no distortion correction, the full frame portion

of the model and the full model. The results are shown in Table 5.2.

Chapter 5. Results 92

Distortion Model Average RMSE
No Correction 5.71

Full Frame Correction 1.82
Complete Distortion Model 0.058

Table 5.2: Artificial test video results. A single image was distorted to produce
frames, and the calculated distortion was compared to the actual distortion on
a pixel by pixel basis.

5.4 Real world video results

The stabilization algorithm was tested on several real world videos, each exhibiting

different types of rolling shutter distortion and each with their own difficulties.

Several videos and the result of their stabilization are described below.

5.4.1 Parliament Video

The Parliament video is an aerial shot of the Parliament buildings taken with a

GoPro HD HERO2 mounted on a DJI Phantom quadcopter. This was recorded at

60fps at 1080p resolution. Constant rolling shutter wobble is seen in the original

video due to the vibration of the quadcopter from the spinning rotor blades. There

is some translational motion of the camera, but at a low enough rate that shear

is not a significant issue. A screenshot of the video can be seen in Figure 5.1.

Figure 5.1: Screenshot of the Parliament video

Chapter 5. Results 93

The Parliament video has many strong corners distributed fairly evenly throughout

the frame of view. The only exception to this is the small portion of sky at the top

of the screen. The sinusoid based distortion model works well on this video due to

the oscillatory motion of the quadcopter that can be modeled well using only two

sinusoids. The algorithm performed well on this video, with small artifacts visible

in the sky and the tower that extends into the sky, where compounded errors cause

a slight bend in the tower. The correction of a significant horizontal translation

in this video causes the curvature of the horizon (caused by a fisheye lens, not

the curvature of the earth) to visibly change during this video. This effect, and a

possible solution is discussed further in Section 6.2.6.

5.4.2 Driving Video

The Driving video was taken from the front seat of a car while driving down a

country road. The camera used was a hand held LG Nexus 4 cellphone, and was

recorded at 30 fps with 720p resolution. This example has more overall camera

motion than the Parliament video, but the camera motion is much slower . Dirt

and reflections on the windshield occlude small portions of the scene, and provide

outlier feature points when they are tracked. This video also violates the as-

sumption that camera motion is purely rotational, instead we are moving forward

quickly. Sky covers approximately half of the screen, providing few high quality

feature points. A screenshot of this video can be seen in Figure 5.2.

The full frame motion model accurately captures the shakiness of the camera

during the Driving video. Low frequency rolling shutter skew can be seen at the

corners of the screen, and are corrected using the distortion model. Some distortion

can be seen in the road, especially noticeable is the movement of the dotted line.

This is caused by the movement of the camera into the scene, and the model’s

inability to capture large camera movements relative to the scene.

Chapter 5. Results 94

Figure 5.2: Screenshot of the Driving video

5.4.3 Walking Video

The Walking video was taken from a handheld cell phone camera while walking

down a path in the forest. This was taken using the LG Nexus 4 cellphone, recorded

at 30fps with 1080p held in the portrait direction. A single large camera shake

can be seen periodically with every step taken down the path. When full frame

stabilization is applied to this video, high frequency distortions are still visible at

each step. A portion of the video frames show the sky, but otherwise high quality

tracking points are generally available throughout the frame. A screenshot can be

seen in Figure 5.3

The sharp motion resulting from each walking step was removed from the video,

with no visible artifacts produced. Small residual motions are seen at each step

resulting from the parallax motion of the foreground trees compared to the back-

ground. The algorithm was also able to rotate the video so that pixels are scanned

top to bottom, and then rotate it back, allowing the exact same distortion model

to be used with a video taken in portrait.

Chapter 5. Results 95

Figure 5.3: Screenshot of the Walking video

5.4.4 House Video

A video was recorded indoors, intentionally shaking the camera while slowly pan-

ning around the room. This was recorded using the LG Nexus 4 cellphone at

30fps with 720p quality. Due to the low lighting and small image sensor in the

phone, motion blur can be seen due to the rapid movements and long exposure

time. Large walls in the frame provide areas of low contrast which few high quality

features to be tracked. A screenshot can be seen in Figure 5.4, showing the motion

blur found in many frames.

The algorithm is able to filter the majority of the camera motion and frame dis-

tortion, but some rolling shutter artifacts are still visible in the output video. The

motion blur becomes obvious once the corresponding motion has been removed

from the video, and makes the output look somewhat unnatural.

Chapter 5. Results 96

Figure 5.4: Screenshot of the House video

5.4.5 Street Video

A video was recorded by holding an LG Nexus 4 cellphone while riding a bicycle

down the street in a neighborhood. This was recorded at 30fps and 1080p resolu-

tion. The difficulty in this video is caused by the camera motion causing objects

to disappear and reappear from behind other objects. A screenshot can be seen

in Figure 5.5.

Figure 5.5: Screenshot of the Street video

The result of the algorithm on the Street video is quite poor. The algorithm fails to

deal with the moving of objects in the frames due to the camera motion. Objects

are often moving behind one another, but the outlier robust model optimization

Chapter 5. Results 97

is able to deal with this. The horizontal stretching of features towards the edge

of the screen causes the x-translation sinusoid to fit improperly. To improve the

quality of the video result a 3D camera motion model could be used, as discussed

in Section 6.2.1.

5.5 Fixed Point Implementation

The fixed point implementation of the full frame motion stabilization was not

successful. Fixed point variables frequently overflowed even with the calculated

scaling values. In many other cases, inaccuracies caused by the fixed point numbers

resulted in incorrect model parameters.

The fixed point scaling parameters were tuned using a selection of frames from the

Parliament video. In the majority of these frames the calculated model parameters

matched the parameters calculated using floating point numbers. However, in

some of these cases the resulting parameters were not accurate, and in other videos

the results were poor.

Chapter 6

Conclusion

6.1 Contributions to Research

An algorithm has been developed that is able to identify and remove rolling shut-

ter distortion from videos captured with a CMOS video camera. Additionally,

some basic full frame camera stabilization is also provided. This algorithm can

be efficiently implemented in parallel for improved performance, especially when

power is a constraint.

The feature extraction algorithm of Grundmann et al. [1] using sub-images to

provide more uniform features was extended by determining an optimal number

of sub-images to use. This allows for an optimal balance between feature quality

and feature uniformity to be found. A recursive feature extraction algorithm was

also proposed that would determine optimal sub-image depth at runtime.

A sinusoidal based distortion model was developed, and tuned to work especially

well for videos taken from a vehicle where motors, propellers or wheels create

oscillatory camera motion. This model can easily be modified to incorporate any

98

Chapter 6. Conclusion 99

number of oscillation frequencies, allowing it to model arbitrary high frequency

camera motion.

An efficient fitting method was developed to calculate model parameters in the

presence of outliers. An iterative approach is used to fit re-descending m-estimators

to data with decreasing kernel parameter to iteratively decrease the significance

of outliers. To the author’s knowledge, this approach has not been used before.

An automatic code optimization algorithm was developed to speed up iterations

of LM optimization used to fit model parameters. Temporary variables are au-

tomatically created and pre-calculated for frequently evaluated sub-expressions.

This code requires only the specification of a cost function and a list of param-

eters to generate a C code file containing optimized code, and tests the code for

any accuracy decrease due to numerical issues. This addition resulted in speed

increases between 7.7X and 61X for different problems it was applied to.

The stabilization algorithm presented here scales well with increases in image sizes.

The only step that scales with the number of image pixels is the feature extrac-

tion step, which can be easily implemented in hardware. Additionally, the feature

extraction algorithm used here requires less sorting complexity than standard fea-

ture extraction, since pixel eigenvalues are only sorted within small sub-images.

All other stages of processing are constant in complexity as image sizes increase.

Many other stabilization algorithms employ a separate motion model for several

rows of pixels together, resulting in O
(√

(n)
)

scaling with respect to the number

of pixels in images (assuming image proportions remain approximately constant).

A particular video shot at different resolutions can be stabilized equally well using

the same distortion model and number of sinusoids.

Chapter 6. Conclusion 100

6.2 Future work

6.2.1 3D Camera Motion Model

The Street video shows a fault of the video stabilization algorithm: the violation of

the assumption that camera motion is purely rotational results in poorly stabilized

video. Objects enter and leave the frame of view as the camera moves forward into

the scene. Additionally, the different depths of the scene for different image rows

means that neither the full frame motion model described in Section 3.3.1 nor an

affine transformation can accurately model the full frame camera motion. Instead,

a 3D motion model is required to accurately stabilize the full frame camera motion

before the rolling shutter distortions can be removed. Liu and Jin [19] developed a

full frame camera stabilization algorithms able to calculate 3D motion and provide

a smooth camera path in three dimensions. Such an algorithm could replace the

full frame camera motion model used in this work to more accurately calculate

camera motion. After the full frame motion is subtracted from pairs of feature

points, the sinusoidal rolling shutter distortion model could be used to remove

rolling shutter skew and wobble.

6.2.2 Bicubic Pixel Interpolation

Bilinear interpolation was used to calculate an image color located between pixels.

This produces a slightly blurred image, but does so efficiently compared to other

interpolation methods. Bicubic interpolation is another common interpolation

method that uses the local 4x4 grid of pixels to interpolate a single value with a

cubic convolution algorithm [39]. This method requires more computation than

bilinear interpolation, but preserves fine detail better and increases edge contrast.

Chapter 6. Conclusion 101

Bicubic interpolation, along with bilinear interpolation can easily be implemented

in a more efficient manner than on a single CPU. Each pixel requires a computa-

tion, making it a parallel operation. This makes it ideal for implementation on a

GPU, FPGA or ASIC.

6.2.3 M-estimator width reduction

The choice to use a predefined number of logarithmically spaced steps for the

Welsch kernel parameter w(x) was fairly arbitrary, but it was reasonably efficient

and produced good results. Several possible alternatives to reduce w(x) are dis-

cussed below.

The Welsch kernel associates the cost w2(1 − exp(−(x
w

)2)) for a point with error

x and a kernel parameter w. This means that for the contribution of outliers to

be reduced linearly, we should space out values of w such that the square root

of parameters are logarithmically spaced. This would result in more parameters

close to the final parameter value where the trust region of the global minimum

tends to be smaller.

Though LM optimization was used instead of the Newton Raphson method for

increased stability, if a situation is encountered where a large λ parameter is re-

quired for stability, we likely will not converge on the correct solution within the

number of steps allowed. Allowing the number of steps to vary could produce

more efficient optimization in most cases while allowing more difficult problems to

take additional steps. The downside to this approach is that frames will no longer

take a constant processing time, which can cause problems in a real time system.

Algorithms to determine the trust region radius have been developed for use in

nonlinear programming [40]. This allows the radius of convergence of an algorithm

such as the Newton Raphson method to be determined, and is often used with

Chapter 6. Conclusion 102

LM optimization to update λ values. Such a calculation is performed by testing

the agreement between the true objective function and the first or second order

approximation used by trust region optimization methods. Such a method could

be used to ensure that the w parameter varies at an optimal rate to converge

reliably with as few iterations as possible. At each iteration a bisection search

could be used to test the size of the trust region and find the largest value of w

from which we could expect to continue to converge on the global maximum.

6.2.4 Motion Smoothing

The EMA filtering used to provide smooth camera motion is meant only to pro-

vide a simple and fast method to evaluate the distortion model. Two significant

improvements could be made to provide smoother camera motion and reduce pro-

cessing time.

To speed up computation, a mesh could be used to avoid computing pixel transla-

tions for every single pixel. At the output phase, the translation of a single point

could calculated using linear or cubic interpolation of the grid. Since the sinu-

soidal model frequencies are limited to 0.1Rad/row, the largest errors are small

provided the grid is dense, as shown in Figure 6.1. While the errors grow quickly,

the complexity of filtering is O
(npixels
gridSize2

)
since a single tracked pixel would provide

the shift for a square with edge length gridSize. This results in a small grid size

causing a significant performance increase.

The rolling shutter distortion can be separated from the full frame motion and

different smoothing procedures can be applied to each. The current decaying EMA

works well for distortions and can be applied efficiently, but does not provide

smooth camera motion when used on full frame movements. The L1 optimal

camera paths algorithm proposed by Grundmann et al. [11] could replace the EMA

algorithm used here and provide for more professional, visually pleasing camera

Chapter 6. Conclusion 103

Figure 6.1: Maximum Relative Error vs Grid spacing if a grid were used to
speed up motion smoothing. Note that this assumes a sinusoidal frequency at
the limit that was allowed to be fit, and in most cases it would be much smaller.

motions. Camera motion is calculated by minimizing the L1 norm of the sum of

the first, second and third derivatives of the camera motion. Weights applied to

each derivative allow different camera paths to be taken. In this algorithm, a crop

window is predetermined, and linear programming is used to find an optimal path

under the crop window constraint.

6.2.5 Removal of Motion Blur

High speed camera motion in low light settings will often result in motion blur

of frames due to the movement of the camera during exposure time. In a rolling

shutter camera, this motion blur can even occur due to the high frequency wobbles

of the camera during exposure, resulting in blurring that is spatially variant in each

frame. Stabilized video with smooth camera motion may show blurring.

Algorithms to remove non-uniform motion blur have been developed to remove

spatially variant motion blur from a single image [41]. The focus of this and other

similar work is generally to estimate a blur kernel for different objects within a

Chapter 6. Conclusion 104

single image. In the case of video frame deblurring, the blurring motion can be

extracted from the distortion transfer function. The blurring direction can be

extracted directly from the transfer function. The size of the blur could be found

directly in a single image similar to image motion deblurring algorithms, and

averaged over several frames to achieve a more accurate result. Alternatively, the

size of the blur could be calculated from the magnitude of the distortion and the

exposure time, which can be estimated from video using an algorithm developed

by Oth et al. [42]. Once a blur kernel has been estimated, a spatially variant

Wiener filter could be applied to each frame to remove motion blur.

6.2.6 Fisheye lens correction

Many modern cameras use a fisheye lens to provide a wide panoramic image. This

type of lens will distort an image to map a large angle of view into a rectangular

frame. Depending on the lens used, this can result in straight lines becoming

warped when they are not in the center of the frame. This effect can be seen in

the Parliament video in Figure 5.1. The curvature of the horizon is not due to the

curvature of the earth but instead the fisheye lens.

When transformations are applied to a video shot though a fisheye lens, the curva-

ture of the lens should be corrected for. Otherwise videos will be distorted different

amounts depending on the frame. This can be seen in the stabilized Parliament

video. Two frames are shown in Figure 6.2 before and after a vertical translation

of the frame to keep the video stable.

Chapter 6. Conclusion 105

(a) Fisheye horizon curvature before panning.

(b) Fisheye horizon curvature after panning.

Figure 6.2: Fisheye distortion caused by stabilization. The horizontal transla-
tion required to stabilize the video results in different curvatures of the horizon
caused by the fisheye lens. When the camera pans quickly, the change in curva-
ture is not as noticeable. While this is difficult to see in still images, the earth
is slightly more curved in Figure 6.2a than Figure 6.2b.

List of References

[1] M. Grundmann, V. Kwatra, D. Castro, and I. Essa, “Effective calibration free

rolling shutter removal,” IEEE ICCP, 2012.

[2] M. Bigas, E. Cabruja, J. Forest, and J. Salvi, “Review of {CMOS}

image sensors,” Microelectronics Journal, vol. 37, no. 5, pp. 433 – 451,

2006. [Online]. Available: http://www.sciencedirect.com/science/article/pii/

S0026269205002764

[3] A. J. P. Theuwissen, “Cmos image sensors: State-of-the-art,” Solid-State

Electronics, 2008.

[4] E. Fossum, “Cmos image sensors: electronic camera on a chip,” in Electron

Devices Meeting, 1995. IEDM ’95., International, 1995, pp. 17–25.

[5] N. Bock, A. Krymski, A. Sarwari, M. Sutanu, N. Tu, K. Hunt, and M. Cleary,

“A wide-vga cmos image sensor with global shutter and extended dynamic

range,” Micron Imaging, Micron Technology Inc, Tech. Rep., 2005.

[6] S. Baker, E. Bennett, S. B. Kang, and R. Szeliski, “Removing rolling shutter

wobble,” in Computer Vision and Pattern Recognition (CVPR), 2010 IEEE

Conference on, 2010, pp. 2392–2399.

[7] D. Bradley, B. Atcheson, I. Ihrke, and W. Heidrich, “Synchronization and

rolling shutter compensation for consumer video camera arrays,” in Computer

106

http://www.sciencedirect.com/science/article/pii/S0026269205002764
http://www.sciencedirect.com/science/article/pii/S0026269205002764

Chapter 6. Conclusion 107

Vision and Pattern Recognition Workshops, 2009. CVPR Workshops 2009.

IEEE Computer Society Conference on, 2009, pp. 1–8.

[8] C. Corporation, “Cv2201 consumer pdk,” 2013. [Online].

Available: http://www.cognivue.com/docs/PB-10259-01-00%20CV2201%

20PDK Consumer%20Product%20Brief v2.pdf

[9] STABiLGO, “Stabilgo kickstarter project,” 2013. [Online]. Available:

http://www.kickstarter.com/projects/1969395374/stabilgo-ready-steady-go

[10] Y. Matsushita, E. Ofek, W. Ge, X. Tang, and H.-Y. Shum, “Full-frame video

stabilization with motion inpainting,” Pattern Analysis and Machine Intelli-

gence, IEEE Transactions on, vol. 28, no. 7, pp. 1150–1163, 2006.

[11] M. Grundmann, V. Kwatra, and I. Essa, “Auto-directed video stabilization

with robust l1 optimal camera paths,” in Computer Vision and Pattern Recog-

nition (CVPR), 2011 IEEE Conference on, 2011, pp. 225–232.

[12] K. Ratakonda, “Real-time digital video stabilization for multi-media appli-

cations,” in Circuits and Systems, 1998. ISCAS ’98. Proceedings of the 1998

IEEE International Symposium on, vol. 4, 1998, pp. 69–72 vol.4.

[13] A. Litvin, J. Konrad, and W. C. Karl, “Probabilistic video stabilization using

kalman filtering and mosaicking,” Proceedings of the SPIE Conference on

Electronic Imaging, pp. 663–674, 2003.

[14] Y.-S. Wang, F. Liu, P.-S. Hsu, and T.-Y. Lee, “Spatially and temporally

optimized video stabilization,” Visualization and Computer Graphics, IEEE

Transactions on, vol. 19, no. 8, pp. 1354–1361, 2013.

[15] Y.-G. Kim, V. Jayanthi, and I.-S. Kweon, “System-on-chip solution of video

stabilization for cmos image sensors in hand-held devices,” Circuits and Sys-

tems for Video Technology, IEEE Transactions on, vol. 21, no. 10, pp. 1401–

1414, 2011.

http://www.cognivue.com/docs/PB-10259-01-00%20CV2201%20PDK_Consumer%20Product%20Brief_v2.pdf
http://www.cognivue.com/docs/PB-10259-01-00%20CV2201%20PDK_Consumer%20Product%20Brief_v2.pdf
http://www.kickstarter.com/projects/1969395374/stabilgo-ready-steady-go

Chapter 6. Conclusion 108

[16] A. Karpenko, D. Jacobs, J. Baek, and M. Levoy, “Digital video stabilization

and rolling shutter correction using gyroscopes,” Stanford University Com-

puter Science Tech Report CSTR 2011-03, Tech. Rep., 2011.

[17] G. Hanning, N. Forslow, P.-E. Forssen, E. Ringaby, D. Tornqvist, and

J. Callmer, “Stabilizing cell phone video using inertial measurement sensors,”

in Computer Vision Workshops (ICCV Workshops), 2011 IEEE International

Conference on, 2011, pp. 1–8.

[18] C.-K. Liang, L.-W. Chang, and H. Chen, “Analysis and compensation of

rolling shutter effect,” Image Processing, IEEE Transactions on, vol. 17, no. 8,

pp. 1323–1330, 2008.

[19] F. Liu, M. Gleicher, H. Jin, and A. Agarwala, “Content-preserving warps

for 3d video stabilization,” ACM Transactions on Graphics (Proceedings of

SIGGRAPH 2009, 2009.

[20] J.-Y. Bouguet, “Pyramidal implementation of the lucas kanade feature tracker

description of the algorithm,” Intel Corporation, Microprocessor Research

Labs, Tech. Rep., 2000.

[21] C. Tomasi and T. Kanade, “Detection and tracking of point features,”

Carnegie Mellon University, Tech. Rep., 1991.

[22] J. Shi and C. Tomasi, “Good features to track,” in Computer Vision and

Pattern Recognition, 1994. Proceedings CVPR ’94., 1994 IEEE Computer

Society Conference on, 1994, pp. 593–600.

[23] Z. Osman, F. Hussin, and N. Ali, “Hardware implementation of an optimized

processor architecture for sobel image edge detection operator,” in Intelligent

and Advanced Systems (ICIAS), 2010 International Conference on, 2010, pp.

1–4.

Chapter 6. Conclusion 109

[24] B. D. Lucas and T. Kanade, “An iterative image registration technique with

an application to stereo vision,” in Proceedings of Imaging Understanding

Workshop, 1981, pp. 121–130.

[25] D. Lowe, “Object recognition from local scale-invariant features,” in Com-

puter Vision, 1999. The Proceedings of the Seventh IEEE International Con-

ference on, vol. 2, 1999, pp. 1150–1157 vol.2.

[26] H. Bay, A. Ess, T. Tuytelaars, and L. V. Gool, “Speeded-up

robust features (surf),” Computer Vision and Image Understanding,

vol. 110, no. 3, pp. 346 – 359, 2008, ¡ce:title¿Similarity Matching in

Computer Vision and Multimedia¡/ce:title¿. [Online]. Available: http:

//www.sciencedirect.com/science/article/pii/S1077314207001555

[27] W. L. Briggs and V. E. Henson, The DFT: An Owners’ manual for the

Discrete Fourier Transform. Library of Congress Cataloging-in-Publication

Data, 1995.

[28] J. Matas, “Ransac in 2011 (30 years after),” Computer Vision and Pattern

Recognition (CVPR), 2011.

[29] R. C. B. Martin A. Fischler, “Random sample consensus: A paradigm for

model fitting with apphcatlons to image analysis and automated cartogra-

phy,” Communications of the ACM, pp. 381–395, 1981.

[30] K. G. Derpanis, “Overview of the ransac algorithm,” York University, Tech.

Rep., 2010.

[31] O. Chum, J. Matas, and J. Kittler, “Locally optimized ransac,” in Pattern

Recognition, ser. Lecture Notes in Computer Science, B. Michaelis and

G. Krell, Eds. Springer Berlin Heidelberg, 2003, vol. 2781, pp. 236–243.

[Online]. Available: http://dx.doi.org/10.1007/978-3-540-45243-0 31

http://www.sciencedirect.com/science/article/pii/S1077314207001555
http://www.sciencedirect.com/science/article/pii/S1077314207001555
http://dx.doi.org/10.1007/978-3-540-45243-0_31

Chapter 6. Conclusion 110

[32] O. Chum and J. Matas, “Matching with prosac - progressive sample consen-

sus,” in Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE

Computer Society Conference on, vol. 1, 2005, pp. 220–226 vol. 1.

[33] M. Zuliani, “Ransac for dummies,” University of California, Santa Barbara,

Tech. Rep., 2012.

[34] Z. Zhang, “Parameter estimation techniques: A tutorial with application to

conic fitting,” Image and Vision Computing, vol. 15, pp. 59–76, 1997.

[35] P. J. Huber, Robust Statistical Procedures. CBMS-NSF regional conference

series in applied mathematics, 1996.

[36] ——, “Robust estimation of a location parameter,” The Annals of

Mathematical Statistics, vol. 35, no. 1, pp. pp. 73–101, 1964. [Online].

Available: http://www.jstor.org/stable/2238020

[37] G. Shevlyakov, S. Morgenthaler, and A. Shurygin, “Redescending

m-estimators,” Journal of Statistical Planning and Inference, vol.

138, no. 10, pp. 2906 – 2917, 2008. [Online]. Available: http:

//www.sciencedirect.com/science/article/pii/S0378375807004120

[38] M. K. Transtrum and J. P. Sethna, “Improvements to the levenberg-

macquardt algorithm for nonlinear least-squares minimization,” Department

of Computational Physics, Cornerll University, Tech. Rep., 2012.

[39] R. Keys, “Cubic convolution interpolation for digital image processing,”

Acoustics, Speech and Signal Processing, IEEE Transactions on, vol. 29, no. 6,

pp. 1153–1160, 1981.

[40] A. Sartenaer, “Automatic determination of an initial trust region in nonlinear

programming,” SIAM Journal on Scientific Computing, 1995.

http://www.jstor.org/stable/2238020
http://www.sciencedirect.com/science/article/pii/S0378375807004120
http://www.sciencedirect.com/science/article/pii/S0378375807004120

Chapter 6. Conclusion 111

[41] S. Cho, Y. Matsushita, and S. Lee, “Removing non-uniform motion blur from

images,” in Computer Vision, 2007. ICCV 2007. IEEE 11th International

Conference on, 2007, pp. 1–8.

[42] L. Oth, P. Furgale, L. Kneip, and R. Siegwart, “Rolling shutter camera cali-

bration,” in Computer Vision and Pattern Recognition (CVPR), 2013 IEEE

Conference on, 2013, pp. 1360–1367.

	Abstract
	Contents
	List of Tables
	List of Figures
	List of Acronyms and Symbols
	1 Introduction
	1.1 Motivation
	1.2 Introduction to rolling shutter sensors
	1.2.1 CMOS pixel circuits
	1.2.2 Pixel scanning circuit

	1.3 Thesis Organization

	2 Background
	2.1 Types of distortions
	2.1.1 Skew
	2.1.2 Wobble
	2.1.3 Smear
	2.1.4 Partial Exposure
	2.1.5 Scope of Work
	2.1.6 Importance of Work

	2.2 Previous work
	2.2.1 Full frame video stabilization
	2.2.2 Electronic global shutters
	2.2.3 Gyroscope based software solutions
	2.2.4 Software rolling shutter solutions

	2.3 Summary

	3 Algorithm Design
	3.1 Assumptions
	3.2 Extracting feature pairs
	3.2.1 KLT feature extractor
	3.2.1.1 Extracting features
	3.2.1.2 KLT feature tracking
	3.2.1.3 Sub-pixel resolution of features

	3.2.2 Alternatives to the KLT algorithm
	3.2.3 Division of images into sub-images

	3.3 Distortion transfer function
	3.3.1 Full frame movement
	3.3.2 Row based x-translation
	3.3.3 Row based y-translation
	3.3.4 Row based rotation
	3.3.5 Summary

	3.4 Outlier rejection
	3.4.1 Least Squares
	3.4.2 RANSAC & variants
	3.4.3 Least Median of Squares
	3.4.4 M-estimators
	3.4.5 Use of m-estimators
	3.4.5.1 Kernel choice
	3.4.5.2 Optimization method
	3.4.5.3 Levenberg-Marquardt Optimization
	3.4.5.4 Ideal final kernel width parameter computation

	3.5 Motion Filtering
	3.6 Image Warping
	3.7 Overall Model Fitting Algorithm
	3.7.1 Model Fitting to Feature Pairs
	3.7.2 Row-based Translation Model Fitting

	4 Implementation
	4.1 Automated code optimization
	4.1.1 Sub-expression selection strategy
	4.1.2 Additional Optimizations
	4.1.3 Stopping Criteria

	4.2 Parallelization
	4.2.1 Feature Extraction
	4.2.2 Feature Matching
	4.2.3 Distortion Transfer Function Computation
	4.2.4 Motion Filtering and Image Warping

	4.3 Fixed Point Implementation

	5 Results
	5.1 Code optimization speedup
	5.2 Scalability
	5.2.1 Feature Extraction
	5.2.2 Distortion Transfer Function Calculation
	5.2.3 Motion Smoothing and Image Warping

	5.3 Artificially distorted, noisy video
	5.4 Real world video results
	5.4.1 Parliament Video
	5.4.2 Driving Video
	5.4.3 Walking Video
	5.4.4 House Video
	5.4.5 Street Video

	5.5 Fixed Point Implementation

	6 Conclusion
	6.1 Contributions to Research
	6.2 Future work
	6.2.1 3D Camera Motion Model
	6.2.2 Bicubic Pixel Interpolation
	6.2.3 M-estimator width reduction
	6.2.4 Motion Smoothing
	6.2.5 Removal of Motion Blur
	6.2.6 Fisheye lens correction

	List of References

