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Abstract 

The mechanism of conjugated fatty acid biosynthesis as it occurs in plants has been 

examined by incubating deuterium-labelled linoleates with a number of yeast strains 

expressing the requisite FAD2 type enzymes: A8'10-desaturase (Calendula officinalis); 

All,13-desaturase (Aleurites fordii Hemsl.) and A10,90H-desaturase (Dimorphotheca 

sinuata). 

The stereochemistry of calendic acid (octadec-8£, 1OE, 12Z-trienoic acid) formation 

was probed by monitoring the fate of deuterium from (R)- and (S)-8-di-octadec-9Z,12Z-

dienoates and (R)- and (S)-ll-di-octadec-9Z,12Z-dienoates (linoleates). The latter 

substrates were synthesized by a chemoenzymatic route that involved the use of a yeast 

A12 mutant to introduce the 12Z double bond. Calendate is formed from linoleate by syn-

removal of the SHj? and 1 lHs hydrogens as expected. 

Using similar methodology, it was shown that a-eleostearic acid (octadec-

9Z,ll£,13J?-trienoic acid) formation was formed from linoleate by syw-removal of the 

8Hs and 11H/? hydrogens. This result required the postulation of a revised substrate 

conformation. By comparing the deuterium kinetic isotope effects at C-11 (large) and C-

14 (small), the site of initial hydrogen abstraction was determined to be at C-11. 

Dimorphecolate ((/?)-9-hydroxyoctadec-102s, 12£-octadecadienoic acid) is 

biosynthesized from oleate by tandem 12£-desaturation /allylic oxidation. It was 

demonstrated that the latter step is initiated by isotopically sensitive hydrogen abstraction 

at C11, followed by hydroxyl rebound to C-9 of the allylic radical intermediate. 

All biotransformations could be described by an active site model that is common to 

all FAD2 type homologues operating on linoleate substrates. 
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1 

Chapter 1: Introduction 

1.1 Conjugated Fatty Acids 

1.1.1 Lipids and Fatty acids 

Lipids are essential hydrocarbon-based components of every living organism 

where they serve as a source of energy and as hydrophobic building blocks of 

membranes. In the latter role, lipids protect the inner constituents of the cell from the 

outer environment and selectively allow foreign substances to pass through (cellular 

transport). Other biological functions performed by lipids include antifeedant activity, 

regulation of membrane protein activities and chemical signalling.1"4 Lipids can be 

subdivided into two major categories - firstly, fatty acids and their derivatives; and 

secondly, substances related biosynthetically or functionally to these compounds, such as 

Carbon Sources 
[Photosynthate, stored carbohydrate etc] 

Precursor Acetyl-CoA • Polyketides and Terpenoids 

De novo synthesis (Acetyl-CoA carboxylase, fatty acid synthase) 

Elongases Modifying Reactions 

Long-chain Fatty Acids 

[Palmitate, Stearate] 

Elongases 
> Very Long Chain Fatty Acids Oxy-Fatty Acids 

(> 18 Carbon) Epoxy-fatty acids 
Unsaturated Fatty Acids 

Hydroxy-fatty acids 
Acetylenic-fatty acids 
Cyclic fatty acids 

Figure 1.1. Biosynthesis of fatty acids in plants and its subsequent modifications by 
employing several different enzymes to produce complex lipids. The Figure was adapted 
from Gunstone et al.s 


