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Abstract

In the last twenty years it has been widely recognized that many deterministic
mathematical systems can exhibit chaotic behaviour, wherein smail uncertainties in the
system state grow at a roughly exponential rate, making accurate long-term predictions
impossible. Chaotic systems often possess a geometry that is fractal in nature, naving
complex structure across all scales. Several definitions of chaos exist, all of which are
defined for continuous-space systems. In this thesis we review the current theory of
chaos and fractals, and report on claims regarding the existence of chaos in a cenain
discrete-space dynamical system over the natural numbers. We conclude by considering
whether fractals and chaos can exist within discrete-space systems, and give

recommendations for further research in this area.
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1. INTRODUCTION

In the last twenty years it has been widely recognized that simple mathematical
models can exhibit a particular kind of complicated, random-like behaviour now known
as deterministic chaos. More surprisingly, it has been discovered that the same chaotic
behaviour observed in mathematical systems could also be observed in the physical
systems they represent. Closely related to the theory of chaos is fractal geometry, which
is the study of recursive geometric figures that exhibit a non-trivial structure at all scales.
It is very often the case that chaotic systems have geometric properties that are fractal in

nature.

In this thesis we examine the theory of fracual geometry and chaotic dynamical
systems, and investigate claims regarding the existence of chaos in a cenain number

theoretic system known as the hailstone numbers.

1.1 Motivation

The study of chaos represents a special part of the wider area of dynamical
systems theorv, which is concerned with the long-term behaviour of mathematical models

of a certain kind. Within dynamical systems theory there are two broad categories:
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continuous dvnamical systems which model time as a continuous flow, and discrete
dynamical systems which mode! time as a discrete sequence of steps. Both types of
systems have been successfully used to model a wide range of physical phenomena, and

both are capable of exhibiting chaotic behaviour.

Although continuous and discrete dynamical systems differ in how they model
time, they model space in the same way: as a continuum. This is an interesting fact,
since the physical systems that they model are inherently discrete, being composed of
large numbers of isolated particles. For example, population dynamics are often modelled
using continuous-space maps, even though there can only be an integer number of
individuals in a population. Similarly, the motion of a fluid is modelled using systems

of differential equations, even though the fluid itself is composed of isolated particles.

In recent years there has been significant interest in dynamical systems that are
discrete in both time and space; we refer to these as fully discrete dynamical systems.
Two familiar examples of fully discrete dynamical systems are Turing machines {12, 30]

and cellular automata [44, 167).

Although chaos is currently defined only for continuous-space systems [7, 34, 94,
159}, it has been reported in Turing machines [20, 106], cellular automata 25, 57, 83, 90,
140, 146, 166]. and pseudo-random number generators [76]. It is the fact that chaos is

defined only for continuous-space systems, together with the existence of claims that it



exists in fully discrete systems which motivates the following

OBJECTIVES:
1. To present a synthesis of the literature on the existing theory of fractals
and chaos, and;
2. To investigate claims regarding the existence of chaos in a particular fully

discrete system, known as the “hailstone numbers".

1.2 Research resulits

We have found that, although the onginal definition of fractal due 10 Mandelbrot
{100] applied only to uncountable sets, its usage has broadened to include discrete
(countable) sets as well. In fact, even certain finite sets can possess “fractal” properties

across a finite range of scales.

The many definitions of fractal dimension can be reduced to the following. The
fractal dimension of a set is a real number that indicates how the “size” of the set changes
with the scaie at which it is measured. Since there are many ways to measure the size
of a set, there are correspondingly many ways to measure its dimension. For example,
Hausdorff dimension is the most useful in theoretical settings, whereas box-counting and

correlation dimensions are most useful in practice.
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Sensitive dependence on initial conditions is a central concept in chaos theory,
wherein any uncertainty in the initial state of a system grows at a roughly exponential rate
as the system evolves, making accurate long-term predictions impossible. Because
sensitive dependence can be directly observed in physical systems, many authors consider
this to be a sufficient definition of chaos. Some authors impose additional restrictions on
the definition, usually with regard to the periodic structure of the system. Still others
require that a chaotic system be dynamically equivalent to a "shift map", whose properties
are well-known. Unfortunately, there is still no general agreement on the definition of

chaos.

It is often the case that the evolution of a chaotic system traces out a fractal
pattern commonly known as a strange attractor, which results from the repeated
“stretching and folding" action of the system. Although the existence of a strange

attractor usually indicates the presence of chaos, this is not always the case.

Our investigation into the hailstone numbers revealed that the claim by Agnes and
Rasetti | 1] that the hailstone numbers are chaotic, is in fact false. In particular, we show
that the hailstone numbers do not act as a shift map upon Sarkovsky’s ordering of the
natural numbers. Agnes and Rasetti also defined a functionally equivalent one-
dimensional map on the unit interval, and claimed that this map was chaotic and had

fractal orbits. We show these claims to be false.
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During our investigations we also examined the recently made claim that the 3x+/
problem, which is an open problem related to the hailstone numbers, is undecidable |1}.

We showed that the arguments used to support the claim are incorrect.

In an original result, we establish a relationship between the hailstone numbers and
the Fibonacci numbers, determining the number of ways in which integers can be
transformed by higher iterates of the hailstone function. Another original result
establishes a lower bound on the "total stopping time" function, which determines the
minimum number of steps required in a sequence of hailstone numbers until the value 1
is reached. Although these results are not directly related to the question of chaos in the

hailstone numbers, they may prove useful in future research.

1.3 Organization

Our review of the literature represents a synthesis of the major concepts in the
theory of fractals and chaos. Whenever possible, we provide historical background to the
ideas being discussed, and include derivations of the relevant mathematical formulas. We
reproduce a number of existing results from fractal geometry, often providing our own
proofs in order to reinforce the techniques involved. Additionally, we present the various
definitions of fractal dimension and chaos and put them into the proper context. This in

itself is a significant contribution, since most sources present only one definition of each.
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In Chapter 2: Fractals and Dimension we present the most important definitions
of fractal dimension, and give several examples to illustrate the properties of fractal sets.
Where possible, we derive these definitions from first principles to provide the appropriate
motivation. In order to reinforce the techniques being discussed, we often provide our
own proofs to results that are standard in the literature (or can be attributed to particular
authors). We use the dagger symbol (%) to identify results for which we have provided

our own proof.

In Chapter 3: Chaos we present several definitions of chaos, and show how they
are related. In addition, we discuss sensitive dependence on initial conditions as the cause
of unpredictability in a dynamical system, ropological conjugacy as the means by which
different chaotic systems can be shown to be equivalent, and symbolic dynamics as a
qualitative technique for establishing the dynamical properties of a chaotic system. We

also discuss the meaning of strange attractors in the context of chaotic systems.

Chapters 4 and 5 present our case study of the fully discrete dynamical system
commonly known as the hailstone numbers [72, 89]. This system was selected for
examination because of the existence of specific claims that the system is chaotic [1].
In Chapter 4: The Hailstone Function, we present the basic known properties of the
system in order to provide a context for the discussion to follow. In this regard we
contribute to the existing knowledge by establishing a relationship between the hailstone

numbers and the Fibonacci numbers. We also establish a lower bound on a certain




function related to the transient length of hailstone sequences.

In Chapter 5: The Hailstone Map, we discuss a one-dimensional map that is
functionally equivalent to the hailstone function defined in the previous chapter. We
examine the claims regarding the existence of chaos in the hailstone map, and show them

to be false.

The thesis concludes with a summary of the inportant aspects of the theory of
fractals and chaos. Following this we discuss the elements of the theory that can be
related to fully discrete systems, and present our conclusions regarding the existence of
chaos in the hailstone numbers. Based on what was leamed from the literature and from

the case study, we also present a number of promising avenues for future research.

Finally, the Appendix provides a brief summary of the various concepts from

metric topology that appear in the thesis.



PART I: OVERVIEW OF FRACTALS AND CHAOS



2. Fractals and dimension

2.1 Motivation

In this chapter we present the central concepts behind the notions of fractal sets
and fractal dimension. We attempt to provide historical context, to emphasize that fractal
sets are not a recent discovery (although they have only recently been called by that

name), and that the theory of fractional dimensions has existed for several decades.

The definitions of set dimension discussed here fall into four general categories,

according to whether they are primarily based on

. the number of coordinates required to specify points in the set;
. the extent to which a set is connected;
. the type of symmetry exhibited by the set, or;

. a measure of the size of a set.

Most definitions are measure-based, and as many ways as there are to measure the size
of a set, there are ways to measure its dimension. We illustrate these ideas with several

well-known examples of fractal sets.
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2.2 Historical Background

The term fractal was invented by Benoit Mandelbrot in the 1970’s to describe
certain mathematical sets of a highly irregular nature [99, 100]. Mandelbrot derived the
word fractal from the latin fractus, meaning “broken”; the examples appearing later will

show this to be an appropriate choice of terms.

Mandelbrot defined a fractal formally as "a set for which the Hausdorff
Besicovitch dimension strictly exceeds the topological dimension". Hausdorff dimension
(as it is usually called) was developed at the turn of the century in order to measure sets
which cannot be adequately described using the usual notions of length, area, and volume.
The Hausdorff dimension of a set can have non-integer values, whereas the topological
dimension is always an integer. Hence, according to Mandelbrot’s definition, a fractal

is any set for which the Hausdorff dimension is not an integer.

Fractals are most cominonly defined in the literature as sets that have fractional
dimension. There are many ways to define the dimension of a set; Hausdorff dimension,
various box-counting dimensions, packing dimensions, topological dimension and
Euclidean dimension to name a few. Because these set dimensions are generally not
equivalent, the definition of fractal has become somewhat muddied. In [43], Falconer

writes:
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Inconsistent usage has sometimes led to considerable confusion. In
particular, warning lights flash in my mind (as in the minds of other
mathematicians) whenever the term ’fractal dimension’ is seen. Though
some authors attach a precise meaning to this, 1 have known others to
interpret it inconsistently in a single piece of work.

In fact, Mandelbrot’s original definition has met with some dissatisfaction; it has
been suggested in [43, 100} that the definition is too restrictive, since there exist highly
irregular sets of integer Hausdorff dimension that strongly deserve to be called fractals.
Falconer [43] suggests that instead of using a precise definition, fractals be described in

more qualitative terms:

(2.2.1) DEFINITION. [Falconer, 1990}. A fractal is any set that has most or all of the

following properties:

. fine structure at all scales;

. self-similarity;

. an imegular structure not adequately described by traditional
geometry, and;

. a simple, recursive definition.

This definition is more intuitive than Mandelbrot’s original one, as it is not based on the

concept of set dimension.

Mathematical sets that are now known as fractals were first studied near the tum
of the century by Cantor, Hausdorff, Peano and others {84). These sets were described

variously as sets of fractional dimension, sets of Hausdorff measure, sets with a fine
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structure or irregular sets [42]. Most mathematicians considered them to be pathological,
as they challenged the geometric intuition of the time. Poincaré went so far as to call
them "“a gallery of monsters” [144]. A few of these sets are described in the following

sections.

2.3 On measuring the size of fractal sets

In this section we establish the properties of several well-known fractals, in order

1o illustratz how fractals have no well-defined size in the traditional sense. As we provide

a fair amount of detail in these examples, the reader may choose to browse the proofs in

favour of gaining a general understanding of the concepts involved.

The triadic Cantor set

Probably the earliest and best known example of a fracta! is the triadic Cantor set.
The set is named after Georg Cantor', who made use of the set in 1883, although it was
actually defined by Henry Smith in 1875 {100, 145]). This set is also known as Cantor’s
middle-third set, the triadic Cantor dust, Cantor’s ternary sei, and occasionally as ’the’

Cantor set. The triadic Cantor set can be defined »y a process which, starting with a line

! Georg Cantor (1845-1919) is best known for his work on the foundations of set theory, including
his "diagonalization” proof that the real numbers are uncountable. An interesting account of
Cantor’s work can be found in [88).
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segment of un:: lzngth. removes an infinite number of smaller and smaller line segments,

leaving only a 'dust’ of points. The construction proceeds as follows.

Let G, be the unit interval [(,1). Define the approximant C,,, as the set of points
that remain after removing the open middle-third of every interval in C, where i2(0). The

sequence of sets C, are thus defined as

= [0,1)
= [0, 21U, 1)
C; = [O,,,jU et -] U [;‘-l-;-]U[-;II]

This process is illustrated in Figure 2.1. The triadic Cantor set C is the set of points that

appear in every iterate C,; that is, C is the limiting set of the sequence (C,) as i goes to

infinity. In what follows, we show that C is in fact non-empty.
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Figure 2.1  The Triadic Cantor Set

The wriadic Cantor set is the limit of a process that starts with a unit line segment and
recursively removes the middle third from each interval remaining in the set. It has an
uncountable number of points but has a total “length” of zero.
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We now measure the size of the triadic Cantor set, in terms of the number of

points in the set, as well as its overall length.

(2.3.1) DEFINITION. [Falconer, 1990]. A basic interval of the approximant C, is an

interval (a,bJe C, of length 3°. Each approximant C, is made up of 2’ basic intervals.

(2.3.2) PrOPOSITION.! [Falconer, 1990]. The boundary points of each approximant C,
are contained in the intersection C.

PROOF.

The boundary points of C, are simply the endpoints of the basic intervals contained in the
set. We show that every approximant C, contains the boundary points of all other
approximants, and hence that all boundary points are contained in the intersection C.

Because CoC,,, for all i20, it is clear that each C, contains the boundary points
of all C,; for j>0. Thus, it is required to show that every C, contains the boundary of all
previous C,, for j<i. Intuitively, we are trying to show that no boundary points will ever
be removed by the construction process.

This is proved by induction, using C, and C, as the basis. Since C;=[0,1) is the
first approximant, it trivially contains the boundary points of all “previous” approximants.
This is also true for C,=[0,1/3)U[2/3,1], since it contains the boundary points (0,1) of C,.

Assume that C, contains the boundary points of all previous approximants C,

where j<k. The set C,,, is formed by removing the open middle-third of each basic
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interval in C,. Consider the basic interval [a,ble C,. Removing the middle-third of [a,b]
will not remove either of its endpoints {a,b}, nor will it remove any of the other boundary
points of C, (since [a,b] contains no other boundary points). Thus the boundary points
of C, are all contained in C,,,, completing the induction.

Therefore the intersection C contains the boundary points of all approximants C,

comgleting the proof. a

Next, we prove that there are an uncountable number of points in the triadic
Cantor set. This is done by establishing a one-to-one comrespondence between these
points and the real numbers in the unit interval. To this end, we identify the real numbers
between 0 and 1 with their temary (base-3) representations. We note, however, that some
of these values have two ternary representations; these are the rational numbers of the
form p/3* for some integer 0<p<3*, where the ternary representation of pendsina 1. In
particular, if the ternary expansion of p has the form 0.p, ,..p,p,p;! then the number p/3*
can be written in ternary either as 0.p, ,...p,p,p, 1. or as 0.p, ,..p;p,p,02222... We shall

ignore the first form, and use the second.

(2.3.3). LEMMA. Each basic interval [a,b] of the approximant C, can be written in the
form 3'[p,p+1], where [p,p+1] is a real interval for some integer p.

PROOF.

By induction. As a basis we observe that the single basic interval of G, is of the required

form, since [0,1}=3°(0,1]. Assume that the basic intervals of C, are of the required form;
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that is, if [a,b] is a basic interval in C, then [a,b]=3"(p,p+1] for some integer p. The set
C... is formed by removing the open middle-third of each basic interval in C,. Thus C,,,
contains the intervals L=[a,a+(b-a)/3] and R=[a+2(b-a)/3,b], corresponding to

L=3*(p,p+1/3]=3""[3p,3p+1] and R=3*{p+2/3,p+1]=3 "*"{3p+2,3p+3]. Observing that

the endpoints of these intervals are of the required form completes the induction. @8

(2.3.4). LEMMA. Let C, be an approximant to the triadic Cantor set, with i>(). Then
none of the points in C, have ternary representations having a 1 in the first k positions.
PROOF.

By induction. We use C,=[0,1] as the basis, for it is trivial that none of the ternary
representations of the points in C, have a 1 in the first  positions. Assume this condition
to hold for all points in C,, and let [a,b] be a basic interval in this set. By Lemma 2.3.3
we know that [a,b] is of the form 3*|p,p+1] for some p. Now the points that are
'removed’ from this interval are given by 3*Y(3p+1,3p+2), which are exactly those
points having a 1 in the (k+1)-st position. Therefore none of the points in C,,, can have

a 1 in the (k+1)-st position, and the induction is complete. a

(2.3.5) PROPOSITION.! The points in the triadic Cantor set correspond to those real
numbers between 0 and 1 whose ternary representations do not contain the digit 1.
PROOF.

By Lemma 2.3.4 we know that each approximant C, corresponds to those real numbers

between 0 and 1 whose ternary representations do not contain a 1 in the first i positions.
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Therefore none of the points in the intersection C can have ternary representations

containing the digit 1 in any position. |

(2.3.6) PROPOSITION.' There is an uncountable number of points in the triadic Cantor
set C.

PROOF.

It is clear that C contains a countably infinite subset, being the endpoints of the basic
intervals in each C, (which are enumerable). We must show that there are an uncountable
infinity of other points in C.

By Proposition 2.3.5 we know that the triadic Cantor set corresponds to the set of
infinite ternary strings containing only the digits 0 and 2. This set can be put into one-
to-one correspondence with the set of infinite binary strings, with the ternary digit 2
corresponding to the binary digit 1. Since the set of infinite binary strings is uncountable

the triadic Cantor set is itself uncountable. ]

One of the interesting properties of the triadic Cantor set is that although it
contains an uncountably infinite number of points, it nevertheless has a "total length" of
zero. We show this with respect to Lebesgue measure (defined in the Appendix) in the

following.

(2.3.7) PROPOSITION." The triadic Cantor set has (linear) Lebesgue measure zero.

PROOF.
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We observe that because CcC, for all i, we have LY(C)<L./(C,)), where L' denotes the

linear Lebesgue measure. Now the set C, contains 2' intervals of size 3', hence
LY(C)=(2/3). This implies that L'(C)<(2/3) for all i20. Letting i—oo gives L'(C)=0 to

complete the proof. [ ]

Because the triadic Cantor set has total length zero it can contain no intervals, and
there must be unfilled space between any two points in the set [84. 100, 118]. This result
also implies that the set of all points whose ternary representations are missing the digit
1 has Lebesgue measure zero. It is interesting to note that Hardy and Wright give a more

general result in [70], which we reproduce here without proof:

(2.3.8) THEOREM. [Hardy and Wright]. The set of points whose decimals, in any scale,

miss any digit is null: almost all decimals contain all possible digits.” =

The Peano curve

Euclidean geometry dictates that points are zero dimensional objects, curves one-

dimensional, surfaces two-dimensional and solids three-dimensional. In 1890 Giuseppe

In this context the term "decimal’ refers to the expansion of a real number in some basc, or scale’.
A "null’ set is a set of Lebesguc measure zero.
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Peano’ defied this view by inventing a continuous curve that visits every point in the unit
square [88]. The Peano curve was defined by a mapping between the unit line segment
and the filled-in unit square. In this mapping, each point (x,y) in the square is specified
by two continuous functions, f(t) and g(t) such that for every (x,y)e[0,1]x[0,I] there

exists 0<t<1 for which (f(t),g(t))=(x,y).

The Peano curve represents the limit of a constructive process which repeatedly
maps the unit line segment to a curve consisting of smaller and smaller line segments, as
shown in Figure 2.2. The first step in the construction maps the line segment to the curve
shown in Figure 2.2(a), which consists of nine line segments, each of size 1/3. The
process continues by replacing each of these line segments by nine smaller line segments,
and so on ad infinitum. Figures 2.2(b) through 2.2(d) shows the next few approximations

to the curve, which do indeed give the impression of filling in the square.

In establishing the correspondence of a line segment to a square, Peanc showed
that set dimension cannot depend on the multiplicity of points in a set. He also showed
that the dimension of a set is not simply a matter of the number of coordinates required
to identify each point, since each point (x,y) in the square can be specified by a single

value 0<t<1 [8R. 144).

* Guuscppe Peano (1858-1932) is also known for his work on the fundamental axioms of arithmetic,
a major goal in mathcmatics in the late nineteenth century.

Actually. the term "curve” is inappropriate, since equivalence between the Peano curve and a
squarc mcans that the curve is in fact two dimensional. However, we shall continue to use the
term, since s usc is standard in the literature.



a) b)

c) d)

9.9.9,9.9.9.9.9.0.90.9.9.¢

Figure 2.2  Peano curves for levels 1,2,3 and 4

Part a) shows the first level Peano curve, where the diagonal line has been replaced by
nine line segments at one-third scale. Parts b)-d) shows how higher level curves fill in
the square. The limiting Peano curve is in fact two-dimensional.
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The von Koch snowflake

In 1906 Helge von Koch (1870-1924) defined a set with the interesting ability to
enclose a finite area with a continuous curve of infinite length. Like Peano’s space-filling
curve, von Koch’s "snowflake" curve challenged the geometrical intuition of the time [84,

88).

The snowflake curve can be constructed by the following recursive process. Let
S, be the curve formed by the perimeter of an equilateral triangle. Define the
approximant S,,, as the curve that results from replacing each line segment in S, with four
non-overlapping line segments of one third the size, as shown in Figure 2.3. The

snowflake curve S is defined as the limit of this sequence of approximants:
S =1lim S,
Jbe

This limiting curve is depicted in Figure 2.4.



A
0 e

Figure 2.3  von Koch snowflake curves for levels 0,1,2 and 3

Construction of the snowflake begins with a triangle, as shown in a). Each side of the
triangle is replaced by four line segments at one-third scale, as shown in b). The process
continues for smaller and smaller line segments as shown in c) and d).




Figure 2.4

The limiting von Koch snowflake curve



Next, we measure the length of the snowflake curve, and beginning with the

following.

(2.3.9). LEMMA. Let E; be the length of the edges of the equilateral triangle in S,. Then
the approximant S, consists of 3-4' line segments each of length 3'E,. In addition S, has
a total length of 3(4/3)E,.

PROOF.

By induction. As a basis, we observe that S, consists of 3(4°)=3 line segments of length
3%E=E,. Assume that S, consists of 3(4*) line segments of length 3*E, The
approximant S,,, is formed by replacing each of these line segments by four line
segments that are one third the size. Hence S,,, consists of 3(4*)4=3(4""") line segments
of length (3*/3)E=3""E,, completing the induction. Thus S, has a length of

3(4/3)E,. [ ]

(2.3.10) PROPOSITION.! The snowflake curve S has infinite length.

PROOF.

This follows directly from the fact that the length of S, is 3(4/3)E,, where E, is the size
of the edges in S,. Since this value grows without bound as i goes to infinity, the length

of the limiting curve § is infinite. |

Next, we consider the area enclosed by the snowflake curve.
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(2.3.11). LEMMA. Let A, be the area enclosed by S,. Then each of the small tniangles
‘added’ to S, in the construction of S,,, encloses an additional area of (1/9)"'A,.
PROOF.
Let E, be the size of the edges in S,, as before. By the construction of S, the edge size
decreases by a factor of three at each stage; hence E ;=E/3, and E=(1/3)'E,. Now S,
is constructed from S, by 'adding’ small triangles of edge size E,,,. Thus
14 fe1 2
[ =[S = 3 n (3

completing the proof. .

(2.3.12). LEMMA. Let A, be the area enclosed by S, for i20. Then A,,, exceeds A, by

an amount equal to
1 Ao(.‘.)‘
3 9

PROOF.
In the construction of S,,,, a small triangle of area (19)"'A, is added to each edge in S,

Since there are 3(4') edges in S,, the total area added is given by

1\ 1,(4\
A, -A, = 3(4¢ ._) A, = _Ao(—)
1024 = 3 )(9 379

which completes the proof. [
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(2.3.13) PROPOSITION." Lei A, be the area enclosed by the equilateral triangle S,. Then
the snowflake curve S encloses an area of (8/5)A,.

PROOF.

Let A, be the area enclosed by the approximant S, and let A be the area cnclosed by the
snowflake curve S. Then A can be expressed as the sum of the differences between the

A.

A= A4(A-A)+(A-A)*+(A, . -A)+.

The difference in values between A ,, and A, is equal to (1/3)(4/9)'A,. by Lemma 2.1.12.

Thus, the total area A is given by

1,,,,1,,4 1, 4
S A () (g <) ()

%)A\, {1+(_;) +...+(.‘;) f+...}

)A +..+( A +...

™
n
*
‘+

Except for the first term, this is a geometric progression of common ratio 4/9. Thus

a=a-+(1a 1 1o (3
= A+
‘ ('3) ) 1- ()
= 1V, (9
A= as(3lalg)
A= .ng
and the proof is complete. ]

The fact that the snowflake curve bounds a finite area with a curve of infinite

length represented a divergence from traditional geometric intuition. Next, we discuss an
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example of a curve that has infinite length but bounds a region of zero area.

The Sierpinski triangle

By the early part of this century many fractal sets had been invented, with each
representing a counterexample to some accepted law of geometry. The Sierpinski
triangle, invented by the Polish mathematician Waclaw Sierpinski (b 1882), is a well-
known example of a fractal set. Its construction is similar to that of the triadic Cantor

set, except that the Sierpinski triangle begins as a two dimensional object.

Let T, be a filled equilateral triangle with edge size E, and area A, with the
sequence of approximants T, defined as follows. Construct T, by extracting the middle
half-scale mangle formed by joining the midpoints of the three sides. T, is thus
composed of three half-scale triangles in a pyramid shape, with the centre triangular area
empty. In general, T,,, is constructed by removing the inverted centre triangles of each
of the triangles contained in T, where the removals are done in such a way that the
boundary of the triangle is left behind. The Sierpinski triangle T is the limiting set of this

process, and is depicted in Figure 2.5.




Figure 2.5  The Sierpinski triangle

The triangle is constructed by a recursive process that repeatedly removes the centre of
each triangle at the previous level.
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(2.3.14). LEMMA. Let A, be the area of the initial triangle T,. Then T, is composed of
3' filled triangles, each having an area of (1/4)'A,, with the total area of T; equal to
(3/4YA,.

PROOF.

By induction. We use T, as a basis, since it contains 3° triangles of size (1/4)°A,.
Assume this property to hold for T,. To construct T,,, each of the 3* triangles in T, are
broken into four sub-triangles at half-scale, with one being removed. Thus the number
of triangles contained in T,,, is equal to 3(3“)=3**', and each has arca
(1/4)(1/4)*A,=(1/4)*'A,, completing the induction. Thus, T, has a total area of

A=(3/4)A,. n

(2.3.15) PROPOSITION." The Sierpinski triangle has area zero.
PROOF.
Let A, be the area of T,, where A=(3/4)'A,. Observing that A, =0 as i—<o is enough to

prove the result. [

Define the perimeter of the Sierpinski triangle as the curve formed by the

boundaries of the smaller triangles removed during the construction process.

(2.3.16) PROPOSITION.! The Sierpinski triangle has an infinite perimeter.

PROOF.
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Let P, be the perimeter of the approximant T, for i20. Then P, is equal to the number of

edges in T, times the edge size of 2"

1
P, = 3(3) (2°)E, = 330(.;)

where E, is the edge size of the original triangle. Taking the limit as i—eo implies that

the Sierpinski triangle has an infinite perimeter. [ |

This result shows that, while the Koch snowflake had an infinite perimeter enclosing a

finite area, the Sierpinski triangle has an infinite perimeter enclosing zero area.

The limitations on measuring set sizes

These examples have shown that the traditional notions of set size (namely
cardinality, length, area, or volume) are unsatisfactory when applied to fractal sets. For
example, saying that the triadic Cantor set contains an uncountably infinite number of
points but has an overall length of zero seems to be an inadequate description of the set.

For fractal sets, then, a different measure of their character is required.

In the following sections we discuss the notion of set dimension, a concept which
proves to be more useful in describing fractal sets. As will be seen, there are many

definitions of set dimension; we begin with the earliest, due to Euclid.
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2.4 Euclidean dimension

Euclid (circa 300 B.C.) set forth the foundations of what we now know as
Euclidean geometry in his treatise the Elements [87].5 Book I begins with the following

definitions and axioms of planar geometry.

1. A point is that which has no pan.

A line is breadthless length.

The extremities of a line are points.

A straight line is a line which lies evenly with the points on itself.

A surface is that which has length and breadth only.

A A S

The extremities of a surface are lines.

Kline [87] remarks that Euclid likely presented his ideas in a way that would appeal to
the reader’s physical intuition, though at the expense of rigor. Certainly the above
definitions agree with our intuitive notions of standard planar objects. The following

definitions of spatial objects appear in Book XI.

1. A solid is that which has length, breadth, and depth.

2. An extremity of a solid is a surface.

s The Elements contains thineen books in which Euclid summarized the mathematical knowledge
of the time, ranging from the geometry of planar objects, the theory of numbers, the study of
proportions and incommensurables (rational and irrational numbers) and spatial geometry. It
include many famous theorems, including the Pythagorean theorem and Euclid’s algorithm for
finding the greatest common divisor of two numbers.
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The st idard figures of Euclidean gcometry can be classified according to their
Euclidean dimension, which denotes whether the object is a point, curve, surface, or solid.
In current usage, the Euclidean dimension of a set is determined by the number of co-
ordinates required to specify the points in the set; in other words, Euclidean dimension
is just the "n" in R". For example, we see that the triadic Cantor set has Euclidean
dimension 1 since it "lives" in the real line R, and the Peano curve, Koch snowflake, and

Sierpinski triangle each have Euclidean dimension 2 since they each "live" in the planc

Rz

Unfortunately, Euclidean dimension has limited utility, due to its dependence on
a particular coordinate system. In particular, the Euclidean dimension of a set can change
with its orientation in R". For example, let L be the unit line segment L={0,1]_R";

clearly, dim;L=1. Let M be the rotation of L through 45 degrees such that the endpoints
of M lic at (0,0) and (1/vZ,1/v2). Now since MCR’? we have dimM=2; intuitively,

however, M should have dimension one because it is only a line segment.

In general, Euclidean dimension is not preserved under homeomorphisms and is

therefore not a topological property [88]. This limitation leads to a more general

definition of dimension, described in the next section.
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2.5 Topological dimension

Euclidean dimension suffers from a dependence on the co-ordinate system in
which a set is represented. In this section we discuss the notion of topological dimension,
which successfully avoids this problem. We illustrate the use of this definition by

applying it to some of the fractal sets introduced earlier.

In 1912 Henri Poincaré® proposed an inductive definition of set dimension,
wherein a continuum (a closed, connected set) is said to have dimension N if it can be
separated into two parts whose boundaries are continua of dimension N-1 [88, 100, 122].
Poincaré’s definition was put on a firm mathematical basis by Menger and Urysohn in
1926, and is now known as topological dimension. There are now many definitions of
topological dimension, although it is typically known by the name small inductive

dimension. We shall use [39] as the main source for material in this section.

Intuitively, the definition begins with zero dimensional sets, containing only
isolated points. One dimensional sets are defined as sets whose boundaries are zero
dimensional. For example, the unit line segment [0,1] is one dimensional because its
boundary set (0,1} has dimension 0. Similarly, the unit square is two dimensional since

its boundary consists of four line segments which have dimension 1, and a cube is three

¢ Henri Poincaré (1854-1912), considered the greatest mathematician of his age, has ofien been
catled “the last universalist”, as he roamed freely through all major areas of mathematics [88, 145],
Poincaré gives an interesting philosophical discussion of dimension in his essay "Why spacc has
three dimensions” [122].
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dimensional since its boundary consists of six squares which have dimension 2. In
general, a set can be thought of as being N-dimensional if its boundary has dimension N-
1. We lead up to the formal definition of topological dimension by giving a few

preliminary definitions on metric spaces.

(2.5.1) DEFINITION. [Edgar, 1990]. A clopen subset of a metric space is a subset that

is both closed and open.

Let A be a clopen subset of a metric space S. By definition, A contains all of its
accumulation points (since it is closed), and has the property that all points in A are at
the centre of an open ball contained entirely within A (since it is open). Another way to

think of a clopen set is as a set with no boundary. A set of this type appears in Example

2.5.4 below.

(2.5.2) DEFINITION. [Edgar, 1990). A family B of open subsets of a metric space S is
called a base for the open sets of S if and only if, for every open set AcS, and every

xe< A, there exists a Ue B such that xe UCA.

(2.5.3) DEFINITION. [Edgar, 1990). A metric space S is said to have small inductive
dimension zero, written dim,S=0, if there exists a base B for the open sets in S such that

B consists only of clopen sets.






