Parallel Query Processing on a
Cluster-based Database System

Kenji Imasaki

A thesis submitted to
the Faculty of Graduate Studies and Research
in partial fulfilment of
the requirements for the degree of
Doctor of Philosophy

Ottawa-Carleton Institute for Computer Science
School of Computer Science
Carleton University
Ottawa, Ontario

September 30, 2004

© Copyright
2004, Kenji Imasaki



Library and
Archives Canada

Bibliothéque et
* Archives Canada
Direction du
Patrimoine de I'édition

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A ON4

395, rue Wellington
Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 0-612-97826-5
Our file  Notre référence
ISBN: 0-612-97826-5
NOTICE: AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliothéque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des theses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette these.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

In compliance with the Canadian Conformément a la loi canadienne

Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canada

sur la protection de la vie privée,
quelques formulaires secondaires
ont été enlevés de cette thése.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.



Acknowledgment

I would like to acknowledge the following people for their contributions:

Prof. Sivarama P. Dandamudi

Ms. Hong Nguyen
Mr. Peter Taillon

Proof Readers
Mr. Fred Potts
Mr. Sylvain Pitre
Dr. Jason Morrison
Prof. Irwin Reichstein
Prof. Pat Morin
Mr. Steve Gruneau
Technical Staff
Mr. Andrew Miles
Mr. Gerardo Reynaga
Administrative Staff
Ms. Linda Peiffer
Mr. Shunsuke Morinishi

Ms. Zheyin (Grace) Li

My brother and sister-in-law
My parents

For being my adviser and never giving up on me
For helping me with part of the implementation
For giving me support and encouragement and
most importantly for being my best friend

For putting up with my English

For correcting my initial draft

For checking Chapters 1 and 2

For checking Chapters 3 and 5

For checking Chapter 4

For checking Chapter 6

For correcting my final draft

For giving technical support

For giving me the required computer privileges
For solving our printer problems

For making my stay pleasant

For being there for me all the time

For being my best friend and

giving me a lot of support during his life

For being my girlfriend and

providing invaluable assistance and moral support
For supporting me 100% no matter what happened
For giving me the courage to follow my dream

I would like to say thank you all from the bottom of my heart.



Contents

Acknowledgment

1

Introduction

1.1 Ba,ckground and Motivation . . ... ... ... ... . L oL,
1.2 Thesis Focus and Problem Description . . . . ... ... ... ....
1.3 Thesis Contribution . . . . . . . ... . ... ..o ...
1.4 Thesis Organization. . . . . . .. ... .. ... ... .........

Related Work
2.1 Parallel Database Management Systems . . ..............
2.1.1 The Architecture of Parallel Database Systems . . . . . . . ..
2.1.2 Parallel Query Procéssing ....................
2.1.3 Research Prototype PDBMSs .. ... .............
2.1.3.1 Cluster-based PDBMSs . ... ... ... ......
2.1.3.2 Data Integration Systems . .. ............
2.1.4 Commercial PDBMSs . ... ... ...............
2.2 General Load Balancing/Sharing Algorithms . . . . . . ... ... ..
2.3 Parallel Single-Join Algorithms . . . ... ... ... ... ......
2.3.1 A Classification . . . . .. .. ... ... ... oL
2.3.1.1 Data Skew Type (DST) . ... ... ... ......
2.3.1.2 Data Skew Model (DSM) . .. ... ... ......
2.3.1.3 Load Balancing/Sharing Methods (LBSMs) . . . . .
2.3.1.4 Data Transfer Methods (DTMs) . . . .. .. ... ..
2.3.2 Load Balancing/Sharing Algorithms . . . . . ... ... ...

ii

WO 00 =3 =



233 Discussion . ... ... ... ... e
2.4 Parallel Multiple-Join Algorithms . . . . . ... . ... ... .....
2.4.1 Non-pipelined Hash Join Algorithms . .. .. ... ... ...
2.4.2 Pipelined Hash Join Algorithm . . ... ... ... ... ...
2.4.3 Multiple-Join Algorithms for Data Integration . . . . . . . ..
244 Discussion . . . . . .. e e e e e e

Non-Symmetric Single-Join Algorithm
3.1 Non-Symmetric Single-Join Processing Environment . . .. ... ..
3.1.1 ASystem Model ........... ... ...........
3.1.2 Non-Symmetric Single-Join Processing System Architecture
3.1.3 Notation . . . . . ... ... .. . o e
3.2 Parallel Nested-loop Single-Join Algorithm . .. .. ... ... ...
3.2.1 Nested-Loop Join Revisited .. ... ... .. ... ......
3.2.2 Load Balancing/Sharing Techniques for Nested-Loop Join Al-
gorithms . . ... ... ... ... ... ... .. . . . ...
3.2.2.1 Static Scheduling (SS_EQ and SS_PR) . ... ...
3.2.2.2 Dynamic Scheduling (DS) . . ... ... ... ....
3.3 Parallel Hash Single-Join Algorithm . .. ... ... .........
3.3.1 Hash Join Revisited . . ... ... ... ... .........
3.3.2 Load Balancing/Sharing Techniques for Non-Symmetric Hash
Join Algorithms . . . . . . ... ... oL,
3.3.2.1 Adaptive GRACE Hash Join (GRACE+) . ... ..
3.3.2.2 Chunk-based Hash Join (ChunkHJ) .. ... . ...
3.4 Experimental Environment . .. ... .................
3.4.1 Hardware Environment . ... ... ..............
3.4.2 Software Environment . . ... ... ... ...........
3.4.3 The Experimental Database . . . . . ... ... ... .....
3.4.3.1 Database Schema . ... ...............
3432 Skew Generation . ... ................
3.5 Expefimental Methodology . . ... ... ... ... ... . ...,
3.6 Experimental Results . ... ... ... .. ... ... .. ......

iii



3.6.1 Results for Nested-Loop Join . .. ... ............ 60

3.6.1.1 Performance with No Background Load . ... ... 60
3.6.1.2 Performance with Proportional Background Load .. 62
3.6.1.3 Performance with Inverse Background Load . . . . . 64
3.6.2 Conclusions for Nested-Loop Single-Join Algorithm . . . . . . 65
3.6.3 Resultsfor Hash Join .. .................... 66
3.6.3.1 Default Parameter Values for ChunkHJ . . . . . . . . 66

3.6.3.2 Performance with No Data Skew and No Background
Load . . . ... ... . . 67

3.6.3.3 Performance with Data Skew and No Background Load 72
3.6.3.4 Performance with Data Skew and Background Load. 76
3.6.3.5 Performance with Data Skew on Both Relations and

Background Load . . . . . . .. ... ... ... ... 78
3.6.4 Conclusions for Hash Single-Join Algorithm . ... ... ... 78
4 Symmetric Single-Join Algorithms 80
4.1 Symmetric Single-Join Processing Environment . . ... .. ... .. 81
411 ASystemModel ....... ... . ... ............ 81
4.1.2 Symmetric Single-Join Processing Architecture . . . . . . . . . 81

4.2 Load Sharing/Balancing Techniques for Symmetric Hash Join Algo-
rithms . . . ... ... 88
4.2.1 Dynamic Round-Robin (RR) . . . . . .. .. e 93
4.2.2 Symmetric ChunkHJ (SCHJ) ... ... ... ... ... ... 93
4.2.3 Dynamic Sampling (SMP) . . . ... ... ........... 95
4.2.4 Greedy Incremental Hash Mapping . . ... ... .. ... .. 96
4.2.5 JSM-based Incremental Hash Mapping (JIHM) ... .. ... 97
4.3 Experimental Environment . . . ... ... ... ........... 98
4.3.1 Hardware Environment . ... ... .............. 98
4.3.2 Software Environment . .. ... ................ 98
4.3.3 The Experimental Database . . ... ... ........... 100
4.3.4 The Internet Transfer Delay Model . . . ... ... ... ... 101
4.4 Experimental Methodology . . . . .. ... ... .. ... ....... 103

iv



4.5 Experimental ResultS .« o v o v et 103
4.5.1 Default Parameter Values . . ... ... ... ......... 103
4.5.2 Performance with No Data Skew and No Background Load . . 104
4.5.3 Performance with No Data Skew and Background Load . . . . 105
4.5.4 Performance with Data Skew and No Background Load ... 107

4.54.1 Performance with Scalar Skew . . . . . . .. ... .. 107
4.5.4.2 Performance with Zipf Skew . . . . . .. .. ... .. 109
4.5.5 Performance with Data Skew and Background Load . . . . . . 110
4.5.5.1 Performance with Scalar Skew and Background Load 111
4.5.5.2 Performance with Zipf Skew and Background Load . 111
4.5.6 Performance with the Internet Transfer Delay . . ... . . .. 114
4.5.6.1 Performance with the Internet Transfer Delay Alone 114

4.5.6.2 Performance with the Internet Transfer Delay and
DataSkew . ...................... 114

4.5.6.3 Performance with the Internet Transfer Delay and
Background Load . . . . . ... ... ... ...... 116

4.5.6.4 Performance with the Internet Transfer Delay, Data
Skew and Background Load . . . . .. ... ..... 117

46 Conclusion. . . ... ... ... . . ... ... ... 121

Multiple-Join Algorithms 123

5.1 Pipelined Hash Join Algorithm Revisited . . . . . .. ... ... ... 123

5.2 Non-Symmetric Pipelined Hash Join Algorithm . ... .. ... ... 125

5.3 Symmetric Pipelined Hash Join Algorithm . . . ... .. .. .. ... 125

5.4 Experimental Environment . . . . ... ... ... ... ... ..... 126
5.4.1 Hardware Environment . . . . . . . . ... ... ... ... .. 126
5.4.2 Software Environment . ... ... ... ... ......... 126
5.4.3 Implementation Detail . . . .. ... ... ........... 127

5.5 Experimental Methodology . . . . .. .. .. .. ... ... ..... 131

5.6 Experimental Results . . . .. .. ... ... ... ........... 132
5.6.1 Performance without the Internet Transfer Delay . . . . . .. 132

5.6.1.1 Performance with No Background Load . .. .. .. 132



5.6.1.2 Impact of Background Load on Database Node . . .

5.6.1.3 Impact of Identical Background Load on Slave Nodes

5.6.2 Performance with the Internet Transfer Delay . . ... .. ..

5.6.2.1 Performance with the Internet Transfer Delay Alone
5.6.2.2 Impact of Background Load on Database Node . . .

5.6.2.3 Impact of Identical Background Load on Slave Nodes

5.7 Conclusion . . . .

6 Conclusion and Future Direction

6.1 Non-Symmetric Single-Join Algorithms . . . . . ... ... ... ...

6.2 Symmetric Single-Join Algorithms . . . . . . .. . .. P
6.3 Multiple-Join Algorithms . . . . . . .. .. ... .. .. ...

6.4 Thesis Conclusion
6.5 Future Direction

Appendix
A Glossary

Bibliography

.............................

vi

136
137
138
140
142
143

149
149
150
150
151
151

152
153

155



List of Tables

2.1 Popular research data integration system prototypes. . . .. ... .. 16
2.2 Comparison of load balancing/sharing algorithms for the single-join
operation. The algorithms that are not referenced in column 1 are
proposed in thisthesis. . . . . . . .. .. ... ... .. ... .. ... 27
3.1 Notation used in the algorithm description. . .. .. ... ... ... 38
3.2 Functions used in the pseudocode description. . . . .. ... ... .. 39
3.3 Default parameter values used in the experiments. . ... ... ... 58
3.4 Default parameter values for ChunkHJ. . ... ... ... .. .... 67
4.1 Namechanges. ... ... ... ... e 83
4.2 Major components descriptions. . . . . .. .. ... 0oL 86
4.3 Algorithmsummary. . . .. ... ... ... ... ... . ... 89
4.4 Hardware environment. . . . . . ... ... .. ... .. .. 99
4.5 Software environment. . . . . . . . .. ... 99
4.6 Memory size, allocation, background process parameters. . . . . . . . 100
4.7 Approximate transfer functions. . . . . ... ... ... ... .. ... 102
4.8 Detailed ping transfer times when message sizeis3 KB.. . . . . . .. 102
4.10 Default parameter values. . . . . . . . .. ... ... .. ... ... 104

vii



List of Figures

2.1
2.2

2.3

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14

3.15

3.16

PDBMS architectures. . . ... ... .. ... ... ... ... ... .
Examples of horizontal partitioning schemes in the shared-nothing ar-
chitecture. . . . . . . . .. L

A system model without Internet delay. . . . . . . . ... ... ....
Cluster join processing architecture for single-join. . . . . . . .. . ..
Three background loads and their total load on anode. . . . . . . ..
Message diagram of load balancing/sharing algorithms. . . ... ..
Sender-initiated algorithm flowchart. . . . ... ... .........

An example of a hash table on the master and the buckets at the slaves.

FindSlave flowchart. . ... ... ... ... ..... ... . ...,
RSTransfer flowchart. . .. ... ... ... ... ... .. .....
Transfer flowchart. . . . ... ... ... ... ... . ... . ...,
Receiver-initiated algorithm flowchart. . . . .. ... ... ... ...
FindBucket algorithm flowchart. . . . ... ... ... .. ......

The relative speedup without background load using the slow network.

The relative speedup without background load using the fast network.
The relative speedup with proportional background load using the fast
network (the number of background load is 1 process). . ... .. ..
The relative speedup with proportional background load using the fast
network (the number of background load is 3 processes). . . ... ..
The relative speedup with inverse background load using the fast net-
work (the number of background load is 1 process and SS_EQ is 1).

viii

34



3.17 The relative speedup with inverse background load using the fast net-
work (the number of background load is 3 processes and SS_EQ is
1
3.18 The performance of ChunkNJ with no data skew and no background
load. . ... .
3.19 The performance of GRACE+ with no data skew and no background
load. . . . . . e g
3.20 Comparison of threshold values with no data skew and no background
load. . . . . . e e e e
3.21 The comparison of transfer policies with no skew and no background
load. The description of each algorithm is given in Section 3.3.2.2.
3.22 The comparison of load sharing algorithms with no skew and no back-
ground load. . . . .. ... ... L
3.23 The performance of load sharing algorithms with data skew on (a)
building relation R and (b) probing relation S, without any background
load (S| =10%). . . . . . . . .. e
3.24 The performance of the load sharing algorithms with data skew on
building relation R and probing relation S without any background
load (|S|=108). .. ... ... ... ... ..... [P
3.25 The performance of the load sharing algorithms with data skew on the

probing relation S and with proportional background load (|S| = 10°).

3.26 The performance of the load sharing algorithms with data skew on the
probing relation S and with inverse background load (|.S| = 10).

3.27 The performance of the load sharing algorithms with data skew on
probing relations and with background load (|S|=10°). .. ... ..

3.28 The performance of the load sharing algorithms with data skew (skew
factor is 103) on building relation S and probing relation S and with
background load (|S|=10°). . ... ... ... ... ... . ...

4.1 A system model with the Internet transfer delay. . . . . .. ... ...
4.2 Majorcomponents. . . . . . . . ... ..o

4.3 An example of join state matrix snapshot: (R:ready, J:joining, F:finished).

The hash value of each hash bucket chunk is given by hashId.

ix

74

75

76

77

82
84

85



4.4
4.5
4.6
4.7
4.8
4.9

4.10

4.11
4.12

4.13
4.14

4.15
4.16
4.17

4.18
4.19

" 4.20

4.21
4.22
4.23
4.24

Message sequence chart during join execution. . . .. ... ..... 85
A detailed look at the data transfer: (a) from Database (DatabaseReader)
to the target JoinExecutor and (b) from a source JoinExecutor to the

target JoinExecutor. . . . .. ... ... L o o oL oL 88 -
Message sequence chart in data transfer from JoinExecutor A to JoinEx-
ecutor B. . . .. ... 95
Topology of the LINUX cluster. . . . ... ... ... ......... 99
Ping transfer time: trend line is shown in column 4 of Table 4.7. . . . 101
Performance of the algorithms with no skew and no background. . . . 104

Performance of algorithms with no data skew and 6 identical back-
ground load. . . . . . . ... 106
Performance of algorithms with no data skew and 8 JEs. . . . . . .. 106
Performance of algorithms with no background load on JEs and a scalar
skew factor of 20,000. . . . . . . . . ... 108
Performance of the algorithms with no background load and with 8 JEs.108
Performance of algorithms with Zipf skew factor of 60 and no back-

ground load. . . . . . . ... ... L 109
Performance of the algorithms with Zipf skew factor and no background
loadand 8 JEs. . . . . ... ... ... . 110
Performance of algorithms with scalar data skew variance of 10,000
and background load. . . . . . . ... ... oL 0oL Lo 112
Performance of algorithms with scalar data skew variance of 20,000
and background load. . . . . . .. ... ... Lo Lo 112
Performance of algorithms with the Zipf data skew factor of 60. . . . 113

Performance of algorithms with the Zipf data skew factor of 80 and 8
JES. e e 113
Performance of the algorithms with no data skew and no background

load and the Internet transferdelay. . . . . ... ... ......... 115
Performance of algorithms with scalar data skew factor of 10,000. . . 115
Performance of algorithms with scalar data skew factor of 20,000. . . 116
Performance of the algorithms when the DB location is in Toronto. . 117
Performance of algorithms when the DB location is in Tokyo. . . . . . 118



4.25

4.26

4.27

4.28

5.1

5.2

5.3

5.4

5.9

5.6

5.7

5.8

5.9

5.10

5.11

5.12

Performance of algorithms with the DB location as Toronto and the
skew factor of 10,000. . . . . . . . . . ... ... o
Performance of algorithms with the DB location as Tokyo and the skew
factor of 10,000. . . . . . . . . ... ..
Performance of the algorithms with the DB location as Toronto and
skew factor of 20,000. . ... .. . ... ... ...
Performance of the algorithms with the DB location as Tokyo and the
skew factor of 20,000. . . . . . ... ... ... ... ..

Right-deep query tree. . . . . . . . . . . ... ..o
Software architecture for pipelined hash joins. . . .. ... ... ...
Performance of the NSPHJ and SPHJ when the number of slaves is 8
and the number of tuples is 1 million. . . . . .. ... .. ... ....
Performance of the NSPHJ and SPHJ when the number of slaves is 8
and the number of tuples is 2 million. . . . . . . ... ... ... ...
The execution time of the NSPHJ and SPHJ when buffer size is 1000
(14 KBytes) and the number of tuples is 1 million.. . . . . ... ...
The execution time of the NSPHJ and SPHJ when buffer size is 1000
(14 KBytes) and the number of tuples is 2 million.. . . . . ... ...
Performance of the NSPHJ and SPHJ when the background load on
the DB node is 5 processes. . . . . . . ... ... ... ..
Performance of the NSPHJ and SPHJ when the background load on
the DB node is 10 processes. . . . . . . . . . .. . ... ...
Performance of the NSPHJ and SPHJ when identical background load
on slave nodés iSO Pprocesses. . . . . . ... a e e e
Performance of the NSPHJ and SPHJ when identical background load
on slave nodes is 10 processes. . . . . . . . . .0 i .ot
Right-deep query tree with the Internet transfer delay when the number
of delayed relationsis 3. . . . . . .. .. ... ... . oL,
Performance of the NSPHJ and SPHJ with no background load when
the DB location is changed (the number in the x-axis labels indicates
the number of delayed relations). . . ..................

xi

118

119

120

120

124
127

133

134

135

136

137

138

139

139

140



5.13

5.14

5.15

5.16

5.17

5.18

5.19

5.20

5.21

Performance of the NSPHJ and SPHJ with no background load when
the number of delayed relations is varied. . . . . ... ... .. ...,
Performance of the NSPHJ and SPHJ when background load on the
DB nodeis 5 processes. . . . . . . . ..o e e e e e
Performance of the NSPHJ and SPHJ when background Load on DB
node is 10 processes. . . . . . . . .. .o i e e e e e
Performance of the NSPHJ and SPHJ when background load on the
DB nodeis 5 processes. . . . . . . . . ..ol o e e
Performance of the NSPHJ and SPHJ when background load on the
DB nodeis 10 processes. . . . . . . . . . . . oo oo
Performance of the NSPHJ and SPHJ when background load on slave
nodes IS & ProCESSES. . & . v v v e e e e e e e e e e e e e e e
Performance of the NSPHJ and SPHJ when background load on slaves
is10processes. . . . . . . . ... e e
Performance of the NSPHJ and SPHJ when background load on slave
nodes iS 5 Processes. . . . . . . . . e e e e e e e e e e e e e
Performance of the NSPHJ and SPHJ when background load on slave
nodes is 10 Processes. . . . . . . . . it ;

xii

142

143

144

144



Chapter 1
Introduction

With the availability of Giga-hertz processors, Giga-byte memory, and Giga-bit band-
width communication networks, huge parallel processing power from parallel comput-
ers can be used for various types of scientific computing. Good examples of such ded-
icated parallel computers are the SUN SunFire and IBM SP2. However, this power
does not come for free; generally, parallel systems are very expensive. Also, with the
fast pace of technological advances, constituent components of the parallel computers
quickly become obsolete. As an alternative to such parallel systems, cluster comput-
ing has been introduced. Database query processing can also benefit from parallel
execution on such cluster systems.

This thesis focuses on query processing algorithms on cluster systems. This chap-
ter describes the motivation and the need for parallel query processing on a cluster.
First, we present the background and motivation. Then, we state the problem that
this thesis deals with. Finally, the contribution and the organization of the thesis are
presented.

1.1 Background and Motivation

Cluster computing systems are generating enormous interest within the research com-
munity. In a cluster, which can be found in almost any computer network, work-
stations or workstation-class PCs are connected by LAN. These clusters offer large
amounts of aggregate memory and computational power [3, 7]. The system can keep



1.1 Background and Motivation 2

up with the technological advances in processors, memory, and networking, as the
system uses off-the-shelf commodity components.

This also implies that a cluster tends to be heterogeneous in nature (different
numbers of processors when there is Symmetric Multi-Processor (SMP) nodes in the
cluster, different types of processors, different processor speeds, and different memory
sizes). Furthermore, there are interactive users logging in and logging off a node
from time to time. Thus, the performance of parallel programs run on a cluster is
affected by their activity; the load and the available memory on each node fluctuate
dynamically.

As a result, in the worst case, the node with the heaviest background load and
the largest job determines the execution time for cluster parallel processing. To avoid
this scenario, it is important to adopt a good load balancing/sharing! algorithm. One
survey found that up to 80% of nodes are idle depending on the time of day [64]. Fault
tolerant mechanisms are also required, since processing nodes (PNs) of clusters are
more vulnerable to failures than parallel computers. For example, users can turn off
nodes independently in clusters.

In the field of database systems, several parallel database system architectures
have been proposed [20] to satisfy the growing demand for high transaction processing
rates. Among these, shared-nothing architectures? are attractive from the standpoint
of scalability and reliability [80]. In shared-nothing systems, each processor has its
own private disk and private memory, and the processors communicate by a message
passing mechanism. A Parallel Database Management System (PDBMS) with shared-
nothing architecture is called a shared-nothing PDBMS. Generally, parallel execution
of a query is beneficial for the following reasons:

e Query processing can be improved by exploiting intra-operator (single-join),
inter-operator (multiple-join), and inter-query (multiple-query) parallelism [20].

e The large amount of aggregate memory can be exploited for parallel query
processing. The size of today’s databases reaches the tera-byte order. In that

In this thesis, the term “load balancing” is used for data distribution among processing nodes
at the initial stage and “load sharing” is used for sharing work during the processing stage after the
initial data distribution.

2This is also called distributed memory architecture in the literature.



1.1 Background and Motivation 3

case, it is important to reduce the number of I/O operations by increasing the
size of main memory because of the access speed gap between the main memory
and the disk.

e 1/0 parallelism can be achieved in the case of shared-nothing architecture in
which each node has a local disk.

With the advent of cluster computing environments as described above, parallel
query processing on a cluster system has been proposed as an alternative to parallel
database systems. In general, there are two approaches to implementing a PDBMS on
a cluster system. One is the same as a traditional PDBMS: the data are de-clustered
and a query is executed in parallel. Most of the recent commercial PDBMSs (IBM
DB2 Universal Database [5, 9, 36, 37, 38, 53, 85], Oracle 9i [70, 72] and Grid-enabled
10g including Real Application Cluster [74], Compaq NonStop SQL/MP [16, 17],
Microsoft SQL Server [25, 62|, and MySQL Cluster [66, 67]) use this approach. The
other approach is to use an existing dedicated DBMS and PNs in clusters for parallel
processing to take the query load off the DBMS [10, 18, 19, 22, 23]. We call this
system a cluster-based PDBMS (¢cPDBMS) to distinguish the two approaches. This
thesis focuses on query processing in a cPDBMS.

The advantages of a cPDBMS over a PDBMS are:

e It is less expensive than a new PDBMS.

e It matches the flexibility of cluster architecture in which the memory and CPU
availability of each PN changes from time to time.

o It is relatively easy to recover in the case of node failure since the original data
are preserved in a DBMS.

Architecturally, a cPDBMS is close to a shared-nothing PDBMS. There are, how-
ever, some significant differences between the two systems. As described previously,
one major difference is that the relations are not de-clustered as in the shared-nothing
PDBMS. This is because PNs in a cluster might have individual owners, who can
control the behavior of their PNs, which are not under the control of a central ad-
ministrator (e.g. a user can turn off his/her machine). This lack of central control



1.1 Background and Motivation 4

of the system makes it undesirable to distribute relations across the nodes as done
in a shared-nothing PDBMS. The database is kept under the control of a traditional
database system, which provides security and maintains the integrity of data. How-
ever, we can use the additional processor cycles and the memory available on these
PNs for query processing on a temporal basis [18]. In particular, we restrict our
attention to query processing, which requires only read-only access to data.

Parallel query processing in a cPDBMS has been studied in [11, 26, 40, 41, 47, 81].
In such a cPDBMS, every time a query is executed, the PNs involved must receive the
required relations before query processing can proceed. This overhead is not present
in the shared-nothing PDBMS, where the required data usually reside at the PN.
Thus, there is overhead in transferring data from the DBMS to PNs. The overhead,
however, can be amortized by the join execution time and local disk access, which
is necessary for join processing when the size of the main memory is not enough for
relations [18].

Another interesting research area is data integration systems. A data integration
system has to process queries over databases spread around the world. It is called data
integration since the data to be processed are spread around the world and loosely
integrated. These studies on data integration focus on sequential query processing
algorithms that can cope with the dynamic changes of the Internet. Several papers
[2, 6, 44] describe such problems associated with query processing on the Internet
(data may come from remote sources), comparing it to traditional query processing
as follows:

o Absence of data statistics: Since the data are from autonomous external sources,
the system has relatively few and often unreliable data statistics.

¢ Runtime selectivity fluctuation: These fluctuations commonly arise due to cor-
relations between predicates and the order of tuple delivery.

¢ Unpredictable data arrival behavior from remote databases: initial arrival delay
and arrival rate fluctuations exist.

¢ Redundancy among sources: The query processor needs to be able to efficiently
collect related data from multiple sources, minimize the access to redundant

sources, and respond flexibly when some sources are unavailable.



1.1 Background and Motivation 5

This thesis deals with the runtime selectivity fluctuations and unpredictable data
arrival behaviour from the remote databases (henceforth, it is called the Internet
transfer delay).

In processing a query, choosing an efficient parallel query processing algorithm is
important. Query processing can be improved by exploiting intra-operator (single-
join), inter-operator (multiple-join), and inter-query (multiple query) parallelism [20].

Among these three types of parallelism, the single-join operation has attracted
a lot of attention, since it is the most expensive operation in query processing [14,
25, 32]. Three basic techniques are used for join processing: nested-loop, sort-merge
and hashing [63]. Several studies have proposed parallel versions of nested-loop, sort-
merge, and hash join [1, 20, 56]. Of the three, nested-loop and hashing are commonly
used for join processing. Schneider et al. [75] claim that hash join algorithms are
clearly superior. However, hash join-based algorithms suffer from various kinds of
skew [60, 87]. Thus, the choice of load balancing/sharing algorithms becomes impor-
tant since the slowest PN which has the heaviest data skew dictates the performance
of the overall system.

Many researchers have proposed load sharing/balancing algorithms for the hash
join algorithm [21, 27, 33, 40, 41, 52, 75, 83]. These load balancing/sharing algorithms
for PDBMSs on parallel computers do not work for cPDBMS for the following reasons:

e These algorithms only deal with PNs with pre-partitioned data. However, PNs
in clusters are dynamically determined and usually do not have any of the data
needed for join processing. The data should be sent from DBMSs to a PN prior
to the join processing. This phase is not considered in these algorithms. This
situation can be seen as the extreme case of tuple placement skew [60, 87]. In
tuple placement skew, some PNs read more tuples while others wait for them
to finish reading the whole relation.

e These algorithms do not consider the effect of non-query background load. Even
with the adaptive approach, it is difficult to know how much work a PN should
transfer to another. Besides, it is not clear whether the transfer is effective or
not in the case of clusters in which the load on each PN changes very frequently.
In addition, no algorithm considers the effect of the combination of background



1.1 Background and Motivation 6

load and data skew.

e Correction of a wrong prediction by either dynamic or incremental algorithms
about bucket distribution has not been studied fully.

e Input data arrival delay and data transfer rate fluctuation are not considered.
This is very important, especially in the case of data integration.

Therefore, a new load balancing/sharing algorithm is needed to improve the per-
formance of join processing on clusters. This thesis will propose new load balanc-
ing/sharing algorithms for cPDBMSs.

The next parallelism that this thesis deals with is multiple-join algorithms for
a cPDBMS. For a PDBMS, there are two kinds of multiple join algorithms: non-
pipelined and pipelined algorithms. In non-pipelined algorithms, each join is pro-
cessed one by one. In pipelined algorithms, all joins are executed at the same time
and the results of one join are passed to the next join in a pipelined manner. Gener-
ally, non-pipeline algorithms are good for bushy query trees and pipelined algorithms
are good for right-deep query trees [47]. A bushy tree is a tree in which some input
relations are inner relations and others are outer relations. A right-deep tree is a tree
in which all input relations are inner relations. In the context of operations imple-
mented using hash-based algorithms, there is a convention that the left child of an
internal vertex denotes the inner relation of the join, i.e., the one used to build the
hash table. Correspondingly, the right child denotes the outer relation whose tuples
are used to probe the hash table.

In Non-Pipelined Hash Join (NPHJ) algorithms, each join is processed one by one;
the result of each join is saved to the disk every time the join processing is finished.
In pipelined hash join (PHJ) algorithms, there are two kinds of algorithms: Simple
Pipelined Hash Join (or Non-Symmetric PHJ (NSPHJ)) [12, 14, 55] and Symmetric
PHJ (SPHJ) [89]. In NSPHJ, there are two phases: table building and table probing.
In this algorithm, a building relation (the left child in the query execution tree) and
a probing relation (right child) are distinguished. On the other hand, in SPHJ, there
is no such distinction. A hash table is built for each relation. Every time a tuple from
one relation arrives at a PN, it is probed against a hash table for the other relation



1.2 Thesis Focus and Problem Description 7

and inserted into its hash table. The disadvantage of both pipelined algorithms is that
either one (NSPHJ) or both of the relations (SPHJ) should be in the main memory.

However, there is no research on the performance of pipelined hash join algorithms
(NSPHJ and SPHJ) for a cPDBMS. Therefore, this thesis focuses on a detailed study
of their performance under various conditions. The effect of the Internet transfer
delay of input relations is also considered.

1.2 Thesis Focus and Problem Description

This thesis focuses on the design, implementation, and evaluation of query process-

ing algorithms (single-join and multiple-join) that can optimize the performance of
cluster-based PDBMSs (cPDBMSs).

The goal is to minimize response time under the following conditions:

o The size of the resources (the number of CPUs, CPU speed, memory, disk speed,
etc.) at each PN is statically different.

e The size of the resources at each node changes dynamically due to local inter-

active users.

Data are stored in one of the PNs and other PNs do not have the data prior to

query processing.

Input relations have various types of data skew as described in Section 2.3.1.1.

Any PN in the cluster can receive a query.

Dynamic features of input relations, caused by network traffic from data sources
to PNs as a result of data integration, exist, such as:

— Unpredictable data arrival characteristics: initial delay and burst data
transfer rate changes.

— Runtime selectivity fluctuation: the selectivity varies according to the ar-
rival order of the tuples.



1.3 Thesis Contribution 8

1.3 Thesis Contribution

This thesis investigates the query processing algorithms for a cluster-based Paral-
lel Database Management System (cPDBMS). The contributions of the thesis are
summarized as follows:

1.

We re-examine a parallel nested loop join algorithm for a cPDBMS. We compare
its load sharing/balancing algorithms (static and dynamic). We identify the case
when each algorithm is better with several kinds of background load.

. We present two versions of adaptive algorithms for a cPDBMS: a non-symmetric

join version (ChunkHJ) and a symmetric join version (SCHJ). ChunkHJ applies
when one of the joined relations can be used for the main relation a priori. The
main relation is used for hash table building in hash join or to predict the skew
model. The main relation is chosen if it is smaller than the other relation or if it

is known that one relation arrives a lot faster than the other. If this information
is absent, SCHJ should be used instead.

. ChunkHJ is evaluated with two other algorithms (one is the hash-based nested

loop join and an adaptive version of GRACE [52]) under the conditions of several
kinds of non-query background load and data skew. A heterogeneous cluster
consisting of processing nodes with different speeds is used for this evaluation.
We identify the cases in which ChunkHJ is superior.

. SCHJ is evaluated with several traditional algorithms such as VP-RR [21] and

dynamic sampling [21] under the same conditions as the experiments with
ChunkHJ. A new cluster, which consists of SMP nodes, is used for this evalua-
tion. We identify the cases in which SCHJ is better.

. SCHJ is evaluated with several incremental hashing algorithms with the Internet

transfer delay and transfer rate fluctuation under the same conditions as the
experiments with ChunkHJ. We identify the cases in which SCHJ is better.

. NSPHJ and SPHJ are evaluated with several types of non-query background

load. In addition, the Internet transfer delay and transfer rate fluctuation have



1.4 Thesis Organization 9

been added to the conditions of the evaluation. We identify the cases in which
SPHJ is superior.

1.4 Thesis Organization

This thesis is organized as follows. The next chapter presents related work on single-
join and multiple-join algorithms, as well as PDBMSs, cPDBMSs and data inte-
gration systems. We analyze several major algorithms and compare them with our
algorithms. Then, single-join algorithms and their load balancing/sharing algorithms
without consideration of arrival delay of input relations, are presented and evaluated
on a cluster. Chapter 3 covers non-symmetric version of the algorithm. Chapter 4
studies symmetric versions of the algorithm. This chapter also considers the effect
of Internet transfer delay. Chapter 5 investigates multiple-join algorithms. It focuses
on non-symmetric pipeline hash join and symmetric pipeline hash join algorithms.
We compare these two algorithms on a cPDBMS with and without Internet transfer
delay. Chapter 6 gives conclusions and points to future work.



Chapter 2

Related Work

This chapter presents related work. We start by introducing parallel database man-
agement systems (PDBMSs) and data integration systems on various platforms.
Then, the general execution steps for load balancing/sharing algorithms are presented.
Finally single-join and multiple-join algorithms and their load balancing/sharing al-
gorithms are described.

2.1 Parallel Database Management Systems

This section introduces PDBMSs and their variations. One of the variations is the
cluster-based PDBMS (cPDBMS) and the other is the data integration system.

2.1.1 The Architecture of Parallel Database Systems

Parallel database systems are database systems that execute queries in parallel to
achieve the following goals:

e the parallelization of operations involving large amounts of data (involving I/0O
operations, called I/O parallelism).

e simultaneous service to a growing number of users.

e 2 high level of fault tolerance by using RAID techniques.



2.1 Parallel Database Management Systems 11

(c) Shared—nothing Architecture

Figure 2.1: PDBMS architectures.

The typical architectures of parallel database systems as classified in [20] are shown
in Figure 2.1. In this figure, P,..P, denotes a processor. In the shared-memory archi-
tecture, all processors have direct access to the global memory and all disks (Figure
2.1(a)).! The shared-disk architecture allows all processors to have non-shared, pri-
vate memory but direct access to all disks (Figure 2.1(b)). Therefore, data do not
have to be statically partitioned and mapped [82]. In the shared-nothing architecture,
all processors have non-shared, private memory and disks (Figure 2.1(c)). According
to [20], the shared-nothing is the most promising among these in architectures terms

of scalability.

In the literature, this is sometimes called a SMP(Symmetric MultiProcessor).



2.1 Parallel Database Management Systems 12

In the shared-nothing architecture, the data is partitioned either horizontally or
vertically. In vertical partitioning, the table is split into multiple smaller tables with
the same number of rows, but fewer columns. In horizontal partitioning, a table is
split into multiple smaller tables containing the same number of columns, but fewer
rows. It is also possible to combine both types of partitioning.

Horizontal partitioning is suitable for parallel processing in exploiting intra-operator
(single-join) parallelism. The major partitioning schemes are shown in Figure 2.2. All
schemes distribute the tuples according to the rule on one of attribute values.

Interconnection Network Interconnection Network

[t 71 A\ ]

() Hash Partitioning

Figure 2.2: Examples of horizontal partitioning schemes in the shared-nothing archi-
tecture.



2.1 Parallel Database Management Systems 13

The ¢cPDBMSs that are discussed in this thesis are based on the shared-nothing
approach, since the cluster system has a shared-nothing architecture by nature. The
difference is that PNs in cPDBMSs are shared by other interactive users. In addi-

tion, data (relations) are pre-partitioned in PDBMSs as in Figure 2.2, but not in a
cPDBMS.

2.1.2 Parallel Query Processing

Dewitt and Gray summarized the basic techniques for such PDBMSs [20]. They
claimed that the relational model is suitable for parallel execution since it consists of
uniform operations applied to uniform streams of data. High-level, declarative query
languages are also suitable for parallel processing.

In the paper, they described two forms of parallelism. One form is the pipelined
parallelism. It streams the output of one operator into the input of another operator
and executes them in parallel. The other form is partitioned parallelism. It partitions
the input of one operator into several processors, each of which work on a part of data
in parallel. They also described several techniques to parallelize relational operations
(scan, merge, and join).

There are three types of parallelism mentioned by Lu et al. [56]. The first type
is inter-query parallelism, in which queries are executed in parallel. The second type
is inter-operator parallelism, in which operators are executed in parallel. The third
type is intra-operator parallelism, which is the same as partitioned parallelism.

In this thesis, intra-operator (single-join) parallelism is discussed in Chapters 3
and 4. Inter-operator (multiple-join) parallelism is discussed in Chapter 5.

2.1.3 Research Prototype PDBMSs

In this section, several research prototypes are described for cluster-based and data
integration systems. As mentioned in Section 1.1, a cluster-based PDBMS uses an
existing dedicated DBMS and PNs in a cluster system for parallel processing to take
the query load off the DBMS. Data coherency and consistency are guaranteed by the
existing DBMS. The study of data integration systems is related to this thesis, since
they also deal with the Internet transfer delay, which is discussed in Chapters 4 and



2.1 Paralle]l Database Management Systems 14

2.1.3.1 Cluster-based PDBMSs

Recently, cluster-based PDBMSs (cPDBMSs) have been studied to take advantage of
the beneficial features of clusters mentioned in Section 1.1.

Enkidu [8, 11, 22, 23] used parallel relational query evaluators, which work in a
coupled mode with a sequential DBMS. It uses macro-pipelining for multiple join
query processing in multi-user mode. Each join processing is multi-threaded with its
priority. The results are shown in the case of Enkidu with and without the Oracle
database. However, they did not use intra-operator parallelism and did not consider
the effect of background load induced by interactive users.

Dandamudi et al. proposed query processing on centralized [93], distributed (78],
and hierarchical [91] architectures. They also analyzed the cost and benefits of parallel
processing by clusters [18, 19]. Their idea is to load the data from the database
at the beginning of query processing to obtain flexibility. They claimed that the
database load time at each query execution can be amortized by the join execution
time and local disk access, which is necessary for join processing when the size of the
main memory is not enough for relations. Using this idea, Haddad and Robinson [26]
implemented a cPDBMS using POSTGRESS and six Pentium IIIs and obtained good
speedup results of a TPC-D benchmark database. However, no background load was
considered in this paper.

Tamura et al. [81] developed a DBMS on a PC cluster system consisting of 100
PCs connected through an ATM switch. On each PC node, a server program acts as
a database kernel to process the queries in cooperation with other nodes. They used
the dynamic GRACE and pipeline techniques to process queries. Benchmark results
were given but neither background load nor multi-user mode were considered.

MIDAS (Munlch Parallel DAtabase System) [10] is a relational, parallel, shared-
disk database system using the cluster method. MIDAS was implemented by Parallel
Virtual Machine (PVM). The paper discussed MIDAS communication characteristics
and PVM specific optimization aspects. However, no detailed performance results

were given.



2.1 Parallel Database Management Systems 15

In summary, there are several cPDBMSs but there is no performance study ex-
amining non-query background load on each PN. Furthermore, the Internet transfer
delay has not been studied.

2.1.3.2 Data Integration Systems

A data integration system is an automated method of querying across multiple het-
erogeneous databases in a uniform way [44, 45]. In this section, several research data
integration prototypes are discussed.

Several papers [2, 6, 44] describe problems associated with query processing on the
Internet (e.g. data may come from remote sources), compared to traditional query

processing, as follows:

e Absence of data statistics: Since the data are from autonomous external sources,
the system has relatively few and often unreliable data statistics.

o Runtime selectivity fluctuations: These fluctuations commonly arise due to cor-

relations between predicates and the order of tuple delivery.

e Unpredictable data arrival behaviour from remote databases: Initial arrival

delay and arrival rate fluctuations exist.

¢ Redundancy among sources: The query processor needs to be able to efficiently
collect related data from multiple sources, minimize access to redundant sources,

and respond flexibly when some sources are unavailable.

This thesis deals with the runtime selectivity fluctuations and unpredictable data
arrival behaviour from the remote databases.

The systems introduced in this section use the algorithms described later in Sec-
tion 2.4.2. The purpose of this section is to present a brief overview of current
research prototypes of data integration systems. Our emphasis is on systems that use

algorithms that handle the Internet transfer delay as summarized in Table 2.1.

Tukwila [44, 45] The Tukwila data integration system aims to scale up to the
amounts of data on the Internet with large numbers of data sources. Tukwila handles



2.1 Parallel Database Management Systems 16

Name Developer Algorithm to cope with Internet delay
and/or load sharing/balancing

Tukwila [44, 45| | University of Washington double-pipelined hash join [44]
re-optimize a query plan

Telegraph [28] UC Berkeley Eddies[6] and Flux [76]

Niagara [13] University of Wisconsin Rate-based query processing [86]

Table 2.1: Popular research data integration system prototypes.

Internet delay by incrementally re-optimizing a query plan and dynamically choosing
materialization points by the optimizer according to their costs and potential benefits
as greater knowledge about the data is gained. It uses adaptive double pipelined
algorithm, which will be explained in Section 2.4.3, to hide latency. Tukwila itself is
not a PDBMS.

Telegraph [28] The Telegraph aims to build a global-scale query engine that can
execute complex queries over all the data available on-line. It faces challenges in wide-
area systems, including the quickly shifting performance and availability of resources
on the Internet. It also serves as a plug-and-play shared-nothing parallel query engine.

To balance the load and cope with load imbalance, an algorithm called Flux [76]
is used. Flux is inserted between the producer and consumer stage to repartition
operators while the pipeline is still executing. The authors addressed input data
skew, processing and memory load changes, and heterogeneity in the PNs. They also
noted that these factors are severe in parallel systems, as mentioned in Section 1.1.

Another algorithm called Eddy [6] is also used to cope with the Internet transfer
delay. Eddy continuously reorders operators in a query plan as it runs. The authors
defined the terms for the moments of symmetry during which pipelined joins can be
easily reordered so that they can be used according to the arrival of relations. Eddy
also reorders operators on a tuple-by-tuple basis. Kach tuple can be routed to a
different join in the query plan so that each join is busy all the time. The correctness
of join execution is ensured by Eddy.



2.1 Parallel Database Management Systems 17

Niagara Project [13] The Niagara is a search engine for XML documents that can
support much more powerful and precise searches than HTML documents. To cope
with the Internet transfer delay, rate-based query processing [86] is introduced and
tested on Niagara. In the paper, the cost model and calculation of the output rate
for relational operatiohs (selection, projection, and join) were described. The authors
introduced two heuristics: local rate maximization and local time minimization. The
Niagara is not a PDBMS.

2.1.4 Commercial PDBMSs

The major commercial PDBMSs are described in this subsection.

IBM DB2 [37] The DB2 UDB Enterprise-Extended Edition (EEE) can run on
ccNUMA IBM NUMA-Q [35]. The NUMA-Q architecture combines the linear scal-
ability of parallel processing and the manageability of a single image SMP platform.
The benchmark result shows good scalability in 32, 48 and 64 nodes configurations
[9, 36, 85).

IBM’s DB2 universal database (UDB) for OS/390 and z/OS is implemented on
Parallel Sysplex Cluster [39]. Load balancing on Parallel Sysplex is relatively easy
since the entire Parallel Sysplex cluster can be seen as a single logical resource like an
SMP server and any node can accept and execute a job. There is no need to partition
and replicate data across multiple servers as mentioned in Section 2.1.

Oracle Parallel Server and Real Application Server [69, 70, 71, 72, 73, 74]
The Oracle 8i Parallel Server (OPS) [69, 70, 71] fully exploits clustered systems for
database applications by delivering high availability, cluster scalability, and single
system manageability with cluster load balancing and cache fusion clustering archi-
tecture. However, OPS uses its shared disk system instead of a network link to
communicate among PNs, thus it does not scale well.

Oracle 9i [72, 73, 74] further improves its performance and uses a technology
called Real Application Clusters (RAC). It uses partitioned-parallelism and pipelined-
parallelism. An adaptive algorithm is used to determine the degree of parallelism that



2.1 Parallel Database Management Systems 18

takes the current system status into consideration. Unlike OPS, in RAC, a network
is used for communications, although data is still accessed using a shared disk.
Oracle grid-enabled 10g parallelizes its queries [82] using a Parallel Execution
(PX) engine and a Parallel Single Cursor (PSC) model. PX consists of a Parallel
Execution Coordinator (PEC) and a set of Parallel Execution Servers (PES). The
paper [82] describes the advantage of a shared-disk architecture in that the data
does not have to be statically partitioned and mapped. Thus, PX is not limited by
how users use partitioning to fragment database objects. Also, the paper explains
how cluster-aware redistribution is done when the degree of parallelism dynamically

changes. It uses dynamic sampling techniques for load balancing.

The HP NonStop SQL/MP [29] The HP NonStop SQL/MP is implemented on
NonStop Parallel Servers (shared-nothing architecture), which are fully distributed
and optimized for massive parallel systems. The NonStop SQL/MP uses horizontal
partitioning and adaptive hash join algorithms. In the case of intermediate results, dy-
namic repartitioning using hash function is executed. The paper claims that SQL/MP
is nearly linear with respect to speedup and scale-up.

Microsoft SQL Server [25, 62] The Microsoft SQL Server introduced parallel
query processing capability in version 7.0. The report by Joe Chang [49] summarized
its function and performance. Microsoft SQL Server parallelizes a query when its
estimation cost is greater than the threshold value. Chang concluded that the unit of
cost is time rather than CPU usage relative to a single processor from cost analysis
and various experiments. SQL Server executes a query in parallel by using system
threads. The degree of parallelism is dynamically determined. It uses horizontal
partitioning.

MySQL Cluster [66, 67] MySQL AB released MySQL Cluster [66, 67] in May
2004. It is a main memory database and is implemented on a shared-nothing cluster.
MySQL Cluster is an integration of the standard MySQL server with an in-memory
clustered storage engine called NDB. Its administrator guide [68] further explains its
functionalities. NDB Cluster automatically fragments the data using a hash function



2.2 General Load Balancing/Sharing Algorithms 19

and replicates them using the number specified in configuration files. However, the
details of the parallelization technique are not illustrated. MySQL Cluster provides a
response time of 5-10 millisecond and throughput of 100,000 transactions per second

on a typical low-end configuration of a four-node cluster, with two CPUs per node
[66].

2.2 General Load Balancing/Sharing Algorithms

Lu and Tan [57] and Marten [60] described the following execution steps for load
balancing/sharing algorithms in query processing:

1. Task generation

(a) Task partition dimension (inter/intra transaction, inter/intra query, and
inter/intra operator parallelism) is determined;

(b) Task partition size (sub-operator, pipeline, several transactions) is deter-
mined;
(c) The number of tasks is determined according to the following criteria:
i. The number is equal to the number of processors;

ii. The number is more than the number of processors. The system allo-
cates them to the processors according to some criteria (e.g., the size
of the available memory).

(d) Relation decomposition (full fragmentation, fragmentation and replication,
full replication) is determined.

2. Task allocation

(2) Degree of parallelism is determined. The following factors are considered:
e load matrices (cardinality of the buckets and their estimated execution
time);
e allocation strategy (static, dynamic, adaptive, demand-driven);

e resource demand and performance of difference resources.



2.3 Parallel Single-Join Algorithms 20

(b) PNs are selected from an eligible PN list;

(c) Task allocation to PNs is done with or without load balancing (e.g., best-fit
strategy).

3. Task execution

(a) The following statistics are collected and maintained:

e bucket size and result size;

e load measure (CPU, disk, memory, network).
(b) Redistribution is done according to some criteria;

(c) Local join algorithm is selected and executed.

In the algorithms introduced in this thesis, task allocation and task execution
overlap. Also, relation decomposition is done at the bucket level (fragmentation and
replication), as opposed to at the relation level. Furthermore, task allocation is done
with load-balancing and redistribution is done in the task execution phase. Hash join
is used for the local join unless otherwise noted.

2.3 Parallel Single-Join Algorithms

To get intra-operator parallelism on parallel computers, parallel single-join algorithms
have been extensively investigated, since the join operation is the most expensive
operation. Paralle] versions of the nested-loop, merge-sort, and hash joins and their
variations have been proposed [1, 56].

The purpose of this section is to present various load sharing/balancing algorithms
for single-join algorithms, classify them, and elaborate the possibility of their appli-
cation to join processing on cPDBMSs. First, the various classification criteria are
presented and then the proposed load balancing/sharing techniques are described and
classified according to the classification criteria.

2.3.1 A Classification

Major classifications for various load sharing/balancing algorithms are discussed in
this subsection.



2.3 Parallel Single-Join Algorithms 21

2.3.1.1 Data Skew Type (DST)

The following types of skew may occur while processing joins [87]: intrinsic skew
(IS) and partition skew (PS). IS is also called attribute value skew (AVS) and occurs
when attribute values are not distributed uniformly. Furthermore, IS(AVS) does not
change between load balancing/sharing algorithms. PS occurs when the workload is
not balanced among the PNs. PS can be delineated further as follows:

o Tuple Placement Skew (TPS) occurs when the initial distribution of tuples varies
among the PNs. This can be treated by static data allocation.

o Selectivity Skew (SS) occurs when the selectivity of selection predicates varies
among the PNs.

o Redistribution Skew (RS) occurs when there is a mismatch between the distri-
bution of the join key values in a relation and the distribution expected by the
redistribution mechanism.

e Join Product Skew (JPS) occurs when the join selectivities at each PN differ.

o Query Skew (QS) occurs when there are predicates that select certain relations,

attributes, or values more frequently than others.

2.3.1.2 Data Skew Model (DSM)

Zipf distribution [96] can be used to create skewed data: the domain of the join
attribute is assumed to have D distinct values. The probability that the join attribute
of a given tuple takes on the ith value in the domain is p; = ¢/(:*~%), where 1 < i < D,
¢ =1/(22,1/(i*-%)), where c is a normalization constant, and Z is the Zipf skew
factor [96]. The disadvantage of a Zipf like function is that the size of the result
relation cannot be controlled easily. Thus, the scalar skew model (Scalar) is proposed.
In the scalar skew model, in an N tuple relation, in each attribute the constant “1”
(or “0”) appears in some fixed number of tuples, while the remaining tuples contain
values uniformly distributed between two and N. Normal is the normal distribution
with a certain standard deviation value. This thesis used Zipf and scalar skew since
they are commonly used in most experiments, as shown in Table 2.2 on page 27.



2.3 Parallel Single-Join Algorithms 22

2.3.1.3 Load Balancing/Sharing Methods (LBSMs)

The following classification of load sharing algorithms for hash join algorithms is
mostly from [34, 56]. As we will show in Section 3.3.1, a hash join algorithm consists
of two phases: a table building phase and a table probing phase. A hash table is built
using one of the relations (usually the smaller of the input relations) and the tuples
of the other relation are used to probe the hash table. Parallelization of a hash join
is also straightforward. Both relations are divided into disjoint sets (hash buckets)
and scattered. The tuples belonging to the buckets with the same hash value can be
joined independently in parallel. Thus, a partition consists of several buckets and is
assigned to a node (called a partition scheme). The following classification is based
on the decision of the partition scheme.

e The Static (S) method determines the partition scheme prior to the bucket
creation of input relations. This is the simplest algorithm but it does not work
well in the case of data skew.

e The Dynamic (predictive)(D) method determines the partition scheme after (or
during) the bucket creation of input relations. It might work well with data
skew.

e The Incremental (I) method changes the partition scheme depending on the
bucket distribution of input relations while reading the relations. It might work
well with dynamic change in the arrival speed of relations.

e The Adaptive (A) method changes the partition scheme depending on the bucket
distribution of input relations and the actual processing speed of the processing
nodes. Even though it has more overhead in communication involving changes
to the partition scheme, it might work well in most cases.

2.3.1.4 Data Transfer Methods (DTMs)

There are two ways to transfer the work from a DBMS to PNs. In the centralized
(C) method, there is a coordinator process for the whole system that determines the
work to be assigned to nodes. In the distributed (D) method, there is no coordinator
process and each processor determines the work to be processed.



2.3 Parallel Single-Join Algorithms 23

For example, let us assume that PN; is idle and is looking for work. It is done
by looking into the shared memory area where each PN writes its status in. In the
case of the centralized method, PNV, asks the coordinator process for the next job
and the coordinator process determines the work for PN; and sends the next job (or
ask another PN to send it) to PN;.

In the case of the distributed method, each PN writes its status into the shared
memory. When PN; looks for an overloaded PN (for example, PN;), it does not
consult the coordinator process. Instead, it checks the shared memory to find an
overloaded PN. Then, it asks for the next job from PN,. Alternatively, PN, simply
broadcasts its job request to all PNs and waits for a reply from one of the PNs (for
example, PN3). The first reply is granted and PN sends the job to PN;.

2.3.2 Load Balancing/Sharing Algorithms

In this subsection, a summary of the load balancing/sharing algorithms for single-join
processing is presented. A number of join algorithms are surveyed in [63].

The GRACE Hash Join algorithm (GRACE) [52] consists of a split phase and
a join phase. In the split phase, a hash function is applied to each tuple of input
relations to form buckets. After the split phase, small buckets are combined to form
optimal size join buckets (called bucket tuning). Then, hash join is executed on these
buckets.

The Hybrid Hash Join algorithm (Hybrid) [75] is the same as GRACE except
that some buckets in main memory are joined immediately in the split phase using
extra main memory. Thus, the split and join phases overlap. The work reported in
[75] compared Simple [75], GRACE [52], Hybrid hash joins, nested-loop and sort-
merge join with analysis and experiments on the database machine GAMMA. Their
conclusion was that the Hybrid hash join algorithm is the best.

Dewitt et al. [21] proposed the following algorithms to deal with redistribution
skew and join product skew: Range Partitioning (RP), Subset-Replicate (SR), Vir-
tual Processor Range Partitioning (VP-RP), Round-Robin (VP-RR) and Processor
Scheduling (VP-PS). They used sampling techniques and obtained bucket distribu-
tion of the input relations. They concluded that the following steps are effective: take
a pilot sample of both relations involved in the join and inspect the resulting set of



2.3 Parallel Single-Join Algorithms 24

samples to determine which relation is more highly skewed by counting the number
of repeated values. If neither relation appears skewed, revert to simple hybrid hash
join. If at least one of the relations appears to be skewed, use VP-RR.

Wolf et al. [90] proposed HJ* which uses hierarchical hashing: a coarse hash
function for storing and a fine hash function for collecting statistics. For very large
bucket pairs, they applied a fragment/replicate scheme which divides the inner bucket
among several processors and broadcasts the outer bucket to all these nodes.

Hua et al. [33] proposed the following partition schemes. In the Tuple Interleaving
Parallel Hash Join algorithm (TIJ), the tuples in each bucket are spread among
processors in an interleaved way in the split phase. In Adaptive Load Balancing
Parallel Hash Join (ABJ), the partition scheme is decided based on bin-packing on
the size of the buckets in the partition phase. In ABJ+, the tuple transfer is delayed
until the partition tuning phase. Their conclusion was that the ABJ algorithm should
be used in general since it is the most robust ABJ+ should be used if the degree of
skew is significant. TIJ should be used when the initial partition skew is serious or
the communication and I/O bandwidths are sufficiently large.

Adaptive Parallel Hash Join algorithm (APHJ) [51] uses random scan to read
input relations to obtain bucket distribution in the main memory databases and
detect skew on the fly. The system monitors the frequencies of values of the join
attribute and applies a threshold function to them. If this threshold function is
reached by the join attribute, the buckets corresponding to it are fragmented among
an appropriate number of nodes. Fragmentation requires some replication of input
tuples. To get a good data sample, RIO (Randomization of the Input Order) is
used. The experiments were done on a shared-memory parallel computer and no
comparison with other algorithms. Their conclusion was that the balancing algorithm
they proposed is effective.

Dynamic Balancing Hash Join algorithm (DBJ) [94] checks the distribution at
each checkpoint (after reading 10% of the whole relation, after reading 20%, and so
on). When the workloads are significantly different at a checkpoint, redistribution is
possible and the node that has the largest workload chooses the buckets whose size
is closest to half of the difference between the largest and smallest workloads, and
transfers these buckets to the node which has the smallest workload. The workload



2.3 Parallel Single-Join Algorithms 25

is based on the the size of the buckets from both relations.

Hua et al. [34] compared the performance of the following load balancing al-
gorithms on a shared-nothing parallel computer: (1) no load balancing (similar to
GRACE [52]), (2) conventional bin-packing (similar to ADJ [33]), (3) sampling (simi-
lar to the sampling in [21]), and (4) incremental (similar to DBJ [94]). They concluded
that the sampling method is the best.

Lu and Tan [57] proposed a Dynamic Load-Balanced Join (DBJ) algorithm. In
DBJ, when a node finishes processing all the allocated tasks, it requests load from a
node (called donor node) that has not completed the execution of its allocated tasks .
It uses the hash-based nested-loop join for the local join algorithm. The work in [57]
described how to determine the donor node and how much work should be transfered.

Harada and Kitsuregawa [27] proposed an algorithm that detects and handles
join product skew at runtime. It monitors the join processing speed and compares
the speed with the speed predicted statically. If the difference is significant, result
redistribution or processing task migration is invoked. Processing task migration is
either hash table migration or probe migration depending on the case. They used two
threshold values to detect whether the node is overloaded. From the simulation results
and its implementation on GAMMA, they concluded that this dynamic approach is
effective when compared to VP-RR. However, they only compared it with VR-RR
without any background load.

Distributed Hash Join (DHJ) [83] is an algorithm for the NUMA shared-memory
computer. Thus, it is not directly applicable to clusters. However, it uses a distributed
scheme (no scalability problem) and tries to avoid any form of locking. It does not
do pre-scanning or sampling, which requires synchronization, and does not scale well.
During join processing, an under-loaded node (helping node) decides which other
nodes to help by checking the status of other nodes and selecting overloaded nodes
using a shared-memory mechanism.

Mértens proposed On-Demand Scheduling (ODS) [59). In ODS, join buckets are
assigned to the PNs according to the actual progression of work. Only when a PN
has finished processing a bucket is it assigned the next one. This study assumed the
shared-nothing architecture. The performance of ODS was compared with predictive
scheduling (PS), which uses the idea of the longest processing time (LPT) in single



2.3 Parallel Single-Join Algorithms 26

and multiple user modes. The conclusion was that ODS is 25% better than PS when
the skew is high.

2.3.3 Discussion

A comparison of the algorithms described in the previous section is summarized in
Table 2.2. This table includes SS_EQ, SS_ PR, DS, ChunkNJ, GRACE+, ChunkHJ,
SCHJ, GIHM, and JIHM which are explained in this thesis. “Y” means that the
algorithm takes the factor into consideration. “M” means that the algorithm may
be modified to deal with this factor. The column “BG” indicates background load
disturbance.

A good load balancing/sharing algorithm for a cPDBMS should have the following
characteristics:

o It should be simple and require no pre-scan and no knowledge about input
relations.

e It should work well under one of the cPDBMS characteristics, which is that one
of the PNs acts as a DBMS and has all the input relations.

e It should have the ability to change the partition scheme dynamically and adap-
tively.

e It should be robust relative to the arrival delay and/or transfer rate fluctuations
of input relations.

From Table 2.2 and the above conditions, Kitsuregawa's approach and ODS seem
adequate. However, Kitsuregawa’s algorithm is too complicated and might not be
effective on a cluster. ODS is similar to GRACE+, which is explained in Section
3.3.2.1.

Thus, our recommendation for the load balancing/sharing algorithm. is that it
should be a combination of static and dynamic load balancing algorithms. Also, it
should be an on-demand load sharing scheme.



2.4 Parallel Multiple-Join Algorithms 27
Algorithm DST DSM LBSM { DTM | BG | machines
TPS | RS | JPS
GRACE [52] Y Normal D C GAMMA
Hybrid [75] Y Normal D C GAMMA
RP,SR [21] Y Scalar D C GAMMA
VP-RR,VP-PS [21] Y Scalar D C GAMMA
HJ* [90] Y Zipf D C
T1J,ABJ [33] Y Zipf D C
APHJ [51] Y Zipf I C IBM RP3
DBJ by Zhao [94] Y Normal I C ADEPT
DBJ by Lu [57] Y Zipf A C M
Kitsuregawa [27] Y| Y Scalar A C M | GAMMA
DHJ [83 Y| Y Zipf A D M | TC2000
ODS [59 Y| Y A C Y
SS_EQ,SS_PR S C cluster
DS Y | Y| Y A C Y cluster
ChunkNJ Y | Y| Y Scalar A C Y cluster
GRACE+ Y | Y| Y Scalar A C Y cluster
ChunkHJ Y |[Y| Y Scalar A C Y cluster
SCHJ Y { Y| Y |[Scalar,Zipf| A C Y cluster
GIHM Y |Y Scalar,Zipf I C | cluster
JIHM Y |Y Scalar,Zipf I C cluster

Table 2.2: Comparison of load balancing/sharing algorithms for the single-join op-
eration. The algorithms that are not referenced in column 1 are proposed in this

thesis.

2.4 Parallel Multiple-Join Algorithms

The focus of this section is multiple-join algorithms. First, several non-pipelined hash

join algorithms are discussed. Then, two kinds of pipelined hash join algorithms (Non-

symmetric and Symmetric) are described. Finally, pipelined hash join algorithms for

data integration systems are presented. A classification of these algorithms is given

in Figure 2.3.




2.4 Parallel Multiple-Join Algorithms 28

Non-Pipelined Hash Join (NPHJ)

Pipelined Hash Join (PHJ)

[ Simple (Non—Symmetric (NSPHJ))

Symmetric For Data Integration
(SPHI)

Not For Data Integration

Figure 2.3: A classification of multiple-join algorithms.

2.4.1 Non-pipelined Hash Join Algorithms

Even though non-pipelined Hash Join (NPHJ) algorithms are not dealt with in this
thesis, several algorithms of this type are still worthwhile to introduce since they are
used for traditional query processing. In NPHJs, each join execution is completed
before the start of the next join execution. These algorithms are not suitable for data
integration systems where the Internet transfer delay occurs, as mentioned in Section
1.1. The algorithms presented here determine the number of PNs and which PNs are
allocated for the execution of each join in a query tree.

Chen et al. [15] considered the following factors: operational point selection
(between the minimum time point and best efficiency point) in terms of number of PNs,
execution dependency in terms of join execution order, and system fragmentation
in terms of the utilization of PNs. Alongside a query tree, a bottom-up approach
(sequential execution, fized cluster size, minimum-time point, and time-efficiency point
are presented) is proposed. Also, a top-down approach (synchronous ezecution time,
in which the two input joins to a certain node are completed at approximately the
same time) is proposed. Cumulative erecution cost is used to allocate processors.
The conclusion is that the top-down approach is better than the bottom-up approach
because of system fragmentation. Another conclusion is that the following steps



2.4 Parallel Multiple-Join Algorithms 29

(called two phase query optimization) are effective. In phase 1, the join sequence
heuristic is applied to build a bushy tree to minimize the total amount of work
required, as if under a single processor system. In phase 2, using a synchronous
execution time concept, PNs are allocated to the internal nodes of the bushy tree in
a top-down manner. ‘

Liu [54] proposed the following algorithms based on the query cost model consid-
ering communication overhead and load imbalance on a shared-nothing architecture
connected by a crossbar switch.

The first approach is a non-phased approach, Dynamic Processor Allocation Al-
gorithm (DPAA), in which all ready operations start execution simultaneously by
allocating the optimal number of processors to each operation. When the number of
PNs is large, this allows for good performance.

The second approach is a phased approach, Merge-Point Phase Partitioning Al-
gorithm (MPPPA), in which all ready operations are grouped in the first execution
phase. If an operation’s parent is a merge point, in which its children are all in the
previous execution phases, then the operation remains in this phase; otherwise, it is
moved to the next phase. During the execution, the number of operations are roughly
equal in each phase. Within the phase, local optimization (called time equalization)
is done. In the case where the number of PNs is relatively small, this algorithm is
better than DPAA because of the time equalization mechanism.

2.4.2 Pipelined Hash Join Algorithm

There are two types of Pipelined Hash Join (PHJ) algorithms: simple PHJ (or Non-
Symmetric PHJ (NSPHJ)) [12, 14, 55] and Symmetric PHJ (SPHJ)[89]. In the
NSPHJ algorithm, there are two phases: the table building phase and the table
probing phase. A building relation (the left child in the query execution tree) and
a probing relation (right child) are distinguished. On the other hand, in symmetric
PHJ, there is no such distinction. A hash table is built for each relation.

Lo et al. [55] proposed an algorithm for achieving optimal processor allocation
for pipelined hash joins. They used a NSPHJ and a two-phase min-max optimization
problem (min is for each stage’s execution time and max is for the entire execution

time). Their assumptions are as follows:



2.4 Parallel Multiple-Join Algorithms 30

The total number of PNs available for allocation is fixed.

A lower bound is imposed on the number of processors required for each stage

to meet the corresponding memory requirement.

PNs are available only in discrete units.

Shared-disk architecture is used.
e Each PN has the same size of distributed memory.

Forced constraints are no idling, sufficient memory, and discreet processor allocation.
They obtained a solution by incrementally adding these constraints.

Hsiao et al. [32] proposed a top down processor allocation. It transforms a bushy
tree into an allocation tree in which each node denotes a pipeline. To allocate the
processors to each PN, it uses a cumulative execution cost approach as in [15, 31].
It also uses the concept of synchronous execution to allocate PNs to join sequences
judiciously so that inner relations in a pipeline can be made available approximately
at the same time. This definition is different in meaning from the non-pipelined case
[15, 31].

Wilschut et al. [89] proposed the SPHJ for the main memory parallel database,
PRISMA/DB. It consists of only one phase. As a tuple comes in, it is first hashed
and used to probe that part of the hash table of the other operand that has already
been constructed. If a match is found, a result tuple is formed and sent to the
consumer operation. Finally, the tuple is inserted into the hash table of its own
operand. Compared to the simple hash join algorithm, this algorithm can produce
~ the result tuples earlier during the join process at the cost of using more memory to
store the second hash table. This algorithm was compared with other methods and
demonstrated its effectiveness most of the time.

Jalali and Dandamudi [47] studied the performance of the of NPHJ and SPHJ
on a cluster with an NFS mechanism. The results showed that in most cases the
performance of the NSPHJ with BST is better than the SPHJ.



2.4 Parallel Multiple-Join Algorithms 31

2.4.3 Multiple-Join Algorithms for Data Integration

This subsection introduces the multiple-join algorithms used in the data integration
systems in Section 2.1.3.2. The problems of data integration are as follows [2, 6, 28,
44]:

e absence of statistics on the data in the database;

¢ unpredictable data arrival characteristics from databases (initial delay, slow
delivery, bursty arrival of data);

¢ redundancy among sources;
e hardware (e.g., data allocation in disk) and workload complexity;
e data complexity and run-time fluctuation (estimation error of selectivity);

e user interface complexity with users’ control over their query.

To cope with these difficulties, double PHJ [44] and XJoin [84], which are the
modified versions of the symmetric PHJ [89], have been proposed.

Ives et al. [44] proposed a double PHJ, which consists of two stages: a regular
stage, which is SPHJ, and a cleanup stage, which matches join pairs of tuples by the
use of marking tuples if one of them arrives after the other one has been flushed to
disk.

To address the memory overflow problem, two approaches have been proposed.
One approach is an incremental left flush, which gradually changes to a hybrid hash
algorithm. The other approach is an incremental symmetric flush, which flushes the
buckets of both input relations.

The major advantages of double PHJ are that the latency to the first output of the
join is minimum and the system uses its CPUs efficiently. However, the disadvantage
of double PHJ is that it requires more memory to hold both join relations.

XJoin [84] consists of three stages, each of which is implemented by an independent
thread (with an order of priority). One thread executes SPHJ as long as either of the
input relations continues to arrive at the PN. One thread executes the join memory
portion and disk portion of input relations. The execution of this thread does not



2.4 Parallel Multiple-Join Algorithms 32

depend on the availability of the input relations. The execution is coarse grained and
beneficial when both relations are delayed. A portion of the main memory is reserved
as the data cache. One thread executes the rest of the join to ensure the correctness
of the join.

2.4.4 Discussion

Among the algorithms described in the previous subsection, when the arrival delay
of input relations is taken into account, PHJ gives a superior performance since it
generates the first result earlier than NPHJ. However, there has been no study that
combined background load and data arrival delay.

The advantages of NSPHJ are (1) it uses less memory because only one hash table
for one relation is built, and (2) it discards the probing relation once it finishes probing.
As a result, it uses less disk space and fewer I/O operations. The disadvantage of the
simple PHJ is that it has to wait for the entire hash table to be built prior to the join
operation.

The advantages of SPHJ are (1) it is robust relative to data delay and a bursty
data arrival rate, and (2) the result is generated early. The disadvantages of SPHJ
are (1) it is for the main memory database, so offers no support for join processing
with big relations, and (2) it requires more main memory than NSPHJ since SPHJ
builds two hash tables.

The advantages of double PHJ and XJoin are (1) it is more robust relative to
data delay than SPHJ, since it uses two (double PHJ) or three (XJoin) independent
stages which aim at hiding delay of input relations, and (2) it supports join processing
with bigger relations. The disadvantage of double PHJ and XJoin is that they are
complicated algorithms and have high overheads to ensure the correctness of the join
operation.

From these results, it is not obvious whether NSPHJ or SPHJ is more effective
for a cPDBMS,with or without background load and with or without Internet delay.
Chapter 5 investigates this issue. |



Chapter 3

Non-Symmetric Single-Join
Algorithm

In this chapter, non-symmetric single-join algorithms on a cluster-based PDBMS
(cPDBMS) are studied. As described in Section 1.1, non-symmetric single-join chooses
one of the relations as the main relation. It is effective when we can obtain the in-
formation on the join relations (e.g., cardinality) and one of the relations is relatively
small.

The algorithms are the parallel versions of the nested-loop join and hash join
algorithms and their load balancing/sharing algorithms.

In this chapter, as a preliminary experiment, the performance of nested-loop join
processing and its load sharing/balancing algorithms are presented and evaluated on a
Pentium-based heterogeneous cluster. We then propose a new load-sharing algorithm
called ChunkHJ for single hash join processing. The novelty of this load-balancing
algorithm is that it divides the hash buckets into chunks and uses them for load
balancing. This new algorithm is compared with two other algorithms: an adaptive
nested-loop join and an adaptive GRACE join. These three algorithms were evaluated

on a cluster system with skewed data and various non-query background load.



3.1 Non-Symmetric Single-Join Processing Environment 34

3.1 Non-Symmetric Single-Join Processing Environ-

ment

This section presents the environment in which single-join processing occurs and the

notation used in the description of the algorithms in Sections 3.2 and 3.3.

3.1.1 A System Model

PC PC PC

Figure 3.1: A system model without Internet delay.

This system model is a cluster that can be found in many organizations (see
Figure 3.1). The model has several PCs (henceforth referred to as processing nodes
(PNs)) and many interactive users frequently login and logout. The nodes are used for
back-end database query processing and a dedicated database management system
(DBMS) is attached to one of the PNs. The key idea of this model is to enhance the
existing DBMS for parallel processing using existing clusters rather than replacing
a DBMS with a new PDBMS, as described in Section 2.1.3.1, where we called this
systefn a cluster-based PDBMS (cPDBMS).



3.1 Non-Symmetric Single-Join Processing Environment 35

3.1.2 Non-Symmetric Single-Join Processing System Archi-

tecture

TaskAllocator

T g S

]

|

|

: Cluster
. ! Node 1

|| (STave)(Transter) (STave)(Transfer)

(" Background ) gi (‘Background ) % @

Figure 3.2: Cluster join processing architecture for single-join.

Node n

The cluster-based single-join processing system consists of the software compo-
nents shown in Figure 3.2. The main software components are the TaskAllocator,
DBMS, master, slave, background, and transfer processes.

The TaskAllocator process is invoked by a client and is responsible for the in-
vocation of all other processes described in this subsection. The allocation of these
processes is controlled by a client-specified configuration file. The client can specify
parameters, such as a message buffer size, in this configuration file to execute joins
with the desired configuration.

The DBMS is responsible for data read/write operations to and from its database.
These access requests from the master always go through the DBMS. These DBMS
read/write operations are implemented using C++ file input/output functions, which
is a simple simulation of the read/write operation of a real DBMS.

A master process is invoked for each join in a query and is responsible for making
load balancing/sharing decisions and sending input relations to slaves based on those



3.1 Non-Symmetric Single-Join Processing Environment 36

decisions. The input data are obtained from a DBMS. This process is also responsible
for collecting the results from the slaves and writing them to the local disk.

A slave process is responsible for local join processing and uses the join algorithm
specified in the configuration file. The local join algorithm is exactly the same as the
sequential join algorithm. A message handler for messages from the master and other
processes is added to the slave. Its local disk is used to store temporary files.

Background processes are invoked on the slave nodes to simulate the non-query
background load. Each background process has an on-time and an off-time parameter.
The process is a busy loop followed by a sleep function.

~— Period(30sec)—
BGl1
on =off=
BG2
BG3

Total

Figure 3.3: Three background loads and their total load on a node.

Two types of background loads are used: proportional background load and inverse
background load. In the proportional background load, faster nodes are allocated
more load than slower nodes. This is a simulation of real clusters in which faster
nodes are used as servers, such as HI'TP servers or file servers. Interactive users
also tend to run CPU-intensive, time-consuming programs on faster nodes since they
expect their programs to execute faster. In the inverse background load, slower nodes
are allocated more load than faster nodes. This situation may arise when CPU usage



3.2 Parallel Nested-loop Single-Join Algorithm 37

price is proportional to CPU speed. In this case, many users may run their programs
on slower nodes. Furthermore, it is interesting to see the results in other extreme
opposite case of the proportional background.

This background model is similar to that of Zaki [92], which has maximum load
and duration of persistence. This model can achieve more randomness in the load
function because of three random parameters as shown in Figure 3.3. The parameters
specify the on-time length and are given by a uniform distribution with a maximum
value. In the case of a proportional background load, the maximum values for the on-
time length on fast, medium, and slow nodes are 15, 10 and 5 seconds, respectively. In
the inverse background load, the values are 5, 10, and 15, respectively. These values
are reasonable considering the behaviour of the interactive users and the daemon
processes [4]. The length of the period is set to 30 seconds. The off-time length is
equal to 30 (the length of the period) minus the on-time length.

The transfer process is responsible for transferring buckets from one node to an-
other. The details of the transfer process are described in Section 3.3.2.2.

3.1.3 Notation

In the following description, the notation given in Table 3.1 is used.

The functions used in the pseudocode description in the following subsections are
summarized in Table 3.2. The recv, send, and broadcast functions are based on the
PVM/MPI functions.

Please note that the term global join is used to describe the join on the master and
the term local join is used to describe the join on a slave. The global join algorithm
determines how the two relations, R and S, are distributed on the master. The local
join algorithm determines how these sub-relations are processed on a slave.

3.2 Parallel Nested-loop Single-Join Algorithm

This section begins by reviewing the parallel version of the nested-loop algorithm.
The details of the load sharing methods used in the experiments are then described



3.2 Parallel Nested-loop Single-Join Algorithm 38

Notation Explanation

p the number of slaves

nodeProcPowers | the processing power value of each node
R smaller of the two relations involved in the join
S larger of the two relations involved in the join
X either R or S

Y RUS-X

| R the number of tuples of R

R* the sth partition of R

Ry the hth bucket of R

Rj, the ith chunk of Ry,

Rarr all buckets of R

RJi] the ith tuple of R

RIi. .j] from the ith tuple to the jth tuple of R
n the number of buckets

Z result relation

ZF the kth partial result

SL, a slave

SLarz all slaves

idle(SL,) return TRUE if SL, is currently idle
BR(SL;) the buckets of R that SL, has

VR(R;) the slaves that have R,

LT HT,ST Low, High, Stop Threshold values

Table 3.1: Notation used in the algorithm description.

3.2.1 Nested-Loop Join Revisited

The nested-loop algorithm is the oldest join algorithm and is still used due to its
robustness relative to data skew. In a nested-loop join involving two relations, the

algorithm selects one tuple from one relation (outer relation: R) and scans all tuples

1Kenji Imasaki and Sivarama Dandamudi, “Performance Evaluation of Nested-loop Join Pro-
cessing on Networks of Workstations,” Seventh International Conference on Parallel and Distributed
Systems (ICPADS), pages 537-544, Iwate, Japan, July 2000.



3.2 Parallel Nested-loop Single-Join Algorithm 39

| Name Arguments | Returns | Description
recv srcld, receives a msg from the master
tag, msg or a slave (srcld) with message tag
send destld, sends a msg with a message tag
tag, msg to the master or a slave (destld)
broadcast | tag, msg broadcasts a msg to all slaves
applyHash | relation buckets | applies a hash function to relation (bucket)
or bucket, n and creates n hash buckets
read relation tuples reads from DBMS
startld, endId within the specified index range
execLJ two relations executes the local join algorithm
and stores results in the result buffer;
if the buffer is full, it is sent to the master

Table 3.2: Functions used in the pseudocode description.

in the other relation (inner relation: S) to find a match using the join-key attribute.

When it finds a match, it produces a result tuple in a relation (output relation: Z)

by concatenating the two matched tuples. This process is repeated until there are

no more tuples in relation S. The cost of the nested-loop join is the product of the

number of tuples in R and the number of tuples in S.

Parallelization of the nested-loop join algorithm is straightforward, as shown by

the following description. First, the system broadcasts the entire R (assumes the

smaller relation of R and S) and then scatters S to the PNs according to the criteria

described in Section 3.2.2. After performing the local join, which is a sequential join

operation using the two relations, each PN sends back its result.




3.2 Parallel Nested-loop Single-Join Algorithm

DBMS Master Slave

Initial
Assignment

Join

Adaptive
Assignment

Join

e T TN PO

Figure 3.4: Message diagram of load balancing/sharing algorithms.

Algorithm 3.2.1: PARALLELNESTEDLOOPJOINONMASTER(alg, cSize)

{The master executes a global join using relation R and S}
{Input: algorithm name alg (either SS_EQ, SS_PR, DS);

cSize: chunk size in terms of the number of tuples for DS;
Output:none}

R+ read(“R”,0,|R| - 1) {Message 1 and 2 in Figure 3.4}
broadcast(“Relation”, R)) {Message 3}
tupleCounter + scatter(alg) {See Algorithm 3.2.3}
if (alg is DS)

then while (tupleCounter < |S|) {processing S is not finished}

recv(SLz,“JobRequest”, Zz) {Message 7}
do [ tupleCounter < adaptiveJobAssignment(z, tupleCounter, cSize)
{this is defined in Algorithm 3.2.4}

broadcast(“ProcessEnd” null)




3.2 Parallel Nested-loop Single-Join Algorithm 41

As shown in Section 3.1.2, the master and the slaves are used to implement this
algorithm. Algorithm 3.2.1 shows the pseudocode for the master process. The algo-
rithm to be implemented is given as input. This algorithm can be SS_EQ, SS_PR, or
DS, which is described in the next subsection. Algorithm 3.2.2 shows the pseudocode
for the slave process. The message diagram is shown in Figure 3.4. The pseudocode
also shows the corresponding message number in the diagram.

Algorithm 3.2.2: PARALLELNESTEDLOOPJOINONSLAVE()

{The slave(SLz) executes a local join using relation R and Sx}

{Input:none; Output:none}

recv(master,“Relation”, R) {Message 3}

repeat
recv(master, “Relation”, S*)  {Message 6 and 10}
execLJ(R,S®) {the result is stored in Z*}
send(master,“JobRequest”,Z%) {Message 7 and 11}

until recv(master, “ProcessEnd”, null)  {receive several S tuples in DS}




3.2 Parallel Nested-loop Single-Join Algorithm 42

Algorithm 3.2.3: SCATTER(alg)

{scatter relation S to p slaves}
{Input: algorithm name alg (either SS_EQ, SS_PR, or DS)
{Output:tupleCounter}

tupleCounter + 0
sumQ f NodeProcPower < Y NodeProcPowers {used for SS_PR}
for each SLz where 0 <z <p
do
(if (alg is SS_EQ)
then nTuples + |S|/p
if (alg is SS_PR)
then nTuples + NodeProcPowers|z]/sumO f NodeProcPowers | S|
if (alg is DS)
then nTuples + 0
if (nTuples > 0)
then Sz « read(“S”, tupleCounter, tupleCounter + nTuples — 1)
{Message 4 and 5}
send(SLz,“Relation”, Sz) {Message 6}
| tupleCounter « tupleCounter + nTuples

return (tupleCounter)

3.2.2 Load Balancing/Sharing Techniques for Nested-Loop Join
Algorithms

This subsection discusses load balancing/sharing techniques for nested-loop join algo-
rithms. The main topic of this subsection is the scatter function, whose pseudocode
is shown in Algorithm 3.2.3.

3.2.2.1 Static Scheduling (SS_EQ and SS_PR)

Static scheduling determines how the data is distributed at the compile time. In
database query processing, the query is compiled when it is submitted, and the data



3.2 Parallel Nested-loop Single-Join Algorithm 43

distribution decisions are made at that time using static scheduling.
There are two initial assignment schemes depending on the data distribution:
SS_EQ and SS_PR. These differences are reflected in scatter (see Algorithm 3.2.3).

Equal Distribution (SS_EQ) In this distribution scheme, each slave receives the
same number of tuples regardless of the processing speeds of the slave nodes. SS_EQ
is expected to be slower compared to the other methods since the execution time of
the slowest node, which has the same amount of work as the fastest nodes and thus
finishes its execution last, dominates the whole execution time. However, SS_EQ
might be effective when the processing power of each node is approximately equal
from the user’s point of view in the case that faster nodes process more work and
slower nodes process less work. This situation may occur frequently since users tend
to run their programs on faster nodes to finish the programs as soon as possible and
system administrators tend to run server programs (e.g., file or HTTP servers) on the
faster nodes. In these cases, SS_EQ might be efficient.

Proportional Distribution (SS_PR) In this distribution scheme, each slave
receives a number of tuples in proportion to its processing power known prior to
the query execution. Node processing power for each node is stored in the array
NodeProcPowers and is affected by the CPU speed, main memory size, and cache
memory size. This node processing power can be obtained from experiments [77]
using local join processing with no background load. SS_PR should surpass SS_EQ
when there is no background load since all the nodes finish their work at approximately
the same time. Its execution time is expected to be shorter than SS_EQ.

3.2.2.2 Dynamic Scheduling (DS)

The pseudocode for this algorithm is shown in Algorithm 3.2.4.



3.2 Parallel Nested-loop Single-Join Algorithm 44

Algorithm 3.2.4: ADAPTIVEJOBASSIGNMENT(S Lz, tupleCounter, cSize)

{The master reads the next S tuples and sends them to SLz}
{Input: the job-requested slave(SLz) and tupleCounter,

cSize: chunk size in terms of the number of tuples;
Output: tupleCounter}

Sz + read(S[tupleCounter...tupleCounter + cSize — 1))
{Message 8 and 9}

send(SLz,“Relation”, Sz) {Message 10}

tupleCounter + tupleCounter + cSize

return (tupleCounter)

Dynamic scheduling determines the data distribution at run time. Its execution
steps are as follows. First, the master assigns initial work to slaves. After a slave
finishes its work, it requests more work from the master. Thus, this algorithm uses
demand driven (DD) work assignment. As described in Section 2.3.3, this adaptive
feature is necessary for the load sharing algorithms on clusters. The data distribution
is affected by the run time environment, such as the current load and the size of the
available memory of each node. This scheduling is expected to be better than static
scheduling when there is node heterogeneity and/or there is background load.

In Section 3.3, a variation of DS called ChunkNJ is also introduced in comparison
to hash join algorithms. ChunkNJ is identical to this algorithm except for its local
join algorithm. The local join algorithm is changed from the nested-loop join to the
hash join to obtain superior performance.

The advantage of these algorithms is that its execution time does not depend on
initial data skew since it is based on the nested-loop join (global join). Join product
skew and load changes on a slave caused by background load can be handled by the
adaptive feature of this algorithm.

However, its disadvantage is the overhead in broadcasting one of the relations
involved in the join to all slaves. Furthermore, the hash table for the broadcasted
relation in the local join is larger than those obtained using other hash-based join
algorithms.



3.3 Parallel Hash Single-Join Algorithm 45

3.3 Parallel Hash Single-Join Algorithm

This section starts with reviewing a hash join algorithm. Then, the load balanc-
ing/sharing algorithms for join processing on clusters are proposed.?

3.3.1 Hash Join Revisited

A hash join algorithm consists of two phases: a table building phase and a table
probihg phase. A hash table is built using one of the relations (usually the smaller
of the input relations) and the tuple of the other relation is used to probe the hash -
table. Parallelization of a hash join is also straightforward. Both relations are divided
into disjoint sets (hash buckets) and scattered. The tuples belonging to the buckets
with the same hash value can be joined independently in parallel.

3.3.2 Load Balancing/Sharing Techniques for Non-Symmetric
Hash Join Algorithms

3.3.2.1 Adaptive GRACE Hash Join (GRACE+)

ChunkNJ suffers from the overhead in broadcasting a relation unless clusters have a
special broadcast network. To avoid this overhead, GRACE+ is considered, which is
based on the GRACE hash join [52] and includes demand-driven work assignment.
The demand-driven work assignment is one of the ways to deal with dynamic changes
in the background loads on the slaves.

General Algorithm Description The master and the slaves are used to imple-
ment this algorithm. This algorithm first reads relation R and S and builds hash table
for each relation. Then, using an adaptive assignment, the master sends a specified
number of hash bucket pairs to a slave. The slave works on the join of the hash bucket
pairs. After it finishes the join, the slave requests the master for the next hash bucket

pairs.

?Kenji Imasaki and Sivarama Dandamudi“An Adaptive Hash Join Algorithm on a Network of
Workstations,” International Parallel and Distributed Processing Symposium (IPDPS), on CD-ROM,
Fort Lauderdale, Florida, April 2002.



3.3 Parallel Hash Single-Join Algorithm

46

Algorithm 3.3.1 shows the pseudocode for the master process. Algorithm 3.3.3

shows the pseudocode for the slaves.

Algorithm 3.3.1: GRACEONMASTER(cSize)

{Adaptive GRACE algorithm on master}
{Input: c¢Size is chunk size in terms of the number of buckets;
Output: none}

R + read(“R”,0,|R| — 1) {Split phase}

Rurr, + applyHash(R,n) {See Algorithm 3.3.6 without SendInit}
S « read("s”,0,|S| - 1)

Sarr < applyHash(S,n)

bucketCounter < 0

for each SLx where 0 <z <p {Join phase}

send(S Lz, “Relation”, RpucketCounter. bucketCounter +cSize)

do { send(S Lz, Relation”, SyucketCounter. bucketCounter-+cSize)

| bucketCounter < bucketCounter + cSize

while (bucketCounter < n)

( recv(SLz,“JobRequest”, Z%)

do < bucketCounter + AdaptiveJobAssign(SLz,bucketCounter, cSize)
{See Algorithm 3.3.2}

\
broadcast(“ProcessEnd”, null)

Algorithm 3.3.2: ADAPTIVEJOBASSIGN(S Lz, bucketCounter, chunkSize)

{Adaptive job assignment for GRACE+}
{Input: the job-requested slave (SLz); bucketCounter,

chunkSize is the number of buckets not the number of tuples
Output: bucketCounter}

S end(s Lz ) “Relation”, RbuclcetCounter..bucketCounter+chunkSize)
§ end(S Lz ) “Rela'tion”7 SbucketCounter..bucketCounter+chunkSize)
bucketCounter + bucketCounter + chunkSize

return (bucketCounter)




3.3 Parallel Hash Single-Join Algorithm 47

Algorithm 3.3.3: GRACEONSLAVE(chunkSize)

{Adaptive GRACE algorithm on Slave}
{Input: chunkSize; Output:none}

repeat
( recv(master, “Relation”, Ry _chunksize) {R buckets are sent first}
recv(master, “Relation”, So_chunksize) {R buckets are sent next}
for each h where 0 < h < chunkSize

do ezxecLJ(Ry,S,) {the result is stored in Z*}
| send(master,“JobRequest”, Z%)

until recv(master,“ProcessEnd” null)

Advantages and Disadvantages The advantage of this algorithm is that the
master sends only the necessary tuples to the slaves. Thus, there is no overhead
associated with broadcasting one of the relations as in ChunkNJ discussed in Section
3.2.2.2.

However, its main disadvantage is that the join start time is delayed because the
master has to wait for both relations to be sent from the DBMS. Furthermore, slaves
should wait for the data to be sent from the master. Another disadvantage is that the
unit of chunking of this algorithm is the number of buckets. Thus, there is no control
over the chunk size in terms of the number of tuples. As a result, the algorithm cannot
deal with the extreme skew case, where many tuples have the same key value in the
input relations. There are also memory restrictions in that the master is required to
hold two relations in its main memory prior to the join execution.

3.3.2.2 Chunk-based Hash Join (ChunkHJ)

ChunkHJ tries to combine the best features of ChunkNJin Section 3.2.2.2 and GRACE+.
This algorithm creates chunks of Sy (S}) by setting three threshold values: a Low
Threshold (LT), High Threshold (HT), and Stop Threshold (ST) on the hash table
in the master, as shown in Figure 3.6(a). LT is determined by the communication
overhead involved in sending a chunk. HT is also determined by the communication



3.3 Parallel Hash Single-Join Algorithm 48

overhead involved in sending both chunks. ST depends on the amount of memory
available. ,

When the number of tuples in a bucket of S (]Sk|) is above one of these threshold
values, the master takes the following actions to create a chunk of bucket S (Si): if
the number of tuples is greater than LT, then the master sends S: to an idle slave
that has the other matching bucket; if it is greater than HT, the master sends S} to
an idle slave; if it is greater than ST, the master stops reading tuples of S from the
DBMS, waits for a slave to become idle and sends S} to the idle slave.

There are two occasions to check these threshold values. One is when a new
tuple is inserted into the hash table on the master, and the other is when an idle
slave sends a work request message. The algorithm used in the former case is called
the sender-initiated algorithm and the algorithm used in the latter case is called the
receiver-initiated algorithm. Note that “sender” refers to the master and “receiver”
refers to a slave. The combination of these two algorithms is needed to obtain strong

performance in join processing on clusters.

General Algorithm Description Algorithm 3.3.4 shows the pseudocode for the
master process. Algorithm 3.3.5 shows the pseudocode for the slave process.



3.3 Parallel Hash Single-Join Algorithm

49

Algorithm 3.3.4: CHUNKHJONMASTER(partitionSize)

{ChunkHJ algorithm on Master}
{Input: partitionSize for relation S; Output: none}

R ¢+ read(“R”,0,|R]-1)
Ryrp + applyHash(R,n)
invoke Initial Bucket Balancing
nPartitions < |S|/partitionSize
{Loop (1) and (2) are interleaved}
(1)for i < 0 to nPartitions — 1
St + read(“S”, i * partitionSize, (i + 1) * partitionSize — 1)
do < S%,, < applyHash(S, n)
{See Algorithm 3.3.6 and SendInit(tuple,h) in Figure 3.5 is invoked}
(2)while (processing R and S is finished)
do RecvInit(SLz) {See Figure 3.10}

broadcast(“ProcessEnd”, null)

Algorithm 3.3.5: CHUNKHJONSLAVE()

{Adaptive ChunkHJ algorithm on Slave (SLx)}
{Input: none; Output: none}

repeat
( recv(master, “Relation”, X)
if (X is R)
then o = X _ .
3 recv(master,“Relation”,S?)

else {S; — X
execLJ(R,, St)
\ send(master, “JobRequest”, null)

until recv(master, “ProcessEnd”, null)




3.3 Parallel Hash Single-Join Algorithm 50

Algorithm 3.3.6: APPLYHASH(X,n)

{apply a hash function to each tuple in X}
{Input: relation (or tuples) X (either relation R and S); Output: none}

for i «+ 0 to | X|
o h + HashFunction(X[i])
SendInit(X[i],h) {See Figure 3.5}

Initial Bucket Balancing Scheme During the initial stage, load balancing is done
by changing the hash function according to the distribution of the building relation.
This is because imbalances in the building relation are worse than imbalances in the
probing relation [21]. However, balancing the building relation may introduce skew
in the probing relation.

The following balancing schemes are implemented. In the following algorithms
[21], the partition scheme, which was explained in Section 2.3.1.3, is changed:

¢ Load balancing (NB) when the number of buckets is the same as the number of
PNs and one bucket pair (one for R and one for S) is assigned to a PN;

e Round Robin load balancing (VP-RR) when the number of buckets is more
than the number of PNs and the mapping from a bucket to a PN is done in

round-robin fashion;

¢ Bin Packing load balancing (VP-BP) when the number of buckets is more than
the number of PNs and the mapping from a bucket to a PN is done in a bin-
packing fashion (balancing the load of each PN).

Sender-Initiated Algorithm The sender-initiated algorithm is explained using
the example of Figure 3.6. The main flowchart is shown in Figure 3.5. When a tuple
of S is inserted into the hash table, the master checks the number of tuples in each
bucket. When the number of tuples in a bucket is greater than ST, the bucket should
be sent to any idle slave as soon as possible since it is an emergency situation. The
master stops reading tuples from the DBMS and waits for a work request message
from SL,, since the number of tuples in the bucket has reached the limit.



3.3 Parallel Hash Single-Join Algorithm 51

SenderInit(tuple,h)
tuple : a tuple to be inserted
b : hash value of the tuple

insert tuple into a hash table

|Sh| >= ST?

Wait for a job request from SLx

RSTransfer
|Sh| >= HT? S w S
Y Y
x <— FindSlave("HT",h) x<— FindSlave("LT",h)
L J
|
RSTransfer

( stop B

Figure 3.5: Sender-initiated algorithm flowchart.

When the number of tuples of a bucket is greater than HT (in the case of Figure
3.6(a), S%), the master tries to find an idle slave. If the master can find such a slave, it
sends the bucket (S2) and the other matching bucket (R;) if necessary. For example,
if SLo, which has Ro already (according to Figure 3.6(b)), is idle at that time, the
master sends only the bucket (S3). However, if SL;, which does not have the other
matching bucket (Ry), is idle at that time, the master sends the bucket (S2) and the
other matching bucket (R;). The master sends the bucket (Rp) directly or asks a slave
with the bucket to send it. The details of this transfer will be described later. If the
master cannot find an idle slave, the master does not take any action and continues
to read tuples of S from the DBMS.



3.3 Parallel Hash Single-Join Algorithm 52

ST
SL o Re Ru
HT
SL :
SL : Rz
LT —
SL s Rs
So Si 83 s}
{(a) Hash table (b) Buckets at the slaves

Figure 3.6: An example of a hash table on the master and the buckets at the slaves.

When the number of tuples is greater than LT but less than HT (S}), the master
tries to find an idle slave with the matching bucket (R;). If the master can find such
a slave, it will send the tuple (S!). For example, if SLy is idle at that time, the master
sends the bucket chunk (S1) to SLy. If the master cannot find such a slave, the master
leaves it and continues to read tuples of S from the DBMS.

ChunkH.J looks similar to the Subset-Replicate algorithm given in [21]. However,
this algorithm dynamically (reflected by various types of data skew) and adaptively
(reflected by the system status) makes subsets (or chunks) and replicates the other
matching bucket. This process is executed concurrently when reading the tuples of S
from the DBMS as shown in (1) and (2) in Algorithm 3.3.4. As a result, execution
of the sender-initiated algorithm and the receiver-initiated algorithms is interleaved.
Furthermore, slaves can replicate the bucket among themselves without involving the
master.

The FindSlave function finds an idle slave with the other matching bucket. The
main flowchart is shown in Figure 3.7. In this flowchart, v! is calculated first. v1 is
a list of all slaves (in case of HT) or slaves that have R) (in case of LT). Then, v2
is calculated. 2 is a list of idle slaves that are in vl. Finally, a slave is randomly
selected from v2 when there are several candidate slaves which satisfy the condition,
since the system is rather small (less than 8 slaves) and there are few idle slaves in



3.3 Parallel Hash Single-Join Algorithm 53

FindSlave(c,h)
c : IILTIl 01' "HTII
h : hash value

N——

I vl <~ VR(Rb) | | vl <~ SL au

IL l

” for all Slaveld x in v1 H

l Y

| insert SLX into v2 |

|
1
| x <— random select in v2 ]

|
| retum x “l

Figure 3.7: FindSlave flowchart.

the system. More sophisticated algorithms should be used for a larger system.

The RSTransfer (shown in Figure 3.8) function transfers both R and S buckets.
The following Transfer Policies (TP) are designed to transfer the matching bucket
(R bucket): (1) the master is always used to transfer the S bucket (TP-MA); (2)
the master is used when it is idle (no messages in its message queue); otherwise, the
master will ask one of the slaves with the R bucket to transfer the bucket ( TP-MI); (3)
the master is used when it is idle; otherwise, the master will ask one of the Transfer
processes with the R bucket to transfer the bucket (T'P-MIT); (4) the master always
asks one of the transfer processes with the R bucket to transfer it (TP-TA). Except
for the TP-TA, which never uses the master for such a transfer, the master should
.keep the buckets in its local disk.

The Transfer process (shown in Figure 3.9) is used to transfer an R bucket or S



3.3 Parallel Hash Single-Join Algorithm 54

RSTransfer(h,x,Rtrans,Strans)
h:hash value

x:slaveld
Rtrans,Strans:indicate transfer

e

Y

Transfer("S",h,x)

Rtrans? —
Y

Transfer("R",h,x)
|

STOP

Figure 3.8: RSTransfer flowchart.

bucket from one node to another.

Receiver-Initiated Algorithm The Receiver-initiated algorithm is also explained
using the example of Figure 3.6. The main flowchart is shown in Figure 3.10. This
algorithm is invoked when a slave (SL;) requests work from the master after it has
finished processing the previously allocated chunk. This algorithm is very similar to
the sender-initiated algorithm discussed previously.

First, the master tries to find the bucket for which SL, has the other matching
bucket, with the number of tuples in the bucket being greater than LT. For example,
in Figure 3.6, if SLg, which has Ry and R;, requests work from the master, the master
sends S} since |S}| is greater than LT and SLy has R;. If the master cannot find such
a bucket, the master tries to find the bucket such that the number of tuples in the
bucket is greater than HT. If SL;, which does not have any bucket, requests work
from the master, the master sends S2 since |S2] is greater than HT. The master also
sends Ry to SL; by RSTransfer, since SL; does not have Rs.



3.3 Parallel Hash Single-Join Algorithm 55

Transfer(c,h,x)
¢"S" or "R"
hehash valu
x:slaveld

| Bucket <— Sh I I Bucket <~ Rh
; J
?w N
Y
I g<-HT l | g <— [Bucket| 7

[ |

[
I X <— Pack Bucket (only g tuples) |

| send(SLx,"Relation”,X) |

STOP

Figure 3.9: Transfer flowchart.

The FindBucket function (shown in Figure 3.11) finds a bucket in which the num-
ber of tuples is greater than the value specified in the parameter. This value is either
LT or HT. In this flowchart, b1 is a list of all buckets (in the case of HT) or R buckets
that SLx has (in the case of LT). Then, b2 is calculated. 52 is a list of R buckets in
which the number of buckets is greater than HT or LT. Finally, a bucket is randomly
selected from b2 when there is more than one such R buckets.

Advantages and Disadvantages This algorithm is robust with respect to various
types of skew since when the bucket is skewed, the number of slaves that work on the
bucket changes dynamically and incrementally depending on the data skew and back-
ground load. This algorithm also corrects redistribution skew caused by an incorrect
prediction of distribution by using an incremental or sampling method. Even a simple
distribution scheme such as the round-robin scheme may work with this load sharing



3.3 Parallel Hash Single-Join Algorithm 56

RecvInit(SLx)
SLx : idle slave

y <— FindBucket("LT",LT,x)

N

Y

y <— FindBucket("HT",HT,SLx)

@Y

N

RSTransfer
[

l STOP I

Figure 3.10: Receiver-initiated algorithm flowchart.

algorithm. In addition, the combination of sender-initiated and receiver-initiated al-
gorithms results in a robust algorithm in the presence of data skew and background
load on PNs.

However, the disadvantage lies in the overhead in transferring the other matching
buckets. Furthermore, join start time is delayed because the master has to wait for
one of the relations to be sent from the DBMS. In addition, slaves should wait for the
relation to be sent from the master as well. Nevertheless, this delay is not as large
as in GRACE+ in Section 3.3.2.1, in which both relations should be read and sent
before starting the join processing.



3.4 Experimental Environment 57

FindBucket(c,value,SLx)

c: "LT" or "HT"
value : actual value of ¢
SLx : idle slave

— =T

Y

r bl <- BR(SLx) | [ bl <- Raw J

[ |

=

[rfor all Bucketld i in bl ii___

| Y

’ insert i into b2 ’

r
I
Ij h <— random select in b2 ]

l return h I

Figure 3.11: FindBucket algorithm flowchart.

3.4 Experimental Environment

3.4.1 Hardware Environment

The hardware system used in this experiment is an inexpensive Pentium P1 based
cluster system.?

The hardware system that we used consisted of 2 Pentium 133MHz (join processing
power is 100, called slow nodes), 2 Pentium 166MHz (125, medium nodes), and 2
Pentium Pro 200 MHz (264, fast nodes). All nodes had 32MB of main memory and
were connected by Ethernet. This system simulates a cluster with node heterogeneity
found in most cluster environments.

These nodes are interconnected with a 10 Mbps network as well as with a 100
Mbps 100 Base TX high-speed network. The 10 Mbps network is used for booting

3These experiments were conducted during 1998-2000.



3.4 Experimental Environment 4 58

the system and providing basic communications and remote file service through NFS.
The 100 Mbps network is connected with a switch that has a 2 Gbps backplane.

3.4.2 Software Environment

A software system is developed to simulate parallel database processing under various
parameters. The overall software system was written in GNU C++ version 2.7.1 and
the PVM 3.3 library [24]. As for the PVM parameters, PvmAllowDirect is used for
the routing method and PvmDataDefault is used for the data packing method. The
parameters used in this experiment are shown in Table 3.3.

Parameter Value
Input message buffer 140 (KBytes)
Output message buffer 140 (KBytes)
The DBMS node (slow network) slow node
The DBMS node (fast network) fast node
The master node (slow network) slow node
The master node (fast network) fast node
Slave nodes 2 slow, 2 medium, 2 fast nodes

Table 3.3: Default parameter values used in the experiments.

3.4.3 The Experimental Database
3.4.3.1 Database Schema

The database consists of two relations, R and S. Each tuple has an integer key and 10
byte characters for a total of 14 bytes for each tuple. Each tuple of the result relation
has a 24 byte tuple length (20 byte characters from R and S plus the 4 byte integer
key).

In the case of nested-loop join experiments, the size of the input relations R and
S is 10* and the result relation should have 10* tuples as well, since there is no skew
in input relations.



3.5 Experimental Methodology 59

In the case of hash join experiments, the size of relation R is fixed at 10° and the

size of relation S varies from 10 to 105.

3.4.3.2 Skew Generation

In order to change the skew factor of the relations, a scalar skew model is used
[21, 27]. In this algorithm, for a relation of size |R|, in each attribute the value
1 appears in a fixed number of tuples, while the remaining tuples contain values
uniformly distributed between 2 and |R|. For example, if |R| = 200 and skew factor
is 10, relation R has 10 tuples with an attribute of 1 and 190 tuples with attribute
values that are uniformly distributed between 2 and 200. In our experiments, we use
103, 10%, and 10° skew factors for R and S.

It is worth mentioning that the input order is randomized, thus, even if the data
does not have skew, buckets are filled at random.

3.5 Experimental Methodology

Experiments are done in the following way. First, we experiment with the load
sharing/balancing algorithms for the nested-loop join algorithm. Skewed relations
are not considered since nested-loop is generally robust with respect to the data
skew. We compare the algorithms with no background, proportional, and inverse
background load cases.

Next, we experiment with the load sharing/balancing algorithms for the hash join
algorithm. First, we conduct preliminary experiments to decide the default values,
using no data skew or background load cases. Then, we test the algorithms with data
skew but without background load. Finally, we test the algorithms with data skew
and proportional and inverse background load cases. In terms of data skew, one-sided
skew (only one relation has skew) and two-sided skew (both relations have skew) are

used with these background load scenarios.



3.6 Experimental Results 60

1.4 .
SS_EQ ——
13} _E,-f"'a'-_ SS_PR —+—— |
e DS -8

1 '2 L ‘ ',_.ll ]

1

Relative speedup

09}/

0.8 N

0'7 " n 1 " i
100 1000 10000
Chunk Size (bytes)

Figure 3.12: The relative speedup without background load using the slow network.

3.6 Experimental Results

3.6.1 Results for Nested-Loop Join

The experimental results of nested-loop join and its load balancing algorithms de-
scribed in Section 3.2 are presented in this subsection. The graphs show speedup
relative to SS__EQ. The results reported here are based on an average of 30 runs.

3.6.1.1 Performance with No Background Load

The relative speedup of SS_PR. and DS without the background load on the nodes
using the slow (10 Mbps) network is shown in Figure 3.12.

Comparing SS_EQ and SS_PR, SS_PR is 23% better than SS_EQ because the
work is distributed in proportion to the processing power of each node obtained prior
to execution in SS_PR. In SS_ PR, the slow nodes, whose execution time dominates
the entire execution time, process less work and finish their execution at approxi-
mately the same time as the fast nodes. Accordingly, the overall execution time is
reduced. If SS_PR/, which is a variation of SS_RR in which work is distributed



3.6 Experimental Results 61

1.4 T

................... x* SS_EQ ——
el . SS_PR —-x—
1.3 5 i e
g M2
8 5 3
o 11f
(7]
S 1
C 09} / 4
08f |
0.7 4 I oo, E
100 1000 10000
Chunk Size (bytes)

Figure 3.13: The relative speedup without background load using the fast network.

proportionally to CPU speed, had been implemented, its performance would have
been intermediate between that of SS_EQ and SS__PR. The reason for this is that
SS PR’ is better than SS_ EQ since the slow nodes process less work, as is the case
with SS_ PR, but the distribution is not as accurate as in SS_ PR; accurate distribu-
tion reflects the current node processing power affected not only by CPU power, but
also by the available memory size, cache size and other factors.

In DS, the performance peaks at a chunk size of 7KB (5% of 10,000 tuples in S).
Interestingly, when the chunk size is carefully chosen, namely, between 1KB (0.7% of
10,000 tuples in S) and 7KB (5% of 10,000 tuples in S), DS outperforms SS_EQ by
25%-35% and SS_PR by 5% — 10% even without background load. This demonstrates
the effectiveness of DS and the imperfections of the processing power data of each
node in this system, obtained by Soleimany [77], due to factors like network load
variation. If the data had been perfectly accurate, DS could not have outperformed
SS_PR due to the communication overhead of DS, as shown in Figure 3.4.

The relative speedup without background load using the fast (100 Mbps) network
is shown in Figure 3.13. Even though the shape of the graph is almost the same as in



3.6 Experimental Results ‘ 62

Relative speedup nBG=1

1.4 ; .
e SS_EQ ——
1.3 | AT e x SS_PR ——x— -

x S DS rne eeean

11}

09
0.8
0.7

Relative speedup
£

0.5 - .
100 1000 10000

Chunk Size (bytes)

Figure 3.14: The relative speedup with proportional background load using the fast
network (the number of background load is 1 process).

Figure 3.12, the relative speedup of DS and SS_ PR is higher than the values in Figure
3.12. The execution time shows an improvement (compared to the slow network case)
of about 16% (SS_EQ), 20% (SS_PR), and 25% (DS: at the peak using 7KB chunk
size). The reason for this DS’s better improvement is that many communications are
involved in DS, as shown in Figure 3.4, and the fast network reduces the overhead in

these communications.

3.6.1.2 Performance with Proportional Background Load

The relative speedup of SS_PR and DS with a proportional background load (1 and
3 processes) using the fast network is shown in Figures 3.14 and 3.15, respectively.
As described in Section 3.1, with the proportional background load, faster nodes have
greater background load than the slower nodes.

Between SS_EQ and SS_PR (in Figures 3.14 and 3.15), SS_EQ is worse when
the background load is 1 process and better than SS_PR when the background load
is 3 processes. We also conducted experiments with other numbers of background



3.6 Experimental Results 63

Relative speedup nBG=3
1.4 Y %

, 'SS_EQ ——

13} SS_PR ——x——
X DS e

12 } ]

1.1 s 4(

1 : 4 :

0.9 - ."..u'

0.8 |

0.7 }

0.6

0.5 L L
100 1000 10000

Chunk Size (bytes)

Relative speedup

Figure 3.15: The relative speedup with proportional background load using the fast
network (the number of background load is 3 processes).

processes. The relative speedups of SS_ PR obtained are 1.30, 1.05, 0.82, 0.89, and
0.96 for the background loads ranging from 0 to 4 processes, respectively. When the
background load is 0 or 1 processes, SS_PR is faster than SS_EQ, since the data
processing power obtained prior to the execution reflects the actual processing power
in SS_ PR because of little or no interference from background load. However, when
the background load is 2 processes, the actual processing power of all processing nodes
is roughly equal. As a result, SS_EQ becomes faster than SS_PR. As the background
load increases to 3 and 4 processes, SS_EQ becomes slower since the slow nodes have
a background load of 3 or 4 and their share of work is equal to that of the fast nodes.
Even though the background load is relatively light, the performance deteriorates
since processing speed is slow.

When DS and SS_EQ are compared, the relative speedup is 15%—-35% between
0.7KB (0.5% of 10,000 tuples in S) and 7KB (5% of 10000 tuples in S). When DS and
SS_PR are compared, the relative speedup is 20%-30% (when the background load
is 1 process) and 30%-45% (when the background load is 3 processes) with the same



3.6 Experimental Results 64

chunk size.

3.6.1.3 Performance with Inverse Background Load

Relative speedup nBG=1

. TTSS_EQ ——
1.9 e SE T
18 + * DS x|
177 i
15}

14}
13} /
1.2

Relative speedup

100 1000 10000
Chunk Size (bytes)

Figure 3.16: The relative speedup with inverse background load using the fast network
(the number of background load is 1 process and SS__EQ is 1).

The relative speedup of SS_PR and DS with an inverse background load (the
background loads presented here are 1 and 3 processes) using the fast network is
shown in Figures 3.16 and 3.17, respectively. As described in Section 3.1, using
inverse background load, the faster nodes have a lighter background load and the
slower nodes have a heavier background load.

Between SS_EQ and SS_PR, SS_PR is 50%-60% better. We also conducted the
experiments with other numbers of background processes. The relative speedups of

- SS_PR obtained are 1.30, 1.58, 1.55, 1.55, and 1.66 for the background loads ranging
from 0 to 4 processes. The reason for this difference is the same as in the case with
no background load. However, these values are much larger than in the case with
no background load. This is because the slow nodes in SS_EQ become slower than
those in SS_PR as a result of the inverse background load.



3.6 Experimental Results 65

Relative speedup nBG=3

P 'S5 EQ ——
19 } SSEQ —— |
18| /g e DL ——
7t

15F 7 ;

14 5
13}
12 }

1.1

Relative speedup

T
1

1

100 1000 10000
Chunk Size (bytes)

Figure 3.17: The relative speedup with inverse background load using the fast network
(the number of background load is 3 processes and SS_EQ is 1).

DS outperforms SS_EQ by 80%-95% between 0.7KB (0.5% of 10,000 tuples in
S) and 7KB (5% of 10,000 tuples in S). When these results are compared with the
proportional background load used in Figures 3.14 and 3.15, the relative speedup is
higher. This is because the slow nodes become slower in SS_EQ due to the inverse
background load. In DS, the work that was done by the slow nodes in SS_EQ now
goes to the fast nodes. DS also outperforms SS_PR by 20%-40% with the same

chunk size range.

3.6.2 Conclusions for Nested-Loop Single-Join Algorithm

In this section, the performance of nested-loop join processing and its load balanc-
ing/sharing algorithms on a cluster are evaluated. Three load balancing/sharing algo-
rithms are considered for parallel nested-loop join algorithms: static equal scheduling
(the work distribution is equal on all nodes), static proportional scheduling (the work
distribution is based on node processing data obtained prior to query execution),
and dynamic scheduling with fixed-chunk size. These algorithms were evaluated on



3.6 Experimental Results 66

a heterogeneous cluster with two kinds of random background loads: proportional
(more background load on faster nodes) and inverse (more background load on slower
nodes) load using slow and fast networks. The results show that the dynamic schedul-
ing outperforms both static equal scheduling and static proportional scheduling when
we select an appropriate chunk size. For most of the cases in the experiments, the ef-
fective chunk size was from 0.7KB (0.5% of the S) to 7TKB (5% of S). Using dynamic
scheduling with this chunk size, a significant improvement over static scheduling,
which is independent of the background load and the speed of the network, was
obtained.

Even without background load, if the chunk size is appropriate, dynamic schedul-
ing can obtain good improvements (up to 50%) over static equal scheduling. There
is also a slight improvement over static proportional scheduling using slow (10 Mbps)
and fast (100 Mbps) networks.

With proportional background load and a specific quantity of proportional back-
ground load (in this experiment, 2), static equal scheduling performs better than
static proportional scheduling, since the processing power of each node can be seen
as equal. The performance of dynamic scheduling with proportional background load
demonstrates better improvement over static equal scheduling than no background
load case. With inverse background load, the improvement over static equal schedul-
ing is much higher than proportional background case.

3.6.3 Results for Hash Join

The experimental results for the hash join and its load balancing/sharing algorithms,
described in Section 3.3, are presented in this subsection.

3.6.3.1 Default Parameter Values for ChunkHJ

The default values for the algorithm ChunkHJ used in the experiments are shown in
Table 3.4. These results are obtained from several preliminary experiments. These
values are chosen so as to achieve a reasonable performance in all cases.



3.6 Experimental Results 67

| Parameter Name Value

Threshold values when |S| = 10° | 100,000(Stop), 4,000(High), 1,000(Low)
(the number of tuples)
Threshold values when |S] = 10° | 100,000(Stop), 10,000(High), 1,000(Low)
(the number of tuples)

Transfer policy the master is always used (TP-MA)
Initial load balancing policy Virtual Processor Round Robin (VP-RR)
The number of S chunks 10
from the DBMS to the master
The number of buckets 100

(virtual processors)

Table 3.4: Default parameter values for ChunkHJ.

3.6.3.2 Performance with No Data Skew and No Background Load

Figure 3.18 shows the execution time of ChunkNJ and GRACE+ when the number of
tuples of S is varied from 10* to 108. Figure 3.18 shows the execution time of ChunkNJ
when the chunk size is varied from 1KB to 10KB. These chunk sizes are set according
to the results in Section 3.6.1. For the purpose of comparison, the figure also includes
the performances of static load balancing algorithms SS-EQ-NJ and SS-PR-NJ from
Section 3.2.2. * .

The results show that ChunkNJ is very effective compared to SS-EQ-NJ and SS-
PR-NJ as the size of relation S increases. These results support the conclusion in
Section 3.6.2 with the change of the local join algorithm; the dynamic scheduling in
Section 3.2.2.2 used a nested-loop join for its local join algorithm and ChunkNJ uses
a hash join algorithm. The improvement of ChunkNJ over SS-EQ-NJ and SS-PR-
NJ is also due to its adaptive nature, which is the same as DS. This improvement
is important even with no data skew since clusters are heterogeneous in general as
described in Section 1.1. The adaptive algorithm automatically assigns the work
according to the real processing speed of each PN reflected by its CPU speed, the
size of main memory, and other factors. Another reason for this improvement is that
SS-EQ-NJ and SS-PR-NJ have to wait for both relations to be read completely from

4The NJ suffix is added to indicate they are based on a global Nested-loop join.



3.6 Experimental Results 68

1000 — T
chunkSize=1000 —_—

900 I chunkSize=4000  -—-x--- P

800 | chunkSize=7000 -~ weeene s
700 | ChunkSize=10000  —e—
8 SS-EQ-NJ S —
S 600 [ SS-PR-NJ NP P 7
£ “
= .

Number of Tuples of S

Figure 3.18: The performance of ChunkNJ with no data skew and no background
load.

the DBMS prior to join execution. On the other hand, ChunkNJ can start working
on the joins before the two relations are read completely.

As for the appropriate chunk size selection of ChunkNJ, 4KB and 7KB are better
than other chunk sizes. However, the performance difference when the wrong chunk
size is chosen is small (less than 10% of the entire execution time). This means that
finding the optimal chunk size is not necessary to obtain good performance.

Figure 3.19 shows the execution time of GRACE+ when the chunk size is varied
from 1 to 10. It should be noted that the chunk size is based on the number of buckets,
not the number of tuples as in ChunkNJ. The figure also includes the performance
of SS-EQ-HJ °. The results show that GRACE-+ is better than SS-EQ-HJ. However,
the performance differences are not as large as in Figure 3.18. This is because both
S$S-EQ-HJ and GRACE+ have to wait for both relations to be read completely prior
to the join execution. The waiting time dominates the whole execution time as the

number of tuples of S increases.

555-PR-HJ was not tested since it does not make sense in this load sharing algorithm



3.6 Experimental Results 69

3500 :
chunkSize=1 —_—
3000 r chunkSize=4  --*-—
chunkSize=7 - -
— 2500 [ chunkSize=10 o
8 2000 [ SSEQHS e
Y
E 1500 |
=
1000 |
500
0 .
10* 105 10

Number of Tuples of S

Figure 3.19: The performance of GRACE+ with no data skew and no background
load.

As for the appropriate chunk size selection of GRACE+, the chunk size of 1 is the
best. When the number of tuples in S is 108, each S bucket has 10* tuples, since the
number of buckets is 100. Other chunk size selections are too large to obtain good
performance.

Figure 3.20 shows the execution time of ChunkHJ when the number of tuples of
S is (a) 10° and (b) 10°. In both figures, the LT value (or HT value) is fixed and
the HT value (or LT value) is varied. Figure 3.20 shows that there is no significant
difference in performance when the LT value is varied. The LT value is a system
dependent value determined by PNs’ processing and communication speed. Figure
3.20 also shows significant differences when the HT value is varied. The HT value
makes a significant difference in the performance; if it is too high there is no load
sharing in the transfer process; if it is too small, too many transfers occur and degrade
the performance.

Figure 3.21 compares the performance of the transfer policies described in Section
3.3.2.2. The result shows that transfer policies TP-MA and MP-MI are superior to
other policies. The reason for this is that our experimental system is quite small.



3.6 Experimental Results

70

Figure 3.20:
load.

170

165

160

155

Time (Sec)

150

145

140

700

680

660

640

620

Time (Sec)

600

580

560

(a) Threshold Values Comparison (}S|=1 05)

HT=2000

(LT|valugs)

LT=1000

(HT Vialued)

500 1000 2000

1000 2000 400010000

(b) Threshold Values Comparison (|S|=106)

HT=2000

(LT Valpes)

LT=1000

(HT Vialues) |

500 1000 2000

1000 2000 400010000

Comparison of threshold values with no data skew and no background



3.6 Experimental Results 71

Transfer Policy Comparison (|S]=1 05)
100

90

85 |

Time (Sec)
[0}
o

75

85 |

60

MA MiI MIT TA

Transfer Policy Comparison (|S|=106)
160

155

150

145

140 |

Time (Sec)

135
130

125

120

MA Mi MIT TA

Figure 3.21: The comparison of transfer policies with no skew and no background
load. The description of each algorithm is given in Section 3.3.2.2.



3.6 Experimental Results 72

Algorithm Comparison

3000
ChunkNJ-7000 ——
2500 | GRACE+-1 S
ChunkHJ -~ .
2000 /,
) y
@ )
2} p
o 1500 Yy,
E .,
= 1000 ’
r'//
500 +
0 b
10* 105 o
Number of Tuples of S

Figure 3.22: The comparison of load sharing algorithms with no skew and no back-
ground load.

Figure 3.22 compares the performance of the three load balancing/sharing al-
gorithms. ChunkHJ is the best as the number of tuples of S increases. ChunkNJ
also performs well, since it has an adaptive feature. GRACE+ performs as well as
ChunkHJ when |S| <= 105. After that, the overhead to read the large S relation
dominates the overall execution time.

From these preliminary results, the following comparisons are made: (a) compar-
ing ChunkNJ, GRACE+, ChunkHJ in the case when |S| = 10° and (b) comparing
ChunkNJ and ChunkHJ in the case when |S| = 10° in the presence of data skew and
background load.

3.6.3.3 Performance with Data Skew and No Background Load

In this experiment, the skew factor of one of the relations is fixed at 1 (no skew) and
the the skew factor of the other relation is varied. This scenario can occur when one
of the join attributes is a foreign key. The case where both relations are skewed is
evaluated in Section 3.6.3.5.



3.6 Experimental Results 73

Case A: |S| = 10° case Figure 3.23 compares the performance of the three load
sharing algorithms with data skew in (a) the building relation R and (b) the probing
relation S without any background load. ChunkNJ is the worst of the load sharing
algorithms in most of the cases. However, its performance degradation when changing
the skew factor and skewed relation (either the building or probing relation) is small
because it is based on nested-loop join with an adaptive feature. GRACFE+ suffers as
the skew factor increases. However, it is superior to other algorithms when the relation
has a modest skew. ChunkHJ does not suffer the extreme skew as much as GRACE+
because of its transfer mechanism, which softens the skew effect on the fly. Thus,
its performance is rather flat regardless of the skew factor, except for performance
degradation in the case of extreme skew in the building relation. The reason for this
degradation is that there are too many transfers in this case; the average amount of
the total transfer from the master to slave is 1*10%, 1*10%, and 3*105 for skew factors
103, 10%, and 10° of building relation R and 1*10%, 8*10%, and 8*10* for skew factors
103, 104, and 10° of probe relation S, respectively. However, the degradation is not
as large as in GRACE+ .

Case B: |S| = 10° case Figure 3.24 compares the performance of ChunkNJ and
ChunkHJ with data skew on (a) the building relation R and (b) the probing relation
S without any background load when |S| = 10%. ChunkHJ is better than ChunkNJ,
and both algorithms exhibit a flat performance. The reason for this is the same
as in the case where |S| = 10°. The only exception is the extreme skew in the
building relation. The skew factor is 10°. This means that 10% of the whole relation
has the same value, which happens quite rarely in real data. Thus, in the following
experiments, the performance effects on the load sharing algorithms of the skew factor

on S are focused on.



3.6 Experimental Results 74

(a) Building Relation Skew
300

280

[ ChunkNJ-7000 =
GRACE+-1 S
260 [ ChunkHy - -
240 |
220 | /
200 1 ,,// J
180y // L
160 | _
140 | /é,:::....a -

120 .
10° 10* 10°
R Skew Factor

Time (Sec)

(b) Probing Relation Skew
300 T

280 | ChunkNJ-7000 —— \‘.
GRACE+-1 R
260

[ ChunkHJ - .
240 } )

220 s
200 | pd |
180 | |
teof e

VT ///’ ]
120 4 1

100 .
108 104 10°
S Skew Factor

Time (Sec)

Figure 3.23: The performance of load sharing algorithms with data skew on (a)
building relation R and (b) probing relation S, without any background load (|S| =
10%).



3.6 Experimental Results 75

One Side Skew
720 . S
| ChunkNJ-7000, Skew on R —
700 I ChuifikNg-2000, Skew on S e ]
680 | ChunkHJ, Skew Of R~ == e 7]
ChunkHJ, Skew on S e
< 660 | ]
S 640 | 1
E
620 | P »
e e ]
580 | e ' ]
sQL— . X
10° 10* 10°

Skew Factor

Figure 3.24: The performance of the load sharing algorithms with data skew on
building relation R and probing relation S without any background load (|S| = 10°).



3.6 Experimental Results 76

3.6.3.4 Performance with Data Skew and Background Load

In this section, in addition to the data skew, background load is added to the slaves.
As described in Section 3.1.2, two types of background load were implemented: pro-
portional background load and inverse background load. Using proportional back-
ground load, faster PNs receive a higher load than slower PNs. Using inverse back-
ground load, slower PNs receive a higher load than the faster PNs.

One Side Skew With Proportional Background Load
650

600
550
500
450 |
400 r ’/'/
350 |
300 |
950 b o

200 } 7

150 L 4
10° 10* 10°
Skew Factor

| ChunkNJ-7000 ——
G RACE+-1 IO VS
[ ChunkHJ - _

Time (Sec)

Figure 3.25: The performance of the load sharing algorithms with data skew on the
probing relation S and with proportional background load (|S| = 10°).

Case A: |S| = 10° case Figure 3.25 shows the performance of load sharing algo-
rithms with data skew on probing relation S with proportional background load on
the PNs when |S| = 10°. Compared to Figure 3.23(b) in which there is no background
load, the slowdown of the extreme skew case of GRACE+ is larger, since the fast PNs
become slower due to the proportional background load and the skewed buckets are
likely to be transferred to the fast PNs. Alternatively, ChunkHJ helps the PNs by
transferring the work to another idle PN. The number of such helping PNs is decided
on adaptively. Thus, even with proportional background load and data skew, the



3.6 Experimental Results 77

performance of ChunkHJ is almost the same.

One Side Skew With Inverse Background Load
450 ”

ChunkNJ-7000 ——
GRACE+-1 -

40T ChunkHy .

350 ¢ —

Time (Sec)

300 r

------

250 ¥ S o

200
10° 10* 10°
Skew Factor

Figure 3.26: The performance of the load sharing algorithms with data skew on the
probing relation S and with inverse background load (|.S| = 10°).

Figure 3.26 shows the performance of load sharing algorithms with data skew on
the probing relation S with inverse background load when |S| = 105. This figure
exhibits the same tendency as when proportional background load is used; ChunkHJ
has a flat performance even with data skew and inverse background load. GRACE+
does not suffer as much as in the case shown in Figure 3.25, since the fast PNs, which
work on the skewed buckets, are not affected much by the presence of the inverse
background load.

Case B: |S| = 10° case Figure 3.27 shows that ChunkHJ is superior to ChunkNJ
under proportional and inverse background load (|S| = 108). In this figure, “PBG”
means proportional background load and “IBG” means inverse background load.



3.6 Experimental Results 78

One Side Skew With Background Load

1600 [
- ChunkNJ-7000-PBG  ——
1550 [ ChunkNJ-7000-IBG ~ ——xr
1500 L ChunkHJ-PBG - —
ChunkHJ-IBG ——
S 1450 |
3
= 1400
g — o
E 1350 ¥
1300 |
1250 e —
1200 . L

Skew Factor

Figure 3.27: The performance of the load sharing algorithms with déta. skew on
probing relations and with background load (|S| = 108).

3.6.3.5 Performance with Data Skew on Both Relations and Background
Load

Figure 3.28 shows the performance of load sharing algorithms with data skew (skew
factor is 10°) on the building and probing relations and with no (on the left), pro-
portional (in the centre), and inverse background load (on the right) when |S| = 10°.
When both relations have skew, join product skew occurs. When there is no or pro-
portional background load in Figure 3.28, ChunkHJ can deal with the product skew.
However, when there is inverse background load, GRACE+ performs well. Overall,
ChunkHJ outperforms the other two load sharing algorithms.

3.6.4 Conclusions for Hash Single-Join Algorithm

This subsection proposed and evaluated a new hash join algorithm, called the adap-
tive chunking hash join algorithm for a cPDBMS. Previous load sharing/balancing
algorithms may not work well on clusters since (1) they deal with pre-partitioned



3.6 Experimental Results 79

Two Side Skew
1000 r
ChunkNJ  GRACE+ ChunkHJ

900 T (HT=2000) (HT=4000)

800 | — Np background— load
—_ Proportional background load
§ 700 — Inverse background load
Py _
£ 600
'—

500

400 l- (“

300

Figure 3.28: The performance of the load sharing algorithms with data skew (skew
factor is 10%) on building relation S and probing relation S and with background load

(1] = 10%).

data, (2) they do not consider the effect of background load, and (3) they do not
correct erroneous predictions about the data distribution. The new algorithm uses
combinations of chunking and hash join algorithms to deal with such situations. Using
threshold values, the algorithm creates several chunks of buckets and assigns them
to processing nodes both dynamically and adaptively. This algorithm, along with
two other algorithms, namely global adaptive nested-loop join and global adaptive
GRACE, were evaluated on a cluster. The conclusion is that the chunk-based hash
join is effective in most of the cases, when the size of input relations, the skew of the
relations, and the background loads vary. In cases where both relations are small and
have modest skew, global adaptive GRACE works more effectively.



Chapter 4
Symmetric Single-Join Algorithms

In this chapter, symmetric single-join algorithms and their load balancing/sharing
techniques are studied. One of the problems with the non-symmetric joins proposed
in the previous chapter are that these join algorithms require at least one of the join
relations (main relation) to be read completely before performing the join. If one
of the relations is relatively small and resides locally, these algorithms are effective.
However, if the main relation is delayed because of data arrival delay and/or data
transfer rate fluctuation due to the Internet characteristics, the delay may cause
significant performance degradation. Or if the sizes of the relations are not known,
the main relation cannot be selected. Another problem with the non-symmetric joins
is that, in the case of continuous query processing (e.g., a search query on the search
engine), when non-symmetric join algorithms are used, the time to produce the very
first result is delayed.

Due to these reasons, as mentioned in Section 2.4, the symmetric hash join algo-
rithms were proposed by Wilchut et al. [88]. Also, recently developed algorithms for
data integration systems or continuous query processing (i.e., XJoin [84] and Ripple
Join [58]) are based on symmetric single-join algorithms.

In this chapter, we combine symmetric hash join algorithms with the ChunkHJ
algorithm in the previous chapter. Also, we compare its results with other traditional
load balancing/sharing algorithms.

Evaluation of these algorithms is done under the following conditions to reflect
differences in the target platforms used in this chapter and the previous chapter,



4.1 Symmetric Single-Join Processing Environment 81

namely:
e increase in the number of tuples;
e inclusion of SMP nodes in a target cluster;

e introduction of relation data arrival delay and/or relation data transfer rate
fluctuation® because of network characteristics on the Internet.

We first explain the environment that we used in this chapter, then, the load
balancing/sharing algorithms are described. Next, experimental environments, in-
cluding the Internet transfer delay model, are discussed along with the differences
between these and previous chapter. Finally, experimental results and conclusions

are presented.

4.1 Symmetric Single-Join Processing Environment

This section presents the environments for symmetric single-join processing. It focuses

on the difference between Section 3.1.1 and this section.

4.1.1 A System Model

The target model is shown in Figure 4.1. The differences between Figure 3.1 in the
previous chapter and Figure 4.1 are as follows:

e Some of the PNs within a cluster are dual processors (or SMP).

o Relation data may come from geographically distributed databases. Relation
data arrival delay and /or transfer rate fluctuation may occur because of dynamic
characteristics of the Internet traffic.

4.1.2 Symmetric Single-Join Processing Architecture

Software Architecture Design The software architecture introduced in this chap-
ter is based on the previous chapter (Section 3.1.2) but extended to be more general

1From now on, they are called “the Internet transfer delay” together.



4.1 Symmetric Single-Join Processing Environment 82

cluster '
pC PC(Dual) pC

C ) g ]
O/ ../ ./
N

LAN
PC(Mual) PC DBMS,

° °) (&) |
S el

®CPU

Figure 4.1: A system model with the Internet transfer delay.

purpose (e.g., multiple-join). The following are the major differences from the archi-
tecture in Section 3.1.2:

e We rename the components as shown in Table 4.1.

¢ Relations are sent directly from the Database (DatabaseReader) to the JoinEx-
ecutor. This reduces the number of messages instead of going through the
JoinManager.

¢ Relations are read from the Database simultaneously using DatabaseReader
threads.

The whole system is designed to simulate query processing on a cluster as in Sec-
tion 3.4.2. The major components are shown in Figure 4.2 where the numbers between
components (classes) show the relationship in terms of the number of instances. A
description of each component and its number of instances are shown in Table 4.2.

There are two important tables used for the symmetric hash join algorithms: a
join state matrix and hash bucket chunk allocation table.



4.1 Symmetric Single-Join Processing Environment 83

Chapter 3 | Chapter 4

master JoinManager
slave JoinExecutor
transfer TransferExecutor

DBMS DatabaseManager (DatabaseReader)

Table 4.1: Name changes.

A Join State Matrix (JSM) resides on the JoinManager and is used to ensure the
correctness of the join execution. Each entry in the JSM represents the join status of
matching pairs for each bucket. Figure 4.3 shows an example of a join state matrix
snapshot for R x S. It is obvious that the number of JSM entries for each hashld
varies according to the arrival speed and the degree of skew of the relations.

A Hash Chunk Allocation Table (HCAT) keeps track of the allocation information
in the hash table (e.g., to find matching bucket pairs). An HCAT is updated every
time a bucket is moved from one PN to another PN. A HCAT also resides on the
JoinManager.

Execution Flow The main part of execution flow of the simulation program is
shown in Figure 4.4. The details of the communications during the join execution
among the components are also shown in this figure. The whole execution flow is as
follows:

1. A query is generated by the QueryGenerator according to predefined parameters
provided in a configuration file.

2. The query is then sent to the QueryScheduler which makes a processor allocation
decision for the query according to the current cluster state.

3. The QueryScheduler invokes a QueryManager for the query.
4. The QueryManager invokes several JoinManagers, one for each join in the query.

5. The JoinManager invokes several JoinExecutors. The number of JoinExecu-

tors is determined by QueryManager according to the current cluster state. A



4.1 Symmetric Single-Join Processing Environment

84

QueryGenerator

ResuitCombiner

1

N

JoinExecuter

N

QueryScheduler

!

N

QueryManager

JoinManager

N

M

Database

1

Figure 4.2: Major components.

TransferExecutor is also invoked on the same nodes as the JoinExecutor.

6. The JoinManager consults the Database to read the relations associated with

the join.

7. The Database invokes a DatabaseReader, a HashGenerator, a TransferExecutor

for each relation needed to execute the join.

8. The DatabaseReader starts reading the relation page by page and puts each

page into the read buffer.

9. Thé HashGenerator reads the page from the read buffer, applies a hash function

to each tuple in the page.



4.1 Symmetric Single-Join Processing Environment

85

HashIdO Hashld1 HashId2

S RI1O0 2 S RI0|1 S Rio|1]2
0| F F O | F|F O F|F|F
1 | R R 1| F|F 1| R|J|R
2| R R 2| R|R

Figure 4.3: An example of join state matrix snapshot: (R:ready, J:joining, F:finished).
The hash value of each hash bucket chunk is given by hashId.

Database

T
]
Ll

1. JSM Update

JoinManager

L]

l Deci{.le Workj

Al

Transfer

.6.___.___

3.Da

JoinExecuter

ResultCombiner

1
I
t
12. Data Transfer Request
|

5. Join Finished

T
!
1
L}
|
|
1
L}
[}
1
1
1
|
[}
|
1
1
i
I
I
[}
]
[}
1

4. Result of Data

AN

xS

R

Figure 4.4: Message sequence chart during join execution.



4.1 Symmetric Single-Join Processing Environment

86

Class Name | Abbr. | Number of instances | Description
TaskAllocator TA one for each node allocates other components
QueryGenerator QG one generates queries

at certain interval
QueryScheduler QS one schedules queries
QueryManager QM one for each query manages query

makes allocation decision
JoinManager JM one for each join manages join

makes load-balancing decision
JoinExecutor JE determined by QM | executes local joins
TransferExecutor TE one for JE transfers chunks

one for DB

DatabaseManager DB one accepts a read request

invokes DRs
DatabaseReader DR one for each relation | reads a relation

puts it into the buffer
BackgroundGenerator | BGG | one for each node generates BGs
Background BG determined by BGG | executes busy loop

simulates a non-query process
HashChunkStore HCS | one for each node stores the chunk

deals with disk I/O
ResultCombiner RC one for each query collects all results

Table 4.2: Major components descriptions.

10. When a hash bucket size of the hash table reaches the predefined chunk size
(refereed as chunk size), the HashGenerator sends a JSM update message to

the JoinManager (message 1 in Figure 4.4) and puts the hash bucket into the

HashChunkStore.

11. The JoinManager inserts a JSM entry for the hash bucket according to the JSM

update message. At the same time, it chooses the target JoinExecutor according

to the load balancing/sharing algorithms described later in this section and

sends the target JE id back to HashGenerator (message 2 in Figure 4.4).




4.1 Symmetric Single-Join Processing Environment 87

12. The TransferExecutor sends the bucket from the HashChunkStore to the tar-
get JoinExecutor chosen by the JoinManager (message 3 in Figure 4.4). Its
implementation is described in Figure 4.5.

13. The JoinExecutor starts executing the join after receiving the bucket (“Local
Join” in Figure 4.4).

14. The results of the join are sent to the ResultCombiner when the number of

result tuples reaches a threshold value (message 4 in Figure 4.4)

15. The JoinExecutor sends a “Join-Finished” (and next job request) message to
the JoinManager (message 5 in Figure 4.4).

16. The JoinManager determines the next job and send it to the JoinExecutor using
receiver-initiated algorithm similar to the one described in Section 3.3.2.2.

Implementation Details All components described in Figure 4.2 are implemented
by Java threads, which run concurrently on PNs.

A HashChunkStore on a PN is shared by several threads (HashGenerator, JoinEx-
ecutor and TransferExecutor). It stores all the hash chunks and is used for the local
hash join. When the memory is full, a victim hash chunk is selected and flushed
into the disk. The Least Recently Used (LRU) algorithm is used to select the victim
chunk. A detailed look at the data transfer is given in Figure 4.5. In this architecture,
there are two kinds of bucket transfer: one is from Database to JoinExecutor and the
other is from JoinExecutor to JoinExecutor.

A BackgroundGenerator on each node generates several idle threads (Background
threads) for simulating background non-query processing tasks. It is implemented by
Timer Java class. The types of background are the same as in Section 3.1.2. However,
we use identical background loads and a shorter time (period and on-time) to reflect
the hardware difference.



4.2 Load Sharing/Balancing Techniques for Symmetric Hash Join

Algorithms 88
JoinManager JoinManager
y Read Data Request Transfer Request
Database Node J oinE)ggq itor _N-c-)_d_e
Database : _Jpin :
Reader : Exgcutor
W ....... ¥ V .....
Hash Transfer
Generator Executor
y y To Target JE
Transfer
Executor
To Target JE
(a) Database to JoinExecutor (b)JoinExecutor to JoinExecutor

Figure 4.5: A detailed look at the data transfer: (a) from Database (DatabaseReader)
to the target JoinExecutor and (b) from a source JoinExecutor to the target JoinEx-
ecutor.

4.2 Load Sharing/Balancing Techniques for Symmet-
ric Hash Join Algorithms

We designed and implemented several load balancing/sharing algorithms for symmet-
ric hash joins. The main focus is to decide hash mapping? from hashld to JoinEx-
ecutorld. It is stored in hashMappingTable for load sharing/balancing. We developed
five algorithms to the decide the hash mapping. The following subsections explain
these algorithms in detail using the notation in Chapter 3 (Table 3.1). The differences
among these algorithms are summarized in Table 4.3.

In Table 4.3, the column labeled Hash mapping determines the assignment from

2In Section 2.3.1.3, it is called the partition scheme.



4.2 Load Sharing/Balancing Techniques for Symmetric Hash Join

Algorithms 89
Abbr. Name Hash Mapping | Decision Ezperiments
RR Dynamic Round-robin none none BG, Skew
Hash Mapping
SCHJ Symmetric ChunkHJ none none | Delay, BG, Skew
SMP Dynamic Sampling Dynamic tuples BG, Skew

GIHM Greedy Incremental Incremental chunk | Delay, BG, Skew
Hash Mapping
JIHM | JSM-based Incremenatal | Incremental JSM Delay, BG, Skew
‘ Hash Mapping

Table 4.3: Algorithm summary.

a hash bucket to a JoinExecutor. In the implementation, if none, it is not used. In
Dynamic, hash mapping is determined at one point of the execution all at once. In
Incremental, the hash mapping is determined incrementally during the join execution.

The column labeled Decision describes the factors that are considered in making
the decision for hash mapping. In tuple, the number of tuples is considered. In JSM,
the number of ready entries in a JSM (“R” in Figure 4.3) is considered. In chunk,
hash chunk arrival timing is considered.

The column labeled Ezperiments describes the condition under which these al-
gorithms are tested. These decisions are made according to the features of each
algorithm. In BG, experiments are done with non-query background load. In Skew,
experiments are done with database skew (scalar skew and Zipf skew). In Delay, ex-
periments are done with the Internet transfer delay, which will be discussed in Section
4.3 4.

The following algorithm description is related to “Decide Work” in the JoinMan-
ager component (see Figure 4.4). The pseudocode for JoinManager is shown in Al-
gorithm 4.2.1. The pseudocode for HashGenerator is also shown in Algorithm 4.2.2.
expandJSM is used to expand the JSM entry according to the argument JSMInfo
(a pair of hashld and chunkId) sent from HashGenerator. It also fills the expanded
matrix entries with “R”(Ready) entry. findJoinEzecutor is the sender-initiated part
of the algorithm that tries to find an idle JoinExecutor with the maximum number



4.2 Load Sharing/Balancing Techniques for Symmetric Hash Join
Algorithms 90

of matching pairs for this bucket. Each algorithm has a different version of find-
JoinExecutor as we will explain later. FindBucketForSymmetricJoin is used to find
a suitable bucket pair with an idle JoinExecutor. For the hash mapping-based algo-
rithm (non-SCHJ algorithms), hash mapping is used to find a suitable bucket pair.
For SCHJ, the algorithm described in Section 4.2.2 is used.

RSTransferForSymmetricJoinis used to transfer the bucket among DB and JoinEx-
ecutor. The details are shown in Section 4.2.2 as well.

Algorithm 4.2.1: SYMMETRICJOINONJOINMANAGER(cSize)

{manages join and is responsible for load sharing/balancing by JSM}
{Input: cSize for chunkSize; Output: none}

{start reading relations}
send(H ashGenerator, “RelationRead”, “R”)
send(HashGenerator, “RelationRead”, “S”)
repeat
( recv(source, tag, JSMInfo)

{JSMInfo consists of hashId and chunkId}
if (tag is “JSMUpdate”) {from HashGenerator}
(ezpandJSM(JSMInfo.hash, JSMInfo.chunkId);
JET <
findJoinEzecutor(JSMInfo.h,JSMInfo,chunkld, cSize);
| send(source, “JSMUpdateReply”, JEx)
else if (tag is “JobRequest”) {from JoinExecutor}

then <

'change corresponding completed JSM entries to “F”

chunkPair < findBucketForSymmetricJoin(cSize)
{chunkPair consists of hashld, chunkIdl, chunkId2}

| RST'rans fer For SymmetricJoin(chunkPair)

unt11 ((ﬁnlshed reading relations(R and S)) and (JSM entries are all “F”))

broadcast(“ProcessEnd”, null)  {to all JEs and HGs}

then <

Pseudocode for JoinExecutor is shown in Algorithm 4.2.4.



4.2 Load Sharing/Balancing Techniques for Symmetric Hash Join
Algorithms

91

Algorithm 4.2.2: SYMMETRICJOINONHASHGENERATOR(X, pS, cSize)

{applies hash function on tuples of X}
{Input: relation X; pS for partition size for relation X;
cSize for chunk size;

Output: none}

repeat .
recv(JoinManager, “RelationRead”, X)
{Read relation X}
{this is done by Database and DatabaseReader}
nPartitions < | X|/pS
for i + 0 to nPartitions
X'« read(X,i*pS, (i + 1) *pS — 1)
do {actual reading is done by DatabaseManager}
X, + applyHash(X*, eSize)
until recv(JoinManager, “ProcessEnd”, null)




4.2 Load Sharing/Balancing Techniques for Symmetric Hash Join
Algorithms 92

Algorithm 4.2.3: APPLYHASH(X, chunkSize)

{apply a hash function to each tuple in X}
{Input: relation X (either relation R and S); Output: none}

for i + 0 to | X]|
( h < HashFunction(X[i))
Xp.insert(X[i])
if (| Xn| > chunkSize)
(JSMInfo.hashld < h
JSMInfo.chunkld < X},.getChunklId()
do send(JoinManager,“JSMUpdate”, JSM Info)
recv(JoinManager, “JSMUpdateReply“, destJE)
if (destJE >= 0)
then send(destJFE,“Relation”, X;) {send it directly}
hashChunkStore.insert(Xy)
| Xn-incrementChunkId()

then [

Algorithm 4.2.4: SYMMETRICJOINONJOINEXECUTOR()

{Symmetric Hash Join on a Slave(SLx)}
{Input: none; Output: none}

repeat
(recy (Transfer Executor, “Relation”, X},)
if(Xis R)

then execLJ(X}, Sh)

else execLJ(Rp, X4)
send(JoinManager, “JobRequest”, null)

\ {to invoke sender-initiated algorithm}

until recv(JoinManager, “ProcessEnd”, null)




4.2 Load Sharing/Balancing Techniques for Symmetric Hash Join
Algorithms 93

4.2.1 Dynamic Round-Robin (RR)

This algorithm is similar to VP-RR [21]. In this algorithm, hash mapping is not used.
Each hash bucket is sent in a round-robin manner. The pseudocode of findJoinEz-
ecutor(h,chunkSize) of RR is shown in Algorithm 4.2.5. For example, if the number
of JoinExecutors is 8 and hash bucket Id is 10, then the bucket is sent to JE; (10 mod
8 = 2). It is a simple algorithm and it may work well when there is no background
load and no skew. Otherwise, this algorithm may not perform well. We will conduct
experiments in Section 4.5 to verify this.

Algorithm 4.2.5: FINDJOINEXECUTORgg(h, chunkSize)

{Symmetric Hash Join on a JoinExecutor(JEx)}
{Input: h for hashValue; chunkSize

Output: destination JE index}

return (h mod p) {round robin: p is the number of JEs}

4.2.2 Symmetric ChunkHJ (SCHJ)

This algorithm is based on ChunkHJ in Section 3.3.2.2. Thus, hash mapping is not
used. As we described at the beginning of this chapter, we would like to combine
advantages of ChunkHJ and symmetric joins. The differences from ChunkHJ are as

follows:
e There is a modification for symmetric joins (use of JSM (Figure 4.3)).
e There is just one threshold value (no LT/HT/ST) to simplify the algorithm.

e Chunk transfer on a node is done by an independent thread (instead of a process)
and done without involving the master (or JoinManager).

The pseudocode of findJoinEzecutor(h,cld,chunkSize) of SCHJ is shown in Algo-
rithm 4.2.6. FindSlave in Figure 3.7 is used; however, the buckets which have “R”

entires in JSM are considered.



4.2 Load Sharing/Balancing Techniques for Symmetric Hash Join
Algorithms

94

| Algorithm 4.2.6: FINDJOINEXECUTORsc.(h, cId, chunkSize)

{find a JoinExecutor(JEx) using Chunk HJ}
{Input: h for hashValue; cId for chunkld; chunkSize;
Output: destination JE index}

SLz + findSlave(“LT”, h) {Figure 3.7 but make use of JSM}
if (SLx is null)

then SLz « findSlave(“HT”, h)
return (SLz)

Every time a JoinExecutor finishes the job (Message 5 in Figure 4.4), the Join-

Manager invokes findBucketForSymmetricJoin (Algorithm 4.2.7) after receiving a job

request message from a JoinExecutor. FindBucketForSymmetricJoin selects a chunk
pair is selected using findBucket(LT,chunkSize) and then FindBucket(HT,chunkSize)
algorithm in Figure 3.7. However, it is changed for the symmetric join to use JSM

shown in Figure 4.3; only buckets with “R” entries in JSM are considered. If several

candidates are selected, one of them is chosen randomly.

Algorithm 4.2.7: FINDBUCKETFORSYMMETRICJOIN(chunkSize)

{Find suitable bucket chunk pair from JSM Entry}
{Input: chunkSize; Output:bucketPair(hashld, chunkIdl, chunkId2)}

bucket Pair + FindBucket(“LT”, chunkSize)
{find local hash bucket but use JSM}
if (bucketPair is null)
then bucketPair < FindBucket(“HT”, chunkSize)
{find remote hash bucket but use JSM}
return (bucketPair)

After a bucket chunk pair is selected, chunk transfer is done using RSTransfer-

ForSymmetricJoin. If at least one of the pair chunks is not presented on a JoinExecu-

tor, then it is sent from the source node to the destination node by TransferExecutor

on the source node. The source node is determined randomly but TransferExecutor

on JoinExecutor node has a higher priority than TransferExecutor on Database node.



4.2 Load Sharing/Balancing Techniques for Symmetric Hash Join
Algorithms ' 95

Figure 4.6 shows the message sequence chart in this chunk transfer (from JoinExecu-
tor A to JoinExecutor B). Figure 4.5(b) also shows details of this transfer.

Database JoinManager JoinExecuterA JoinExecuterB ResultCombiner

1. JSM Update H

LN

2. Data Transfer Request

1
1
{
1
1

T
I
}
]
]
[}
]
¢
'

i

: A .
: !\ 3.Data Transfer N
: : R
1 1
: :
i : ' ‘
: ' 4. Result of Data :
:./ 5. Join Finished
1
1

---Far

t
i
1
J
¥
!
1

Figure 4.6: Message sequence chart in data transfer from JoinExecutor A to JoinEx-
ecutor B.

This algorithm may perform well in the case that background load and/or data
skew exist since load balancing/sharing is done in a dynamic and incremental way.
However, too many transfers may cause performance degradation. We will conduct

experiments in Section 4.5 to verify this.

4.2.3 Dynamic Sampling (SMP)

This algorithm is based on the sampling algorithm proposed in [75]. As we mentioned
in Section 2.3.2, sampling is the best algorithm for a pre-partitioned PDBMS. In SMP,
there is a pre-defined sampling value (e.g., 10% of the the number of tuples of both
relations). The JoinManager continuously receives JSM update messages (message 1
in Figure 4.4) from HashGenerator until the size of both received relations reaches the
sampling value without executing joins. Then, the JoinManager uses a bin-packing
algorithm to balance the workload and determines the hash mapping based on it.
After that, JoinExecutors start executing joins.



4.2 Load Sharing/Balancing Techniques for Symmetric Hash Join
Algorithms

96

The pseudocode of findJoinEzecutor(h,chunkSize,sampling Value) of SMP is shown
in Algorithm 4.2.8.

if (smpO

then 4

Algorithm 4.2.8: FINDJOINEXECUTORsp(h, chunkSize, samplingV alue)

{find a JoinExecutor(JEx) using sampling method}
{Input: hashValue h; chunkSize; samplingValue;
Output: destination JE index (-1 means no destination)}

if ((the sum of amount of read relations)>samplingValue) and ('smpOn))
then {decide hash mapping using bin-packing algorithm

smpOn + true

else increase the amount of read relations by the chunk size

n)
(if (hashMappingTable.containsKey(h))
then return (hashMappingTable.get(h))
z < random selection from idle JE list
else { hashMappingTable.insert(h,x)

{ return (z)

return (—1)

This algorithm may perform well in the case of data skew because of its load bal-

ancing/sharing mechanism. However, it may perform poorly due to dynamic changes

such as background load and/or join product skew. We will conduct experiments in

Section 4.5

to verify this.

4.2.4 Greedy Incremental Hash Mapping

Greedy Incremental Hash Mapping (GIHM) and JSM-based Incremental Hash Map-
ping (JIHM) try to deal with the Internet transfer delay that occurs in the data
integration systems. The basic idea of these algorithms is to delay JoinExecutors to

work on a bucket until there is enough work available in the bucket. The unit of

work measurement is the number of tuples (GIHM) or the number of entries in JSM

(JIHM).



4.2 Load Sharing/Balancing Techniques for Symmetric Hash Join
Algorithms 97

GIHM uses a greedy algorithm and incrementally determines the hash mapping
according to the arrivals of hash chunks.
The pseudocode of findJoinEzecutor(h) of GIHM is shown in Algorithm 4.2.9.

Algorithm 4.2.9: FINDJOINEXECUTORg g (h)

{Decide destination JoinExecutor}
{Input: h hashValue;
Output: destination JE index (-1 means no destination)}

if (hashMappingTable.containsKey(h))
then return (hashMappingTable.get(h))
z ¢ random selection from idle JE list
else < hashMappingTable.insert(h,x)

return (z)

This algorithm is greedy in the sense that the JoinManager looks for an idle
JoinExecutor and assigns the JoinExecutor to the hashld (hash mapping) immedi-
ately. When there are several JoinExecutors, one of them is chosen randomly as a
target JoinExecutor. After the target JoinExecutor is selected, the JoinExecutor re-
ceives the hash chunk from TransferExecutor in the same way as SCHJ and starts
the join.

It may perform well when the arrival relation is delayed due to dynamic charac-
teristics of the Internet transfer. We will conduct experiments in Section 4.5 to verify
this.

4.2.5 JSM-based Incremental Hash Mapping (JTHM)

This algorithm is the same as GIHM except that the JoinManager waits for the hash
mapping assignment until the number of JSM ready entries reaches a pre-defined

number.
The pseudocode of findJoinEzecutor(h,threshold) of JIHM is shown in Algorithm
4.2.10.



4.3 Experimental Environment 98

Algorithm 4.2.10: FINDJOINEXECUTOR jrgpm(h, threshold)

{Decide destination JoinExecutor(JEx)}
{Input: h hashValue; threshold value for JSM

Output: destination JE index (-1 means no destination)}

if (hashMappingTable.containsKey(h))
then return (hashMappingTable.get(h))
(if (JSM Ready entries of h >threshold)
z + random selection from idle JE list
else ¢ then { hashMappingTable.insert(h,z)

return(z)

| else return (—1)

4.3 Experimental Environment

From this section, we describe the experiments preformed and the results of the load
balancing/sharing algorithms discussed in the previous section. We will start with a
detailed description of environment.

4.3.1 Hardware Environment

The LINUX cluster we use in the experiments described in this chapter is different
from the hardware used for the previous chapter (see Section 3.4.1). It consists of 4
dual CPU nodes and 7 single CPU nodes, one of which is used as a host machine and
thus is not used in these experiments. Table 4.4 summarizes the hardware environ-
ment. These experiments are done in April 2004. Figure 4.7 shows the topology of
the LINUX cluster.

4.3.2 Software Environment

The software environment is summarized in Table 4.5. MPI (Message Passing In-
terface) [61] is now the de facto standard for programming languages for parallel



4.3 Experimental Environment 99

4 nodes (ng) Dual Xeon 2.4GHz, 1GB Memory, 80GB Disk
7 nodes (n,) P4 2.4GHz, 1GB Memory, 80GB Disk
Network | each processing node is connected by 100 Mbps Ethernet
0S RedHat 8.0

Table 4.4: Hardware environment.

Outside veda
Access | 05 Local Area Network

1Gbps

veda|| veda|| veda|| veda|| veda|| veda|| veda|| veda|| veda|| veda|| veda
01 02 03 04 06 07 08 09 10 11 12

Figure 4.7: Topology of the LINUX cluster.

processing. We use mpich since it has thread-safe architecture and our simulation
uses several threads running concurrently on PNs.

We use mpiJava [30, 48] to combine the advantage of MPI and Java. MpiJava is an
object-oriented Java interface to the standard MPI. MpiJava itself does not assume
any special extensions to the Java language. It is portable to any platform that
provides compatible Java-development and native MPI environments. We did not use
pure Java parallel processing such as RMI for performance reasons. However, mpiJava
does not support the dynamic process (thread) invocation on a remote node. Thus, a
TaskAllocator is implemented on each node and is responsible for the dynamic thread
invocation. Initially, a TaskAllocator creates a QueryGenerator, a QueryScheduler,

Name Version
MPI mpich 1.2.5.2
Java JDK 1.4.1
mpiJava 1.2.5
JSIM 1.2

Table 4.5: Software environment.



4.3 Experimental Environment 100

and a Database, then dynamically, QueryManagers, JoinManagers, JoinExecutors,
ResultCombiners on specific PNs.

JSIM [50] is a Java-based simulation and animation environment supporting web-
based simulation. It is used to generate hyper/hypo-exponential distribution se-
quences to simulate relation data transfer over the Internet which will be discussed in
Section 4.3.4. Other parameters for this experiments are shown in Table 4.6. Among
these parameters, node allocation sequence is important in the case of speedup mea-

surement.
Parameter Value
Memory size for a component 24MB
Node allocation sequence Interleaved (single CPU, dual CPUs, single, ...)
Background model Identical
Background loop period 1 sec

Table 4.6: Memory size, allocation, background process parameters.

4.3.3 The Experimental Database

The experimental database used in the experiment is the same as that described in
Section 3.4.3.1 except for the following:

e The number of tuples of each relation is increased to 1 million.

e Random key and sequence generation is used for tuple generation for input rela-
tions. We will create 10 relations with different random seed for each parameter
setting.

o Zipf skew model [96] is used in addition to the scalar skew model.

The Zipf model was originally proposed by Zipf [96]. As shown in Table 2.2, it
is commonly used to model and control the degree of data skew. In this section, we
used a slightly different model. For each data value in relation R, we determined
the number of its occurrences (|R;|) using the following Zipf-like distribution function



4.3 Experimental Environment 101

|R;| = Z_}V_J;Eil/j_zp where |R;| represents the number of times the value |R;| occurs, |R|
represents the number of tuples in R, Z, is called the skew factor. Thus, using skew
factor Z, we can control of the degree of skew and therefore the imbalance condition.
We varied Z, from 0 percent (no skew) to 100 percent (extreme skew).

4.3.4 The Internet Transfer Delay Model

In this subsection, data transfer delay over the Internet is discussed. The purpose is
to approximately model the real world Internet data transfer. The issues include: Is
the transfer time linear to the distance and/or the amount of data? If so, what is the
slope and overhead? How do we measure the time? Which model do we use?

Ping Time
350 . i ' ' .
U of Toronto S
300 fUCLA = e .
Uof Tokyo ~  =weee -
250 | e g
g€ 200 e T
Y S P o
g T T
= 150 -J__wx.a— ;;;; g ]
100 | o r'*i:_*_/.,--f""’ |
50 F " ]
0 . 1 ) , ,

500 1000 1500 2000 2500 3000
Message Size (bytes)

Figure 4.8: Ping transfer time: trend line is shown in column 4 of Table 4.7.

In order to answer these questions, we first measured the transfer time of different
message size by UNIX ping command [65, 79] 100 times at 3 different times of the
day from our office to several locations spanning a range of distances from University
of Toronto, University of California Los Angles (UCLA), to University of Tokyo.

Figure 4.8 shows their average transfer time. Table 4.7 shows approximate ping

transfer functions for each location.



4.3 Experimental Environment 102

Table 4.8 shows ping transfer time, standard deviation, and coefficient of variation
(CV) (= standard deviation/average time) when the message size is 3 KB. Since each
CV is below 1, we decided to use hypo-exponential distribution to simulate data
transfer over the Internet. As a result, we use the following model to get the transfer

times (ActualTransferTime) of data as a function of size:

Name Location URL Approx. Transfer Func.
: (trend lines in Fig. 4.8)
Toronto | University of Toronto | info.utec.utoronto.ca | t=0.064xsize+28.839
UCLA | UCLA www.ucla.edu t=0.0637xsize+55.416
Tokyo | University of Tokyo | www.u-tokyo.ac.jp t=0.0638 xsize+117.57

Table 4.7: Approximate transfer functions.

Name | Avg. Tran. | Std. dev. (dev) | CV
Toronto | 216 28.02 0.13
UCLA | 243 29.84 0.12
Tokyo | 305 30.13 0.01

Table 4.8: Detailed ping transfer times when message size is 3 KB.

o MeanTransferTime = a*size + b as shown in column 4 of Table 4.7

¢ ActualTransferTime = Hypo_ exponential( Mean Transfer Time,dev) where dev
is its standard deviation of the ping time shown in column 3 in Table 4.8.

We insert a sleeping function after reading the relation and before applying the
hash function (between DatabaseReader and HashGenerator in Figure 4.5(a)) with
duration of the corresponding time according to the above model.

In the experiments, it is assumed that one relation resides on the local area network
and the other relation resides in another location (either at Toronto, UCLA, or Tokyo).
The reason for this decision is that if both of them reside on remote locations, then
it is better to execute the join on one of the remote locations.



4.4 Experimental Methodology 103

4.4 Experimental Methodology

Experiments are done in the following way. First, we compare RR, JSM, and SMP
with background load, data skew, and combination of both as in Section 3.5. With the
same methodology as the previous chapter, we try to find default parameter values
first and then compare algorithms in different conditions. Then we compare JSM,
GIHM, and JIHM for the relation arrival delay environment.

For SMP and JIHM, several sampling/JSM entries value combinations are tested;
For SMP, 10% and 20% are used with the same condition as [34]. For JIHM, 5, 10,
and 20 are used.

We use two-sided skew (both relations (R and S) have data skew).

We repeat each experiment 30 times; ten times for each random seed to generate
relations. The 95% confidence interval (CI) for the mean is calculated for each set of
execution time according to the following formula [46]: CI = 1.96 x dev/\/n where
1.96 is the Z score corresponding to 95% and dev is the standard deviation of the

result sets and n is the number of runs.

4.5 Experimental Results

The experimental results obtained by executing the symmetric hash join algorithms
and their load balancing/sharing algorithms described in Section 4.2 are presented in
this section under the data skew, background load, and the Internet transfer delay

conditions.

4.5.1 Default Parameter Values

The default parameters for the algorithms used in the experiments are shown in Table
4.10. The results are obtained from some preliminary experiments. These values are

chosen so as to achieve good performance for all cases.



4.5 Experimental Results 104

| Parameter Name Value ]
Chunk size 9600 bytes
Database page size 9600 bytes
Output buffer size 12000 bytes
The number of hash buckets 1000
The number of JoinExecutors 8
The DBMS node a single CPU (n;) dedicated node
The JoinManager node a single CPU (n,) dedicated node
The ResultCollector node | a single CPU (n,) shared node with other threads

Table 4.10: Default parameter values.

Time (Sec)

Number of JEs

Figure 4.9: Performance of the algorithms with no skew and no background.

4.5.2 Performance with No Data Skew and No Background
Load

This section establishes the base case in which there is no data skew in the input
relations. Also, there is no background load on the JEs, which represents the case



4.5 Experimental Results 105

where the cluster is dedicated to database query processing. In Figure 4.9, we have
plotted the number of JEs versus the execution time for the algorithms with sampling
values of 10 and 20 for SMP. These results are used for base case for comparison. The
confidence interval is less than 1%.

These results show that the Dynamic Round-Robin (RR) algorithm is the best
for all the number of JEs. For example, when the number of JEs is 8, RR is 5%-11%
better than other algorithms. This is because RR performs better when there are no
dynamic changes in the system and no data skew since it distributes the work equally.

The Dynamic Sampling algorithms (SMP10 (10% sampling) and SMP20 (20%
sampling)) have almost the same performance. However, in comparing SMP with
the other two algorithms, we found that they do not compare favorably because of
the delay in starting of the join processing; JEs should wait until 10% (20%) of the
relations arrive at JM.

The Symmetric ChunkHJ (SCHJ) has the next best performance after RR despite
the overhead in transferring the other chunks. The performance difference between
them is about 5%.

4.5.3 Performance with No Data Skew and Background Load

Figures 4.10 and 4.11 show the execution time with no skew and with the background
load on JEs, which the confidence interval is always less than 5%, in most case it is
within 2.9%.

In Figure 4.10, we have plotted the number of JEs versus the execution time when
we fix the background load to 6 processes. It shows that SMP10 is best among all
algorithm for all the number of JEs. The longer it takes to process data, the smaller
the effect of the delay in starting the join processing. The graph also shows SMP10
is almost 20% better than SMP20 since there is no skew, there is no advantage in
increasing the sample value. The early start of join processing is better since the data
has no skew and thus skew prediction from sampling with small sampling values is
close to the real skew.

Compared with the no background case, RR does not perform well because of the
interference caused by the background load.

The SCHJ performs next best to SMP10. However, the difference is less than the



4.5 Experimental Results 106

130 T T T
RR ———
120 B\ SCHJ -~
1 10 W\ SMP1 0 - o
SMP20 —e—

100
20
80
70
80
50

Time (Sec)

| B |

Number of JEs

Figure 4.10: Performance of algorithms with no data skew and 6 identical background
load.

Time (Sec)

0 1 2 3 4 5 6
Number of background processes

Figure 4.11: Performance of algorithms with no data skew and 8 JEs.



4.5 Experimental Results 107

error margin for most of the cases. Compared to RR and SMP20, performance of
SCHJ improves as the number of JEs increases. This shows the effectiveness of SCHJ
as the number of JEs increases.

In Figure 4.11, we have plotted the number of background load processes versus
the execution time with the same conditions but the number of JEs is fixed at 8. In
this figure, RR still performs as well as SCHJ when the background load is relatively
low (up to 3 processes). It is almost the same as the default case. However, as the
background load becomes higher, SCHJ performs relatively better than the others.

4.5.4 Performance with Data Skew and No Background Load

This section presents the performance with data skew (scalar skew and Zipf skew)
and no background on JEs.

4.5.4.1 Performance with Scalar Skew

In these experiments, we used the relations with the scalar skew factor of 0, 10,000
and 20,000, which means there are 0, 10,000 and 20,000 tuples with attribute O,
respectively. This model is the same as the model introduced in Section 3.4.3.2.

Figure 4.12 and Figure 4.13 show the execution time with scalar skew and no
background load on JEs. The confidence interval is less than 1.5%.

In Figure 4.12, we have plotted the number of JEs versus the execution time
when the skew factor is fixed at 20,000. It shows that SCHJ performs the best among
these algorithms when the number of JEs changes. The difference increases with
the number of JEs. SCHJ gives 12% improvement over SMP10 for 2 JEs and 15%
improvement when number of JEs is 4 and 8, respectively.

Figure 4.12 also shows that the speedup of this graph is not as good as Figure 4.9
because of the join product skew caused by scalar skew. SMP10 and SMP20 are both
better than RR. RR performs the worst because of the join product skew. However,
both SMP algorithms are not as good as we expected because of the delay in starting
the join.

In Figure 4.13, we have plotted the skew factor versus the execution time when



4.5 Experimental Results

108

130 .
120 |
110 |

100

Time (Sec)

90

80

T

" RR ——

SCHY -
SMP10 - P -
SMP20 ——e-—

70

Number of JEs

Figure 4.12: Performance of algorithms with no background load on JEs and a scalar

skew factor of 20,000.

100

80 |
70
60
50 r
40 |
30 r
20

Time (Sec)

10

10000
Skew Factor

15000 20000

Figure 4.13: Performance of the algorithms with no background load and with 8 JEs.



4.5 Experimental Results 109

we fixed the number of JEs to 8. It also shows that SCHJ performs the best among
the algorithms for all the degrees of skew. The more skewed the data are, the better
the SCHJ performs over the other algorithms. It is at least 14% and 18% better than
other algorithms when the skew factor is 10000 and 20000. respectively.

From these results, we can conclude that SCHJ performs the best in the case of
scalar skew.

4.5.4.2 Performance with Zipf Skew

70 : : :

RR ——

65 SCHJ —— -
\ SMP1Q --xr

60 A SMP20 —e— ]

55 | \)

50 |
45 ¢
40 |
35
30
25 ¢
20

Time (Sec)

Number of JEs

Figure 4.14: Performance of algorithms with Zipf skew factor of 60 and no background
load.

Figures 4.14 and 4.15 show the execution time with Zipf skew and with no back-
ground load. The confidence interval is less than 1.7%.

In Figure 4.14, we have plotted the number of JEs versus the execution time when
we fixed the skew factor to 60. It shows that the SCHJ is 8% to 13% better than
SMP10. As the number of JEs increases, the greater performance gain over SMP10
is obtained.

The other two algorithms (SMP20 and RR) have the same performance (within



4.5 Experimental Results 110

200 T T T T
180
160
140
120
100 r

80

60 |
© 40

20 ¢

O 1 1 1 1 L ) 1
0 10 20 30 40 50 60 70 80

Skew Factor

Time (Sec)

T

Figure 4.15: Performance of the algorithms with Zipf skew factor and no background
load and 8 JEs.

the error range). This is because load imbalance in RR is not as severe as the extreme
skew case and it is canceled out by the join start delay in SMP20.

In Figure 4.15, we have plotted the skew factor versus the execution time when the
number of JEs is 8. It shows that SCHJ is 15% better than RR when the Zipf factor
is 60, 18% better with the Zipf factor is 70, and 21% better with the Zipf fator is
80. The greater the skew, the better SCHJ performs over RR. Also, the performance
improvement over SMP20 is 13% when the skew factor is 80.

SMP20 is better than RR and SMP10 as they predict better work distribution
than the others.

From these results, we conclude that SCHJ performs the best in the case of Zipf
skew as well as the case of scalar skew.

4.5.5 Performance with Data Skew and Background Load

In this section, we add background load on JoinExecutors with data skew (scalar
skew and Zipf skew).



4.5 Experimental Results 111

4.5.5.1 Performance with Scalar Skew and Background Load

Figures 4.16 and 4.17 show the execution time when there is both scalar skew (skew
factor is 10,000 and 20,000, respectively) as well as the background load. The confi-
dence interval is less than 2.8%.

Figure 4.16 shows that SCHJ is better by approximately 10% compared to RR
and SMP20 in all the cases. Figure 4.17, where the skew factor is increased to 20,000,
shows that SCHJ is better than RR by 15% with no background load, remains 15%
with 3 processes, and increases to 19% with 6 processes. The more background load
there is, the better the performance of SCHJ.

The SMP algorithms as well as RR do not perform well because of the background
load disturbance. Also, the poor performance of SMP10 is due to inadequate sampling
for the skewed data. The more background loads that are present, the worse the wrong
prediction gets.

From these results, we can conclude that with the combination increased scalar
skew and background load, SCHJ is better than the other algorithms. The more

scalar skew and background are present, the better SCHJ performs.

4.5.5.2 Performance with Zipf Skew and Background Load

Figures 4.18 and 4.19 show the execution time when both Zipf skew and background
load are present. The confidence interval is always less than 5%. However, for most
results, it is less than 3.2%.

Figure 4.18 shows the performance of algorithms with the skew factor of 60. When
the degree of skew is modest (skew factor is 60) and background load is modest (3
processes), RR and SCHJ perform the same. However, when the background load
increases to 6 processes, the performance gain of SCHJ over RR reaches 19%.

Figure 4.19 shows the performance of these algorithms with the skew factor is 80.
It shows that SCHJ has a stable performance gain over the other algorithms. The
gains are 21% when the background load is 0, 22% with 3, and 27% with 6 processes.

In conclusion, SCHJ outperforms the other algorithms with the Zipf skew and
various background load.



4.5 Experimental Results 112

100 L) T 13 L]
% | SCHJ o]
80 | SMP20" —e—

70
60 +

Time (Sec)

50 |

40 I ..--- ------ ....,.

30 T ]

20 i L L L 1
0 1 2 3 4 5 B

Number of background processes

Figure 4.16: Performance of algorithms with scalar data skew variance of 10,000 and
background load.

150
140

130
120
110
100
90
80

Time (Sec)

70 L 1 1 L 1
0 1 2 3 4 5 6

Number of background processes

Figure 4.17: Performance of algorithms with scalar data skew variance of 20,000 and
background load.



4.5 Experimental Results 113

110 | | |
100
90 |
80 |
70 |
-
50 | ’ /
o X —
! e |

20 '—-::' L L ! 1
0 1 2 3 4 5 6

Number of background processes

Time (Sec)

Figure 4.18: Performance of algorithms with the Zipf data skew factor of 60.

1600
1400

1200
1000
800

Time (Sec)

600
400

200

0 1 2 3 4 S 6
Number of background processes

Figure 4.19: Performance of algorithms with the Zipf data skew factor of 80 and 8
JEs.



4.5 Experimental Results 114

4.5.6 Performance with the Internet Transfer Delay

As explained in the experimental methodology in Section 4.4, this subsection focuses
on performance of SCHJ, GIHM, and JIHM under the effect of the Internet transfer
delay using the model described in Section 4.3.4. First, we isolate other factors and
just investigate the effect of the Internet transfer delay on the performance of these
algorithms. Then, we add data skew and background load as in the previous section.
We focus more on scalar skew rather than Zipf skew because the skew control is easier.
For GIHM, we use 5, 10, and 20 as its threshold values.

4.5.6.1 Performance with the Internet Transfer Delay Alone

Figure 4.20 shows the performance of the algorithms with no data skew and no back-
ground load but with the Internet transfer delay. The confidence interval is less than
0.1%.

In this figure, SCHJ is marginally better than the other algorithms for all the DB
locations. The improvement is only about 1% because it has no background load and
no skew.

Another remark about this figure is that the delay caused by the Internet transfer
delay from one location to another location is 4% (from Toronto to UCLA) and 25%
(from UCLA to Tokyo). Table 4.8 shows the delay is 13% (from Tortoto to UCLA)
and 26% (from UCLA to Tokyo). Thus, when the delay is small the algorithms can
absorb the delay. However, as the distance becomes long, the algorithms are affected
by the delay.

4.5.6.2 Performance with the Internet Transfer Delay and Data Skew

Figures 4.21 and 4.22 show the performance of the algorithms there is no background
load and the scalar skew factor is 10000 and 20000, respectively. The confidence
interval is less than 0.5%.

SCHJ is marginally better than the other algorithms for all DB locations and all
the degrees of skew.

Another interesting point is that the difference between Figure 4.21 and 4.22
are not as large as the case without the Internet transfer delay (Figure 4.13). This



4.5 Experimental Results

115

250
200
150
100

Time (Sec)

50

Toronto

UCLA

DB Location

Tokyo

OSCHJ

E GIHM
JIHM-5
W JIHM-10

JIHM-20

Figure 4.20: Performance of the algorithms with no data skew and no background
load and the Internet transfer delay.

250
200
150
100

Time (Sec)

O
o

Toronto

UCLA

DB Location

Tokyo

OSCHJ

& GIHM

& JIHM-5
mJIHM-10
& JIHM-20

Figure 4.21: Performance of algorithms with scalar data skew factor of 10,000.



4.5 Experimental Results 116

250

200 C1SCHJ

o ]
$ 150 B GIHM
° JIHM-5
E 100 m JIHM-10
50 B JIHM-20
Toronto UCLA Tokyo
DB Location

Figure 4.22: Performance of algorithms with scalar data skew factor of 20,000.

is because JoinExecutors can work on the join processing on skewed bucket while
waiting for the relations to arrive as long as there is no background load on them. If

there is background load, it delays the join execution as we will see in Section 4.5.6.4.

4.5.6.3 Performance with the Internet Transfer Delay and Background
Load

Figures 4.23 and 4.24 show the performance of the algorithms as the function of
background load when the DB location is Toronto and Tokyo, respectively. The
confidence interval is less than 1%.

Both figures show that the effect of background load is small in SCHJ comparing
to other algorithms because of its adaptive load balancing/sharing mechanism. Thus,
the higher background load, the higher its improvement over the other algorithms.
For example, in Figure 4.23, SCHJ improvements over GIHM are 2% and 5% when
the background load is 3 and 6 processes, respectively.

Both figures also show that JIHM5 is better than GIHM, especially when the
background load is 6 processes. GIHM is based on a greedy algorithm. Once it fixes
the hash mapping, it cannot change later. With higher background load, it is not



4.5 Experimental Results 117

effective because of frequent change in background load. On the other hand, JIHM
waits to fix the hash mapping until the enough work is available and the timing of
fixing the hash mapping is totally depends on the load of the PNs. Thus, it is effective
in the case of higher background load.

182
180
178
176
174
172
170 |
168 |
166

164 1 1 1 1 1
0 1 2 3 4 5 6

Number of background processes

SCH) ——

Time (Sec)

Figure 4.23: Performance of the algorithms when the DB location is in Toronto.

4.5.6.4 Performance with the Internet Transfer Delay, Data Skew and
Background Load

Figures 4.25 and 4.26 show the performance of the algorithms as a function of the
number of background load processes when the skew factor is 10000 and the DB
location is Toronto and Tokyo, respectively. The confidence interval is less than 3%.

Both figures show that SCHJ is the least affected by the change of background
load. Thus, the higher the background load, the more SCHJ improves compared to
other algorithms which are affected by the change in background load.

Comparing GIHM with JIHM in these figures, GIHM is better than JIHM. GIHM
is based on greedy algorithm which assigns skewed buckets as soon as they arrive.



4.5 Experimental Results

118

230
228
226
224
222

Time (Sec)

220
218

216 L

214

Figure 4.24: Performance of algorithms when the DB location is in Tokyo.

320

300 r

280

260

240

Time (Sec)

220

200 r

180

160

o
(N TETY 1 Ja— -‘.‘_:.:,:/J
 JIHM10 —o— L

JIHM20 --—=-- o

0 1 2 3 4 5

Number of background processes

SCHJ —— ' ' '
GIHM - .
JIHM5 o
JIHM1Q e e
- JIHM20 ---»-- s

o 1 2 3 4 5

Number of background processes

Figure 4.25: Performance of algorithms with the DB location as Toronto and the
skew factor of 10,000.



4.5 Experimental Results 119

400 T T T L)
380 F GIHM —-»— %

360 I JIHM10 —=— A
340 | JIHM20 ~—-=-- ]

320 | )
300 | S 4
280 | P - /'____-;
260 S

240
220
200

Time (Sec)

Number of background processes

Figure 4.26: Performance of algorithms with the DB location as Tokyo and the skew
factor of 10,000.

Figures 4.27 and 4.28 show the performance of the algorithms as a function of
the number of background load processes when the skew factor is 20000 and the DB
location is Toronto and Tokyo, respectively. The confidence interval is always less
than 5.5%. In most cases, it is less than 3.1%.

The effect of the background load is more obvious than in the previous graphs
(e.g., Figure 4.23 — 4.26) because of the extreme skew.

Performance of SCHJ is 11% better than JJTHM10 in both cases, which shows the
effectiveness of SCHJ. JTHM10 is better than other JIHMs and GIHM. When the
skew factor is high, the effect of the background load is severe on GIHM. GIHM is
good for moderate skew case and low background load. In case of high skew and
high background load, it does not perform well because of its greedy algorithm which
result in poor hash mapping decision. On the other hand, JIHM waits for more data
to arrive before it makes a decision. Among the various JIHM algorithms, smaller
number (5 or 10) of ready JSM entries is better in these cases. If it is 20, it waits too
long and keeps JEs idle long.



4.5 Experimental Results 120

1400 : . . | |
T
1200 | [TV Jp—
JIHM10 ~—-g- p
1000 | JIHM20 -—»— // q
» 800F -
@ )
E 600
|—-
400
200 ,
0 . , ‘ . |
0 1 2 3 4 . .

Number of background processes

Figure 4.27: Performance of the algorithms with the DB location as Toronto and
skew factor of 20,000.

1400

SCHS ——
GIHM -
1200 F JIHM5 -oxem Vi
JIHM10 ~——e—
JIHM20 ---s--- /
_. 1000 |
Q
[+
2
o 800 |
E
o
600 |
400 | .
200 ¥ : . ,
0 5 ” - 6

Number of background processes

Figure 4.28: Performance of the algorithms with the DB location as Tokyo and the
skew factor of 20,000.



4.6 Conclusion 121

From these results, we can conclude that SCHJ performs better than other algo-
rithms under the Internet transfer delay, background load, and data skew.

4.6 Conclusion

Non-symmetric join algorithms are not effective when we do not know which rela-
tion to choose as the main relation (i.e. which one is smaller or which one arrives
faster than the other). Thus, in this chapter, we first proposed symmetric versions
of ChunkHJ (SCHJ). They are evaluated with dynamic round-robin and dynamic
sampling algorithms on a cluster. We reached the following conclusions from these
experiments without the Internet transfer delay.

e Dynamic round-robin algorithm is better than other algorithms when there is
no data skew and no background load.

e Dynamic sampling is better when there is no data skew and background load
which cancels out the delay of start of join processing. But, it is just marginally
better than SCHJ.

e SCHIJ is better than the other algorithms when there is data skew (scalar skew
and Zipf skew) and background load. In most cases, the more the background
load, the bigger the improvement. In the extreme case, when the background
load is 6 processes and Zipf skew (skew factor is 80) exists, it is 27% better than
the other algorithms.

We also proposed Greedy Incremental Hash Mapping (GIHM) and JSM-based
Incremental Hash Mapping (JIHM) mainly for the Internet transfer delay case. They
are compared with SCHJ for the Internet transfer delay model. In the model, one
of the relations resides locally and the other resides at a remote location (University
of Toronto, UCLA, or University of Tokyo), which has a dynamic transfer delay
according to the geographical distance. We drew the following conclusions:

e With only the Internet transfer delay or with data skew (scalar skew), SCHJ is
marginally better than the other algorithms. The greater the background load,



4.6 Conclusion 122

the better the SCHJ performance because of the load balancing mechanism.
In this case, data skew can be absorbed by the arrival delay if there is no
background load.

e The improvement of SCHJ becomes greater when increasing skew or background
load.

e When there is modest skew and background load, GIHM is better than the
JIHM algorithms but worse than SCHJ

e When there is extreme skew and background load, JIHM is better than the
GIHM algorithm but worse than SCHJ.

In conclusion, for a cPDBMS, where there is background load along with data
skew, Symmetric ChunkHJ, performs better than incremental mapping hash algo-
rithms with the Internet transfer delay.



Chapter 5
Multiple-Join Algorithms

In this chapter, we compare the performance of two pipelined join algorithms in a
cPDBMS. First, pipelined hash join algorithms are reviewed. Then, two hash join
algorithms, simple (non-symmetric) pipelined hash join (NSPHJ) [43] ! and symmet-
ric pipelined hash join algorithm (SPHJ) are explained [42] 2. Then, hardware and
software environments are explained. Finally, the experimental results are presented.

5.1 Pipelined Hash Join Algorithm Revisited

This section describes the pipelined hash join algorithms used in our experiments. The
two relations participating in a join are traditionally called inner and outer relations.
To facilitate pipelined execution, we use a right-deep query tree shown in Figure 5.1.
In this tree, the inner relation of a join is shown as the left relation and the outer
relation is shown as the right relation. For example, relations R, R3, R4, Rs, and Rg
are inner relations. Relation R; is the outer relation for join J1. The output produced
by J1 will be the outer relation to J2 and so on.

In a hash join algorithm, the inner relation is first partitioned into disjoint subsets

1Kenji Imasaki, Hong Nguyen and Sivarama Dandamudi,“Performance of Pipelined Nested Loop
and Hash Joins on a Workstation Cluster,” International Conference on Parallel and Distributed
Processing Techniques and Applications (PDPTA), Las Vegas, Nevada, June 2002.

2Kenji Imasaki, Hong Nguyen and Sivarama Dandamudi,“Performance Comparison of Pipelined
Hash Joins on Workstation Clusters,” 9th International Conference on High Performance Computing
(HiPC2002), pp. 264-275, Bangalore, India, December 2002.



5.1 Pipelined Hash Join Algorithm Revisited 124

Figure 5.1: Right-deep query tree.

called buckets, using a hash function applied on the join attribute. This creates a
hash table for the inner relation, against which tuples from the outer relation are
matched to join the tuples.

Thus, a hash join algorithm normally involves two phases:

1. Table-Building Phase: During this phase, a hash table is built for the inner

relation. This step involves reading the complete inner relation.

2. Tuple-Probing Phase: Once the hash table for an inner relation is available,
tuples from the outer relation are used to probe the hash table to find matches
on the join attribute. If a match exists, the two tuples are joined to produce
the result tuple. Thus, to complete a join operation, complete scan of the outer

relation has to be made.
The following notations are used in the description.
e R; = inner relation; R;; = the k;, partition of the inner relation
e R, = outer relation; R, = the k;, partition of the outer relation

o R, = result relation; R,; = the k;, partition of the result relation.



5.2 Non-Symmetric Pipelined Hash Join Algorithm 125

Also, join pattern at each node is discussed. Join pattern is a sequence of arrived
partition name (inner and outer relation) and join execution denoted by “J”. For ex-
ample, join pattern “ Ry Rp;J R;5” means that first the node receives partition R,y Ra;
and executes the join and then receives Rj3. In the following description, each slave
node is responsible for each join in a query.

5.2 Non-Symmetric Pipelined Hash Join Algorithm

Non-Symmetric Pipelined Hash Join (NSPHJ) algorithm works as follows:

1. Each slave node waits for the partitions of R; to arrive. The tuples of each
received partition of R; are inserted into the hash table as they arrive. Once all
of R; has been received and the hash table is complete, the hash join operation
begins if a partition of R, is available at the slave node.

2. The intermediate join result R, is shipped to the next slave node in partitions
when the buffer becomes full. These shipped partitions act as the partitions of
R, for the next join process.

3. After the intermediate result has been sent to the next slave, the current node
waits for another incoming partition of R,. When this partition arrives, it
performs the join as before. This process is repeated until the last partition of
R, has been received (with an end-of-R, message).

For this join algorithm, the join pattern at each node is as follows: R;, R;2, R,
-+, end-of-R;, R, J, Ro2, J, Ro3, J, + -+, end-of-R,, J.

5.3 Symmetric Pipelined Hash Join Algorithm

NSPHJ is asymmetric in that only the inner relation is hashed. On the other hand,
in Symmetric Pipelined Hash Join (SPHJ) algorithm, both relations are hashed and
works as follows:



5.4 Experimental Environment 126

1. Each slave node waits for the partitions of either R; or R, to arrive. If a partition
of R,(R;) arrives, the join begins between the tuples of partition R,(R;) and
the hash table of R;(R,), respectively.

2. The intermediate join result is sent to the next slave node as a partition of R,
when the buffer becomes full. This partition becomes the R, partition in the
next join process.

3. After the intermediate result has been sent, the tuples of the partition of R,(R;)
are inserted into the hash table of R,(R;).

4. The process is repeated until the last partitions of R; and R, have been pro-
cessed.

For this join algorithm, an example of the join pattern at a slave node is as follows:
Rfil; R'i2: Rol: J7 R’i3a J’ Tt end'Of'R'iJ J7 Ro27 Ja R03) J) T end‘Of'Rm J.

5.4 Experimental Environment

This section presents the environment that we used for multiple-join processing.

5.4.1 Hardware Environment

The following experiments were conducted on the same cluster used in the experiments
in Chapter 4. Its detailed description of the cluster was given in Section 4.3.1.

5.4.2 Software Environment

The software architecture is shown in Figure 5.2, and is based on the software archi-
tecture used in Chapter 3. A detailed description was given in Section 3.4.2. The
Database (DBMS) node maintains the actual database. The master node acts as the
coordinator as well as the interface between the slave and DBMS nodes. The slaves
actually perform the join operation. More details on the software architecture will be

given in the next subsection.



5.4 Experimental Environment 127

<
Local disk Database disk
Node 1 Node 2 Node n

= = => Flow of pipeline <<—> Communication

!:] Node O Process

Figure 5.2: Software architecture for pipelined hash joins.

The relation sizes used in our experiments are 1 and 2 million. Database data is
the same as the data in Section 3.4.3.1.

5.4.3 Implementation Detail

In these experiments, one node is used to run the master and DBMS processes, while
the remaining nodes are used for the slave processes. Unless otherwise stated, the
results reported here were obtained using 8 slave nodes.

Our implementation consists of four major software components: a master, a slave,
a DBMS, and a background process. The relationship among these components is
shown in Figure 5.2. The master process acts as the controller of all processes. When

invoked, it spawns the other processes (i.e., slave, background, and DBMS processes).



5.4 Experimental Environment 128

The master process monitors the join processes and gathers the final join results,
which are then written to a local disk.

Slave processes perform the local join operations. The DBMS process is respon-
sible for reading input relations and passing them on to the master. Background
processes control the non-query loads that simulate the local user’s workload. When
configured, background processes are invoked on the same nodes as the slave processes
and are run during the join operations, which is the same as in Section 3.1.2.

At the beginning of the execution, the master process reads in the parameter
settings (like buffer size, number of tuples, etc.), spawns the child tasks (slave and
background processes), and depending on the configuration, passes the necessary
information to thie children. It then initiates the join process by making requests to
the DBMS process for data inputs and sends the received inputs to the slave processes.

After receiving requests from the master, the DBMS obtains the relation infor-
mation and reads the appropriate input relations from the disk. These relations are
then sent to the master in partitions. The master node then sends them to the
corresponding slaves.

A slave process is responsible for the execution of a join; each slave is assigned
to a pipeline stage (no intra-operator is used in our experiments), where it receives
partitions of the inner relation (or a base relation) from the master. However, the
first slave of the pipeline receives two input relations from the master. In NSPHJ,
the join process begins after receiving all partitions from the inner relation and a
partition from the outer relation. In SPHJ, the join process starts immediately after
one partition from either outer relation or inner relation arrives. The resulting tuples
are sent to the next slave in the pipeline. The next slave receives the intermediate
result and uses it as input for its local join. The number of tuples to be sent to the
next slave is limited by the buffer size set for the outer relations. If the number of
tuples of the result relation exceeds the buffer size, they are sent to the next stage.

Algorithm 5.4.1 shows the pseudocode for the master process.



5.4 Experimental Environment 129

| Algorithm 5.4.1: PHJONMASTER(pS, bRs, nBRs, nStages)

{Master reads the relations and distribute them to slaves}
{Input: partitionSize pS;
' base relations for this query bRs;
the number of base relations nBRs;
the number of pipeline stage nStages;
Output: none}

{base relations are read in parallel}
for ¢ + 0 to nBRs
(X « bRs[i];
nPartitions «+ X/pS
for j <+ 0 to nPartitions
X3« read(“X”,j *pS, (j +1) *pS — 1)

do { SLz + assign(X); {according to the query tree}
\ send(SLz, “Relation”, X7)
send(S Ly, “ProcessEnd”, null)  {first slave on the pipeline}
recv(S Lnstages—1, “ProcessEnd”)  {last slave on the pipeline}

do (

The pseudocode for slave;, which works on ith join of the query, of NSPHJ is
shown in Algorithm 5.4.2.



5.4 Experimental Environment 130

Algorithm 5.4.2: NSPHJONSLAVE;(n, pS, Ri, Ro)

{slave process for NSPHJ that works on join}
{Input: the number of buckets n;
partitionSize pS;
inner relation Ri;
outer relation Ro;
Output: none}

{table building phase}
nPartitions < |Ri|/pS
for j « 0 to nPartitions
recv(master, “Relation”, Ri’)
do { R, « applyHash(Ri,n) {for inner relation}
Riarr < Risrr U Rz’f;m ; {insert into the existing hash table}
{table probing phase}
{prev is the previous stage}
if (i ==0)
then prev + master
else prev < SL;_,
{nexzt is the next stage}
if (1 == (nStages — 1))
then next < master
else next < SL;y,
repeat
recv(prev, “Relation”, X) {For outer relation}
execLJ(RiarL, X)
{send it to the next stage (SL;+1) when the buffer is full}
until recv(prev, “ProcessEnd”)  {from the previous stage}
send(nezt, “ProcessEnd”, null) {to the next stage slave}

The pseudocode for slave;, which works on ith join of the query, of SPHJ is shown
in Algorithm 5.4.2.



5.5 Experimental Methodology 131

Algorithm 5.4.3: SPHJONSLAVE(n)

{slave process for SPHJ that works on join}
{Input: the number of buckets n;
Output: none}

{table building and probing phase}
{prev is the previous stage}
if (i == 0)
then prev + master
else prev « SL;
{nexzt is the next stage}
if (i == (nStages — 1))
then next < master
else next < SL;y,
repeat
recv(prev, “‘Relation”, X)
execLJ(X,YaLL)
X4 < applyHash(X,n)
Xarp ¢« Xarr U XY,
until recv(prev, “ProcessEnd”, null) {from previous stage}
send(nezt, “ProcessEnd”, null)  {to the next stage JE}

5.5 Experimental Methodology

In our experiments, we study the impact of background loads on the performance of
NSPHJ and SPHJ algorithms with various buffer sizes given the following background

load settings:
¢ No background load;
¢ Background load on the DB node;

¢ Identical background load on the slaves.



5.6 Experimental Results 132

First, we test these cases without the Internet transfer delay. Then, we add the
Internet transfer delay using the model specified in Section 4.3.4.

5.6 Experimental Results

This section discusses the results of our experiments conducted on a cluster described
in Table 4.4. The following parameters are used in the experiments. We used 8
slave processes on 8 nodes (one slave per node) during the experiments (except for
the speedup experiments; in that case, the number of slave nodes is changed). The
number of buckets is set to 1,000 and the number of tuples is fixed at 1 or 2 millions.
The experiments were conducted with variable buffer sizes.

5.6.1 Performance without the Internet Transfer Delay

This subsection reports the results of the experiments of NSPHJ and SPHJ without
the Internet transfer delay. First, we assume that there is no background load on any
of the nodes. Then, identical background load is added on the DB node. Finally,
identical background load is added on the slave nodes.

5.6.1.1 Performance with No Background Load

This subsection examines the base case in which there is no background load on the
slave as well as on the DB nodes. This represents the case where a cluster is dedicated
to database query processing.

Figures 5.3 and 5.4 show the execution time of NSPHJ and SPHJ when the buffer
size varies and the number of slaves is 8 for 1 and 2 million tuples, respectively. The
confidence interval is less than 1%. We did not include the case that the number of
slaves is 1 in Figures 5.4 since it took too much time to execute.

While the performance superiority of NSPHJ is marginal, it is important to note
that in other environments, SPHJ provided substantial performance improvement
over NSPHJ, as mentioned in Section 2.4.2. When there is no background load to
slow down the incoming partitions of the relations, the majority of the partitions of
the base relations (or inner relations) R; arrive at the join processes earlier than those



5.6 Experimental Results 133

280
NSPHJ ——

260 | SPHJ - y

240 | VaE

220

200

Time (Sec)

180

160

140

120 '
1000 10000

Buffer Size (Number of tuples)

Figure 5.3: Performance of the NSPHJ and SPHJ when the number of slaves is 8 and
the number of tuples is 1 million.

of the outer relations. As a result, the behaviour of the joins performed under SPHJ
is similar to that performed under NSPHJ. That is, the execution patterns of the two
join algorithms are similar, which results in similar execution time. The SPHJ takes
more time, as it has to spend additional time to build the second hash table.

These figures show that the execution time increases with the buffer size beyond
1,000 tuples. This is the result of the trade-off between the communication time to
send the tuples and the join time. We can reduce the communication time if we use
larger buffers (thus fewer messages). However, larger buffer also means slaves have to
wait for the whole buffer to arrive before working on the joins. Thus, we would like
to use smaller buffers to reduce the join time. However, setting the buffer size small
results in an increase in the number messages and induces more overheads.

As the size of the relations increases, the difference in the execution time of NSPHJ
and SPHJ decreases as shown in Figure 5.4. This slight improvement in the perfor-
mance of SPHJ (compared to the 1 million-tuple relations case) is due to the fact

that, when more tuples are involved, there are more partitions participating in the



5.6 Experimental Results 134

550

NSPHJ ——
YTy p—

500

450

Time (Sec)

400

350

300

1000 10000
Buffer Size ( Number of tuples )

Figure 5.4: Performance of the NSPHJ and SPHJ when the number of slaves is 8 and
the number of tuples is 2 million.

join processes for the same buffer size. Therefore, NSPHJ takes longer to receive the
whole inner relation R;. Alternatively in the SPHJ algorithm, the join process takes
place earlier, as soon as both partitions of R; and R, have been received, and there-
fore the smaller the buffer size, the sooner the join process can start. This leads to
better performance with SPHJ as the buffer size decreases. This observation implies
that, with very large relations, the larger the ratio of the relation size to buffer size,
the larger the benefits of using SPHJ in place of NSPHJ.

Our results are in contrast to the substantial performance advantages achieved
by using SPHJ in data integration systems that were explained in Section 2.1.3.2.
There are several reasons for this performance difference: first, in data integration
systems, data come from different sources and their query processing may experience
long, highly variable delays in delivering the tuples. However, in a cPDBMS, all the
data comes from a single source (the database node). We will study this case in
Section 5.6.2. Also, in NSPHJ which waits to receive the complete inner relation, it
is important to identify /predict which of the two relations is smaller. This is because



5.6 Experimental Results 135

its performance is sensitive to the selection of inner relation. NSPHJ gives better
performance if we select smaller of the two relations as the inner relation. SPHJ
is symmetric and is not sensitive to the assignment of the inner and outer relation.
In data integration systems, it is difficult to predict the size of the relations. In a
cPDBMS, the relation size information is available in the system catalog. Our results
suggest that, when using a cPDBMS, NSPHJ performs as well as or better than
SPHJ. Implementing NSPHJ is also more efficient because it demands less memory
by building only a single hash table.

800

NSPHJ ——
SPHJ —»-—

700
600 A\ \
500 t

400

Time (Sec)

300 |

200

100 1 1 I L

Number of slave nodes

Figure 5.5: The execution time of the NSPHJ and SPHJ when buffer size is 1000 (14
KBytes) and the number of tuples is 1 million.

The execution time of NSPHJ and SPHJ algorithms for 1 and 2 million tuples are
shown in Figures 5.5 and 5.6, respectively. The confidence interval is less than 0.1%.

This data also show that NSPHJ provides better performance than SPHJ when
the number of slaves is varied. The performance difference between NSPHJ and SPHJ
in Figures 5.5 and 5.6 is 10% and 4% when the number of slaves is 8 for 1 and 2 million
tuples, respectively.



5.6 Experimental Results 136

550

NSPHJ ——
Ty —

500 |,
450 |

400

Time (Sec)

350 |

300

2 3 4 5 6 7 8
Number of slave nodes

Figure 5.6: The execution time of the NSPHJ and SPHJ when buffer size is 1000 (14
KBytes) and the number of tuples is 2 million.

5.6.1.2 Impact of Background Load on Database Node

In this section, we consider the effect of having a background load only on the DB
node. The results for the 1 million tuple relations are shown in Figures 5.7 and 5.8
when background load on database node is 5 and 10 processes, respectively. From the
data presented in these figures, it can be seen that the presence of the background
load on the DB node favours SPHJ. As shown in these figures, SPHJ outperforms
NSPHJ when the buffer size is small. This is due to the fact that the presence of a
background load on the DB node slows down the flow of R; partitions to the slave
nodes, causing a mixed execution pattern to likely occur. This kind of execution
pattern improves the performance of SPHJ. Small buffer size also helps boost the
performance of SPHJ as smaller buffer sizes means slower NSPHJ performance. The
reason that for this is that setting small buffer size requires more messages to transmit
the whole inner relation. This makes the improvement of SPHJ significant enough to
outperform NSPHJ. However, peek performance can be obtained when buffer size is
2000 tuples at which NSPHJ performs better. The performance difference between



5.6 Experimental Results 137

NSPHJ and SPHJ is about 7% in Figure 5.7.

Figure 5.8 shows the peak performance can be obtained when the buffer size is
5000 at which NSPHJ is marginally better than SPHJ. Thus, SPHJ performs better
as the background load increases. However, the performance difference between them
is within 6%. Also, large buffer size is better for both algorithms when these in
higher background load on the DB node because the relation arrival is delayed and
more tuples in the buffer compensate for the delay.

nBGs=5 on DB
360 ;

340 | SPHJ —x—
320 | ;
300 %
280 | .

260 | .

240 | AN

220 | o
200 |

1 80 " 1 N i .
100 1000 10000

Buffer Size (Number of Tuples)

Time (Sec)
e

Figure 5.7: Performance of the NSPHJ and SPHJ when the background load on the
DB node is 5 processes.

5.6.1.3 Impact of Identical Background Load on Slave Nodes

In this subsection, we consider identical load on all slaves nodes. Performance of the
NSPHJ and SPHJ algorithms when identical background load of 5 and 10 processes
is shown in Figures 5.9 and 5.10, respectively.

NSPHJ provides better performance than SPHJ as the case of no background load
and background on the DB node case. The performance difference between NSPHJ
and SPHJ is 5% when buffer size is 500 tuples are shown in Figure 5.9. The marginal



5.6 Experimental Results 138

nBGs=10on DB
1300

NSPHJ ——

1200 |
1100

1000

Time (sec)

900 r

800

700

600 " 1 PREPN
100 1000 10000

Buffer Size (Number of Tuples)

Figure 5.8: Performance of the NSPHJ and SPHJ when the background load on the
DB node is 10 processes.

performance superiority of NSPHJ is discussed in Section 5.6.1.1.

Figure 5.10 shows that the difference in the performance of NSPHJ and SPHJ is
almost negligible but NSPHJ is as good as SPHJ around the peak performance buffer
size (500 tuples).

As opposed to the background load on the DB node case where larger buffer is
favorable, the smaller buffer size is favorable. If it is too large, the pipeline stalls

because of the interference during join operation on slave nodes.

5.6.2 Performance with the Internet Transfer Delay

This subsection reports the results of the experiments of NSPHJ and SPHJ when there
is the Internet transfer delay. We use the same conditions as the previous section and
add the Internet transfer delay while varying the number of delayed relations to be
1, 2 or 4. We have chosen joined relations from the end of the pipeline as delayed



5.6 Experimental Results 139

nBGs=5 on slaves

550 T
NSPHJ ——

500 | SPHJ ----%----

450
400
350

Time (Sec)

300
250
200

150
100 1000 10000

Buffer Size (Number of tuples)

Figure 5.9: Performance of the NSPHJ and SPHJ when identical background load on
slave nodes is 5 processes.

nBGs=10 on slaves
900 Y

800
700
600
500

Time (Sec)

400
300

200 r

100 X
100 1000 10000

Buffer Size (Number of tuples)

Figure 5.10: Performance of the NSPHJ and SPHJ when identical background load
on slave nodes is 10 processes.



5.6 Experimental Results 140

relations as shown in Figure 5.11%. We also changed the DB location as described in
Section 4.5.6.

Please note only one DB is used when the DB location is local (no Internet transfer
delay); otherwise, two DBs are used (one is for local and the other is for remote).

In this section, first, we present the performance results with the Internet transfer
delay alone and later we add background load on the DB nodes and slave nodes as

in the previous section.

P
/Loc“l DB " Remote DB

Figure 5.11: Right-deep query tree with the Internet transfer delay when the number
of delayed relations is 3.

5.6.2.1 Performance with the Internet Transfer Delay Alone

Effect of DB location Figure 5.12 shows the execution time with no background
load when we change the DB location. The confidence interval is less than 1%.

$We tried different combinations for choosing delayed relations but we did not observe any sig-
nificant difference in results.



5.6 Experimental Results 141

O Local
@ Toronto

i B § K& =

NSPHJ-1 SPHJ-1 NSPHJ-2 SPHJ-2 NSPHJ-4 SPHJ4

Figure 5.12: Performance of the NSPHJ and SPHJ with no background load when
the DB location is changed (the number in the x-axis labels indicates the number of
delayed relations).

It is surprising that the DB location does not affect the performance of both
algorithms. Both algorithms can absorb the relation arrival delay and rate fluctuation
by working on joins while waiting for the relation.

However, the more delayed relations there are, the more the performance degra-
dation. In the case when the number of delayed relations is 4, the slowdown rate
from Toronto to Tokyo is 6% (NSPHJ) and 7% (SPHJ). Figure 5.12 also shows the
effectiveness of SPHJ over NSPHJ when varying the DB location and the number of
relations. The performance difference is almost the same for all the DB locations.

Effect of the number of delayed relations Figure 5.13 shows the execution time
with no background load and the Internet transfer delay when we vary the number
of delayed relations. This figure shows the execution time is almost proportional to
the number of delayed relations. When the DB location is Tokyo (NSPHJ-Tokyo),
NSPHJ is more affected by the change in the number of delayed relations than the



5.6 Experimental Results 142

600 . r
NSPHJ-Toronto —— |
550 | SPHJ‘TOrOntO e e A
NSPHJ-UCLA - L o
SPHJ-UCLA 8 e
500 - NSPHJ-Tokyo ---=—

SPHJ-Tokyo -

450 r

400 |

Time (Sec)

350 | ¥
300 | ) . . ,:»,a

250 ¥

200 : 1
1 2 3 4

Number of Delayed Relations

Figure 5.13: Performance of the NSPHJ and SPHJ with no background load when
the number of delayed relations is varied.

others since the line is steeper than the others.

5.6.2.2 Impact of Background Load on Database Node

Effect of DB location Figures 5.14 and 5.15 show the execution time when we
change the DB location and the background load on the DB node of 5 and 10 pro-
cesses, respectively. The confidence interval is less than 2.6%. Their execution time
is much larger than the no background case (shown in Figure 5.12).

These figures show that performance is not as largely affected by the DB location
change as no background load. Besides, the difference between NSPHJ and SPHJ is
almost the same as in the no background case. It means that a combination of the
Internet transfer delay and background load on the DB node together has an effect
on both the algorithms.

Comparing Figure 5.15 with Figure 5.14 and 5.12, we notice that the difference
between local and other three DB locations is much smaller in Figure 5.15. This is
because higher DB node background load causes extreme delay in the pipeline and the



5.6 Experimental Results 143

800
700
600

O Local

16)
o
o

400

Time (Sec)
W
-
o

200
100

% { 0 b

NSPHJ-1 SPHJ-1 NSPHJ-2 SPHJ-2 NSPHJ-4 SPHJ-4

Figure 5.14: Performance of the NSPHJ and SPHJ when background load on the DB
node is 5 processes.

Internet transfer delay does not make much difference. Both the algorithms exhibit
this effect.

Effect of the number of delayed relations Figures 5.16 and 5.17 show execution
time with background load on database node of 5 and 10 processes, respectively, when
the number of delayed relations changes. The performance difference between NSPHJ
and SPHJ is almost the same as the difference with no backgrouhd load.

Comparing Figure 5.17 with Figure 5.13, we notice that the slowdown rate is
smaller and it is sub-linear. The reason for this is the same as that we discussed for
the database location change scenarios. This is because higher DB node background
load causes extreme delay in the pipeline and the Internet transfer delay does not
make much difference.

5.6.2.3 Impact of Identical Background Load on Slave Nodes



5.6 Experimental Results

144

1000

800

600

400

Time (Sec)

200

0 -

NSPHJ-1

SPHJ-1

O Local
@ Toronto
UCLA
B Tokyo

NSPHJ-2 SPHJ-2 NSPHJ-4 SPHJ-4

Figure 5.15: Performance of the NSPHJ and SPHJ when background Load on DB

node is 10 processes.

750
700
650

600

Time (sec)

550

500 g

450

nBGs=5 on DBNode

NSPHJ-Toronto ——
SPHJ-Toronto -—--x---
NSPHJ-UCLA
SPHJ-UCLA
NSPHJ-Tokyo
SPHJ-Tokyo

2 3
Number of Delayed Relations

Figure 5.16: Performance of the NSPHJ and SPHJ when background load on the DB

node is 5 processes.



5.6 Experimental Results 145

nBGs=10 on DBNode

940 T
NSPHJ-Toronto ——
920 }  SPHJ-Toronto ----»-—-- .
NSPHJ-UCLA
900 SPHJ-UCLA '
NSPHJ-Tokyo
880 -  SPHJ-Tokyo

860
840
820
800
780

760 : :
1 2 3 4

Number of Delayed Relations

Time (Sec)

Figure 5.17: Performance of the NSPHJ and SPHJ when background load on the DB
node is 10 processes.

700

600
g 500 O Local
@ 400 E Toronto
£ 300 UCLA
= 200 M Tokyo

100

NSPHJ-1 SPHJ-1 NSPHJ-2 SPHJ-2 NSPHJ-4 SPHJ-4

Figure 5.18: Performance of the NSPHJ and SPHJ when background load on slave
nodes is 5 processes.



5.6 Experimental Results 146

700
600
’g 500 O Local
0 400 @ Toronto
e 300 UCLA
= 200 M Tokyo
100
0

NSPHJ-1 SPHJ-1 NSPHJ-2 SPHJ2 NSPHJ-4 SPHJ4

Figure 5.19: Performance of the NSPHJ and SPHJ when background load on slaves
is 10 processes.

Effect of the DB location Figures 5.18 and 5.19 show the execution time when we
change the DB location and the background load on the slaves is 5 and 10 processes,
respectively. The confidence interval is less than 2.9%. The performance difference
between NSPHJ and SPHJ gets larger as the background load increases as shown in
Figure 5.19. For example, when the number of delayed relations is 4 and DB location
is Tokyo, the difference is 8% (5 processes) and 20% (10 processes).

As for the DB location, NSPHJ is more affected by the DB location changes than
SPHJ. Besides, the higher the background load the slave has, the more it is affected
by the DB location. However, SPHJ is not affected much because of the adaptive
nature of the algorithm. This is different from the previous case (Figures 5.14 and
5.15) where, when background load is on DB, both algorithms were affected.

Effect of the number of delayed relation Figures 5.20 and 5.21 show the ex-
ecution time with the background load on slaves of 5 and 10 processes, respectively,



5.6 Experimental Results

147

600 , T .
NSPHJ-Toronto —— .~ -
550 |  SPHJ-Toronto -
NSPHJ-UCLA e
500 + SPHJ-UCLA -—a-— .
NSPHJ-Tokyo ---#-- S
o 450 | SPHJ-Tokyo  --o-- T ]
s R s g~
L”, "~
o 400 T
£ s i
F 8o0r -
300 1
250 | 2> = -
200 L .
1 2 3 4

nBGs=5 on slaves nodes

Number of Delayed Relations

Figure 5.20: Performance of the NSPHJ and SPHJ when background load on slave

nodes is 5 processes.

700

NSPHJ-Toronto —+— ' ]
650 |}  SPHJ-Toronto - =
600 NSPHJ-UCLA ----- L SSREH ‘.‘__.::: _____ -
" SPHJ-UCLA -—=— P
550 | NSPHJ-Tokyo ---s-- s P
—_ SPHJ-Tokyo e /_/’.-_’_'_’_ _____________ ""/_:5
8 500 o -~ "'—_‘__-—'—//‘_4;' -
a | T . o
g 40 T . :‘% .
F 400 Z |
8o .~~~ |
800 [ e ]
250 ]
200 1 1
1 2 3 4

nBGs=10 on slave nodes

Number of Delayed Relations

Figure 5.21: Performance of the NSPHJ and SPHJ when background load on slave

nodes is 10 processes.



5.7 Conclusion 148

when the number of delayed relations is varied. The execution time of both algo-
rithms is proportional to the number of delayed relations. NSPHJ is more affected
by the change in number of delayed relations (e.g., NSPHJ-Tokyo). It is the same as
that in the no background load case.

5.7 Conclusion

We studied the performance impact of non-symmetric and symmetric hash joins with
and without Internet transfer delay. Previous studies have shown that the symmetric
pipelined hash join (SPHJ) is superior to non-symmetric pipelined hash join (NSPHJ)
for systems like the data integration systems for Internet.

Without the Internet transfer delay, the results indicate that the NSPHJ performs
as well as or marginally better than SPHJ. Some of the reasons for this difference are
due to the system characteristics. For example, in a cPDBMS, all data come from
a single source as the database node supplies the tuples needed for performing the
join operations of a query. We have presented performance sensitivity to a variety of
factors including the background load on the database node and the slave nodes.

Regarding the buffer sizes, a larger buffer size is favorable when there is back-
ground load on the DB node. When the slave nodes have a background load, a
smaller buffer size is beneficial.

However, with the Internet transfer delay, SPHJ is better than NPHJ, which
supports the previous study results for a single-node data integration system. We did
experiments with and without background load on database nodes and slave nodes.
Also, the larger background load on either the database node or slave nodes, the
better SPHJ performs. The database location does not have much effect on either
of the two algorithms in most of the cases. However, when the DB node has high
background load, there is an effect on both algorithms. When the slave nodes have
a high background load, SPHJ can absorb the data arrival delay and/or data rate
fluctuation caused by the database location while NPHJ cannot.



Chapter 6

Conclusion and Future Direction

This thesis investigated the query precessing algorithms for cluster-based Parallel
Database Management Systems (cPDBMSs). Nodes in a cPDBMS experience dy-
namic load variations due to locally generated load. Furthermore, all data reside on
a traditional DBMS node and processing nodes are used for query processing.
Under these conditions, there are three areas we examined in this thesis: non-

symmetric single-join, symmetric single-join, and multiple-join algorithms.

6.1 Non-Symmetric Single-Join Algorithms

Non-symmetric single-join algorithms, which choose one of the relations to be joined
as the main relation, have been studied without considering the Internet transfer delay
of input relations. The algorithms studied here are the parallel versions of the nested-
loop join and hash join algorithms and their load balancing/sharing algorithms.

First, as a preliminarily experiment, the performance of nested-loop join process-
ing and its load sharing/balancing algorithms were evaluated on a Pentium-based
heterogeneous cluster. The results prove the effectiveness of a dynamic load shar-
ing/balancing algorithm on a cPDBMS.

Then, a new load-sharing algorithm, called ChunkHJ for single hash join process-
ing is introduced. The novelty of this load-balancing algorithm is that it divides the
hash buckets into chunks and uses them for load balancing. This new algorithm is
compared with two other algorithms: an adaptive nested-loop join and an adaptive



6.2 Symmetric Single-Join Algorithms 150

GRAGCE join. These three algorithms were evaluated on the same cluster with skewed
data and various non-query background loads. The results show that the new algo-
rithm is the best among the three and should be used for non-symmetric single-join

processing on clusters.

6.2 Symmetric Single-Join Algorithms

The symmetric single-join algorithms, which treat both relations equally, are studied
with and without considering the Internet transfer delay of input relations.

ChunkHJ is modified for symmetric joins. This new algorithm, called SCHJ,
is compared with dynamic round-robin algorithm, sampling algorithm (without the
Internet transfer delay), incremental hash mapping algorithms (with the Internet
transfer delay). These algorithms were evaluated on a Pentium 4 and Xeon based
cluster. We tested them with background load and skew (scalar and Zipf) types. The
results without the Internet transfer delay show that SCHJ is the best among these
algorithms except when there is modest skew and no background load. Even with
the Internet delayed data obtained from three different locations, SCHJ still performs
better than the other incremenatal hash mapping based algorithms. DB location has
little impact on the performance of SCHJ.

6.3 Multiple-Join Algorithms

We also studied the performance impact of non-symmetric and symmetric pipelined
hash joins (NSPHJ and SPHJ) with and without the Internet transfer delay. Previous
studies for a single-node DBMS, have shown that the SPHJ is superior to NSPHJ
for systems like the data integration systems for the Internet. Without the Internet
transfer delay, the results indicate that the NSPHJ performs marginally better than
the SPHJ, which is in contrast to the results from the previous studies. We have
identified the reasons for this behavior. Some of the reasons for this difference are
due to the system characteristics. For example, in a cPDBMS we consider here, all
the data come from a single source as the database node supplies the tuples needed
for performing join operations of a query. With the Internet transfer delay, SPHJ is



6.4 Thesis Conclusion 151

better, which supports the previous study results for a single-node DBMS. In addition,
increasing background load on either the DB node or slave nodes favors SPHJ. As for
the DB location, when there is a high background load on slaves, SPHJ can absorb
the data arrival delay and/or data rate fluctuation caused by database location level.

6.4 Thesis Conclusion

In this thesis, we have identified the advantages of cPDBMSs over general PDBMSs.
From these experimental results, we reach the following conclusions on join processing
algorithms on a cPDBMS.

¢ For a single-join algorithm, when the information on both relations is known or
one of the relation is smaller than the other or one of the relations arrives much
faster than the other, the non-symmetric version of ChunkHJ should be used.
Otherwise, the symmetric version of ChunkHJ should be used no matter what
kind of skew and background load exist.

e For a multiple-join algorithm, if all relations come from local sources, then the
non-symmetric version of pipelined hash join should be used. If any of the
relations in the query come from other sources, the symmetric version of a
pipelined hash join should be used.

6.5 Future Direction

This section gives a few directions for future research.

o Algorithm implementation using mySQL or Oracle 10g
The proposed algorithms can be combined with the existing commercial database
system. MySQL runs on our cluster and members in our research group im-
plemented pipelined and non-pipelined algorithms on the same cluster we used
in our experiments using MySQL, mpiJava, and JDBC. They obtained good
speedups. We can combine ChunkHJ or SCHJ with these programs.



6.5 Future Direction 152

o Algorithm evaluation (single- and multiple-joins) on a bigger cluster
Due to the limitation of the cluster size, our experiments were limited to 8
nodes or less. We would like to verify the effectiveness of our algorithms when

we increase the number of processing nodes.

o Combining SCHJ and symmetric pipelined hash join algorithm
Due to the limitation of the cluster size, we could not explore the possibility of
combining single-join and multiple-join algorithms. With larger cluster sizes, it
becomes important to combine the two algorithms. The number of nodes for
each pipeline stage needs to be decided. At that time, it would be also good to
consider the arrival speed of the input relation.

e Application for database processing on a grid
The Internet transfer delay model we introduced can be used for grid computing.
Global eCommerce companies like Amazon have databases spread all over the
world, e.g. Amazon operates in six countries (Canada, USA, UK, Germany,
France, and Japan). They also use horizontal scaling (parallel) techniques to
keep up with huge volume of customers. In addition, most of the queries are
read-only. Under these circumstances, the algorithms proposed in this thesis
could be useful to speed up query processing.



Appendix A

(zlossary

BG
ChunkNJ
ChunkHJ
cPDBMS
DD

DS
GIHM
HT

IBG
JIHM
JSM

LT
NSPHJ
PBG
PDBMS
PN

RR
SCHJ
SMP

Background load

Chunk-based Nested-loop Join
Chunk-based Hash Join

cluster-based PDBMS

Demand-Driven

Dynamic Scheduling _
Greedy Incremental Hash Mapping
High Threshold

Inverse Background load

JSM-based Incremental Hash Mapping
Join State Matrix

Low Threshold

Non-Symmetric Pipelined Hash Join
Proportional Background load

Parallel Database Management System
Processing Node

Dynamic Round-Robin

Symmetric Chunk-based Hash Join
Sampling method



154

SMP
SPHJ
SS_EQ
SS_PR
ST

Symmetric Multiple Processor

Symmetric Pipelined Hash Join

Static Scheduling with Equal distribution

Static Scheduling with Proportional distribution
Stop Threshold



Bibliography

[1]

[2]

[3]

[4]

[5]

[6]

Mahdi Abdelguerfi and Kam-Fai Wong, editors. Parallel Database Techniques.
IEEE CS Press, Los Alamitos, CA, 1998.

Laurent Amsaleg, Michael J. Franklin, Anthony. Tomasic, and Tolga Urhan.
Scrambling Query Plans to Cope with Unexpected Delays. In Fourth Interna-
tional Conference on Parallel and Distributed Information Systems (PDIS ’96),
pages 208-219, Miami Beach, Florida, USA, December 1996. IEEE Computer
Society Press.

Thomas E. Anderson, David E. Culler, David A. Patterson, and the NOW Team.
A Case for NOW (Network of Workstations). IEEE Micro, 15(1):54-64, February
1995. available at http://www.cs.berkeley.edu/.

Remzi H. Arpaci, Andrea C. Dusseau, Amin M. Vahdat, Lok T. Liu, Thomas E.
Anderson, and David A. Patterson. The Interaction of Parallel and Sequential
Workloads on a Network of Workstations. In Proceedings of ACM SIGMET-
RICS’95/PERFORMANCE’95 Joint International Conference on Measurement
and Modeling of Computer Systems, pages 267278, May 1995.

Aslam Nomani and Lan Pham. UB2 Universal Database for Windows High Avail-
ability Support Using Microsoft Cluster Server - Querview. Technical report,
IBM Corporation, May 2001. available at http://www-4.ibm.com/software/
data/pubs/papers/db2mscs/db2mscs.pdf.

Ron Avnur and Joseph M. Hellerstein. Eddies: Continuously Adaptive Query
Processing. In Weidong Chen, Jeffery Naughton, and Philip A. Bernstein, editors,
The 2000 ACM SIGMOD International Conference on Management of Data,



BIBLIOGRAPHY 156

volume 29(2) of SIGMOD Record (ACM Special Interest Group on Management
of Data), pages 261-272, Dallas, Texas, May 2000. ACM Press.

[7] Mark Baker and Rajkumar Buyya. Cluster Computing at a Grance. In High
Performance Cluster Computing, volume 1, chapter 1. Prentice Hall, 1999.

[8] Mostafa Bamha and Matthieu Exbrayat. Pipelined parallelism for multi-join
queries on shared nothing machines. In Proceedings of the International Confer-
ence on Parallel Computing (ParCo 2008), September 2003.

[9] Chaitanya K. Baru, Gilles Fecteau, Ambuj Goyal, Hui-I Hsiao, Anant Jhingran,
Sriram Padmanabhan, and Walter G. Wilson. An Overview of DB2 Parallel
Edition. In Michael J. Carey and Donovan A. Schneider, editors, the 1995 ACM
SIGMOD International Conference on Management of Data, pages 460-462, San
Jose, California, 22-25 May 1995. ACM Press.

[10] Giannis Bozas, Michael Fleischhauer, and Stephan Zimmermann. PVM Expe-
riences in Developing the MIDAS Parallel Database System. In Furopean Con-
ference on Parallel Computing (EURO-PAR), volume 1332 of Lecture Notes in
Computer Science, pages 427-434, Crakow, Poland, November 1997. Springer-
Verlag.

[11] Lionel Brunie, Matthieu Exbrayat, and Andre Flory. Parallel Evaluation of
Relational Queries on a Network of Workstations. Technical-Report RR1999-
22, Inria, Institut National de Recherche en Informatique et en Automatique,
LIP, ENS Lyon, Lyon, France, March 1999. Also available as Research Report
RR-3638, INRIA Rhone-Alpes.

[12] Chandra Chekuri, Wagar Hasan, and Rajeev Motwani. Scheduling Problems
in Parallel Query Optimization. In ACM, editor, PODS ’95. Proceedings of
the Fourteenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems, PODS' 1995, volume 14, pages 255-265, San Jose, California,
May 1995. ACM Press.

[13] Jianjun Chen, David J. DeWitt, Feng Tian, and Yuan Wang. NiagaraCQ : A
Scalable Continuous Query System for Internet Databases. In The 2000 ACM



BIBLIOGRAPHY 157

SIGMOD International Conference on Management of Data, volume 29(2) of
SIGMOD Record (ACM Special Interest Group on Management of Data), pages
379-390, Dallas, Texas, 2000. ACM Press.

[14] Ming-Syan Chen, Mingling Lo, Philip S. Yu, and Honesty C. Young. Applying
Segmented Right-Deep Trees to Pipelining Multiple Hash Joins. IEEE Transac-
tions on Knowledge and Data Engineering, 7(4):656-668, August 1995.

[15] Ming-Syan Chen, Philip S. Yu, and Kun-Lung Wu. Optimization of Parallel
Execution for Multi-Join Queries. IEEE Transactions on Knowledge and Data
Engineering, 8(3):416-428, June 1996.

[16] Compaq Computer Corporation. Compaq NonStop Himalaya K2000SE Server,
2000. available at http://www.compaq.com/.

[17] Compaq Computer Corporation. NonStop SQL/MP - Reliable, Parallel, Scalable
Database Services, 2000. available at http://www.compaq.com/.

[18] Sivarama P. Dandamudi. Using Workstations for Database Query Operations. In
International Conference of Computers and Their Applications, pages 100-105,
Tempe, Arizona, October 1997.

[19] Sivarama P. Dandamudi and G. Jain. Architectures for Parallel Query Processing
on Networks of Workstations. In International Conference of Parallel and Dis-
tributed Computing Systems, pages 444-451, New Orleans, Louisiana, October
1997.

[20] David J. DeWitt and Jim Gray. Parallel Database Systems: The Future of High-
Performance Database Systems. Communications of the ACM, 35(6):85-98, June
1992.

[21] David J. DeWitt, Jeffrey F. Naughton, Donovan A. Schneider, and Srinivasan Se-
shadri. Practical Skew Handling in Parallel Joins. In The 18th International Con-
ference on Very Large Data Bases (VLDB), pages 27-40, Vancouver, Canada,
August 1992.



BIBLIOGRAPHY 158

[22]

[23]

[24]

[25]

[26]

[27]

28]

Matthieu Exbrayat and Harald Kosch. Offering Parallelism to a Sequential
Database Management System on a Network of Workstations Using PVM.
In Marian Bubak, Jack Dongarra, and Jerzy Wasniewski, editors, Recent Ad-
vances in Parallel Virtual Machine and Message Passing Interface, 4th European
PVM/MPI Users’ Group Meeting, volume 1332 of Lecture Notes in Computer
Science, pages 457-462, Crakow, Poland, November 1997. Springer-Verlag.

Matthiew Exbrayat and Lionel Brunie. A PC-NOW Based Parallel Extension
for a Sequential DBMS. In International Parallel and Distributed Processing
Symposium Workshops PC-NOW, pages 91-100, Cancun, Mexico, May 2000.

Al Geist, Adam Beguelin, Jack Dongarra, Weicheng Jiang, Robert Manchek,
and Vaidy Sunderam. PVM & Users Guide and Reference Manual. Oak Ridge
National Laboratory, May 1994.

Goetz Graefe, Ross Bunker, and Shaun Cooper. Hash Joins and Hash Teams in
Microsoft SQL Server. In Ashish Gupta, Oded Shmueli, and Jennifer Widom,
editors, The 2{th International Conference on Very Large Databases (VLDB),
pages 86-97. Morgan Kaufmann Publishers, 1998.

Mohammed Al Haddad and Jerome Robinson. Using a Network of Workstations
to Enhance Database Query Processing Performance. In Yannis Cotronis and
Jack Dongarra, editors, Recent Advances in Parallel Virtual Machine and Mes-
sage Passing Interface, 8th European PVM/MPI Users’ Group Meeting, volume
2131 of Lecture Notes in Computer Science, pages 352—-359, Santorini, Thera,
Greece, September 2001. Springer-Verlag.

Lilian Harada and Masaru Kitsuregawa. Dynamic Join Product Skew Handling
for Hash-Joins in Shared-Nothing Database Systems. In The 4th International

Symposium on Database Systems for Advance Applications (DASFAA), pages
246-255, Singapore, April 1995.

Joseph M. Hellerstein, Michael J. Franklin, Sirish Chandrasekaran, Amol Desh-
pande, Kris Hildrum, Sam Madden, Vijayshankar Raman, and Mehul Shah.



BIBLIOGRAPHY 159

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

37)

Adaptive Query Processing: Technology in Evolution. IEEE Data Engineering
Bulletin: Special Issue on Adaptive Query Processing, 23(2):7-18, June 2000.

HP. Query processing using HP NonStop SQL/MP software white paper , 2004.
available at http://h71033.www7.hp.com/object/ QUERYTB.html.

HP Java Project. mpiJava Home Page. available at http://www.javagrande.com/
mpiJava.html.

Hui-I Hsiao, Ming-Syan Chen, and P. S. Yu. Parallel Execution of Hash Joins
in Parallel Databases. IEEE Transactions on Parallel and Distributed Systems,
8(8):872-883, August 1997.

Hui-I. Hsiao, Ming-Syan Chen, and Philip S. Yu. On Parallel Execution of Mul-
tiple Pipelined Hash Joins. In Richard T. Snodgrass and Marianne Winslett,
editors, the 1994 ACM SIGMOD International Conference on Management of
Data, volume 23(2) of SIGMOD Record (ACM Special Interest Group on Man-
agement of Data), pages 185-196, Minneapolis, Minnesota, 1994. ACM Press.

Kien A. Hua, Chiang Lee, and Chau M. Hua. Dynamic Load Balancing in
Multicomputer Database Systems Using Partition Tuning. IEEE Transactions
on Knowledge and Data Engineering, 7(6):968-983, December 1995.

Kien A. Hua and Wallapak Tavanapong. Performance of Load Balancing Tech-
niques for Join Operations in Shared-nothing Database Management Systems.
Journal of Parallel and Distributed Computing, 56(1):17-46, January 1999.

IBM Corporation. IBM DB2 Universal Database Enterprise-Extended Edi-
tion (EEE) on IBM NUMA-Q Hardware Platforms. available at http://www-
4.ibm.com/ software/data/db2/udb/numa-q/wp.pdf.

IBM  Corporation. Linear  Scalability for Business Intelli-
gence using DB2 on NUMA-Q, September 2000. http://www-
4.ibm.com/software/data/db2/benchmarks/ 090500.html.

IBM Corporation. DB2 Product Family, February 2001. available at
http://www-4.ibm.com/software/data/db2/.



BIBLIOGRAPHY 160

[38] IBM Corporation. A Quick Reference for Tuning DB2 Universal
Database EEE, May 2002. available at http://www-106.ibm.com/ developer-
works/db2/library/techarticle/ 0205parlapalli/0205parlapalli.html.

[39] IBM Corporation. Parallel Sysplex Cluster Technology, 2004. available at
http://www-1.ibm.com/servers/eserver/zseries/pso/sysover.html.

[40] Kenji Imasaki and Sivarama Dandamudi. Performance Evaluation of Nested-
loop Join Processing on Networks of Workstations. In Proceedings of the Seventh
International Conference on Parallel and Distributed Systems (ICPADS), pages
537-544, Iwate, Japan, July 2000.

[41] Kenji Imasaki and Sivarama Dandamudi. An Adaptive Hash Join Algorithm on
a Network of Workstations. In International Parallel and Distributed Processing
Symposium (IPDPS), pages on CD-ROM, Fort Lauderdale, Florida, April 2002.

[42] Kenji Imasaki, Hong Nguyen, and Sivarama Dandamudi. Performance Com-
parison of Pipelined Hash Joins on Workstation Clusters. In 9th International
Conference on High Performance Computing (HiPC2002), pages 264-275, Ban-
galore, India, December 2002.

[43] Kenji Imasaki, Hong Nguyen, and Sivarama Dandamudi. Performance of
Pipelined Nested Loop and Hash Joins on a Workstation Cluster. In The 2002
International Conference on Parallel and Distributed Processing Techniques and
Applications (PDPTA’02), Las Vegas, Nevada, June 2002.

[44] Zachary G. Ives, Daniela Florescu, Marc Friedman, Alon Levy, and Daniel S.
Weld. An Adaptive Query Execution System for Data Integration. In Alex
Delis, Christos Faloutsos, and Shahram Ghandeharizadeh, editors, The 1999
ACM SIGMOD International Conference on Management of Data: SIGMOD
’99, volume 28(2) of SIGMOD Record (ACM Special Interest Group on Manage-
ment of Data), pages 299-310, Philadelphia, PA, USA, June 1999. ACM Press.

[45] Zachary G. Ives, Alon Y. Levy, Daniel S. Weld, Daniela Florescu, and Marc
Friedman. Adaptive Query Processing for Internet Applications. IEEE Data



BIBLIOGRAPHY 161

Engineering Bulletin: Special Issue on Adaptive Query Processing, 23(2):19-26,
June 2000.

[46] Raj Jain. The Art of Computer System Performance Analysis. Wiley, 1991.

[47] Susheel Jalali and Sivarama Dandamudi. Pipelined Hash Joins Using Network
of Workstations. In 14th International Conference on Parallel and Distributed
Computing and Systems, August 2001.

[48] Java Grande Forum. Java Grande Forum. available at http://www.javagrande
.com/.

[49] Joe Chang. SQL Server Parallel Execution Plans, 2004. available at
http://www.sqgl-server-performance.com/jc _parallel _execution_ plans.asp.

[50] John A. Miller. JSIM: A Java-Based Simulation and Animation Environment.
available at http://chief.cs.uga.edu/~jam/jsim/.

[51] Arthur M. Keller and Shaibal Roy. Adaptive Parallel Hash Join in Main-Memory
Database. In The First International Conference on Parallel and Distributed
Information Systems (PDIS), pages 5867, Miami Beach, Florida, December
1991.

[62] Masaru Kitsuregawa, Masaya Nakayama, and Mikio Takagi. The Effect of Bucket
Size Tuning in the Dynamic Hybrid GRACE Hash Join Method. In The 15th
International Conference on Very Large Data Bases (VLDB), pages 257-266,
Amsterdam, The Netherlands, August 1989.

[63] Bruch Lindsey. SMP Intra-Query Parallelism in DB2 UDB, February 1998.
Database Seminar at U.C. Berkeley.

[54] Kevin Hao Liu. Performance Evaluation of Processor Allocation Algorithms for
Parallel Query Execution. In The 1997 ACM symposium on Applied Computing,
pages 393-402, San Jose, California, February 1997. ACM Press.



BIBLIOGRAPHY 162

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

Ming-Ling Lo, Ming-Syan Chen, Chinya V. Ravishankar, and Philip S. Yu. On
Optimal Processor Allocation to Support Pipelined Hash Joins. In Peter Bune-
man and Sushil Jajodia, editors, Proceedings of the 1993 ACM SIGMOD Inter-
national Conference on Management of Data, volume 22(2) of SIGMOD Record
(ACM Special Interest Group on Management of Data), pages 69-78, Washing-
ton DC, 1993. ACM Press.

Hongjun J. Lu, Beng-Chin Ooi, and Kian-Lee Tan, editors. Query Processing
in Parallel Relational Database Systems. IEEE Computer Society Press, Los
Alamitos, 1994.

Hongjun J. Lu and Kian-Lee Tan. Load-Balanced Join Processing in Shared-
Nothing Systems. Journal of Parallel and Distributed Computing, 23(3):382-398,
December 1994.

Gang Luo, Curt J. Ellmann, Peter J. Haas, and Jeffrey F. Naughton. A Scalable
Hash Ripple Join Algorithm. In Proceedings of the 2002 ACM SIGMOD Interna-

tional Conference on Management of data, pages 252-262, Madison, Wisconsin,
2002. ACM Press.

Holger Martens. Skew-Insensitive Join Processing in Shared-Disk Database Sys-
tems. In the International Workshop on Issues and Applications of Database
Technology (IADT’98), pages 17-24, Berlin, Germany, July 1998.

Holger Mirtens. A Classification of Skew Effects in Parallel Database Systems.
In European Conference on Parallel Computing (EURO-PAR), pages 291-300,
Manchester, United Kingdom, August 2001.

Message Passing Interface Forum. MPI: A Message-Passing Interface Standard.
University of Tennessee, Knoxville, Tennessee, June 1995.

Microsoft Corporation. Microsoft SQL Server. available at http://www.microsoft

.com/SQL/.

Priti Mishra and Margaret H. Eich. Join Processing in Relational Databases.
ACM Computing Surveys, 24(1):63-113, March 1992.



BIBLIOGRAPHY 163

[64] Matt M. Mutka and Miron Livny. The Available Capacity of a Privately Owned
Workstation Environment. Performance Evaluation, 12(4):269-84, July 1991.

[65] Mike Muuss. The Story of the PING Program. available at http://ftp.arl.mil/
~mike/ping.html.

[66] mySQL AB. Introduction to MySQL Cluster for MySQL Users, 2004. available
at http://www.mysql.com/.

[67] mySQL AB. MySQL AB Launches MySQL Cluster - the First Open Source
Database Clustering Solution, April 2004. available at http://www.mysgl.com/.

[68] mySQL AB. MySQL Cluster Administration Guide, February 2004. available at
http://www.mysql.com/.

[69] Oracle Corporation. Oracle Parallel Server: Solutions for mission critical com-
puting, 1999. available at http://oracle.com/database/options/parallel.html.

[70] Oracle Corporation. Extreme Scalability With Oracle Applications:XS Bench-
marking and Oracle Parallel Server, 2000. available at http:
//otn.oracle.com/deploy/performance/pdf/extreme_scalability.pdf.

[71] Oracle Corporation. Oracle8i Parallel Server ~ An Oracle Technical White Paper,
January 2000. available at http://otn.oracle.com/deploy/availability /pdf/
Oracle8i_Parallel Server Whitepaper.pdf.

[72] Oracle Corporation. Oracle9i Real Application Clusters, 2001. available at
http://otn.oracle.com/products/oracledi/pdf/appclusters_cache.pdf.

[73] Oracle Corporation. Scalability and Performance with Oracledi Database, June
2001. available at http://otn.oracle.com/products/oracle9i/pdf/
scalability performance 9i.pdf.

[74] Oracle Corporation. Oracle Grid Control Reduces the Complexity and Cost of
Managing Mission-Critical Business Services, April 2004. available at
http://www.oracle.com/enterprise_manager/docs/Summit_StrategiesOracle_ Grid
_ Control.pdf.



BIBLIOGRAPHY 164

[75] Donovan A. Schneider and David J. DeWitt. A Performance Evaluation of Four

Parallel Join Algorithms in a Shared-nothing Multiprocessor Environment. SIG-
MOD Record, 18(2):110-121, June 1989.

[76] Mehul A. Shah, Joseph M. Hellerstein, and Sirish Chandrasekaranand Michael J.
Franklin. Flux: An Adaptive Partitioning Operator for Continuous Query Sys-
tems. In Umeshwar Dayal, Krithi Ramamritham, and T. M. Vijayaraman, ed-
itors, Proceedings of the 19th International Conference on Data Engineering,
pages 25—-36, Bangalore, India, March 2003. IEEE Computer Society.

[77] Cyrus Soleimany. Distributed Parallel Query Processing on Network of Work-
stations. Master’s thesis, Carleton University, Ottawa, Canada, 1998.

[78] Cyrus Soleimany and Sivarama P. Dandamudi. Distributed Parallel Query Pro-
cessing on Networks of Workstation. In High-Performance Computing and Net-
working, 8th International Conference (HPCN Europe), volume 1823 of Lecture
Notes in Computer Science, pages 427-436, Amsterdam, The Netherlands, May
2000. Springer-Verlag.

[79] W. Richard Stevens. UNIX Network Programming; Volumne I, Networking APIs:
Sockets and XTI, Second Edition. Prentice Hall PTR, 1998.

[80] Michael Stonebraker. The Case for Shared Nothing. IEEE Database Engineering
Bulletin, 9(1):4-9, March 1986.

[81] Takayuki Tamura, Masato Oguchi, and Masaru Kitsuregawa. High Performance
Parallel Query Processing on a 100 Node ATM Connected PC Cluster. IEICE
Transactions on Information and Systems, 1(1):54-63, January 1999.

[82] Thierry Cruanes and Benoit Dageville and Bhaskar Ghosh. Parallel SQL Exe-
cution in Oracle 10g. In Gerhard Weikum, Arnd Christian Ko6nig, and Stefan
Defloch, editors, Proceedings of the ACM SIGMOD International Conference on
Management of Data, Paris, France, June 13-18, 2004, pages 850-854. ACM,
2004.



BIBLIOGRAPHY 165

[83] Walid R. Tout and Sakti Pramanik. Distributed Load Balancing for Parallel Main
Memory Hash Join. IEEE Transactions on Parallel and Distributed Systems,
6(8):841-849, August 1995.

[84] Tolga Urhan and Michael J. Franklin. XJoin: Getting Fast Answers From Slow
and Bursty Networks. Technical Report CS-TR-3994, University of Maryland,
College Park, February 1999.

[85] Shivakumar Venkataraman and Tian Zhang. Heterogeneous Database Query
Optimization in DB2 Universal DataJoiner. In The 24th International Confer-
ence on Very Large Data Bases (VLDB), pages 685-689, New York, New York,
August 1998. Morgan Kaufmann.

[86] Efstratios Viglas and Jeffrey F. Naughton. Rate-Based Query Optimiation for
Streaming Information Sources. In Proceedings of the 2002 ACM SIGMOD In-
ternational Conference on Management of data, pages 37-48. ACM Press, 2002.

[87] Christopher B. Walton, Alfred G. Dale, and Roy M. Jenevein. A Taxonomy
and Performance Model of Data Skew Effects in Parallel Joins. In The 17th
International Conference on Very Large Data Bases (VLDB), pages 537-548,
Barcelona, Catalonia, Spain, September 1991.

[88] Annita N. Wilschut, Peter M. G. Apers, and Jan Flokstra. Parallel query execu-
tion in PRISMA/DB. In Pierre America, editor, Proceedings of Parallel Database
Systems, volume 503 of LNCS, pages 424-433, Berlin, Germany, September 1991.
Springer.

[89] Annita N. Wilschut, Jan Flokstra, and Peter M. G. Apers. Parallel Evaluation of
Multi-join Queries. In ACM, editor, 1995 ACM SIGMOD International Confer-
ence on Management of Data, volume 24(2) of SIGMOD Record (ACM Special

Interest Group on Management of Data), pages 115-126, San Jose, California,
May 1995. ACM Press.

[90] Joel L. Wolf, Daniel M. Dias, Philip S. Yu, and John Turek. New Algo-
rithms for Parallelizing Relational Database Joins in the Presence of Data Skew.



BIBLIOGRAPHY 166

IEEFE Transactions on Knowledge and Data Engineering, 6(6):990-997, Decem-
ber 1994.

[91] Boquan Xie and Sivarama P. Dandamudi. Hierarchical Architecture for Parallel
Query Processing on Networks of Workstations. In The 5th International Con-
ference on High Performance Computing, Chennai, Madras, India, December
1998.

[92] Mohammed Javeed Zaki, Wei Li, and Srinivan Parthasarathy. Customized Dy-
namic Load Balancing for a Network of Workstations. Technical Report TR602,
University of Rochester, Computer Science Department, December 1995.

[93] Sijun Zeng and Sivarama P. Dandamudi. Centralized Architecture for Parallel
Query Processing on Networks of Workstations. In High-Performance Comput-
ing and Networking, 7th International Conference (HPCN Europe), volume 1593
of Lecture Notes in Computer Science, pages 683-692, Amsterdam, The Nether-
lands, May 1999. Springer-Verlag.

[94] Xiaoding Zhao, Roger G. Johnson, and Nigel J. Martin. DBJ — A Dynamic
Balancing Hash Join Algorithm in Multiprocessor Database Systems. In The
4th International Conference on Extending Database (EDBT), pages 301-308,
Cambridge, United Kingdom, March 1994.

[95] Stephan Zimmermann. Ewvaluation and Tuning of parallel Database Sys-
tems. PhD thesis, Technische Universitat Munchen, 2000. available at
http://tumbl.biblio.tu-muenchen.de/publ/diss/in/2000/zimmermann.html.

[96] George K. Zipf. Human Behavior and the Principle of Least effort : An Intro-
duction to Human Fcology. Addison-Wesley, 1949.



