Towards Vertical Impact Analysis of UML Models

Tao Yue

A thesis submitted to the Faculty of Graduate Studies and Research
In partial fulfillment of the requirements for the degree of

Master of Applied Science

Ottawa-Carleton Institute of Electrical and Computer Engineering
Department of Systerhs and Computer Engineering
Carleton University
Ottawa, Ontario, Canada

July 2006

Copywright © 2006 by Tao Yue

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Library and
Archives Canada

Bibliothéque et
* Archives Canada
Direction du
Patrimoine de I'édition

Published Heritage
Branch

395 Wellington Street

395, rue Wellington
Ottawa ON K1A ON4

Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 978-0-494-18337-3
Our file Notre référence
ISBN: 978-0-494-18337-3
NOTICE: AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des theses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette these.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
qguelques formulaires secondaires
ont été enlevés de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abstract

During iterative, UML-based software development, various UML diagrams, modeling
the same system at different levels of abstractions are developed. These models must
remain consistent when changes are performed. In this context, we refine the notion of
impact analysis and distinguish horizontal impact analysis—that focuses on changes and
impacts at one level of abstraction, and vertical impact analysis—that focuses on changes
at one level of abstraction and their impacts on another level. We propose a vertical
impact analysis approach for UML 2.0 models which is based on a careful formalization
of changes to those models, refinements which are composed of those changes, and
traceability links corresponding to refinements. We show how actual refinements and
corresponding traceability links are formalized using the Object Constraint Language.

Tool support and an initial case study are also described.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgments

First, I would like to sincerely express my thanks to Dr. Briand and Dr. Labiche for their

help and guidance throughout my research. I have learnt a great deal from them.
I would like to thank Maged Elaasar for his help, encouragement and patience.

I would like to thank everyone at the SQUALL Lab for mutual support, inspiration and

encouragement.

I would like my thesis to be acknowledged in memory of my dear father who is always in
my deep heart and with warmest thanks to my mother, my brothers and sisters for their

unconditional support, encouragement and love.

A special thanks goes to my husband, Wenjun Bian, for his constant support, care and

love. Without him, I could not accomplish this thesis.

Last, but not least, I would like to thank all my friends for their support and

encouragement.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table of Contents'

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ABSTRACT 3
ACKNOWLEDGMENTS 4
TABLE OF CONTENTS 5
LIST OF FIGURES 7
LIST OF TABLES 10
-1 INTRODUCTION 11
2 DEFINITIONS AND CONCEPTS 14
2.1 VIEW S ettt ettt et —ees e et et eete ettt et sttt aeseababeetesseaaaaeeesesannnenstenssnsinnnnarans 14
2.2 IMPACT ANALYSIS . .eoiueieieeitteiiereeeteeeeeataesessssesstsiaessstsesssesesensesstes sessseeessnnsesotesssansssesnanneessrsaeesonn 14
2.3 ATOMIC CHANGEcoutiiiiiiiiiiietieeeee et eeetee et seeeessaae st s eessssaatseeesaaeessssaeseeaassame e st s asassansaeeanssrnsseanes 15
2.4 REFINEMENTouuiiiioteeieeeteeeceietesee e eeesteeesssaeesseassesessataesassassaassssnseesrsssssesaaseesastsssassessasanessssnansssons 15
2.5 TRACEABILITY AND TRACEABILITY LINKcuveviiuiiiiiiiieieeeeeeetteeiseresesssressesssessssesessssssssssssesssrssssseses 16
3 STATE OF THE ART 17
3.1 CLASSIFYING AND IDENTIFYING REFINEMENT.cccootvuiiiutiiitoieeeneeeissesiseeeesseesssssssesssnesneessssessssens 18
32 CAPTURING TRACEABILITY INFORMATION..........covtietiiinreieeeiieeaeeiteesnnessseessesssssssssesasesssssssseessasans 23
3.3 PERFORMING IMPACT ANALYSISooiiiiieiiiectneesentesiiseeseessaeesoieseeseeessnasssssssasessnssssssassssesnnsessssssssnsnnee 25
34 SUMMARY .. cviiitieneenecttecttettteseeeseesesssssetesaassstesstestes st sensassssatesstrssottessbonssenssesssnns et bnetsensennseenransesnneonres 33
4 APPROACH TAKEN 34
4.1 METAMODELS......ooiiioteieiineeeceetteeeseeeeeeeeareeeaeeseesssssesesssseseesesssissssassssnrnsessssssssssaneesrsse e orasssssssnsessnen 35
42 TAXONOMY OF ATOMIC CHANGESccovviioniiirtiesteeiseeesseessessteessassesssessessisssssaessrssssessssssssesssssessens 44
43 TAXONOMY OF REFINEMENTSccuvviiiveiieeteeeienreesissiesessnresssessissssesssesssssssssssssesssssessssssasesonnssssesss 45
44 REFINEMENT/TRACEABILITY LINK SPECIFICATIONccccorvuiiuriirriinereneresseeissesenssesseeonnsssssessrnessssens 46
5 AUTOMATION 51
5.1 THEECLIPSE PLATFORM..........oooiiitiiiieieeeiereeee ettt eeeieeeenetaeeeetiessiseeeente s statassrseessnsaeesssssasssnsresesnenes 52
52 RATIONAL SOFTWARE ARCHITECTuvvveieitreiieieeeestssassseereeseessssessessssesssssssssesssssessssssssssosesssesns 55
53 EMFMODELS IN VIATOOL......c.cooiioiiiiiiiiieietee ettt e ettt saat st enassats st sesaassansaesaeeann 56
6 CASESTUDY 59
6.1 DETATLASSOFUNCTIONALTITY ...oveeeeierieeesiueeessnreeossasessenssssssseesusssssessesssesssssunessssssssnsssssossnssssssssesssns 60
6.2 TURNATTRI TNTOCLASS tivtttetttieeeessssssesemenessssssessseessnnessssssssstasssnenssssssetannsnsnsnsnssssssesenssnmsnsssssssssssses 62
0.3 ASSOENDMULT I PL I CT T Y REE .. uututttusttasasnenrasaassesesueeeaeessssessssisesesieesessssssssnsessasmssssssssssssssssmnssesssessses 64

' A complete table of contents can be found at the very end of the document.
5

6.4 ASSOENDISNAVIGRABLEREF ...civieiiictiriirieitineisiieetientsesessssssssesasnesaetesstsnsstas s sane senasesssonsansesssssssunsresns 66
6.5 ASSOENDTYPEREE ...cociiiiciriiiiiriret e sreee sttt srae st s s v s saab s e sa s s s ssas e sn b st eb s sasssssrassnsnse sanasesanns 67

7 CONCLUSION 69
REFERENCES 72
APPENDIX A METAMODEL 75
APPENDIX B DICTIONARY FOR METAMODEL 76
APPENDIX C EXAMPLE ATOMIC CHANGES 88
APPENDIX D TAXONOMY FOR ATOMIC CHANGES 95
APPENDIX E TAXONOMY AND FORMALIZATION FOR REFINEMENTS.......ccccecerueserseraesens 101
APPENDIXF FORMALIZATION OF PATH 191
6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

Figure 1 Horizontal vs. vertical impact analySisc.cccvererceiriririnnticnieeneeecie st eeor et erers s 15
Figure 2 Example merge conflict (From [26])ccccooriveniiiniiiiiiiicicciic st 18
Figure 3 Transformation rules for creation and deletion.................ccccociiiiniiinnnn 20
Figure 4 Example the approach of Shenetal..............ccccoevviiiii s 21
Figure 5 Example the possible improvement for the approach proposed in [4]cccooeeiviiiciiciinnnee. 26
Figure 6 Example dependency analysis — COE............occceoviiiiiiiiiiiiiice st 27
Figure 7 Example dependency analysis - dependency graphccoooveeeiciccncnnnnnnneiieinns 28
Figure 8 The conceptual metamodelc.cccovveeniiiiiinneienniiiti s 37
Figure 9 Example composite refinement - original class diagram (from [31])ccc.cccoevnnnnnnnnnnnnnnn, 38
Figure 10 Example composite refinement - refined class diagram (from [31]).......cccccccovvininnnnnnnnenn, 38
Figure 11 The metamodel for atomic change...........c.cocovvconii e 39
Figure 12 The constraints of the metamodel for atomic change............c.cococccvneiiiciiininn e, 40
Figure 13 The metamodel for traceability HnK............ccocovevieiereinieniniiirencre et 42
Figure 14 The metamodel for performing vertical impact analysis..........cccoveiicecvvernevieninininineeeceeeraas 44
Figure 15 Taxonomy of Atomic Changesccccoeveurieimiiiiiiniiiiiiiccintntii st 45
Figure 16 Taxonomy of RefINEMENLS.cccvvmiievcinreririiinintiii v e 45
Figure 17 Refinement C1lassTsAbSELACEREE ...t s 47
Figure 18 Refinement MovedAttributeRef ... e 48
Figure 19 RefineMENt TOPDOWINGETL...ccvveierieiiriieeieeieaerteenseststteeessosesteneesssismeeneaesis st atsssesesssstessesassessssans 50
Figure 20 VIAT00l ATChIteCtre OVEIVIEWc.cvcivicuineeririiiiniiinieiit st sttt st er e abens 52
Figure 21 Creating a new refinement 1epository mMOdelcccoovciicrienmeniiiinccniiee v 57
Figure 22 Creating a TopDownGen refinement object ..., 57
Figure 23 Creating new objects using the €ditor..............cccovviiiiiiiiiiiinniictii e 58
Figure 24 Editing Attributes and Associations using the editor.............c.cococeeiveneriinniniiee 58
Figure 25 Case Study (From [20]) ..covecereeeeeiiiiieerceerccn ettt e 60
Figure 26 Refinement DetailAssoFUNCtionality e 62
Figure 27 Refinement TUrNALtriIntoClass ittt 64
Figure 28 Refinement AssoEndMultiplicityRef i, 65
Figure 29 Refinement AssoEndIsNavigableRef ... 67
Figure 30 Refinement AssoENdTYPEREE . ..ot st 68
Figure 31 The complete metamodel...........c.oeiiiiiiiie it esesr s 75
Figure 32 Complete Taxonomy for Atomic Changes — Top Level.........cccoviiicninmininiennennen 98
Figure 33 Taxonomy for Atomic Changes of Type ChangedClasscovvviiiiciienneereieieieiee s 99
Figure 34 Taxonomy for Atomic Changes of Type ChangedAttribute ..., 99
Figure 35 Taxonomy for Atomic Changes of Type ChangedOperation ..., 99
Figure 36 Taxonomy for Atomic Changes of Type ChangedAssociation. .., 99
Figure 37 Taxonomy for Atomic Changes of Type ChangedGeneralization......n. 99
Figure 38 Taxonomy for Atomic Changes of Type ChangedInterfaceinniieieicinans 100
Figure 39 Taxonomy for Atomic Changes of Type ChangedDependency........cuininneeneennnens 100
Figure 40 Taxonomy for Refinements - Top Level...........cocoiiiiiie e 101
Figure 41 Taxonomy for Refinement of Type Class->ClassestRels ..., 102

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 42 TopDownGen - SPECIfICAtONc.ccccciiniiiiiiiiiii st 104

Figure 43 Refinement TOPDOWIIGETL.....ccccoreeeririinniiiiieiesrisrsesrassese e essrse s st et s se st sase e st asse s st asssssssssnasass 105
Figure 44 TopDownGen - EXample...........ccccviiiiiiiiiniiiiiicincnisii s sa e 106
Figure 45 TopDownCom = SPECIfICALONcvevemrmeeirieiecececciiir et n s 107
Figure 46 Refinement TOPDOWIICOIML...c.c..ueueierveiiiciriinis it stsresetisssiss s s e e esasss s st ssenssssessssasesassas 108
Figure 47 TopDownCom - EXAMPICc.ccccooiriiiiiiiiiiiniiii i e 109
Figure 48 ExtractClass - SPECHICAtiON.........cccviiiiiiiiiniiiii i 110
Figure 49 Refinement EXtLaCECLaSS ...ccvevereriiniiiii ittt eb e s st e st et 112
Figure 50 ExtractClass —EXampIe.......c.cococoiniiiiiiiiiiii e 113
Figure 51 ExtractSubclass - SPeCHfiCationccocccciriiiiiiiiiiiiiiiiiee et e 114
Figure 52 Refinement EXtractSUBCLASS cocoovvviiiiecctiinii ittt sr sttt s 115
Figure 53 ExtractSubclass —EXample........cocovnniiiiiiiininiiiiiie e 116
Figure 54 TurnAttriIntoClass = SPeCification............ccoccviieecmnnccrninmiiie i 117
Figure 55 Refinement TUrNALErITNEOCLASS ittt s eaees 118
Figure 56 TurnAttriIntoClass ~Example ... 119
Figure 57 TurnAttriIntoSubclass - SpecifiCation, 120
Figure 58 Refinement TurnAttriIntoSubelass . e 121
Figure 59 TurnAttriIntoClass - EXample ... 122
Figure 60 TurnOprIntoRel - SPECIfiCatiOn.ccociiiviiiiiiiiiiiiciiiiniciiiiciie et 123
Figure 61 Refinement TurnOPIrINEOREL ..o s st a bbb 124
Figure 62 Taxonomy for Refinements of Type Classes+Rels~>Class . niiicininnnecnenans 125
Figure 63 CollapseHierarchy - SPecifiCation..........coiiiiiiciiininiiii s 126
Figure 64 Refinement CollapseHierChary c sttt ar e 127
Figure 65 InlineClass - SPECIfiCAtiON..........cccovevivemiciiicriiiii e 128
Figure 66 RefINEMENt TNL1ineCLlaSS oot neesceseneese e s enes e sscbe s srssvsssssassenesssnssn s 129
Figure 67 InlineClass —EXAMPIC.........coooiiiieniiineiiict et 130
Figure 68 CollapseHierarchyIntoAttri - SPecification...........ccooimniiiiiriicninnn e, 131
Figure 69 Refinement CollapseHierarchyIntoRAttri . 132
Figure 70 TurnClasses+AssoIntoAttri - SPECIfiCation.. 133
Figure 71 Refinement TurnClasses+AssoIntOoALErl . 134
Figure 72 TurnClasses+RelsIntoConstructor - Specification ... 135
Figure 73 Refinement TurnClasses+AssoINtoCONSTIUCTOL ittt 136
Figure 74 Taxonomy for Refinements of Type Classes+Rels->Classes+Rels ... 137
Figure 75 PullUpAttribute — SPecification..........ccoiiiiiiiiiininiiiie 138
Figure 76 Refinement PULLUPALELIibULE it 140
Figure 77 PullUpOperation ~ SPECHICAtiON.occccoiiiiiiniiiiiiiiiiciiii v e 141
Figure 78 Refinement PUllUpPOPeration ittt r s 143
Figure 79 PushDownAttribute — SPecifiCation........cciiivruicrniiiiieicriiie et 144
Figure 80 Refinement PushDoWNALLEIDULE .ottt 145
Figure 81 PushDownOperation — SPecifiCatioN............c.evvevurerrecerearviiineecrie e 146
Figure 82 Refinement PushDownOPeration ... 147
Figure 83 EliminateDupliByInheritance - Specification.........cociiiivivniciniee e 148

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 84 (a) Refinement E1 iminateDupliByInheritance (Part A)............iinn 150

Figure 85 (b) Refinement EliminateDupliByInheritance (partB)........... 151
Figure 86 EliminateDupliByComposition - Specification..........coiiiiiininiiinicnniicins 152
Figure 87 (a) Refinement EliminateDupliByComposition (Part A).........c.iiinenns 154
Figure 88 (b) Refinement EliminateDupliByComposition (partB).......in. 155
Figure 89 SplitSubclass — SPECHICAtIONccoocvveieviririeeirerreciii s 156
Figure 90 Refinement SpLlitSUDCLASS cviiiieent ittt e ettt sr s ea e 158
Figure 91 Taxonomy for Refinements of Type Rel->Classes+Rels. ... 159
Figure 92 DetailAssoFunctionality — Specification...........cociiiieiniiiiiiniiiniceans 160
Figure 93 Refinement DetailAssoFunctionality ..., ettt 162
Figure 94 Example DetailAssoFunctionality — the original class diagram...............cccoovveeenns 163
Figure 95 Example DetailAssoFunctionality — the refined class diagram..............cccccoevrrvcrenns 163
Figure 96 AddBridgeClass = SPECIfICAION.c..oiiuieereeiieri e s s 164
Figure 97 Refinement AAABridgeClasS ..o erioeereiiieeeeeincsestireece e seesesiesesiasc st ssassssesresss s sassseneons 166
Figure 98 ByBridgeClass - SpeCifiCation.........cccoceiveviiieninirniiiiiiiiccieneii e 167
Figure 99 Refinement ByBridge@TLass .ccvierirciriiciinieerereeriiiisssistsese st sess s csssisness s ssssssssssesesesnesenees 169
Figure 100 Example ByBridgeClass — the original class diagram ... 170
Figure 101 Example ByBridgeClass — the refined class diagram............cocoooevinnniiin 170
Figure 102 AssoRefUsingAssociationClass - SpecHicationcccoeeieevemiiricniicrinncrcnns 171
Figure 103 Refinement AssoRefUsingAssociationClass .o 172
Figure 104 Taxonomy for Refinements of Type Classes+Rels~>Rel....innicccinns 173
Figure 105 ReplaceAssociationClassWithAsso - Specification...........cccovveneiniverircvceceenans 173
Figure 106 Refinement ReplaceAssociationClassWithASSO s 175
Figure 107 Taxonomy for Refinements of Type Rels—>Rel.....occoiiiineiiiciciecnini i es 176
Figure 108 RefAssoesIntoAssoSuperclassAndClient - Specification ..o 176
Figure 109 Refinement RefAssoesIntoAssoSuperclassAndClient (part A) ..o 178
Figure 110 Refinement RefAssoesIntoAssoSuperclassAndClient (partB)......cooininn 179
Figure 111 Taxonomy for Refinements of Type Re1—>Rels ...t 180
Figure 112 RefAssoIntoAssoesSubclassesAndClient — Specification...........ccccoevvninicnnnn. 180
Figure 113 Refinement RefAssoIntoAssoesSubclassesAndClient (part A) ..o 182
Figure 114 Refinement RefAssoIntoAssoesSubclassesAndClient (partB)......ccoinnnen, 183
Figure 115 Taxonomy for Refinements of Type InterfaceRefinement. ... 184
Figure 116 ExtractInterface - SPecification............coorreverniiiiiiiiiiiiinn s 185
Figure 117 Refinement EXtractINterface. . s 186
Figure 118 ReplaceClassWithInterface - Specification..........coooiniiiinvininiiiicicins 187
Figure 119 Refinement ReplaceClassWithInterface .. 188
Figure 120 ReplaceInterfaceWithSuperclass - Specification...........ccoooviiiniiinniiicns 189
Figure 121 Refinement ReplaceInterfaceWithSuperclass ... 190
Figure 122 The metamodel for PAthccoviviiireieeerieninecinreecrii et er s r s 191

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Tables

Table 1 The comparison of existing impact analysis approaches............ccoccecvvveneinniniinincinencee e

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10

1 INTRODUCTION

The use of the Unified Model Language (UML) [29] for complex systems leads to a large
number of inter-dependent UML diagrams that have to be consistent, e.g., the operations
used in sequence diagrams must be defined in class diagrams. Furthermore, recent
development methodologies, such as the Rational Unified Process [19], promote
successive modeling iterations evolving and refining models until the final product is
complete. As a result, for a specific system, different versions of the same UML models
are produced at different levels of abstraction at successive points in time. In the simplest
case, one can consider two standard analysis and design abstraction levels [5]. An
iterative development process should ensure that these two models remain consistent as

they are incrementally refined and changed.

Using and updating these different models should be supported by some tool
infrastructure, and one way to cope with the maintenance of such models is to comply
with the Model Driven Architecture (MDA) Framework [18]. According to this
framework, a platform independent model (PIM)—the analysis model—is (automatically)
transformed into a platform specific model (PSM)—the design model, which is itself
(automatically) transformed into code. To allow (fully) automated transformations, MDA
requires that tools “maintain the relationship between PIM and PSM, even when changes
to the PSM are made. Changes in the PSM will thus be reflected in the PIM, and high-
level documentation will remain consistent with the actual code.” [18] In practice, when
such transformations are not (fully) automated, an essential requirement is that some
form of traceability between the models must be created and maintained and support
needs to be provided to facilitate the change of a PSM model when its corresponding
PIM model is changed.

With the evolution of software systems, UML models undergo changes that address
changed requirements and error corrections. If a change takes place at the higher, most
abstract modeling level (e.g., analysis model, or original model version), caused for

example by changed requirements, it will lead to subsequent changes on model elements

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

at lower modeling levels (e.g., design model, or refined model version). Similarly, if
change takes place at the lower modeling levels, caused for example by some error
correction, it will lead to subsequent changes on model elements at higher modeling

levels.

Impact analysis is defined in [2] as the process of “identifying the potential consequences
of a change, and estimating what needs to be modified to accomplish that change.” In the
context of UML-based iterative development, we refine this notion and distinguish
Horizontal Impact Analysis (HIA) from Vertical Impact Analysis (VIA). HIA focuses on
changes and impacts at one level of abstraction, and corresponds to what people have
generally been doing (e.g., [3, 4]), whereas VIA focuses on changes at one level of
abstraction and their impacts at another level of abstraction. (This is similar to the notion

of horizontal and vertical consistency between models [13].)

Both HIA and VIA require some level of traceability. Traceability is “the ability to trace
between software artifacts generated and modified during the software product life
cycle.” [2] In the case of vertical impact analysis, traceability must exist between model
elements at the more abstract (analysis) level and model elements at the more refined

(design) level.

In this thesis we describe an approach to support, in a semi-automated way, the vertical
impact analysis of UML models and we formalize the notions of traceability (link) and
refinement in that specific context. Our approach is motivated by two objectives: (1)
Specify, in an unambiguous manner, possible types of refinements and traceability rules,
(2) Facilitate its automation based on state-of-the-art, industry-strength modeling
technology. An overview of the prototype tool implementing the approach and an initial

case study are presented in this thesis as well.

This work’s main contribution is a methodology and automation strategy for establishing
traceability links between two UML models at different levels of abstraction. Another
contribution is that the methodology is formalized using metamodel and constraints,
using the UML and the OCL, respectively. This has the advantage of facilitating the

automation using available, industry modeling technology. In order to automatically

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

identify refinements, we provide a systematic and hierarchical classification for class
diagram refinement which allows us to clearly define and formalize class diagram
refinements as well as the corresponding traceability links. We made an effort to be as
systematic as possible and also describe a mechanism to extend this classification.
Another contribution towards an ease of automation is that refinements are (semi-
Jautomatically identified instead of requiring that the user explicitly provide them in
his/her models. Yet another contribution is that we made a conscious effort to facilitate
future extensions. Although this is a first step towards vertical impact analysis, our
metamodel allows for new atomic changes, refinements, and UML models to be

considered. It also already supports horizontal and vertical impact analysis concepts.

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 DEFINITIONS AND CONCEPTS

This section generally defines terms that will be used in the rest of the thesis. Some of

these definitions will be refined in our specific context in subsequent sections.
2.1 Views

A view is a representation of an entire system from the perspective of a related set of
concerns [25]. UML-based development uses different views to clarify different
important aspects of a system. For example, class diagrams, interaction diagrams and
statecharts are different views, which are used to describe structural and behavioral

aspects of a system.
2.2 Impact analysis

Impact analysis can be used for planning changes, making changes and tracing the effect
of changes, as a measure of the cost of a change, and to drive regression testing. The
major goal of impact analysis is to identify the software artifacts impacted by a set of

(proposed) changes.

As we mentioned in Section 1, we refine the notion impact analysis and distinguish
horizontal impact analysis (HIA) from vertical impact analysis (VIA): HIA focuses on
changes and impacts at one level of abstraction, whereas VIA focuses on changes at one
level of abstraction and their impacts at another level of abstraction. This is illustrated in
Figure 1 where, for the sake of simplicity, we consider two levels of abstraction. A
change to a sequence diagram at the analysis (abstraction) level may impact other
analysis diagrams: this is horizontal impact analysis. The same change may also impact

model elements at the design (abstraction) level: this is vertical impact analysis.

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

) Changed Hotizontal
view model element Impact

Vettical

Evolution Yetical

Impact

Horizontal
E volution

Figure 1 Horizontal vs. vertical impact analysis

2.3 Atomic change

An atomic change is a unitary and primitive change applied to a UML model context that
cannot be decomposed into smaller atomic changes. For example, “added an association”
and “deleted an attribute from a class” are atomic changes. Atomic changes are the

elementary steps by which one UML model evolves to another.
2.4 Refinement

Refinement is defined as “a software development technique in which data and
processing steps are defined broadly at first and then further defined with increasing
detail.” [24] In the context of UML modeling, we define refinement as means of
transforming a more abstract model into a more concrete model. It can be any one of the
following:

1. Refining an analysis model into a design model,

2. Refining a version of a UML model into the next version of the same UML

model;

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. Refining a version of a class diagram (or sequence diagram, etc.) into the next
version of the same class diagram (or sequence diagram, etc.);

4. Refining a version of part of a class diagram (or sequence diagram, etc.) into
the next version of the same part of the class diagram (or sequence diagram,

etc.).
2.5 Traceability and traceability link

As we mentioned in Section 1, traceability must be established between model elements
at different levels of abstraction. In our context, we define a traceability link as a
relationship that describes the traceability connection between a model element of one
UML model and a model element of another UML model. In order to identify traceability
links, we must either capture (during model modifications) or determine (by comparison
of models) the intent of the designer that lay behind changes when models are refined. In

other words, traceability links are derived from the identification of refinements.

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3 STATE OF THE ART

Since vertical impact analysis is an important activity of model evolution, automatically
supporting it is required for UML CASE tools. However, almost all existing tools
contributing to software evolution are primarily targeted to source code. Model evolution
(supported by UML CASE tools, for example) is much less sophisticated. With the
growing application of UML, the techniques and tools for dealing with the model

evolution are urgently needed.

Recall from Section 2 that, in order to perform vertical impact analysis, atomic changes
must be recorded during the process of refining UML models. Then a refinement is
derived from these atomic changes. Again, traceability links are established since we
assume we specified which traceability links should be established for a specific
refinement beforehand. Last, vertical impact analysis can be performed after traceability

links are established.

In this section of the thesis we address three important areas where vertical impact
analysis requires support:

1. Classifying and identifying refinement.

2. Capturing traceability information.

3. Performing vertical impact analysis.

There are many texts and papers published describing model evolution, however,
capturing traceability information for the purpose of performing vertical ‘impact analysis
on UML models has not been directly addressed in the research literature. Besides, most
of existing approaches classify refinements at the level of atomic changes, rather than
more complex levels such as the refinements derived from several atomic changes. As a

result, they are not amenable to capturing the user’s intent.

This section of the thesis details the latest research in automated support of vertical
impact analysis. It provides a structured and comprehensive survey on the three issues

discussed above. Section 3.4 summarizes some important issues that have to be addressed.

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.1 Classifying and identifying refinement

In order to establish traceability links between model elements of two UML models at
different levels of abstraction, we have to classify and identify refinements which are
possibly made by the user in order to refine a UML model into another one. How to
classify and identify refinements determines which kind of traceability information we

can derive and which kind of vertical impact analysis result we can provide to the user.
3.1.1 Mens et al. — Automating Support for Software Evolution in UML

Mens et al. [26] propose an approach to detect conflicts between parallel evolutions of
the same UML model, such as a merge conflict which may be due to different designers
independently and concurrently making changes to the same software artifact. Four
different types of refinements are considered: Addition, Removal, Connection and
Disconnection. The UML metamodel is modified and specific stereotypes are defined to

explicitly represent modifications.

Figure 2 is adapted from [26]. This example is a merge conflict which arises from the
combination of independent modifications leading to undesired interactions and occurs

when two parallel modifications are made to the same model element.

P G Edenteet]

A «disconnect»
insert (o Bement) ¥ tmodification=lnvokes | 2 nsert (e ; Element:)
b Gnion { 5.1.8et)1 {invokes insert} {union, insert)]} @ union (s +Set)
)

I { :«add» {mocification=[size]
i b wconnects{modifitation=[pdates(insert,size) T}

T GiSetwithaes. .
o size - Integer |
W insert (e : Elerment J . {updates size}

Figure 2 Example merge conflict (from [26])

Parallel modification 1: set is specialized into SsetwithSize which overrides insert ()
operation so that it additionally accesses and updates attribute size each time a new

element is added to the set. The dependency relationship (dashed line) specifies that

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

SetWithSize is incrementally obtained from set by adding attribute size (Addition)

and accessing the attribute size from operation insert () (Connection).

Parallel modification 2: set evolves into new version EfficientSet by removing the
call to insert() in union() for efficiency reasons. The refinement type is

Disconnection.

To find out if upgrading Set into EfficientSet leads to unexpected results, we need to
know whether Setwithsize is still a valid and meaningful specialization of
EfficientSet. Since originally the invocation of union () in Setwithsize leads to an
indirect update of size, this will not be the case anymore if we substitute set with
EfficientSet because operation union() in EfficientSet does not invoke
insert () anymore. This is called “inconsistent operation conflict” in [26], and it occurs
each time one modification is a Disconnection of an operation invocation (e.g., in Figure
2, operations insert () and union{() are disconnected in EfficientSet) and the other
modification is a Connection involving the same operation (e.g., in Figure 2, operation

insert () is connected to attribute size).

The major problem with this approach is that designers are required to explicitly and
manually represent their modifications in UML diagrams (e.g., dependency relationships
and predefined stereotypes are used). This, however, is a significant burden to designers
and eventually clutters diagrams. This approach still has other limitations, for example,

an interface can only be evolved into an interface, rather than a class.

3.1.2 Engels et al. — Consistency-Preserving Model Evolution through

Transformation

Engels et al. [12] propose an approach to preserve consistency during the evolution of
UML-RT [32] models, a variation of UML specifically dedicated to real-time systems.
Three kinds of modifications, namely Creation, Deletion and Update are identified. The
paper focuses on four main model elements of UML-RT models, namely capsules, port,
connectors, and protocols. Each atomic change is specified by two patterns representing

the situation before and after the change. For example, Figure 3 describes two atomic

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

changes excerpted from [12], which assumes two capsules 4 and B with an unconnected
port each (left part of Figure 3) and creates a connector between them (right part of
Figure 3). This is atomic change Creation. When read from right to left, the atomic

change is Deletion as it removes an existing connector from its ports.

T] o
Fa jm p2 pi <=2

Figure 3 Transformation rules for creation and deletion

After identifying possible evolution steps by means of atomic changes, for a certain
property possessed by the original model, like deadlock freedom or protocol consistency,
conditions of the application of atomic changes, which ensure the modified model enjoys
a similar property, are formulated. Thanks to a (partial) mapping from UML-RT to
Communicating Sequential Processes (CSP), the approach is able to identify under which
conditions, modifications of these model elements maintain consistency. The paper
restricts its analysis, for instance to non-hierarchical UML-RT models. It also mentions
that atomic changes representing elementary evolution steps may be combined in various
ways to achieve more complex changes; however no concrete approach is proposed.
Another difficulty is that it is required to keep consistency between models and their CSP

specification.

3.1.3 Shen et al. — Extending the UML Metamodel to Support Software

Refinement

Shen et al. [33] propose an approach to support UML class diagram refinement by
extending the UML metamodel. Stereotypes are used to represent the refinement
explicitly. The paper only concerns the relationship refinement in a class diagram, as it is
assumed that a relationship refinement in a class diagram plays a crucial role and that in
most cases a class diagram refinement can be inferred from the corresponding
relationship refinement. Four types of relationship refinements are defined as follows:

- Generalization abstraction: a generalization relationship is refined into two

generalization relationships plus a new class.

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

- Bidirectional association abstraction: a bidirectional association is refined into
two bidirectional associations plus a new class.

- Unidirectional association abstraction: a unidirectional association is refined into
two unidirectional associations plus a new class.

- Association composition abstraction: a composition association is refined into two
composition associations plus a new class or a composition association is refined
into one composition association, plus a generalization relationship, and a new

class.

Each relationship is qualified with a predefined stereotype which distinguishes the
original relationships from the refined relationships. Figure 4 is an example excerpted
from this paper. The <<Refined Asso>> and the <<Refining Asso>> are predefined

stereotypes which are used to qualify the associations.

«Refined_Asso»

“lRefining: Assor | g

«Reﬁning_Asso»%z

i

Figure 4 Example the approach of Shen et al.

We can see that this approach just supports one kind of refinements of class diagram:
relationship refinement. There are still a lot of other important types of refinements.
Another difficulty of this approach is that the refinement must be explicitly represented

using predefined stereotypes.
3.1.4 Hnatkowska et al. — Refinement relationship between collaborations

Hnatkowska et al. [15] propose a classification of nine class diagram refinements:
1. Adding a class;

Adding a class property (attribute or operation);,

Modifying a class attributes;

Modifying a class operations;

wok w DN

Splitting a class into two classes with association between them;

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6. Introducing a successor of a class (i.e., two classes with association between
them);

7. Adding an association;

8. Modifying of association;

9. Introducing an intermediate class.

1, 2, 3, 4, 7 and 8 are actually atomic changes, basic kinds of refinement. 5, 6 and 9 are
more complex. These structural refinements are then used to specify behavioral
refinements in collaboration diagrams and how the collaboration refinements relate to the
corresponding structural refinements. Only a few simple refinements are presented
though, and it is not clear (at least this is not described) how those refinements can be

detected by a tool.
3.1.5 Pons and Kutsche — Traceability Across Refinement Steps in UML modeling

Pons and Kutsche [30] present a number of refinements for class diagram and use cases.
Class diagram refinements are of the following types:
- Attribute Refinement. adds a new attribute or replaces an existing attribute with
another one.
- Operation Refinement. adds a new operation or replaces an existing operation
with another one.
- Refining by Specification: adds generalization relationship.

- Refining by Composition: adds composite association.

Use Case refinements are of the following types:
- Refining by Action Decomposition: refines one single action into several actions
to see more detail.

- Refining by Specialization: a use case specializes a more general one.

The paper utilizes a UML metamodel element, namely Abstraction, to link refined and
refinement elements, thus allowing establishment of a (possibly formal) mapping. All of

these refinements are required to be explicitly and manually represented using stereotype

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

<<refine>>. This paper doesn’t provide a complete set of refinements for either class or

use case diagrams.
3.1.6 Discussion

There are several issues about the existing approaches on the classification of refinement.
Firstly, most of existing works do not support complex refinements which should be
derived from more than one atomic changes, except for Hnatkowska et al. [15] who
present several such refinements. Secondly, each work just provides a partial
classification of refinements. For example, Shen et al. [33] only covers relationship

refinements in class diagrams.

In terms of the identification of refinements, most of existing works require to explicitly
represent refinements. Several works use stereotypes to do so. This kind of approach
significantly increases the user’s involvement and burden. It is therefore unlikely to be

appliable in practice.
3.2 Capturing traceability information

In order to perform vertical impact analysis, traceability information between two UML
models must be captured. Traceability links can be built after the identification of
refinements which determine which traceability links must be established between which

model elements involved in a given refinement.

3.2.1 Letelier — A Framework for Requirements Traceability in UML-based

Projects

Letelier [21] proposes a framework for the specification of traceability links between
high-level requirements and UML models. These traceability links between different
types of specifications enable the verification that the system functionality covers the
stakeholder’s expectation, and impact analysis when requirements change. Although
primarily intended to support stakeholders in tracing high-level (textual) requirements to
various UML models during initial development phases, the framework also allows the

definition of traceability links between UML model elements.

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In this work, a metamodel is proposed, in which classes represent entity fypes (e.g.,
requirements, UML models and stakeholders), and associations represent types of
traceability links (e.g., stakeholder ‘responsibleOf” requirement, and requirement

‘traceTo’ UML model). Stereotypes are used to explicitly represent traceability links.

The major difficulty with this approach is that most of the traceability links should be
established manually, even though the approach supports ‘implicit traceability links’
which can be derived from several existing, manually established traceability links.
Vertical impact analysis can be performed based on these traceability links; however it is
too coarse to perform meaningful vertical impact analysis between model elements of

two model versions.
3.2.2 Judson et al. — Supporting Design by Pattern-based Transformation

Judson et al. [17] present an approach for specifying pattern-based transformations of
UML models consisting of class and interaction diagrams. These transformations are
specified as metamodels, which indicate, for example, newly introduced classes and
existing classes removed by the transformation. Further constraints are defined along
with the transformation metamodels, which are used to specify constraints on source and
target model elements, and relationships that must be held between source and target
model elements. The Abstract Factory pattern is used to illustrate the approach. The
paper focuses on the specification of transformations at the metamodel level. How to
derive traceability links is not addressed. However it is easy to understand that
traceability links can be automatically established since one knows how a model is

transformed.

The major difficulty of this kind of transformation-based approach is that the user is
requested to select which specific transformation to apply and the model elements to

which the transformation is applied.
3.2.3 Discussion

In terms of capturing traceability information, the existing works require to explicitly and

manually establish or represent traceability links with the exception of the

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

transformation-based approach proposed in [17]. This is a serious drawback of these
approaches. Another important issue is that some works do not explicitly indicate and
formalize which kinds of traceability information should be captured during the

refinement process.
3.3 Performing impact analysis

Most of impact analysis techniques rely on a graph representation of software artifacts
(the nodes) and their dependencies (the edges). First of all, a graph is used to describe the
relationships between software artifacts in an intuitive and visual way. Secondly the
graph representation can be analyzed using existing techniques and algorithms from
graph theory. The main issue with graph-based approaches is that the time complexity of
the algorithm tends to grow exponentially with the number of edges. So the efficiency of

these techniques may become problematic on large problems.

In this section, several existing approaches are introduced first. Then these approaches
are compared in section 3.3.5 in which a set of criteria are defined and comparison results

are presented in a table.
3.3.1 Briand et al. - Automated Impact Analysis of UML Models

In [4], an approach is proposed to support to the identification of changes made to UML
model elements and the impact of these changes on other model elements. The approach
is decomposed into four steps: (1) automatically detect and classify changes across
different versions of UML models, (2) verify the consistency of changed diagrams, (3)
perform an impact analysis to determine the potential side effects of changes in the
design, (4) prioritize the results of impact analysis according to the likelihood of
occurrence of predicted impacted elements. This paper also proposes an experimental
method to evaluate the effectiveness of the impact analysis. A prototype tool iACMTool

was developed to assess the feasibility and practicality of the approach.

The systematic approach proposed in [4] focuses on horizontal impact analysis. Before

performing horizontal impact analysis, changes across different versions of UML models

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

are detected automatically. A change taxonomy is formalized under the form of a tree
which contrains ninety-seven (97) leaf changes. Each leaf change of the change
taxonomy corresponds to one change detection rule. For example, “AddedAssociation” is
a change, whose definition is that “in the changed model version there exists an
association relationship that does not exist in the original version.” [4] In order to
perform horizontal impact analysis, 97 impact analysis rules are defined corresponding to

the leaf changes.

The impact analysis rules defined in [4] could be extended in order to get more precise
and/or complete horizontal and vertical impact analysis results. Figure 5 presents an
example where we assume that the association subAsso has been added (this is a change
of type “AddedAssociation”). The changed element is the subAsso and, according to the
impact analysis rules proposed in [4], the impacted elements obtained after performing
once horizontal impact analysis are the classes SubclassB and Client. However, it is
likely that the association superAsso between the classes superclass and Client may
be impacted. If there is no relationship between the classes subclassa and Client, then
it is not necessary to have the association superAsso anymore since classes SubclassB
and Client are connected by the association subAsso. So we can obtain a more accurate
initial set of impacted elements: the classes Superclass, SubclassB, Client and the

association superAsso.

superAsso r@
|

|

i
|
(G subtlassB

.subasso

Figure 5 Example the possible improvement for the approach proposed in [4]

3.3.2 Liand J. Offutt — Algorithmic Analysis of the Impact of Changes to Object-
Oriented Software

A code-based impact analysis approach is proposed in [22, 23]. It suggests a detailed

analysis of the changes, organized in a change taxonomy, to precisely study how changes

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

propagate (if they do). This paper presents algorithms to analyze the potential impacts of
changes to object-oriented software, taking into account encapsulation, inheritance, and
polymorphism. This approach is graph-based and an object-oriented data dependency
graph is created to support the impact analysis. This impact analysis technique includes a

set of algorithms to calculate the change impact according to change impact rules defined
beforehand.

All dependencies are stored in a directed dependency graph, where each node represents
a program entity (e.g., variable, module and data type) and edges represent the different

kinds of dependencies such as operation calls.

Figure 6 and Figure 7 present a simple example taken from [23] to explain how changes
propagate among class members. Figure 6 shows a piece of code and Figure 7 presents its
corresponding dependency graph. ClassA has six class members: A methl (),
A meth2 (), A meth3(), A fieldl, A field2, and A field3. As shown in Figure 7,
method A meth2 () references A fieldl, A field2, A field3, and A methl (), data
member A fieldl is defined by both data member A field2 and A field3. Data
member A field2 is defined by A methl(). Assume that A methl is changed and
triggers change propagation, it will impact A meth2 () and A field2 according to the
dependency graph. A meth2() and A field2 are directly impacted because of the
change of A meth1(). A fieldl and A meth2 () are indirectly impacted because of the

indirect impact on A_field2.

class ClassA {

public:

int A methl();

int A meth2() {

_A field2 = A methl();

_A fieldl

A field2 + _A field3 * 8.0;

}

int A meth3();

private:
float _A fieldl;
int _A field2;
int _A field3;

}:

Figure 6 Example dependency analysis — code

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ClassAcA_meth2()

ClassAcA feld2

ClassAc:Afeldl

ClassA:A_meth10)

ClassAcA_feld

Figure 7 Example dependency analysis - dependency graph

3.3.3 Mens and D’Hondt — Automating Support for Software Evolution in UML

An automated approach is proposed to support UML model evolution in [26]. It is
claimed to cover all the model evolution activities such as consistency checking, impact
analysis, conflict detection and traceability management. However, only the evolution
activity of conflict detection is explained in this paper. It does not explicitly address

impact analysis.

3.3.4 von Knethen et al. — QuaTrace: A Tool Environment for (Semi-)Automatic

Impact Analysis Based on Traces.

A tool environment is proposed in [34] for (semi-) automatic impact analysis based on
traceabilities. The tool environment is built on two existing tools: RequisitePro
(requirement management tool) and Rhapsody (UML case tool). In this approach,
because UML model elements are transformed and represented as shadow-requirements
(natual language), a lot of information in the UML models is lost, especially relationships
among model elements. Besides, traceability links between requirements and UML
model elements must be manually established. Name tracing is used to automatically
establish implicit traceability links. Based on these traceability links, impact analysis can
be performed. Three levels of impacts are defined: primary impacts which are all
documentation entities that have to be changed, secondary impacts which are all

requirements that have to be changed with a high probability, and tertiary impact which

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

are all documentation entities that might be changed. For each impact, simple impact

analysis rules are defined.
3.3.5 Comparison

The comparison approach proposed in [1] is adapted for our use. Six evaluation criteria
are defined:

- Artifact Of Change
It defines the artifacts for the impact analysis such as UML model or code.

- Change Specification
It is how the change is specified for the impact analysis approach.

- Intermediate Model
It is used to define the objects and relationships (or dependencies) the approach
uses to accomplish impact analysis. For example, dependency relationships can be
modeled by a dependency graph.

- Impact Model
It defines the rules or embedded assumptions reflecting the semantics about what
affects what. For example, when one class is changed, we need to follow the rules
(impact model) to derive impacted elements.

- Impact Approach
It implements the impact model. It defines how objects and intermediate models
are represented, how impact rules are captured, or the specific search algorithms
used to find impacted artifacts.

- Distance Measure
It is a way to determine the distance of other potential impacts from the original
impact or the distance between a changed element and potentially impacted

element.

Existing approaches are compared according to the above criteria and results are

presented in Table 1. The following part of the section discusses the comparison results.

In terms of the change specification, three different ways are used to classify changes. In

[4], 97 fine-grained change categories are specified using OCL expressions. For example,

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

“changed sequence diagram view — Added message” is a change category. There are
three change actions: add, delete and change. The work in [26] defines 4 primitive
evolution contracts: addition, removal, connection and disconnection, and 2 composite
evolution contracts: promotion and sequentialisation. This approach requires the user to
explicitly and manually represent the evolution contracts. The user’s involvement is as a
result substantial. Changes are classified and defined in [22, 23]. These changes .are fine-
grained, for example “Change scope: Private->Public” is a change on a data member. In
[34], the approach doesn’t need to classify changes since it is very coarse-grained and

doesn’t support the automatic detection of changes.

In terms of the intermediate model, the UML metamodel and OCL are used by some
approaches for impact analysis. In [4] the UML metamodel is used to help determine the
possible changes that can occur. In [26], the authors extend the UML metamodel and uses
UML extension mechanisms: stereotypes to incorporate evolution contracts in UML. In
[34], the documentation model is used to represent documentation entities and their
relationships. Besides, relationship and tracing guidelines are derived from the
documentation model to support establishing traces of requirements items and the tool

relies on these traces to perform impact analysis.

In terms of the impact model, a set of impact analysis rules are defined using OCL
expressions in [4], and each impact analysis rule corresponds to each change category in
the taxonomy. Each impact analysis rule is a specification of how to derive collections of
elements that are potentially impacted by a particular change. Although in [26] the
approach could be adapted to impact analysis, due to a lack of detailed information
provided in this paper, we can not compare it with [4]. The work in [22, 23] defines
incomplete change impact rules. In [34], an analysis algorithm is used to perform impact

analysis.

A distance measure is defined in [4] and [22, 23]. In [4] the distance between a changed
element and a given impacted element is defined at the number of impact analysis rules
that had to be invoked to identify this impacted element. It implies all the impact analysis

rules have the same weight. The proposed approach in [34] classifies the impacted

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

elements into three types: primary impacts, secondary impacts and tertiary impacts (see

Section 3.3 .4 for details).

Note that the work in [4] and [22, 23] focuses on horizontal impact analysis. Vertical
impact analysis, although this terminology is not used by these authors, is suggested in
[26]. No precise vertical impact analysis approach is described though. Even though [34]
presents an approach to maintain traceability, it is restricted to traceability between high-

level textual requirement descriptions and use cases (and use case descriptions).

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

‘uoissiwuad inoyum pauqiyold uononposdal JeyunS “Jaumo JybuAdoo ayy Jo uoissiwiad yum paeonpoidey

Approach | Artifact Of Change | Change Specification Intermediate Impact Model | Impact Approach HIA/VIA® | Distance
Model Measure
[4] UML models 1.Change taxonomy 1.UML metamodel | Impact analysis | Prerequisites: HIA Yes.
2.Change detection rules | 2.0CL rules 1.Consistency -
checking

OCL expressions 2.Change detection
3.Impact analysis
4 Prioritization of
impacts

[26] UML models 1.Primitive evolution | 1. UML metamodel | N/A N/A (Extendable) VIA N/A
contracts 2.0CL (Extendable) (Extendabl [Extendable)
2.Composite evolution €)
contracts Evolution
3.User-defined evolution contracts
contracts
Stereotypes + OCL

[34] 1.High-level No classification. 1.Documentation Analysis | 1.Build up | VIA No.

documentation model algorithm traceability among
entities(requirement, 2. Relationship requirement items.
system components). guidelines 2.Based on
2 Low-level types of 3.Tracing established traces to
documentation guidelines® derive impacted
entities (use case, elements.

system funtion). 3.Distance measure is

given.

[22, 23] Code Change category: 1.Control Flow | Change impact | 1.Converts CFGs and | HIA Yes.
1.Changes on Methods Graphs (CFGs) rules and | DFGs to OODDGs. (implicitly)
2.Changes on Data | 2.Data Flow Graphs | algorithms 2. Apply algorithms
Member (DFGs) to find all impacted
3.0thers Changes 3.0bject-oriented elements.

data dependency 3.Recursively apply
Textual description. graphs (OODDGs") algorithm.

Table 1 The comparison of existing impact analysis approaches

2 HIA stands for horizontal impact analysis. VIA stands for vertical impact analysis.

? Relationships guidelines are derived from the documentation model for each relationship defined in the documentation model. The tracing guidelines
give additional information to each relationship guideline. They are all used to establish traces among all documentation entities. After all these traces
are established, then it is straightforward to perform impact analysis using existing tools.

* In an OODDG, the nodes represent data items, such as classes, class members, variables and constants. The edges represent dependencies among these
data items.

® The paper did not mention any distance measure, but it is obvious that the approach supports the definition of distance measure.

32

3.4 Summary

In this section, we summarize important issues regarding existing approaches in terms of
capturing traceability information and performing vertical impact analysis.

1. Most of existing approaches require to explicitly represent refinements. For
example, stereotypes are used in [26] and [33] to explicitly represent refinements.
In other words, users are requested to manually and explicitly represent the
refinements while making changes to the models. The major disadvantage of
these approaches is a significant overhead on the user’s part and little automation.
Another disadvantage is that the model becomes increasingly cluttered because of
the extra information of capturing traceability information.

2. Most existing approaches do not support complex refinements which should be
derived from several atomic changes rather than a single atomic change. The
resulting problem is that the user’s intent can not be captured at a higher level
than atomic changes. Even though some approaches support more complex
refinements, a systematic classification is not provided.

3. Most of existing approaches do not provide a systematic classification of
refinements.

4. Most of existing approaches do not indicate or formalize which kinds of
traceability information should be captured during the refinement process.

5. Some vertical impact analysis approaches focus on source code rather than UML
models. Others focus on horizontal impact analysis rather than vertical impact
analysis. Certain approaches are too coarse-grained to be adapted to the vertical
impact analysis of UML models. There is no method that is specifically

addressing the vertical impact analysis of UML models.

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4 APPROACH TAKEN

Our objective is to perform vertical impact analysis of UML 2.0 models as automatically
and efficiently as possible. To do so, we propose an approach which involves horizontal
impact analysis and traceability information. First, atomic changes, which are the
elementary steps by which one model evolves into another, are identified automatically.
Second, refinements are derived from the identified atomic changes, thus capturing the
user’s intent at a higher level of abstraction than atomic changes. Third, traceability links
are established between model elements of UML model versions automatically (e.g.,
from analysis model elements to design model elements), based on the identified
refinements, to keep track of the user’s intent. Finally, with two UML model versions, the
corresponding traceability links, and a HIA approach in hand, VIA can be performed to
answer the question: what is the impact on the refined model of changes to the original
model? We intend to automate the above four activities as much as possible, without
requiring the designer to explicitly specify refinements (as in [26] for instance). Though
the user’s input might be necessary for some decisions, we aim at minimizing the
occurrence of such user queries. In order to automatically identify refinements, we
provide a systematic and hierarchical classification for class diagram refinement. We
made an effort to be as systematic as possible and also describe a mechanism to extend

this classification.

It is important to note that, according to the four activities discussed above, a change to a
model can be used to either identify a refinement and thus traceability links or perform
HIA and/or VIA (once traceability links have been identified). The question is then to be
able to distinguish between the two during the software development process. As a
simplifying working assumption, and given that we intend to automate VIA and HIA in
the context of a UML case tool such as Rational Rose Architect, we will assume the

following scenario:

1. The designer working on a set of UML models tells the case tool when s/he starts

refining those models. At this point in time, the case tool can refer to these models

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

as models at the first level of abstraction (say, analysis) and record modifications

for the purpose of identifying refinements and traceability links.

2. When the refinement activity ends, the designer informs the case tool: the
recording ends. At this point in time, the current UML models are considered as
models at the second level of abstraction (say, design) by the tool. Refinements

and traceability links have been identified.

3. Any modification to a model at either of the two abstraction levels then triggers
some HIA and VIA. For instance, a modification to a model at the first level of
abstraction triggers HIA (to identify the impacted elements at the same level of
abstraction) and then VIA (to identify the impacted elements at the second level

of abstraction).

Whether this simplifying assumption as to how HIA and VIA fit in a software

development life cycle will be the subject of future investigations.

In the following, we formalize the notions of atomic change, refinement, traceability link,
vertical impact analysis and horizontal impact analysis, by means of metamodels (Section
4.1). We then present taxonomies of atomic changes and refinements for class diagrams
(Sections 4.2 and 4.3). Last, we show how we specify refinements and the corresponding

traceability links (Section 4.4).
4.1 Metamodels

In this section, we present the different concepts of atomic changes, atomic and
composite refinements, and traceability links under the form of metamodels. In order to
keep the discussion focused, the metamodel is presented in a piecewise manner. New
classes and relationships specific to each step are highlighted. The whole metamodel is
given in Appendix A for reference. A dictionary describing each metaclass, its attribute(s)

and association(s) is provided in Appendix B for reference.

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.1.1 Conceptual metamodel

The class diagram in Figure 8 illustrates the main concepts of our approach, the
conceptual metamodel, which is used to present the relationships of the important

concepts introduced in Section 2.

A tMILModel is composed of instances of UMLDiagram which can be a Classbiagram,
or any other valid UML diagram. A uMLDiagram is composed of instances of Element
(i.e., modelElements), which is one of the meta-classes of the UML 2.0 metamodel [27].
This class is the bridge between our metamodel and the UML 2.0 metamodel. A
UMLModel is associated with instances of Refinement by two associations since a model
can be refined (rolename toRefinedModel) and at the same time be the refinement of
another model (rolename tooriginalModel). A refinement is between the original
model (rolename originalModel) and the refined model (rolename refinedModel).
Instances of TraceabilityLink should be established for each Refinement instance.
How to perform vertical impact analysis based on the established traceability links is

presented in Section 4.1.5.

A refinement is either an AtomicRefinement, corresponding to a series of
AtomicChanges, Oor a CompositeRefinement composed of AtomicRefinements
and/or other CompositeRefinements. Detailed description of atomic and composite
refinements will be given in Section 4.1.2, along with examples. We will see in Section
4.2 and 4.3 that AtomicChange and AtomicRefinement are the roots of hierarchies

(taxonomy) of atomic changes and refinements, respectively.

Notice that the analyzed models may not contain enough information to identify a
refinement, in which case the user’s help is requested (class UserHelp). For a particular
refinement which requires the user’s help, we define specific format of user’s help such

as yes-no or multiple choices questions in order to minimize the user’s involvement.

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

«atomicChanges |

1~ atomicref 1.7

toRefinecModel = orighalModel.

~type
0.1=

Figure 8 The conceptual metamodel

4,1.2 Metamodel for refinement

As shown in Figure 8, an AtomicRefinement is derived from a group of
AtomicChanges that occur together. It can not be decomposed into other refinements.
For example, refining a class by extracting some of its attributes into a new class which
becomes the subclass of the class being refined is an atomic refinement. This refinement
is derived from a group of atomic changes: “adding a new class”, and “moving an
attribute from a class into another”, and “adding a generalization”. Notice that an atomic
refinement may be derived from a single atomic change, in which case the atomic

refinement is straightforward.

Notice that the composite design pattern is used to model refinements. A
CompositeRefinement consists of more than one Refinements which can be
AtomicRefinements Or CompositeRefinements. The refinements grouped into a
composite refinement are between the same original and refined models. In other words,
we can write the following OCL constraints:

Context CompositeRefinement

self.containedRef->forall (n|jn.originalModel = self.originalModel
and n.refinedModel = self.refinedModel)

Figure 9 and Figure 10 show a composite refinement example, which is adapted from

[31]. Firstly, class ManagementDepartment of the original class diagram is refined into

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

class ManagementDepartment Wwhich aggregates classes ClientManager,
LoanManager and AccountManager. Because of this refinement, it is necessary to refine
the association keeps between the classes ManagementDepartment and Account in the
original class diagram into the association between the classes AccountManager and
Account in the refined class diagram. These two atomic refinements, namely
TopDownGen and RelocateAssociation (Appendix E.1.1 and Appendix D), are

grouped together as a composite refinement.

|

1

Figure 10 Example composite refinement - refined class diagram (from [31])

4.1.3 Metamodel for atomic change

The class diagram in Figure 11 illustrates the metamodel for atomic change. An
AtomicChange affects a model element (instance of Element) and is further described
by a ChangeDescription. We consider four different kinds of AtomicChanges, as
defined in enumeration AtomicChangeTypes: changed, moved, deleted, and added.
The last two are self-explanatory: the added (deleted) element is the affectedElement
in the refined (original) model. An element is moved when its location changes, e.g., an
operation is moved from a class to another. For a moved element, affectedElement
represents the element in the original version of the model, whereas targetLocation or
diagramLocation associations from class ChangeDescription describe the new
location. In the case the moved element belongs to another model element (e.g., an
operation belonging to a class is moved), targetLocation is to be used. If instead the

moved element belongs to a model (e.g., a class belongs to a class diagram),

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

diagramLocation is to be used. A changed element occurs, for instance, when a named
element changes name, e.g., an attribute name changes. The name change is then
recorded in attributes beforevalue and aftervalue of class ChangeDescription.
Obviously beforevalue and aftervValue can not be same. This constraint is

formalized using the following OCL expressions.

This discussion of the different kinds of atomic changes typically means that not every
instance of Figure 11 is legal, i.e., that there exist constraints. Figure 12 presents those
constraints on classes ChangeDescription and AtomicChange, specified using OCL
expressions. These constraints are based on the conceptual metamodel (Figure 8) and the

metamodel for atomic changes (Figure 11).

0.2

= changeDescription ||

& [
Prud
- gliagramt:ocation

o beforaValue ;' String

& adided
- affectedElement Erpmm o-deleted
! @ changed
o moved

A type v AtomicChangeTypes

Figure 11 The metamodel for atomic change

In Appendix C, a list of example atomic changes is presented along with a description of

the ChangeDescription and affectedElement links of each atomic change.

These notions are consistent with the compare&merge facility which is available in
Rational Software Architect (RSA) [16]. The compare&merge facility is indeed the
mechanism we intend to rely on for the detection of model changes to identify

refinements.

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Context ChangeDescription
not (self.beforevValue = self.afterValue)

Context AtomicChange
self.affectedElement->notEmpty ()
and self.type=AtomicChangeTypes::added implies (
self.changeDescription->isEmpty ()
and self.atomicRef.refinedModel.diagram.modelElements
~>includes (self.affectedElement)
and self.atomicRef.originalModel.diagram.modelElements
->excludes (self.affectedElement)
)
and self.type=AtomicChangeTypes::deleted implies (
self.changeDescription->isEmpty ()
and self.atomicRef.originalModel.diagram.modelElements
->includes (self.affectedElement)
and self.atomicRef.refinedModel.diagram.modelElements
->excludes (self.affectedElement)
)
and self.type=AtomicChangeTypes: :changed implies (
self.changeDescription->notEmpty ()
and self.changeDescription.targetLocation->isEmpty ()
and self.changeDescription.diagramLocation->isEmpty ()
and self.atomicRef.originalModel.diagram.modelElements
->includes (self.affectedElement)
and self.atomicRef.refinedModel.diagram.modelElements
->excludes (self.affectedElement)
)
and self.type=AtomicChangeTypes: :moved implies (
self.changeDescription->notEmpty ()
and if(self.affectedElement.oclIsTypeOf (Classifier)) (
self.changeDescription.diagramlocation->notEmpty ()
and self.changeDescription.targetLocation->isEmpty ()
) else (
self.changeDescription.diagramlLocation->isEmpty ()
and self.changeDescription.targetLocation->notEmpty ()
)
endif
and self.atomicRef.originalModel.diagram.modelElements
->includes(self.affectedElement)
and self.atomicRef.refinedModel.diagram.modelElements
->excludes (self.affectedElement)

Figure 12 The constraints of the metamodel for atomic change
4.1.4 Metamodel for traceability link

A traceability link between two model elements which belong to different UML models
can be represented by a tuple of the form (Eo, Er, type, possibility) where Eo is
a model element of the original model, Er is a model element of the refined model, type
is the type of the traceability link (i.e., corresponding to a particular refinement), and

possibility is a percentage which represents the likelihood that there is a traceability

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

link. Sometimes, according to the information available in models (e.g., a group of
atomic changes, refinement identified and two UML models), it is not possible to
guarantee at 100% that there is a refinement, so we assign a percentage to the traceability
link which denotes the confidence that this is indeed a refinement. For example, one
possible refinement is to merge a superclass and a subclass together when they are not
very different. In order to identify this refinement, we have to compare attributes and
operations of the merged class (i.e., a class of the refined model) and the deleted class
(i.e, the class of the original model) which could be the superclass or subclass. The
extent to which such a mapping of attributes and operations can be established indicates

the likelihood of the refinement.

We use an example to show how to use the above tuple format to represent traceability
links. Class 2 is refined by adding a new attribute newaAttri (we call this refinement
AddedAttributeRef): let us refer to this new version of A as A1. Then class 2 is refined
by making it an abstract class (we call this refinement ClassIsAbstractRef): let us
refer to this new version of a as 2. We can use the above tuple format to represent the
traceability information between classes A, A1 and A2: (3, A1, AddedAttributeRef,

100%), and (a1, A2, ClassIsAbstractRef, 100%).

The concept of traceability link is modeled using the class diagram in Figure 13.
Instances of TraceabilityLink are established for each Refinement instance, between
the elements in the original model that are being refined (association to Element with
rolename origin) and the elements of the target model that are the refinements
(association to Element with rolename target). An element in one model (i.e., the
original model or the refined model) can be connected to an element in another model
(i.e., the refined model or the original model) via one or many traceability links. An
element in one model (i.e., the original model or the refined model) can be connected to
one or many elements in another model (i.e., the refined model or the original model).
The origin and target of a traceability link are model elements of the original and
refined models, respectively, of the corresponding refinement. In other words, we can

write the following OCL constraints:

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Context TraceabilityLink

self.type.originalModel.diagram.modelElements
->includes (self.origin)
and

self.type.refinedModel.diagram.modelElements
->includes (self.target)
and

self.type.traceabilityLinks
->includes (self)

When traceability links can be established between a series of models, we can derive
traceability links between the elements of the first (most abstract) model and the elements
of the last (most refined) model, these links being modeled as instances of class
DerivedTraceabilityLink. For instance, in the abstract example above, we can derive
a traceability link between A and a2 from the two traceability links between A and A1,
and between A1l and A2. Notice that class A1 is the target of the traceability link
between A and A1, but also the origin of the traceability link between A1 and a2. We
can therefore write the following OCL constraints:
Context DerivedTraceabilityLink
Sequence{l..self.containedTLinks->size () }->forAll (i,j:Integer|
j=i+1 implies (

containedTLinks->at (i) .target
= containedTLinks~>at (j) .origin

= toRefinedModel --griginalMods

- toOriginalModel = refinedModel

{ordered}

=containedTLinks 2.2 1%

- oriain ¢ BT

1 %= target L.
+" {ordered) Thodeitements """

= detived TLink |

Figure 13 The metamodel for traceability link

As shown in Figure 8, we rely on a group of atomic changes to identify a refinement.
Corresponding traceability links are established for this refinement when it is identified.
The identification of the refinement will be triggerred when the user executes a command,

e.g., saving the model after he/she finished the modifications.

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.1.5 Metamodel for performing vertical impact analysis

Once refinements between two model versions (say, the analysis original model and the
design refined model) have been identified and the corresponding traceability links have
been established, one can perform vertical impact analysis: class VerticalImpact in
Figure 14. A verticalImpact relies on the traceability links to identify the elements of
the refined model (i.e., impactedElement) that may need to be changed because of a set
of changes in the original model (i.e., changedElements). Since traceability links
indicate how each original model element is refined, the changes to the original model
are necessarily at the origin of some traceability links. Similarly, the set of elements
impacted by the verticalImpact is a subset of the targets of the traceability links. In
other words, in the context of class VerticalImpact, we can write the following OCL

constraints:

Context VerticallImpact
self.traceabilitylLinks.type.originalModel->asSet () ->size()=1
and self.traceabilityLinks.type.refinedModel~->asSet()

->size()=1
and self.traceabilitylLinks.origin->asSet ()
—->includesAll (self.changedElements)
and self.traceabilitylLinks.target->asSet()
->includesAll (self.impactedElements)

The changed elements in the original model can be the result of a HIA. Similarly, the
elements of the refined model being impacted by the VIA can be the starting point of a
HIA: modified elements in the original model impact elements of the refined models
(VIA) which themselves may impact other elements of the refined model (HIA). This is
modeled by the reflexive association connecting the class Impact to itself (ie.,
HIAimpacts). HIA is modeled by classes Change and HorizontalImpact, and their
associations, which we reuse from an earlier work on UML-based impact analysis [4].
We introduce two classes VerticalImpact and HorizontalImpact as the subclasses
of Impact in order to distinguish the impacts caused by performing HIA from the

impacts caused by performing VIA.

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

77 - toRefinediodel - driginglModel I TG el

*

*
- et = tOOgINaMode! - yefinedModel

- HIAImpacts

causes

2 tracea‘bllityunks’ :

* i &
thargs /\ HIAIMpacts

causes

Figure 14 The metamodel for performing vertical impact analysis
4.2 Taxonomy of Atomic changes

In order to precisely specify (atomic) refinements we need to precisely specify the atomic
changes they can be composed of first. Such a taxonomy already has been presented in
[4], where each model element is defined by a set of properties (e.g., a class has attributes)

among which core properties uniquely identify the element (e.g., the class name).

We adapted this taxonomy to account for the fact that we rely on the compare&merge
facility of RSA to provide such atomic changes. There are two main reasons for this
adaptation. First, in [4], changing the core properties of an element leads to the deletion
of the element and the addition of a new element. On the other hand, using RSA, such a
situation is classified as a change, i.e., as an atomic change of type changed. Second,
moving an element from a location to another (e.g., an operation from a class to another)
is classified as a deletion and an addition in [4], whereas in RSA we have the notion of
moved element. In other words, we benefit from the precise, fine-grained identification of

changes provided by RSA.

Though an AtomicChange can occur in any UML diagram, we focus in this thesis on
class diagrams. Figure 15 shows an excerpt of the taxonomy: an AtomicChange in a
class diagram can be the addition of a class, the deletion of an association, the move of an

attribute between two classes, or the change of a class, which is a change of name or a

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

change of property IsAbstract [27], etc. The complete taxonomy for class diagram
atomic changes currently contains 47 concrete changes, i.e., leaf nodes in the inheritance
hierarchy rooted in ClassDiagramAtomicChange, and can be refined over time if

necessary. It is presented in Appendix D.

Figure 15 Taxonomy of Atomic Changes
4.3 Taxonomy of Refinements

As shown in Figure 16, we also define a taxonomy of atomic refinements, again focusing
on class diagram refinements in this thesis. Notice that using the composite design pattern
we model the possibility that a refinement involves both class and sequence diagram
atomic refinements. (Other diagrams could be added to Figure 16 using the same
principle.) We defined our taxonomy of class diagram atomic refinements based on a
careful and systematic study of the related literature (conference and journal articles, and
text books such as [20]) or according to our own experience of UML-based software

development. This taxonomy is also expected to be refined over time.

Figure 16 Taxonomy of Refinements

Figure 16 only shows an excerpt of the taxonomy which contains a total of 30 concrete
class diagram atomic refinements, i.e., leaf nodes in the inheritance hierarchy rooted in
ClassDiagramRefinement. As an example, Class->Classes+Rels refers to a family
of refinements where a class is refined into a set of classes and their relationships. For
instance, it is further specialized in the taxonomy into TopDownGen which corresponds to

a refinement through generalization: the class being refined in added a subclass in the

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

refined model. Other refinements, not shown in Figure 16, describe for instance the
refinement of a set of classes and their relationships into a single class or the refinement
of a class into several classes (e.g., splitting of responsibilities). The complete taxonomy

for class diagram refinements is presented in Appendix E.
4.4 Refinement/Traceability link specification

As indicated in Figure 8, an atomic refinement may be derived from one or more atomic
changes. We distinguish them as they are formalized in different ways. These two types
of refinements and their formalizations are discussed in Section 4.4.1 and 4.4.2,

respectively.
4.41 Atomic refinements derived from a single atomic change

This is the simplest one: once such an atomic change has been detected, an atomic
refinement, and corresponding traceability links can be detected automatically. As we
discussed in Section 4.2 we rely on the compare&merge engine (Section 5.2.1) of RSA to
detect atomic changes and as a result atomic refinements can be detected automatically.
Each of this type of atomic refinements leads to creating a traceability link except the
atomic refinements derived from a single added or deleted atomic change. The strategy

for establishing traceability links is as follows.

Changed:

For the atomic refinement derived from a single atomic change of type changed, a
traceability link between the original model element in the original model (i.e., the

affectedElement of the atomic change) and the refined model element in the refined
model should be established.

For example, a traceability link is specified in Figure 17 (b) for a cClassIsAbstractRef
refinement, which 1is detected from a single atomic change of type
ChangedClassIsAbstract: the class is changed into an abstract class (specified in
Figure 17 (a)). The affected element of such a change is a class. The refinement’s

unique traceability link is between the original class (i.e., the affectedElement of the

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

atomic change) and the refined class. We assume that the original model is refined into
the refined model by the ClassIsAbstractRef refinement only. We can identify the
refined class (referred to as refClass) by looking for the class in the refined model
which has the same name as the original class (i.e., the affected element of the atomic

change ChangedClassIsAbstract) (referred to as origClass).

Context: ClassIsAbstractRef
self.atomicChanges->size() = 1

and self.atomicChanges->exists(oclIsTypeOf (ChangedClassIsAbstract))

(a) Constraint on atomic changes

Context: ClassIsAbstractRef
let origClass = self.atomicChanges
—->select (oclIsTypeOf (ChangedClassIgAbstract)).affectedElement.oclAsType(Class)
let refClass = self.refinedModel.diagram->select(oclIsTypeOf (ClassDiagram)).
modelElements->select (oclIsType(Class))->select (name=origClass.name)
in
self.traceabilityLinks->size() = 1

and self.traceabilityLinks->exists(t| t.origin = origClass and t.target = refClass)

(b) Traceability links

Figure 17 Refinement ClassIsAbstractRef

Moved:

For the atomic refinement derived from a single atomic change of type moved, a
traceability link between the original model element in the original model (i.e., the
affectedElement of the atomic change) and the refined model element in the refined
model (i.e., the model element moved to the diagramLocation or targetLocation) is

established.

For example, a traceability link is specified in Figure 18 (b) for a MovedAttributeRef
refinement, which is detected from a single atomic change of type MovedAttribute: the
attribute is moved from a class into another (specified in Figure 18 (a)). The
affectedElement of such a change is a Property. The traceability link is between the
attribute in the original class (i.e., the affectedElement of the atomic change) and the
attribute in the new location (i.e., the attribute in the targetLocation of the atomic

change).

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

