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Abstract 

A breadth of research has demonstrated that many cognitive phenomena can be explained by a 

dual-processing account. However, little research has attempted to apply a dual-task paradigm to 

function learning. The present thesis aims to fill this gap in the literature by exploring the 

relationship between working memory and function learning behaviour. Eighty Carleton 

University students were randomly assigned to learn either a linear or bilinear function. 

Moreover, participants were randomly assigned to complete training and transfer under either 

single- or dual-task conditions. It was hypothesized that the secondary task would hinder 

performance resulting in a dependency on exemplar-based learning. Using a novel classification 

approach, the results showed that the secondary task reduced the stability of learning approach. 

However, the results remain inconclusive due to low power. Therefore, additional research is 

required to determine whether dual-task paradigms can be used to distinguish between rule- and 

exemplar-based processing in function learning. 
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How Working Memory Moderates Function Learning Behaviour: A Dual-Task Paradigm 

The ability to learn conceptual relationships is an important facet of human cognition. 

Primarily, cognitive psychologists have focused on the categorization aspect of concept learning 

(See Kruschke, 1992; Nosofsky & Kruske, 1992), which underlies humansô interpretation of the 

world. For instance, it allows botanists to classify plants as poisonous versus harmless, and 

students to perceive professors as engaging versus monotonous (Goldstone, Kersten, & Paulo, 

2012). Research that examines how individuals learn conceptual relationships involving 

continuous stimuli has received somewhat less attention, however. This phenomenon is 

illustrated by runnersô ability to predict the distance that they have travelled as a function of 

time, or bar patronsô attempts to estimate blood alcohol levels as a function of the number of 

alcoholic drinks consumed (Kalish, Lewandowsky, & Kruschke, 2004). Such relationships are 

typically described by a mathematical function and researchers assess them using a function 

learning tasks (Brown & Lacroix, 2018; Brown & Lacroix, 2017; Busemeyer, Byun, Delosh & 

McDaniel, 1997; Delosh, Busemeyer, & McDaniel, 1997; Kalish et al., 2004; Kwantes & Neal, 

2006; Kwantes, Neal, & Kalish, 2012).  

There is a growing body of research examining how individuals learn functional 

relationships. Traditionally, research has sought to describe the mechanisms that underlie 

function learning. In line with the categorization literature (Ashby, Alfonso-Reese, Turken, & 

Waldron, 1998; Maddox, Ashby, & Bohil, 2003; Waldron & Ashby, 2001), it has been assumed 

that learning functional relationships involves either a rule-based or an exemplar-based approach 

(McDaniel et al., 2014). The former requires individuals to develop a rule by becoming sensitive 

to the underlying regularities in stimuli-response magnitudes. During the transfer phase, the 

developed rule is used to extrapolate when presented with novel stimuli. In contrast, the 
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exemplar-based approach postulates that the memorization of the stimulus-response pairs drives 

function learning. When novel stimuli are encountered, they are compared to existing exemplars 

and the most similar one determines the response (McDaniel et al., 2014). Intuitively, rule-based 

learning would seem more versatile because responses from exemplar-based learning are limited 

only to previously encountered values. Contemporary research, however, has shown that a 

hybrid approach seems to best explain function learning behaviour. Specifically, Delosh et al. 

(1997) created and validated the extrapolation associative model (EXAM) which posits that 

function learning involves both exemplar- and rule-based mechanisms. Extending this research, 

McDaniel et al. (2014) demonstrated that individuals vary in the degree to which they employ an 

exemplar-based or a rule-based approach. Furthermore, the preference for one approach over the 

other is moderated by working memory capacity. Those who display a larger working memory 

capacity tend to favour a rule-based approach whereas those with lower working memory 

capacity tend to favour an exemplar-based approach (McDaniel et al., 2014).  

This dichotomy between rule- and exemplar-based learning bears many similarities to 

sequence learning (Curran & Keele, 1993; Keele, Ivry, Mayr, Hazeltine, & Heuer, 2003) and 

categorization research (Ashby et al., 1998; Maddox et al., 2003; Waldron & Ashby, 2001). 

Specifically, theories across both these learning domains have posited the existence of an explicit 

rule-based and implicit exemplar-based learning mechanisms. Nonetheless, very little research 

has been conducted using dual-task paradigms to better understand how these mechanisms 

contribute to function learning. In fact, only one set of experiments has attempted to examine 

function learning in this context and found ambiguous results (Brown & Lacroix, 2018). 

Thus, the goal of the present thesis it to fill this gap in the literature by extending research 

that explores the cognitive mechanisms involved in function learning using a dual-task paradigm 
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(Brown & Lacroix, 2018). First, a theoretical background will be presented outlining the 

prevalent models that best describe function learning as well as typical function learning 

behaviour. Then, parallel research in sequence and category learning will be used to reinforce the 

validity of using dual-task paradigm in this line of research. To dissociate between the rule-based 

and exemplar-based memory systems in function learning, I adapted Curran and Keeleôs (1993) 

methodology. Specifically, levels of distraction during the training and transfer phases of a 

function learning task were manipulated through the presence or absence of a concurrent recall 

task (Brown & Lacroix, 2018). I then present the hypotheses of the proposed study followed by a 

detailed description of the employed methodological approach. Finally, results will be reported 

and interpreted within the context of the outlined theoretical framework. 

Theories of Function Learning Behaviour  

Individualsô ability to learn the relationship between two continuous X-Y variables across 

a set of training items is typically studied using the function learning paradigm (Delosh, 

Busemeyer, & McDaniel, 1997). First, participants are given a cover story instructing them to 

learn the relationship between two variables (e.g., a given quantity of fertilizer and plant growth). 

Then, for each trial, an X-value is presented (e.g., fertilizer) and individuals must estimate the 

corresponding Y-value (e.g., plant growth). Participants must guess at first, but feedback is given 

after each trial so that they can eventually infer the correct answer. Researchers have used a 

variety of functions that include linear, quadratic, or sinusoidal patterns (Brown & Lacroix, 

2018; Delosh et al., 1997; McDaniel et al., 2014). 

Once training is completed, participants proceed to the transfer phase. Their knowledge 

of the function is evaluated with a new set of X-values. Some lie within the training region and 

are called interpolation items while others go beyond the training region and are called 
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extrapolation items (see Figure 1). To assess learning, researchers compare how closely the 

estimated Y-values match the defined function using absolute deviation (Brown & Lacroix, 

2018; Delosh et al., 1997; McDaniel et al., 2014). Therefore, the relationship between accuracy 

during training and performance during transfer allows researchers to make inferences about how 

individuals learn functional relationships. 

 

Figure 1. A sample V shaped function used during the transfer phase of a function learning task 

partitioned by region. 

Function learning research has revealed a variety of robust phenomena. Most notably, 

individuals appear to learn positive linear functions more easily than any other function 
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(Brehmer 1974; Carroll 1963; Delosh et al., 1994). Initial research suggested that this 

predisposition resulted from individuals storing cue-criterion pairs in memory and fitting them to 

the most appropriate function. As simple functions will be learned more effectively than complex 

ones, it is unsurprising that individuals consistently attempt to fit a positive linear function to 

cue-criterion pairs (Carroll, 1963). However, Brehmer (1974) argued that this does not take into 

account the fact individuals learn positive linear functions better than negative linear functions. 

Thus, he proposed a two-stage model called the adaptive regression model wherein participants 

first discover the rule that defines the cue-criterion pairs and then subsequently learn to apply the 

rule to produce accurate responses. Brehmer (1974) assumed individuals are limited in the rules 

that they apply and that each one differs in strength. As such, he proposed that the order in which 

they apply each rule occurs hierarchically. To test this model, he conducted a function learning 

experiment in which participants were tasked with assigning numbers to twenty-line segments. 

Participants were instructed to use any rule they would like for labelling the presented lines. 

However, once chosen, participants could not change their rule. Following 20 classifications, 

participants were asked to draw the rule they had chosen. Participants completed 10 blocks of 

this task while being instructed to utilize a new rule at the onset of each block. The results 

demonstrated a predisposition to apply a positive linear rule first, followed by a negative linear 

rule, then an equal probability of quadratic and inverse-quadratic rule (Brehmer, 1974). 

Therefore, when learning functional relationships individuals are biased to think of linear 

functions first.  

Despite the ease with which individuals can learn positive linear functions, they 

nonetheless demonstrate a consistent and systematic error in extrapolating positive linear 

functions (Brown & Lacroix, 2017; Delosh et al., 1997; Kwantes & Neal, 2006). Specifically, 
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individuals underestimate Y-values during transfer in the low extrapolation region. Kwantes and 

Neal (2006) outlined two competing hypotheses to explain this phenomenon. First, individuals 

may be anchoring their responses to zero in the lower extrapolation region. Thus, as the X-values 

decrease, individualsô responses are reduced, reflecting the assumption that the functional 

relationship passes through the origin of the Cartesian plane. The second hypothesis posits that 

individuals assume the Y-value is similar to the presented X-value when they are unsure of 

response values (Kwantes & Neal, 2006). To differentiate which of the two hypotheses best 

explains why individuals underestimate Y-values in the low extrapolation region, Brown and 

Lacroix (2017) conducted a function learning task wherein the Y-intercept was manipulated. 

Specifically, participants learned a functional relationship with a moderate positive intercept, a 

large positive intercept, a control in which the intercept was zero, and a negative intercept. If the 

X-Y similarity theory holds, then consistent underestimation in the lower extrapolation should 

occur across all conditions except the control. In contrast, if individuals anchor their response 

values to zero, then participants in the positive intercept conditions should exhibit 

underestimation in the low extrapolation region, participants in the control condition should 

demonstrate no underestimation, and participants in the negative intercept condition should 

overestimate their response variables in the low extrapolation region. Brown and Lacroixôs 

(2017) results were consistent with the anchoring hypothesis. Participants appeared to 

overestimate response values in the negative intercept condition and underestimate them in the 

two positive intercept conditions. Therefore, when learning a positive linear function, individuals 

are predisposed to anchor their responses to zero in the low extrapolation region. In turn, 

responses in the low extrapolation region will consistently be underestimated for linear functions 

with a positive intercept.  
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Along with general function learning behaviour, researchers have also begun to explore 

the specific mechanisms that allow for learning functional relationships. Because individuals can 

often extrapolate accurately, for example, researchers have argued that function learning must 

involve a rule-based approach (Carroll, 1963). However, Koh and Meyer (1991) proposed that 

models involving exemplar-based mechanisms with more sophisticated parameters for 

combining and storing stimuli can also account for accurate extrapolation. This fact made it more 

difficult to conclude which model is correct. Therefore, Koh and Meyer (1991) conducted a 

function learning task to evaluate three rule-based and four exemplar-based models. To compare 

them, participants were assigned to complete a function learning task defined by either a linear, 

logarithmic, or power function. Using extrapolation performance, Koh and Meyer assessed the 

predictions of the seven function learning models. Across three experiments, the most accurate 

predictor of extrapolation performance was a rule-based model according to which individuals 

develop an algorithmic rule during training that they use to accurately extrapolate. Thus, in line 

with previous research (Brehmer, 1974), function learning was postulated to rely on the use of a 

rule-based mechanism. However, prevailing cognitive theories have demonstrated that humans 

can engage in more than one kind of learning (Smith & Church, 2018). Therefore, rather than 

rely on an exclusive rule- or exemplar-based perspective, it is likely that function learning may 

be more plausibly described by a hybrid rule- and exemplar-based approach.  

The first proponents of a hybrid approach to function learning can be traced back to 

Delosh et al. (1997). They claimed that prior function learning research (see Brehmer, 1974) had 

focused primarily on the learning rate of different function types. In fact, very few had up to that 

point attempted to discern function learning behaviour by testing extrapolation behaviour. 

Hence, due to the limited research, findings that ruled out the possibility of exemplar-based 
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approach had to be viewed as preliminary. Therefore, Delosh et al. (1997) sought to evaluate the 

validity of four learning models. The first two models were strictly rule-based models which 

assume individuals can extrapolate accurately (Carroll, 1963; Brehmer, 1974; Koh & Meyer. 

1991). The third model, the associative learning model (ALM), proposed that individuals rely on 

an exemplar-based approach to learn functional relationships (Busemeyer et al., 1997). As such, 

extrapolation beyond the interpolation region is impossible. The fourth model, extrapolation-

association model (EXAM) is a hybrid model that incorporates the associative learning 

assumption of the ALM with a rule-based mechanism to allow for accurate extrapolation (Delosh 

et al., 1997). To assess these models, Delosh et al. (1997) conducted a function learning task 

using a quadratic, linear, and exponential functions to measure extrapolation performance. The 

results indicated that participants learned the linear function faster than the quadratic and 

exponential function. Furthermore, accuracy was consistently higher across all function 

conditions in the interpolation region compared to either extrapolation regions. Finally, the best 

predictor of extrapolation performance was EXAM. Therefore, Delosh et al. concluded that 

peopleôs function learning performance may reflect a combination of exemplar- and rule-based 

approaches.  

Nonetheless, while exploring individual differences in function learning performance, an 

interesting pattern emerged for a small subset of participants in the quadratic condition, as shown 

in Figure 2. Specifically, some participants did not extrapolate within the high extrapolation 

region, some extrapolated in accordance with a purely exemplar-based learning style as 

described by the ALM, and some extrapolated nearly perfectly as described by rule-based 

models. Therefore, there appears to be variability in extrapolation behaviour when learning 

functional relationships. 
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Figure 2. Individual differences in extrapolation performance revealed three distinct learning 

approaches: rule-based learners (top left), exemplar-based leaners (top right), and non-learners 

(bottom) (Delosh et al., 1997).  

Currently, only one study by McDaniel et al. (2014) has explored how individuals differ 

in the degree to which they rely on exemplar- or rule-based learning during function learning. 

Borrowing from research in concept learning, they proposed that individuals tend to rely on 

either exemplar- or rule-based learning unless a task strongly favours one approach. Moreover, 

they contended that this predisposition is stable within individuals. In their experiment, 

participants completed a function learning task, wherein they learned a bilinear, V-shaped 

function. Through the assessment of mean absolute error (MAE) during the final block of 

training, participants were categorized as learners or non-learners. Then, those classified as 
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learners were evaluated by comparing their MAE during transfer to the expected MAE produced 

by an exemplar learning model (McDaniel et al., 2014). Participants who performed significantly 

different from this MAE threshold set by the exemplar model were classified as rule learners. 

Otherwise, they were classified as exemplar learners. To corroborate this classification method, 

the MAE during transfer was correlated with the MAE during the last block of training. 

McDaniel et al. (2014) posited that rule-based learners would display a positive correlation 

between the last block of training and MAE whereas exemplar-based learners would not. For the 

latter group, they argued that knowledge of the cue-response pairings would not be related to 

extrapolation behaviour. The results confirmed their hypotheses. Thus, once again it appears that 

individuals have a tendency to utilize a particular approach when learning functional 

relationships. 

Although the preference for a particular learning approach appears stable, little research 

has been conducted to examine what moderates these tendencies. To assess the cognitive 

capacities associated with rule- and exemplar-based learning, participants were asked to return 

for a second experimental session. This session involved replicating the results of McDaniel et 

al.ôs initial study, completing the Ravenôs Advanced Progressive Matrices (RAMP) to assess 

fluid intelligence, and the Operation Span task (OSPAN) to measure working memory capacity. 

The goal was to determine if established measures of individual differences might predict 

participantsô tendency to use a rule- or exemplary-based learning approach. As expected, during 

the function learning component of the replication, participants tended to favour either a rule-

based or exemplar-based approach. Moreover, both fluid intelligence and working memory were 

significantly correlated with participantsô preferred learning approach. However, fluid 

intelligence accounted only for a small portion of the variance found in function learning 
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behaviour. In contrast, higher working memory appears to be more strongly associated with the 

predisposition to utilize a rule-based approach and not an exemplar-based approach. McDaniel et 

al. (2014) proposed that the larger working memory capacity facilitates the rule-based learning 

process. Specifically, these additional resources enable participants to extract patterns across 

trials, to partition complex functions into simple components, and to ignore initial biases. 

Therefore, when working memory capacity is insufficient to allow for such processes to operate, 

participants must rely on an exemplar-based approach to learn functional relationships. 

Thus, it has become more apparent that function learning involves a hybrid approach. In 

fact, the only viable alternative to EXAM presently under consideration is a different hybrid 

model, the population of linear experts (POLE) model (Kalish et al., 2004). POLE assumes that 

individuals learn functional relationships through partitioning complex training items into 

multiple simpler components. Then, a linear expert function is developed that matches the 

partitioned training stimuli and produces the correct associated response values (Kwantes et al., 

2012). When presented with novel stimuli, the closest matching stimulus in memory is activated, 

along with its respective expert, to produce an extrapolation response. Therefore, only one linear 

expert is required to accurately extrapolate linear functions. When a relationship is nonlinear, 

however, responses are generated from multiple experts with distinct slopes that maximize 

accuracy. The mixture-of-experts method prescribed by POLE incorporates a connectionist 

network known as ATRIUM (Erickson & Kruschke, 1998). ATRIUM proposes that 

categorization involves both a rule-based and exemplar-based mechanisms and comprises of a 

rule module, exemplar module, and a competitive gating mechanism that links the two (Erickson 

& Kruschke, 1998; Kruschke & Erickson, 1994). Consequently, it can be viewed as a hybrid 

model.  
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To validate POLE, a variant on the traditional function learning task was conducted 

wherein participants were trained to learn two separate line segments with different y-intercepts 

but similar slopes. Moreover, each segment was bound by a different region of the Cartesian 

plane: lower and upper regions. The transfer region composed of stimuli between both line 

segments that were not displayed during training. Thus, participants could extrapolate by 

connecting the two-line segments to form a quasi-sinusoidal function as predicted by the EXAM 

model or they could extrapolate in accordance with one of the line segments, which could be 

chosen randomly or due to a bias (Kalish et al., 2004). The results revealed that POLE described 

extrapolation behaviour better than EXAM. This suggests that individuals may not average 

stimuli-response pairs held in memory when presented with novel stimuli as proposed by 

EXAM. Rather, individuals may utilize a different rule-based approach in which they apply 

series of linear experts of varying slopes until one is found to maximize accuracy. Therefore, 

although there is dispute over how individuals generate responses, a hybrid rule- exemplar-based 

model appears to best describe function learning behaviour. 

Finally, McDaniel, Dimperio, Griego, and Busemeyer (2009) would later conduct a 

function learning task to determine whether the EXAM or POLE model best describe function 

learning behaviour. They pointed out that POLE model has six free parameters whereas EXAM 

only has two. This gives POLE a large advantage in fitting data and makes direct comparison 

between the models difficult.  Moreover, to avoid overfitting, researchers typically favour more 

parsimonious models (Neter, Kutner, & Wasserman, 1985). Therefore, McDaniel et al. argued 

that a priori predictions about the modelsô behaviour would be a stronger test of their adequacy. 

Thus, they conducted a function learning task in which they manipulated the density of transfer 

regions and item order. Then, they compared how well each model fit the training data and how 
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well they accurately predicted participants transfer performance. The results indicated that the 

POLE model fit the training performance across all participants. However, the EXAM was an 

overall better predictor of transfer performance. The success of EXAM over POLE in predicting 

transfer behaviour is attributed to how each model is affected by stimuli density during training. 

Specifically, POLE becomes disproportionally influenced by the dense training regions resulting 

in transfer predictions based solely on the linear experts developed during training. As such, 

POLE fails to accurately predict performance when it must account for sparsely trained stimuli in 

the transfer region. In contrast, EXAM generates transfer responses based on a linear rule 

associated with the most similar cue-criterion pair encountered during training. Therefore, 

EXAM is able to make predictions, uninfluenced by the dense training region, that better 

captures participants performance (McDaniel et al., 2009). Thus, it appears that, in terms of 

predicting function learning behaviour, EXAM is superior to POLE.  

Dual-Task Paradigms  

 Function learning behaviour is best explained by a hybrid, rule-based and exemplar-

based, approach (Delosh et al., 1997; Kalish et al., 2004; Kwantes et al., 2012; McDaniel et al., 

2009). Moreover, the preference for one approach over the other varies across individuals 

(McDaniel et al., 2004). Specifically, individuals who enjoy greater working memory capacity 

tend to utilize a rule-based approach. In contrast, lower working memory is associated with the 

preference for an exemplar-based approach. Rather than a single learning mechanism, however, 

the tendency to prefer one learning approach over another reflects the existence of two distinct 

learning mechanisms. The application of a dual-processing framework would further support the 

stable tendency for individuals to prefer either a rule- or exemplar-based strategy to learn 

functional relationships (McDaniel et al., 2014). In fact, a breadth of research has demonstrated 
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that many cognitive phenomena can be explained by a dual-processing approach (Ashby, 

Alfonso-Reese, & Waldron, 1998; Curran & Keele, 1993; Knowlton & Squire, 1996; Maddox, 

Ashby, & Bohil, 2003; Smith & Church, 2017; Waldron & Ashby, 2001).  

For instance, Curran and Keele (1993) proposed that sequence learning involves multiple 

learning systems. Specifically, they described an attentional system that relies on declarative 

memory and a nonattentional system that relies on procedural memory. To test their theory, they 

conducted a series of serial reaction time (SRT) tasks. Across a number of blocked training trials, 

participants were shown stimuli in one of four horizontal positions in a repeating pattern (Curran 

& Keele, 1993). For each presentation, participants were tasked with learning the keypresses that 

corresponded to the stimuliôs position. Reaction times were used to measure how well 

participants learn the underlying sequential relationship between them. Participant learning was 

tested in two ways. The first occurred when participants completed an unexpected randomly 

sequenced block during training. The randomized block is typically followed by a block that 

restores the original structured sequence (Soetens, Melis, & Notebaert, 2004). This manipulation 

is key in determining if a pattern was learned. Specifically, researchers can infer learning if 

participants respond slower when presented with a randomly sequenced block compared to the 

preceding and subsequent sequenced blocks. The second sequential effect occurs after 

participants have been adequately trained to learn the sequential pattern. Following training, they 

complete four more blocks of trials, two randomly sequenced blocks, one block that follows the 

original sequence structure, then a final randomly sequenced block (Curran & Keele, 1993). The 

sequential knowledge participants gained during training is reflected in the decrease in response 

time when presented with a sequenced block compared to the flanking randomized blocks. 

Therefore, by manipulating the degree to which the attentional system can effectively function, 
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these sequential effects can be used to differentiate between the attentional and nonattentional 

learning systems. 

To differentiate between the two learning systems, Curran and Keele (1993) asked their 

participants to perform an SRT task concurrently with a tone-counting task. They posited that the 

addition of a concurrent task would tax the attentional resource used to learn the stimulus 

sequences. As such, the attentional learning system would be suppressed and any learning that 

occurred would result from the nonattentional learning system. Thus, participants were randomly 

assigned to a single- or dual-task condition. In the single-task condition, participants were trained 

to learn the sequence without the secondary task, then subsequently tested with the concurrent 

secondary task. In contrast, participants in the dual-task condition completed training and testing 

with the secondary task present. During training, the participants in the single-task condition 

performed significantly better than the dual-task condition. When tested under dual-task 

conditions, both groups demonstrated a similar sequential learning effect. Namely, participants in 

both the single- and dual-task conditions expressed the same sequential knowledge. Therefore, 

when left to operate freely, the attentional mechanism can effectively learn a sequence. However, 

when attention is suppressed through the addition of a dual-task, residual learning still occurs 

using the same mechanism utilized when participants were trained under dual-task conditions, 

the nonattentional system. Curran and Keele (1993) concluded that this demonstrates the two 

systems are distinct and operate in parallel.  

Extending this research, Curran and Keele (1993) conducted a second experiment in 

which participants were trained to learn a sequence in an SRT task under dual-task conditions 

then tested without the distracting secondary task. They predicted that the sequential effects 

should be similar under single- and dual-task conditions. This would be consistent with their 
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posited dual-systems model as attentional learning cannot occur when participants are trained 

under dual-task conditions. When the concurrent task is removed during testing, any learning 

displayed should be based exclusively on the nonattentional system, because it has not been 

given adequate practice for learning to occur. The results confirmed their hypothesis. During 

training, learning was demonstrated by the increase in reaction time when presented with a 

randomly sequenced block of trials. Moreover, when tested under single-task conditions, 

participants demonstrated a sequential learning effect, thus reflecting learning stemming from the 

nonattentional system (Curran & Keele, 1993). Therefore, these results provided further support 

that sequence learning involves multiple distinct learning systems.  

More recently, Keele et al. (2003) presented a model supported by neuroimaging and 

behavioural research which put forward that the two sequence learning systems are distinct and 

operate in parallel. Keele et al. refer to these systems as the multidimensional and 

unidimensional systems. The multidimensional system uses attentional resources to learn the 

relation between events across different modalities (e.g., visual and auditory stimulus 

sequences). In contrast, the unidimensional system, which does not require attentional resources, 

allows for learning along a single dimension such as auditory, visual, or tactile sensation.   

The behavioural evidence for these two systems is based on the aforementioned series of 

sequence learning studies conducted by Curran and Keele (1993). The neuroimaging evidence 

stems from research examining the neural correlates of sequence learning under single- and dual-

task conditions (See Grafton, Hazeltine, & Ivry, 1995). Specifically, under single-task 

conditions, sequence learning was associated with activation in brain regions that mediate 

interdimensional association and explicit learning such as the inferior parietal-occipital lobe, 

inferior prefrontal cortex, and lateral premotor cortex.  In contrast, sequence learning under dual-
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task conditions resulted in activation in entirely different brain regions responsible for implicit 

learning such as the left occipital cortex, left hemispheric motor cortex, and the junction between 

the parietal and occipital lobe. Therefore, these findings demonstrate conclusively that sequence 

learning does involve two distinct learning systems.  

Of methodological importance, the sequence learning literature provides evidence that 

the application of a concurrent secondary task is effective in dissociating between multiple 

learning systems. By interfering with one systemôs ability to operate effectively, the behaviour of 

the second system can be inferred. In fact, research within the domain of category learning has 

favoured the use of a concurrent secondary task to test for the existence of multiple memory 

systems (Waldron & Ashby, 2001; Xing & Sun, 2017). In a typical categorization task, 

participants learn to classify stimuli as one of two distinct categories. Variations of 

categorization tasks include learning to categorize Gabor patches (Maddox et al., 2003; Waldron 

& Ashby, 2001; Xing & Sun, 2017), fictional animals (McDaniel et al., 2014), or making 

dichotomic predictions about the weather (Gluck, Shohamy, & Myers, 2002). Regardless of their 

variant, the application of a secondary task has aided researchers in understanding the 

mechanisms that allow for categorization to occur.  

The most compelling evidence for multiple learning systems stems from a model 

proposed by Ashby et al. (1998). In their seminal paper, they proposed the competition between 

verbal and implicit systems (COVIS) model to explain categorization behaviour. The COVIS 

model describes two mechanisms that compete to produce the strongest response. The first 

system, the verbal system, relies on explicit declarative memory and is under conscious control 

(Ashby et al., 1998). The verbal system utilizes rule-based learning to learn easily verbalizable 

category rules, typically in the form of unidimensional rules (e.g., Respond A if the value on 
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dimension x > c, for some constant c). In contrast, the implicit system is associated with 

procedural memory and operates outside of conscious control. Unlike the verbal system, the 

implicit system uses an exemplar-based approach to learn category structures in which the 

underlying category rule is impossible to verbalize. Throughout learning, the more successful of 

the two systems eventually dominates resulting in either verbal or implicit response behaviours. 

As COVIS presents a compelling framework for category learning, researchers sought to 

validate it from a behavioural perspective. Accordingly, Waldron and Ashby (2001) conducted a 

categorization task wherein participants completed binary classification under single- or dual-

task condition. The dual-task condition involved completing a numeric Stroop task concurrently 

with the classification task. Moreover, participants were randomly assigned to classify stimuli 

based on an explicit, unidimensional or an implicit, multidimensional category structure. 

Waldron and Ashby hypothesised that the concurrent Stroop task would interfere with working 

memory and attentional capacities and, as a result, impact participantsô ability to learn the 

explicit rule. Because the implicit system outlined by COVIS does not require attentional 

processes to function, the concurrent task would have no impact on learning the implicit rule. As 

expected, the results revealed that participants in the dual-task condition required significantly 

more training to learn the category structures than participants in the single-task conditions. 

Moreover, the concurrent task impacted the explicit rule structure more than the implicit rule 

structure. Thus, this lends support for the existence of multiple learning systems. If 

categorization involved a single mechanism, then the addition of a secondary task would have 

impacted performance irrespective of category structure. However, because performance in the 

different category structures were significantly different, clearly, the two structures rely on 

distinct processes to function.  
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To further dissociate the verbal and implicit systems as well as lend further support to the 

COVIS model, Maddox et al. (2003) conducted a categorization task in which individuals had to 

classify sine wave gratings (i.e., Gabor patches). Participants were randomly assigned to 

complete either a rule-based or an information-integration categorization task. The former task 

involved learning to classify Gabor patches based on a single, easily verbalized rule associated 

with the explicit system. In contrast, the latter task involved classifying Gabor patches based on a 

complex rule that could not be easily verbalized and was associated with the implicit system. 

Furthermore, within each categorization task condition, participants received either immediate or 

delayed feedback upon making a response. Maddox et al. (2003) argued that in order to perform 

accurately in the information integration condition, participants had to receive immediate 

feedback following a response, as is true of all types of associative learning. However, because 

the explicit system can utilize working memory to store stimuli-response parings for an extended 

period of time, they posited that delayed feedback would have little impact on performance in the 

rule-based condition. Therefore, it was hypothesized that participants who received feedback 

immediately in the information integration condition would perform more accurately than 

participants who received delayed feedback. Moreover, participants in the rule-based condition 

would perform similarly regardless of when feedback was given. The results demonstrated that 

delayed feedback had minimal impact on rule-based categorization performance. In contrast, 

feedback delay greatly hindered information integration performance. Taken together, 

categorization appears to be yet another cognitive phenomenon that can be best explained 

through a dual-processing framework. 

As discussed previously, function learning behaviour also appears to rely on a hybrid, 

rule- and exemplar-based system approach (Delosh et al., 1997; McDaniel et al., 2014). 
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Moreover, the tendency for an individual to use a rule-based approach over an exemplar-based 

approach is moderated by their working memory capacity (McDaniel et al., 2014). Parallel 

research in category and sequence learning have demonstrated a similar association between 

working memory and rule-based learning and have outlined extensive dual-processing theories to 

explain this phenomenon (Ashby et al., 1998; Curran & Keele, 1993; Keele et al., 2003; Maddox 

et al., 2003; Waldron & Ashby, 2001). This congruency between tasks implies a dual-processing 

framework might adequately explain function learning behaviour.  

Presently, however, only one series of experiments has attempted to examine function 

learning in a dual-processing context. Specifically, across a series of experiments, Brown and 

Lacroix (2018) applied a concurrent task to a function learning task. In their first experiment, 

participants learned either a linear or a quadratic function with the absence or presence of a 

secondary task during training. The secondary task involved a memory scanning task wherein 

participants were shown a string of four letters and had to report whether a given letter was 

included in the presented string or not following each function learning trial. Brown and Lacroix 

(2018) hypothesised that the addition of the secondary task would tax working memory capacity, 

inhibiting the rule-based learning mechanism. Therefore, participants in the dual-task condition 

would exhibit an exemplar-based learning strategy. Moreover, due to the bias participants have 

for learning linear functions (Brehmer, 1974), participants would learn the linear function better 

than the quadratic function and as such, the prevalence of exemplar-based learning would be 

more apparent in the quadratic shape condition. Interestingly, a novel approach was applied to 

measure performance during training. Specifically, across all conditions, a response-criterion 

correlation was calculated to determine how well responses matched the correct criterion. Brown 

and Lacroix (2018) argued that the correlation, often referred to as the achievement index, would 
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reduce the impact of response variability across trials that resulted from the addition of the 

secondary task. Using this achievement index, the results revealed that during training, 

participants in the linear dual-task condition performed better than participants in the quadratic 

dual-task condition. During transfer, when the function was linear, the addition of a concurrent 

task during training did not reduce participantsô ability to learn the functional relationship. 

Moreover, with respect to the quadratic condition, there was no apparent difference in transfer 

performance when participants were trained under single- or dual-task conditions for the 

quadratic function. This null affect stemmed from the exceedingly low performance in the 

quadratic condition across both the single- and dual-task conditions. 

Although the results with respects to the linear condition were to be expected, the 

absence of an effect in the quadratic condition was not. Brown and Lacroix (2018) attributed 

their findings to the difficulty of learning the quadratic shape function. Specifically, regardless of 

task condition, participants failed to perform adequately for this function. As research has 

demonstrated individuals can learn quadratic shape relationships fairly well (Delosh et al., 1997; 

McDaniel et al., 2014), this presented a problem. Thus, Brown and Lacroix (2018) conducted a 

second experiment with a few key modifications. First, rather than a linear or quadratic function, 

all participants learned a bilinear, V-shaped function under single- or dual-task conditions. 

Moreover, the secondary task consisted of a recall task. Participants were presented with four 

letters prior to each training trial and asked to recall the letters in their correct order following 

each trial. This adjustment in the concurrent task increased its difficulty, therefore increasing the 

strength of the manipulation. Similar to their first experiment, Brown and Lacroix (2018) 

hypothesized that the addition of a concurrent task would result in a decrease in training 

performance compared to participants who learned the relationship without the recall task. The 
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difference in training performance would translate directly to transfer performance, that is, 

participants in the dual-task condition would perform worse than participants in the single-task 

condition. Finally, and of key importance, the concurrent task would inhibit working memory 

and as a result, interfere with the rule-based learning mechanism. Therefore, there would be a 

higher proportion of exemplar-based learners in the dual-task condition compared to the single-

task condition.  

Consistent with their first hypothesis, participants in the dual-task condition performed 

worse across the training blocks than those in the single-task condition. However, contrary to 

their second hypothesis, transfer performance across task conditions differed only in the 

interpolation region. Moreover, there was no difference in the proportion of rule-based and 

exemplar-based learning across task conditions. Brown and Lacroix (2018) concluded that the 

concurrent task did not impact participantsô ability to learn the shape of the function. Rather, it 

impaired their ability to learn training exemplars resulting in poorer interpolation performance. 

Finally, participants in both the single- and dual-task conditions demonstrated a distinct 

dichotomous relationship; they either learned the function shape or they did not. Taken together, 

these results suggest that a concurrent recall task adequately interferes with working memory 

capacity, as shown by the poorer training performance under dual-task conditions. However, 

during transfer, when the concurrent task is removed, the rule-based mechanism appears to be 

able to operate freely resulting in similar extrapolation performance regardless of training 

condition. Speculatively then, retaining the secondary task during transfer might be the key in 

teasing apart the two learning systems.  

The Present Thesis 

 The presented review has highlighted several key consistencies across learning 
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paradigms. Namely, learning a sequence, a category, or a function involves two mechanisms, a 

rule-based and exemplar-based system (Ashby et al., 1998; Curran & Keele, 1993; Delosh et al., 

1997; Kalish et al., 2004). The rule-based system, accessible by conscious thought, relies on 

attention and working memory to facilitate learning. In contrast, the exemplar-system operates 

without conscious thought and does not require attention and working memory to function. The 

preeminent theories in both category and sequential learning have demonstrated, both 

behaviourally (Curran & Keele, 1993; Knowlton et al., 1996; Waldron & Ashby, 2001) and 

neurologically (Ashby et al., 1998; Keele et al., 2003), that a dual-processing framework can 

explain the data. Currently, only one set of experiments has attempted to apply a dual-processing 

framework to function learning by differentiating between the two learning mechanisms (Brown 

& Lacroix, 2018). Although the secondary task impacted training performance in a way that was 

consistent with a dual-processing paradigm, transfer performance did not.  

 Therefore, the goal of the present thesis aimed to extend research involving the dual-

processing paradigm in relation to function learning. Rather than adding a secondary task only 

during training, as previous research in categorization and function learning have done (Brown & 

Lacroix, 2018; Waldron & Ashby, 2001), the following experiment extended this methodology 

by also including a secondary task during transfer. Participants were randomly assigned to 

complete a function learning task in which they learned either a linear or bilinear V-shaped 

function. Across function conditions, the working memory load was manipulated for both the 

training and transfer phases. Therefore, participants were randomly assigned to complete training 

and transfer under either single- or dual-task conditions. This yielded four distinct conditions for 

each of the function types. First, a control condition wherein participants were trained and tested 

without the secondary task (i.e., SS condition). Secondly, a condition in which participants were 
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trained and tested under dual-task conditions (i.e., DD condition). Third, a condition where 

participants were trained with the secondary task present then tested without the secondary task 

(i.e., DS condition). Finally, one in which participants were trained under single-task conditions 

then subsequently tested under dual-task conditions (i.e., SD condition).  

 The most crucial predictions targeted how performance differs when participants are 

trained and tested under different working memory loads. As suggested by Brown and Lacroix 

(2018), these differences were expected to remain consistent with both the linear and V-shaped 

conditions. In terms of the SD condition, when participants were trained without a secondary 

task, accuracy was hypothesized to be comparable to the SS group. However, when the 

secondary task was added during the testing phase, accuracy was hypothesized to decrease 

significantly. This prediction stems from Curran and Keele (1993) who argued that the addition 

of a secondary task inhibits the explicit system, and thus, performance reflects a reliance on the 

remaining implicit system. Therefore, the decrease in performance was predicted to reflect 

participants dependency on exemplar-based learning. Along with accuracy scores, the trend was 

hypothesized to emerge in the proportion of rule-based and exemplar-based learners. That is, 

compared to the SS group, there would be no difference in characterization of each type of 

learner during training. During transfer, however, more participants were expected to be 

characterized as exemplar-based learners than in the SS. 

With respects to the DS condition, the predictions in the present thesis reflected past 

research. Specifically, the research by Brown and Lacroix (2018) found that the degree to which 

an individual learned a functional relationship was dichotomous, they either learned the 

relationship or not. To this effect, participants who were trained under dual-task conditions were 

expected to perform less accurately than the SS group. However, this difference would not be 
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reflected in the transfer phase when the secondary task was removed. Because working memory 

was able to operate effortlessly, I hypothesized no difference in transfer performance between 

the DS group and the SS group (Brown & Lacroix, 2018). Moreover, consistent with previous 

research, the degree to which a participant favoured one learning approach over the other is 

predicted to remain consistent from training to transfer (Brown & Lacroix, 2018, McDaniel et 

al., 2014).  

The addition of the SS and DD conditions allowed for an examination of function 

learning in relation to the availability of working memory resources. As such, within each 

condition, the tendency to utilize rule-based or exemplar-based learning was predicted to be 

stable (Brown & Lacroix, 2018, McDaniel et al., 2014). However, participants in the SS 

condition were hypothesized to perform better than any other condition. In contrast, participants 

in the DD condition were expected to perform the worst of all condition types. This significant 

decrease in performance was predicted to result from a predominance of exemplar-learners 

across both training and transfer. Finally, consistent with previous research, participants in the 

linear function condition were hypothesized to outperform participants in the V-shaped function 

condition (Delosh et al., 1997, McDaniel et al., 2014) regardless of level of distraction. 

Moreover, across all conditions, participants were expected to perform better in the interpolation 

region compared to either extrapolation regions (Brown & Lacroix, 2018; Delosh et al., 1997, 

McDaniel et al., 2014).    

Method 

Participants 

 Eighty undergraduate students enrolled in either a first- or second-year psychology 

course were recruited for the present experiment. Each participant was randomly assigned to one 



A Dual-Task Paradigm  

 
 

32 

 

of eight conditions as shown in Table 1. All students were recruited using the Carleton 

University SONA system. Moreover, they received a course credit of 1% for their participation 

as compensation.  

Table 1 

Total sample size broken down across function type and working memory condition.  

 Stimuli  

 Training stimuli consisted of seventeen evenly spaced integer values ranging from 60-

140. The bilinear relationship (V-shaped) was composed of two linear functions with an 

inflection point at X = 100. Following McDaniel et al. (2014), when X was less than or equal to 

100, the relationship was defined by the function: y = 229.2 ï 2.197x. When X was greater than 

100, the relationship was defined by the function: y = 2.197x ï 210. Finally, following the 

procedure of Brown and Lacroix (2018), the linear relationship was defined by the function: y = 

0.72x + 5.5. The training stimuli and their corresponding Y-value for both the linear and V-

shaped functions are shown in Table 2. All Y -values were rounded to the nearest integer. 

Transfer stimuli was generated following a similar procedure. The low and high extrapolation 

regions consisted of 16 values ranging from 2-57 and 143-198, respectively. The interpolation 

region consisted of sixteen unique integer values ranging from 62-138. All transfer stimuli and 

corresponding Y-values is shown in Table 3.  

 Linear Bilinear 

Dual-Dual 15 6 

Dual-Single 4 16 

Single-Dual 16 3 

Single-Single 3 17 
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The experiment was conducted using a desktop computer with a 14.8-inch monitor 

running the E-prime 2.0 Software (Schneider, Eschman, & Zuccolotto, 2002). Each function 

learning trial was displayed on a screen with a white background. The X-values were presented 

as the length of a red bar on a marked scale with 20 tick mark as shown in Figure 3. The scale 

ranged from 0 to 200. Therefore, each tick mark indicated a unit increase in X by 10. The stimuli 

were presented on the vertically centered top third of the display screen. Participantsô responses 

were displayed in a text box one-third from the bottom and left of the display screen. The text 

box was labeled Estimated Beros. 

Table 2 

Stimuli and corresponding Y-values used during the training phase. 

X-values Y-value X-values Y-values 

 Quadratic Linear   Quadratic Linear  

60 97 49 105 21 81 

65 86 52 110 32 85 

70 75 56 115 43 88 

75 64 60 120 54 92 

80 53 63 125 65 96 

85 43 67 130 76 99 

90 32 70 135 87 103 

95 21 74 140 98 106 

100 10 78    
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Table 3 

Stimuli and corresponding Y-values for items in the low extrapolation, interpolation, and high 

extrapolation regions during the transfer phase.    

X-values Low Extrapolation 

Y-values 

X-values Interpolation   

Y-values 

X-values High Extrapolation   

Y-values 

 Linear  Bilinear  Linear  Bilinear  Linear  Bilinear 

2 7 225 62 51 93 143 108 104 

6 20 216 68 54 80 147 111 113 

10 13 207 72 57 71 151 114 122 

14 16 198 78 62 58 155 117 131 

18 19 190 82 65 49 158 119 137 

21 21 183 88 69 36 162 122 146 

24 23 176 92 72 27 165 124 153 

28 26 168 98 76 14 168 126 159 

32 29 159 102 79 14 172 129 168 

35 31 152 108 83 27 176 132 177 

38 33 146 112 86 36 179 134 183 

42 36 137 118 91 49 182 137 190 

45 38 130 122 93 58 186 139 199 

49 41 122 128 98 71 190 142 207 

53 44 113 132 101 80 194 145 216 

57 47 104 138 105 93 198 148 225 
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Figure 3. Visual depictions of presented stimuli across three separate trials. 

Feedback was displayed in a text box one-third from the bottom and right of the display 

screen. The feedback text box was labeled +/- Difference in Beros Estimation. Both the 

participantsô responses and feedback were displayed numerically in size 18, Times New Roman, 

black font. See Figure 4 for a sample function learning trial. 

Experimental Design 

 Participants were randomly assigned to complete a function learning task wherein the 

relationship was defined by either linear or V-shaped function. Furthermore, the presence or 

absence of a secondary task during the training and transfer phases varied across participants. 

This task manipulation resulted in four task conditions: completing both training and transfer 

under a single-task condition, completing training and transfer under a dual-task condition, 

completing training under a dual-task condition and transfer under a single-task condition, and 

finally completing training under a single-task condition and transfer under a dual-task condition. 
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Thus, the experiment comprised of a 2 (function: linear vs. bilinear) x 4 (Task: SS vs. SD vs. DS 

vs. DD) between-subjects design.  

 

Figure 4. A sample function learning trial 

Procedure  

 The experiment took place in small and quiet testing rooms. After informed consent was 

obtained, participants were seated at roughly 75 cm from the computer monitor. Moreover, each 

stimulus was displayed at approximately 5 degrees of visual angel. Under the supervision of an 

experimenter, the participants were given the following cover story (see Brown & Lacroix, 

2018). Participants were told to assume the role of a scientist working for NASA who just 

discovered a new organism. This organism absorbs a fictional chemical called Zebos and emits a 

different fictional chemical called Beros. Participants read that their job, as a NASA scientist, 

was to predict the amount of Beros this new organism emits, based on the amount of Zebos it 
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absorbed. After participants read the cover story, they completed three practice function learning 

trials that mimicked the training phase of the experiment. Furthermore, following training, 

participants completed three more practice trials that follow the transfer phase procedure. 

Moreover, the presence of the secondary task during the first or second half of the practice trials 

mirrored the condition the participant was assigned too. For example, participants in the SS 

condition did not practice the secondary task during the practice trials. In contrast, participants in 

the SD condition only practiced the secondary task during the final three practice trials. These 

practice trials ensured that the participants understood the experimental procedure. Participants 

were told to be as accurate as possible during the function learning task, however, those in the 

dual-task condition were told to achieve a minimum threshold of 90% accuracy on the secondary 

task. Following practice, participants moved to the training phase followed by the transfer phase. 

Upon completing the transfer phase, the experiment terminated, and participants were debriefed 

by the experimenter.  

Function Learning Task 

 The function learning task was similar across both single- and dual-task conditions. 

Moreover, the procedure was also consistent across function type, the only difference being the 

shape of the function (e.g., linear vs. bilinear). The experiment included a training and transfer 

phase.  

The training phase consisted of twelve blocks of seventeen trials in which each X-value 

was presented once per trial. Furthermore, the presentation of each X-value was randomized 

across each block. During each training trial, a red bar on a marked scale was displayed 

representing the amount of Zebos the organism observed. Then, using the numeric keypad, 

participants made their Beros estimate and used the ñenterò key to input their response. There 
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was no time constraint for participants to enter their estimation during this phase. Following the 

procedure outlined by McDaniel et al. (2014), feedback consisted of the signed deviation 

between the participants estimated Beros emitted and the actual Beros emitted. Feedback was 

displayed for 1500ms.  

The transfer phase consisted of one block of forty-eight trials. For each transfer trial, the 

amount of Zebos absorbed was presented and participants entered the amount of Beros emitted, 

similar to the training phase. However, participants had 10 seconds to enter their estimations for 

each trial. Moreover, feedback was not displayed for the function learning trials during this 

phase. Across all participants, transfer stimuli were presented in ascending order, starting with 

the low extrapolation region.  

Secondary Task 

 The secondary task was adopted from Brown and Lacroix (2018). The experiment 

proceeded as follows for participants assigned to a dual-task condition. First, they saw a fixation 

stimulus (i.e., the addition symbol) in the center of the screen for 500ms in size 25, Times New 

Roman font. Next, four consonants were randomly selected without replacement and presented 

horizontally in the center of the screen for 2000ms, in size 25, Times New Roman font. Then, the 

participants completed a function learning trial. Using the keyboard, they were given five 

seconds to enter the letters that they saw prior to the function learning trial. Participants entered 

their response by pressing the ñenterò key. Finally, feedback for the secondary task was 

displayed visually and auditorily for 500ms. Specifically, when participants were correct, the 

word ñCorrect!ò appeared in the center of the screen in green text, size 25 Times New Roman 

font followed by a sinewave, pure tone (500 Hz). In contrast, when they participants were 
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incorrect, the word ñIncorrect!ò appeared in the center of the screen in red text, size 25 Times 

New Roman font followed by a sawtooth tone (115 Hz). 

The single-task condition followed the exact same structure to ensure the two conditions 

are comparable temporally. Rather than consonants, however, participants saw a string of four 

asterisks prior to each function learning trial. Moreover, a single asterisk was displayed in the 

center of the screen for 500ms in place of the secondary task feedback following each function 

learning trial. 

Results 

Data Trimming  

 Three participants were removed from the dataset because they produced a high 

frequency of extreme responses that were more than five standard deviations above the mean of 

the training range (M = 80.2%). Following their removal, some data were still five standard 

deviations beyond the mean of the training (M = 0.36%, SD = 1.02%) and transfer (M = 1.79%, 

SD = 2.49%) range. A winsorizing procedure was thus employed to reduce the impact of these 

extreme values on further analyses (Ghosh & Vogt, 2012). Therefore, across the training blocks 

and transfer regions, these remaining outliers where transformed to values three standard 

deviations away from the means for each participant.  

 In addition, five participants were removed because they did not perform the secondary 

task according to the given instructions. Finally, two more participants were removed from the 

analyses because they left a significantly large proportion of transfer responses blank (M = 

51.04%). Of the remaining participants, the proportion of blank responses per participant during 

training (M = 0.04%, SD = 0.27%) and transfer (M = 0.34%, SD = 1.23%) was negligible. 

 



A Dual-Task Paradigm  

 
 

40 

 

Working Memory Task  

 To measure accuracy on the working memory task, participants were given 0.25 points 

for every letter reported in the correct position within each trial for a maximum of 1. Throughout 

the experiment, participants maintained high accuracy on the working memory task (M = 

91.98%, SD = 5.14%). To ensure that accuracy did not differ across function and Task 

Condition, a 2 (linear vs. bilinear) x 3 (SD vs. DS vs. DD) between-subjects ANOVA was 

conducted. The dependent variable was working memory accuracy. Neither of the main effects 

nor the two-way interaction reached significance (ps > .2). Therefore, working memory task 

accuracy was consistently high across the experimental conditions.  

Training Performance 

 To assess how performance differed across function type and task condition, a three-way 

2 x 4 x 12 Mixed-Design ANOVA was conducted. The between-subjects factors were Function 

Type (linear vs. bilinear) and Task Condition (DD vs. DS vs. SD vs. SS), and the within-subject 

factor was Blocks (1-12). Mean Absolute Error (MAE) was the dependent variable. It was 

calculated by taking the absolute difference of the participants response magnitudes and the 

correct response for each trial then averaging the differences for each block. Due to a violation in 

the Mauchlyôs test of sphericity and a moderate sized epsilon, the Greenhouse-Geisser correction 

was used to assess significance, ɢ2 (67) = 369.3, p < .001, Ů = .360. The results are shown in 

Figure 5. 

 As hypothesized, the analysis revealed a significant main effects of Block and Function 

Type, F(3.96, 249.29) = 18.91, p < .001, ɖĮ = .23 and F(1, 67) = 47.5, p < .001, ɖĮ = .43,  
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Figure 5. Training accuracy for the linear (top) and bilinear (bottom) conditions across working 

memory condition and training blocks. 
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respectively. This suggests that accuracy increased throughout training and that participants 

learning the linear function consistently outperformed those learning the bilinear function. 

However, the main effect of Task Condition failed to reach significant, F(3, 67) = 0.73, p = .537. 

The main effects were qualified by a single two-way interaction of Block by Function Type, 

F(3.96, 249.29) = 4.27, p = .002, ɖĮ = .063. Both the Block by Task Condition and Function 

Type by Task Condition failed to reach significance, F(11.87, 249.29) = 0.67, p = .991 and F(3, 

67) = 0.713, p = .548, respectively. Finally, the two-way interactions were not qualified by 

significant three-way Function Type by Blocks by Task Condition interaction, F(11.99, 249.29) 

= 0.51, p = .907. 

 Thus, contrary to the hypothesis, accuracy across the training blocks differed depending 

on the function type participants learned irrespective of working memory condition. To 

decompose the significant two-way Block by Function Type interaction, the simple main effects 

were analyzed. Performance in both the linear F(11, 341) = 10.632 , p < .001, and bilinear 

condition improved across training, F(11, 418) = 23.184, p < .001. Finally, a comparison of 

participantsô performance on the last block of training showed that those in the linear condition 

(M = 5.99, SD = 5.94) were more accurate than those in the bilinear one (M = 23.28, SD = 

13.82), t(67) = 6.58, p < .001, d = 1.63. 

Transfer Performance 

 Next, a three-way 2 x 4 x 3 Mixed-Design ANOVA was conducted to evaluate transfer 

performance. The between-subject factors were Function Type (linear vs. bilinear) and Task 

Condition (DD vs. DS vs. SD vs. SS), and the within-subjects factor was Transfer Region (low 

extrapolation vs. interpolation vs. high extrapolation). Once again, the dependent variable was 
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MAE and was calculated following the same procedure as the training performance. The results 

are shown in Figure 6 and 7. 

 

 

Figure 6. Transfer performance of participants who learned the linear function, partitioned by 

region, across Task conditions. 
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Figure 7. Transfer performance of participants who learned the bilinear function, partitioned by 

region, across Task conditions  

Due to violations of sphericity and a large epsilon, the following analyses are presented 

with a Huynh-Feldt correction, ɢ2 (2) = 15.63, p < .001, Ů = .930. As predicted, and in line with 

previous research (Brown & Lacroix, 2018; Delosh et al., 1997; McDaniel et al., 2014), the 
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analysis revealed significant main effects for the Transfer Region and Function Type, F(1.86, 

117.17) = 29.37, p < .001, ɖĮ = .32 and F(1, 67) = 135.55, p < .001, ɖĮ = .678, respectively. In 

contrast, participantsô accuracy did not significantly differ across Task Condition, F(3, 67) = 

1.02, p = .392. The significant main effects were qualified by a significant two-way interaction 

of Transfer Region and Function Type, F(1.76, 117.17) = 47.5, p < .001, ɖĮ = .43. However, 

Task Condition did not significantly interact with Function Type or Transfer Region, F(5.58, 

117.17) = 0.91, p = .481 and F(3, 67) = 1.02, p = .392. Finally, the three-way Transfer Region by 

Task Condition by Function Type interaction was not significant, F(5.579, 117.17) = 1, p = .428. 

To further understand how function type and region affected transfer performance, a 

simple main effects analysis was conducted. It revealed a significant effect for the linear function 

type, F(2, 65.51) = 11.44, p < .001. Post-hoc analyses using a Bonferroni correction then showed 

that participants performed worse in the high extrapolation region (M = 16.05, SD = 11.22) than 

the low extrapolation (M = 8.11, SD = 3.71) and interpolation (M = 8.41, SD = 8.96) regions. The 

simple main effects analysis was also significant for the bilinear function type, F(2, 64.91) = 

76.44, p < .001. As hypothesized, participants performed significantly better in the interpolation 

(M = 24.39, SD = 15.15) region compared to either the low (M = 104.96, SD = 39.02) or high (M 

= 69.99, SD = 37.62) extrapolation regions. Moreover, participants performed better in the high 

extrapolation region compared to the low extrapolation region. Hence, learning did occur across 

both function conditions, but there was little evidence that the secondary task had an impact on 

the results. 

Assessment of Learners 

 To further examine how the addition of the secondary task affected the participantsô 

ability to learn either function, an exploratory analysis was conducted. First, participants were 
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categorized as either learners or non-learners through the assessment of MAE in the final block 

of training (McDaniel et al., 2014). Specifically, participants who achieved a MAE of 20 or less 

were classified as learners while the remaining participants were classified as non-learners. As 

shown in Table 4, 45 participants were classified as learners. Due to the ease at which 

individuals learn linear functions, it was unsurprising that a much higher proportion of 

participants in the linear condition exhibited learning (75%) compared to those in the bilinear 

condition (25%).   

Table 4 

The percentage of participants classified as learners broken down across function and working 

memory task conditions.  

 To further explore whether participants exhibited rule-based or exemplar-based learning, 

a novel approach was employed using the angle of inclination of the defined linear and bilinear 

functions. This was calculated by taking the arctangent of the slope formed by the x-axis and the 

lines specified by the functions. For the linear function, the angle of inclination was 35.8º for 

both the low and high extrapolation regions. For the bilinear function, the angle of inclination 

was -65.5º for the low extrapolation region and 65.5º for the high extrapolation region. 

Participants were characterized as exhibiting rule-based learning if the angle of inclination of 

 Linear Bilinear 

Dual-Dual (13) 92.31% (5) 40% 

Dual-Single (3) 100% (13) 23.08% 

Single-Dual (13) 92.31% (3) 66.67% 

Single-Single (3) 100% (17) 47.06% 

*Brackets indicate total sample size of the respective cell 
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their applied function fell with within a ± 5º bound of the defined function. Otherwise, they were 

characterized as exemplar-based learners.   

The results for the linear condition are shown in Table 5 and those for the bilinear 

condition in Table 6. The column labels represent learning approaches during transfer by region, 

specifically low extrapolation-high extrapolation pairs. The data suggests a trend such that a 

large proportion of participants favoured a mixed approach (68.97%), compared to a rule-based 

approach (27.59%) and an exemplar-based approach (3.44%) in the linear condition. In contrast, 

participants assigned to the bilinear condition trended towards a more stable strategy. 

Specifically, participants appeared to favour an exemplar approach (66.67%), over a mixed 

(20%) or rule-based approach (13.33%). Taken together, participantôs strategies appeared to be 

stable across the low- and high-extrapolation regions, irrespective of working memory condition 

when participants learned the bilinear function. However, when learning the linear function, the 

addition of the secondary task seemed to hinder the participants ability to consistently use a rule-

based approach throughout transfer.  

Discussion 

The goal of the present thesis was to determine the extent to which function learning can 

be explained by a dual-processing framework. Findings from analogous learning domains such 

as category and sequence learning (Ashby et al., 1998; Current & Keele, 1993) suggested that 

learning a functional relationship may also rely on exemplar- and rule-based approaches. 

Furthermore, the predisposition to prefer a rule-based approach is positively associated with an 

individualôs working memory capacity (McDaniel et al., 2014). However, little research has 

attempted to determine the extent to which disrupting working memory processes interferes with  
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Table 5 

Proportion of learning approaches in the linear condition by Task. The pairs represent 

approaches used in the low extrapolation ï high extrapolation regions.  

 Rule-Rule Rule-Exemplar Exemplar-Rule Exemplar-Exemplar 

Dual-Dual  (4) 33.33% (8) 66.67% (0) 0% (0) 0% 

Dual-Single  (1) 33.33% (2) 66.67% (0) 0% (0) 0% 

Single-Dual  (2) 18.18% (8) 72.73% (0) 0% (0) 0% 

Single-Single  (1) 33.33% (2) 66.67% (0) 0% (0) 0% 

Note. Brackets indicate the number of participants who exhibited each learning approach across working memory conditions 

Table 6 

Frequency count of participants learning approach in the bilinear condition by Task. The pairs 

represent approaches used in the low extrapolation ï high extrapolation regions.  

Bilinear Rule-Rule Rule-Exemplar Exemplar-Rule Exemplar-Exemplar 

Dual-Dual  (0) 0% (1) 50% (0) 0% (1) 50% 

Dual-Single (0) 0% (1) 33.33% (0) 0% (2) 66.67% 

Single-Dual  (1) 50% (1) 50% (0) 0% (0) 0% 

Single-Single  (1) 12.5% (0) 0% (0) 0% (7) 87.5% 

Note. Brackets indicate the number of participants who exhibited each learning approach across working memory conditions 

function learning. Thus, participants completed an experiment for which function type and the 

presence of a secondary task varied to assess how impeding working memory affected their 

learning approach. As suggested by previous research, participants in linear condition were 

expected to outperform those in the bilinear condition (Delosh et al., 1997; McDaniel et al., 

2014). Furthermore, during transfer, it was hypothesized that participants would perform better 
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in the interpolation regions compared to either extrapolation regions. Finally, the central 

hypothesis for this thesis was that the addition of a secondary task would consistently increase 

the proportion of participants characterized as exemplar-based learners for both the linear and 

bilinear function conditions (Brown & Lacroix, 2018). As such, this increase would result in 

lower accuracy across training and transfer when the secondary task is present.  

As predicted, participants performed significantly better when learning a linear function 

than a bilinear one. The ease with which individuals learned the linear function may reflect the 

hypothesized hierarchical nature of function learning. Specifically, research has consistently 

shown that individuals will first suppose functions to be positively linear and if this assumption 

does not work, they move on to negatively linear and subsequently non-linear assumptions 

(Brehmer, 1974; Delosh et al. 1994; McDaniel et al., 2014). Moreover, Byun (1996) 

demonstrated that participants make fewer errors when extrapolating a positive linear function 

than a logarithmic, negative power, and a positive power function. The most salient example of 

this phenomenon emerged in the dual-single and single-single conditions as shown in Figure 7. 

Specifically, participants appeared to extrapolate closer to the defined function in the high 

extrapolation region, represented by a positive linear function, compared to the low extrapolation 

region. The analysis also confirmed this thesisôs second hypothesis. Participants were more 

accurate in the interpolation region than either the lower or higher extrapolation regions. This 

finding supports the notion that learning did occur for both functions. In fact, MAE error in both 

interpolation regions approximated the MAE during the final block of training, despite the fact 

that they involved novel stimuli. In sum, the current experiment replicated key benchmark 

function learning findings (Brehmer, 1974; Delosh et al., 1997; McDaniel et al., 2014). 
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 Unfortunately, the addition of a secondary task failed to yield any conclusive effect on 

function learning performance. That is, MAE was similar across working memory conditions 

throughout training and transfer irrespective of whether participants learned a linear or bilinear 

function. Furthermore, the secondary task did not result in an increase in the proportion of 

exemplar-based learners following participantsô categorization using their angle of inclination. 

Tables 5 and 6 suggests that the propensity to favour a rule-based or exemplar-based approach 

was dependent solely on the learned function. Specifically, participants who learned the linear 

function favoured a strictly rule-based approach considerably more than an exemplar-based 

approach. Conversely, participants who learned the bilinear function favoured an exemplar-based 

approach over a rule-based one. Taken together, it appears that the stability of individualsô 

learning approach superseded the interfering effect of inhibiting working memory. Speculatively, 

however, Figure 7 suggests the addition of a secondary task during the training and transfer 

phase may have impeded the participantsô ability to employ a rule-based strategy in the 

ascending portion of the function. In contrast, when the secondary task was removed during 

either of these phases, participants seemed to have been able to extrapolate beyond the training 

range in the high extrapolation region. Nevertheless, none of the findings were statistically 

significant.  

Despite its findings, the present these is not without limitations. Most prominently, the 

experiment lacks an adequate sample size and thus was severely unpowered. The effects of a low 

powered study are known and well documented, which is why psychologists strive to reach a 

high level of power (~80%) when conducting research (Fraley & Vazire, 2014; Funder & Ozer, 

2019; Gignac & Szodorai, 2016). If the present experiment had been more adequately powered, 

then it might have been revealed that a secondary task can interfere with the mechanism 
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associated with rule-based learning while leaving the exemplar-based system intact. In turn, this 

would parallel the findings in sequence learning and categorization that allowed researchers to 

conclude that they operate within a dual-processing framework. For example, Nissen and 

Bullemer (1987) concluded that multiple mechanisms must be involved in sequence learning 

when participants who suffered from Korsakoffôs syndrome were able to exhibit sequential 

knowledge in an SRT task despite an explicit lack of awareness of the repeating pattern. 

Furthermore, Maddox and Ashby (2001) demonstrated that category learning is mediated by 

multiple learning systems by pairing a categorization task with a concurrent Stroop task resulting 

in an inability for participants to use rule-based learning. Therefore, it could then be concluded 

that function learning is yet another domain that may be explained by multiple learning systems.  

Beyond its limitations, the present thesis contributes meaningfully to the growing 

function learning literature. Specifically, by using a slope analysis approach, I was able to 

capture specific differences in learning characteristics during the transfer phase in the low and 

high extrapolation region. This diverges from previous research that has typically averaged MAE 

across both regions (McDaniel et al., 2014), an approach which may not be representative of 

performance in individual regions as crucial information may be lost through averaging (Delosh 

et al., 1997). Indeed, a trend emerged when participants were characterized using the slope 

analysis approach. Those who learned the linear function showed variations in their learning 

style across both extrapolation regions. A considerable proportion of learners appeared to favour 

a blended approach, particularly a rule-based approach in the low extrapolation region and an 

exemplar-based approach in the high extrapolation region. In contrast, a similar effect did not 

emerge for participants who learned the bilinear function. This divergence may have reflected 

the tendency individuals have to apply a positive linear shape to functional relationships 
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compounded by their predisposition to anchor responses to zero (Brehmer, 1974; Brown & 

Lacroix, 2018). In fact, as shown in Figure 6, across all four linear conditions participants 

appeared to consistently underestimate the defined function. As the defined functionôs intercept 

approximates zero, anchoring responses to zero would be an acceptable strategy to extrapolate 

accurately. Therefore, by using these heuristics, participants were able to reduce the impact of 

the secondary task, resulting in rule-based extrapolation.  

This then begs the question that if the predisposition to anchor responses and assume a 

positive linear function resulted in rule-based learning processes, then why did some participants 

in the linear condition extrapolate following an exemplar-based approach in the high 

extrapolation region? Speculatively, this may be indicative of the secondary task having the 

indented effect of inhibiting rule-based learning. However, because participants find it easier to 

learn positive linear functions, this condition may not have led to lower accuracy. Recent work 

by Fischer and Holt (2017) examining the relationship between working memory capacity and 

function learning support this notion. Specifically, they conducted a function learning task in 

which participants learned either an asymptotic or an exponential function. Furthermore, they 

took an index of working memory capacity using two tasks, the digit span backward and letter-

number sequencing task. Fischer and Holt argued that to extrapolate accurately in the asymptotic 

condition, participants need only to apply a simple positive linear rule. Therefore, exemplar-

based abstraction would result in comparable accuracy to rule-based learning. In contrast, the 

exponential function requires complex rules to extrapolate accurately and as such, rule-based 

learners would outperform their exemplar-based counterparts.  

As expected, Fischer and Holtôs (2017) results showed that participants with higher 

working memory capacity tended to favour a rule-based approach whereas low working memory 
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capacity was related to exemplar-based learning. Furthermore, rule-based learning only afforded 

an advantage to participants learning the exponential function as it required the application of 

more complex rules than the asymptotic function. As such, distinguishing between rule-based 

and exemplar-based learners using accuracy appears to be more challenging when the defined 

function is relatively simple.  

Notably, recent research has demonstrated that participant classification using 

extrapolation accuracy may underestimate the proportion of rule-based learners. Specifically, 

Said and Fischer (2019) argued that while accurate extrapolation necessitates rule-learning, 

inaccurate extrapolation is not necessarily indicative of exemplar-learning. Therefore, using 

accuracy to characterize learning approaches may result in a misidentification of rule-learners as 

exemplar-learners. To test this idea, they asked participants to complete a standard function 

learning task, in which a negative exponential function was learned. Then, following the taskôs 

completion, they asked participants to draw the function that best represented the underlying 

functional relationship. Participantsô learning approach was categorized through the standard 

approach using MAE (McDaniel et al., 2014) and a novel summary approach, which identified 

rule-based learning if the slope from the first and each subsequent extrapolation point was 

monotonically decreasing. The results were thought provoking. 25.5% of participants were 

characterized as rule-learners using the standard approach whereas 53.5% of participants 

characterized as rule-learners using the novel approach. Thus, MAE struggles to adequately 

identify participantsô learning approach. As rule-based learners may achieve identical accuracy 

scores as exemplar-learners, a more robust measure is required. In particular, the use of a 

participantsô angle of inclination may hold many benefits over other methods. Most notably, it 

incorporates the logic of the summary approach in the context of traditional transfer phases 
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typically seen in function learning paradigms (Delosh et al., 1997; McDaniel et al., 2014; Said & 

Fischer, 2019). Moreover, it allows for individual classification when the defined function is 

non-linear or polynomial.  

Therefore, future research should strive to validate the slope analysis approach by 

applying it to a high-powered function learning paradigm. For example, researchers could use a 

dual-paradigm procedure wherein participantsô learning approach is characterized in both a 

function learning and categorization task. If the slope analysis is a valid method to classify 

function learning behaviour, then there should be agreement between preferred learning 

approach across both tasks (McDaniel et al., 2014). Alternatively, future research could replicate 

the present experimental design but also take indices of working memory. As such, working 

memory capacity should correlate positively with a preference for rule-based learning, as 

assessed by the slope analysis (Fischer & Holt, 2017; McDaniel et al., 2014). 

A second area for future research to explore pertains to how a secondary task is 

integrated into a function learning task. Namely, the present experimental design displayed the 

four-letter target and participants only received feedback after a delay from the integrated 

function learning trial. This process is viewed as embedding a function learning task into a visual 

scanning task. Reversing this structure by embedding the secondary task in the function learning 

task might result in a more prominent impact on rule-based learning. Indeed, Xing and Sun 

(2017) attempted just this within the context of category learning to great success. Specifically, 

across three experiments, they had participants complete a categorization task, wherein they 

classified sine-wave gratings following either a rule-based (RB) or information integration (II) 

structure, with a concurrent secondary visuospatial memory task. The structure to which the 

tasks were presented varied across the three experiments. In the first experiment, the 



A Dual-Task Paradigm  

 
 

55 

 

categorization and secondary tasked occurred sequentially. During the second experiment, the 

category learning task was embedded in the secondary task such that participants began a trial 

for the visuospatial task but entered a response and received feedback after completing a 

categorization trial. Finally, in the third experiment, the secondary task was embedded in the 

category learning task. As such, participants saw a categorization stimulus, completed the 

secondary task, then entered their response for the categorization task and received feedback. 

The results were clear. Participants learning the RB structure performed worse when the 

secondary task was embedded into the category learning task than when the opposite was done 

(Xing & Sun, 2017). This finding highlights the significant impact the structure of an 

experimental design can have on the relationship between working memory and learning. 

Therefore, future research should extend a similar manipulation in design to function learning. 

For example, an experiment in which a function learning stimulus is presented, and then, 

participants make an estimation and receive feedback following a delay from completing a 

secondary task. Such a manipulation may be key in successfully inhibiting working memory and 

thus, limiting rule-based learning.  

In conclusion, theories across different domains have consistently shown that learning 

operates within a dual-processing framework consisting of an explicit rule-based and implicit 

exemplar-based mechanism (Ashby et al., 1998; Curran & Keele, 1993). Furthermore, the 

present thesis reported general trends wherein the addition of a secondary task resulted in a 

decrease in the stability of characterized learning approaches. Therefore, a dual-processing 

framework remains a viable explanation for variations found in function learning behaviour. 

Conducting an adequately powered function learning task would allow researchers to further our 

understanding of the mechanisms underlying how humans learn functional relationships.   
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