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Seeing Changes: How Familiarity Alters Our Perception of Change 

Mark Tovey 

Abstract 

Change blindness is a phenomenon where individuals have difficulty detecting seemingly 

obvious changes in their environment. The objective of this dissertation was to assess the 

impact of the familiarity of objects on change blindness. Familiarity was operationalized 

by manipulating the Orientation (upright vs. inverted) of letters: Upright letters formed 

familiar stimuli whereas inverted letters (i.e., reflecting the stimuli across the horizontal 

axis) produced unfamiliar stimuli. Three experiments were conducted. In all three 

experiments Orientation was shown to affect the ability to detect change. In Experiment 

1, the Orientation effect was independent of the number of distractors (Set Size), 

suggesting that Orientation and Set Size affect separate processing stages. The results of 

Experiment 2 suggested that Set Size, which interacts with Stimulus Quality, has its 

effects early in processing, whereas Orientation has an effect on a later stages of 

processing. Experiment 3 provides further evidence in support of a stage model of 

change blindness. A stage model of change blindness is proposed in which large changes 

are detected at a early Feature Extraction stage, while small changes require comparison 

at a later Identification stage. 
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INTRODUCTION 

The world seems to us to be highly detailed. Wherever we look, we have the 

experience of a rich, coherent scene. We feel as though we have complete visual access 

to the contents of the world around us in all its variety and fluctuation. Although the 

world itself may indeed be detailed, we are likely deceived, in at least some respects, in 

the degree to which we have full visual access to our surroundings and what goes on in 

them (Noe, Pessoa, & Thompson, 2000). With each fixation, our visual system can only 

focus on a small portion of our world (foveal vision) (approximately 2° of visual angle; 

Churchland & Ramchandran, 1996) with high visual acuity. This dictates, in part, the 

amount of detail we have available to process at any one moment. Moreover, the amount 

of information transmitted to the visual cortex from the retina is also limited by the size, 

or channel capacity, of the optic nerve itself (Lennie, 1984). Some of the information that 

is transduced by the photoreceptors is not passed on for further processing. Thus, 

although our visual world may appear to be large and complete, our real-time access to its 

detailed contents is restricted by the physiology of our retina and optic nerve. 

Our visual access is impoverished in other ways as well. Our eyes normally 

saccade multiple times a second (Reichle, Rayner, & Pollatsek, 2003). However we fail 

to notice this movement, either because the movement is too rapid, or because our visual 

system temporarily shuts itself down during saccades—a phenomenon known as saccadic 

suppression (Thiele, Henning, Kubischik, & Hoffman, 2002). Thus, although our vision 

appears to be continuous, it is punctuated by discontinuities in our access to the visual 
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world. Because of saccadic suppression, it is difficult for observers to notice changes in 

the visual scene that occur during eye movements (Grimes, 1996). Thus, not only are the 

data that are available to our perceptual system limited in the ways described above, but 

so is our ability to attend to changes that occur during saccadic eye movements. 

Changing stimuli are normally associated with visual transients. Visual transients 

can provide cues to our visual system, which effortlessly and exogenously guide our 

attention to changes in our environment (Kanai & Verstraten, 2004). However, when the 

transients associated with the change are surrounded by competing transients (O'Regan, 

Rensink, & Clark, 1999) attention can fail to be drawn to the changing object. Eye blinks 

(O'Regan, Deubel, Clark, & Rensink, 2000) and other externally mediated visual 

disruptions, such as briefly blanking a computer screen (Landman, Spekreijse, & Lamme, 

2003; Pashler, 1988; Phillips, 1974; Rensink, O'Regan, & Clark, 1997) compete with 

visual transients. 

Transients normally associated with a change may also be unavailable when the 

change is sufficiently gradual, which produces the blindness to change seen in gradual 

change studies (e.g., Simons, Franconeri, & Reimer, 2000). Change detection can also be 

attenuated when a number of competing transients are presented at precisely the same 

time as the change in the target. So-called "mudsplash" experiments, which generate 

multiple flashes at the same time as an object change is introduced, illustrate this 

phenomenon. These flashes do not have to cover up the changing object to produce an 

effect of change blindness (O'Regan et al , 1999). Thus their effect is a result of 

2 
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competition between visual cues, rather than a question of the visual cues being occluded. 

In other words, these simultaneous flashes reduce awareness of the changing stimulus, 

not by removing the target from view but by diverting the viewer's attention with 

competing transients. 

Regardless of the paradigm, change blindness occurs when there is no unique 

visual transient to cue the observer. In all of these situations, the dependence on transients 

to signal change suggests that when a change is detected, it is detected in very early 

preprocessing (Sanders, 1990) through a parallel process that immediately signals the 

change and orients attention and fixation towards it (Kanai & Verstraten, 2004). When a 

change is not detected immediately it must be detected through a subsequent search 

process that involves feature extraction and identification (Sanders, 1990). This basic 

functional division between preprocessing and search is expressed diagrammatically in 

Figure 1. 

3 
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Preprocessing Unique Transient 

Search 
terminates 

Figure 1. Unique transients cue the observer to changes. If change is detected in 
Preprocessing, no further search is required. 
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The simple model shown in Figure 1 can be expanded by appealing to a model 

which more finely articulates stages of mental processing. Sanders (1990), in a meta­

analysis of the stages of processing for choice reaction tasks, discusses six processing 

stages. Sanders also outlines some of the factors, across a variety of experiments, that 

have been found to have effects on particular stages. The stages outlined by Sanders 

include three perceptual processing stages (Preprocessing, Feature Extraction, and 

Identification), one response choice stage (Response Selection), and three response 

processing stages (Motor Programming, Program Loading, and Motor Adjustment). The 

helpful divisions between the stages in Sanders (Perceptual Processing, Response 

Selection, Response Processing) are taken from Johnson and Proctor's (2004) version of 

Sanders stage diagram, and have been incorporated into the diagram presented in Figure 

2. In the current dissertation, the perceptual stages in Sanders' model for choice reaction 

were applied to describe and account for perceptual performance in change blindess 

tasks. 

5 
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Preprocessing 

{ 

Motor 
Adjustment 

Signal Contrast 

Feature 
Extraction 

_ r _ 

Identification 

Response 
Selection 

Signal Quality 

Signal 
Discriminahitity 

Word frequency 

•> Response civilians 

Movement dirtetujii 
Movement velocity 

# Stimulus 
Alternatives 

Re\p<>ti<e spei. if it tty 
Wit ruing signal forepenad 

Figure 2. Stage model for choice reaction tasks, after Sanders (1990), redrawn, adapted, 
and simplified, with side labels for the stage groupings (on the left) taken from Johnson 
& Proctor's (2004) adaptation of Sanders' stage diagram. The stages of interest in the 
current research (the Perceptual Processing stages) are shown in gray. 
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Evidence for an Effect of Familiarity on Change Blindness 

There has been a growing body of research related to change blindness (for 

reviews see Rensink, 2000a; 2002; Simons & Ambinder, 2005; Simons & Rensink, 

2005). Much of this research has focused on the role played by strictly visual properties 

of the changing objects, using factors such as Change Size (i.e., number of features that 

changed in an object) and Set Size (i.e., number of objects in the display) (e.g., 

Fernandez-Duque & Thornton 2003; Laloyaux, Destrebecqz & Cleeremans, 2006; 

Mitroff & Simons, 2000; Mitroff, Simons, & Franconeri, 2002; Mitroff, Simons, & 

Levin, 2004; Richards, Tombu, Stolz, & Jolicoeur, 2004; Smilek, Eastwood, & Merikle, 

2000; Stolz & Jolicoeur, 2005; Vierck & Kiesel, 2008). These chiefly concern the 

question of whether or not visual representations accumulate pre-attentively. Another 

group of research, often using photographs of real world scenes as stimuli, has examined 

the role that top-down processes play in mediating change blindness (Jones et al., 2003; 

Rensink et al., 1997; Werner & Thies, 2000). Much of this work has centered around 

showing that changes in objects of greater interest to the participant will be noticed more 

quickly. The interest in this dissertation is in a third group of papers, which have made 

attempts to examine both top-down and bottom-up processes simultaneously (Barton & 

Malik, 2003; Barton, Radcliffe, Cherkasova, Edelman, & Intriligator, 2006; Caplovitz, 

Fendrich, & Hughes, 2007; Palermo & Rhodes (2003); Pashler, 1988; Richards, 2002; 

Ro, Russell, & Lavie, 2001). The interest with these papers lies in whether changes in 

familiar objects (i.e., objects that can be readily categorized) are detected differently from 

7 
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and/or more efficiently than, changes in unfamiliar objects. This remains an unsettled 

question. Simons and Rensink identified the extent and manner in which "long-term 

representations ... contribute to change-detection performance" (Simons & Rensink, 

2005, p. 19) as one of the outstanding issues in the field. The current dissertation 

attempts to shed some light on both the extent and the manner in which long-term 

representations have an effect on change-detection performance, and in the process, put 

to rest the long-standing issue of whether or not changes in familiar objects are detected 

differently (and more efficiently) than those in unfamiliar objects. 

The first study to directly examine the role of familiarity in change blindness was 

reported by Pashler (1988). A familiar object, in Pashler's sense, is an object with a 

known identity, which means that it is possible to categorize it. We do not categorize an 

individual dot in a set of similar looking dots (Phillips, 1974), whereas we do categorize 

letters (e.g., 'A', 'F' , or 'L'), or numbers (e.g., ' 1 ' , '2 ' , or '3'). Pashler operationalized 

familiarity by inverting letters (i.e., reflecting them across the y-axis) to create unfamiliar 

stimuli. Under ordinary viewing conditions (i.e., where change blindness is not involved), 

upright letters were identified more quickly, and with fewer errors, than inverted letters. 

Inverting the letters to make them less familiar had the advantage of holding feature 

composition and complexity constant across these two levels of familiarity. Because the 

difference between an inverted letter and an upright one is the degree to which it is 

readily categorizable, or has an identity, Pashler proposed that any difference in time or 

accuracy must be attributable to the stimulus's degree of familiarity. If letter 

8 
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identification plays a role in change detection, one would anticipate that changes in 

upright letters would be detected more efficiently than changes in inverted letters. 

Pashler's (1988) displays consisted often letters in a 2 x 5 matrix that were either 

all upright (familiar orientation) or all inverted (unfamiliar orientation). On half the trials, 

a letter in the first display was replaced by a different, randomly chosen letter. On the 

other half of the trials, the two displays were identical. Displays were separated by a 

blank interstimulus interval (ISI) that varied in length from 34 ms to 217 ms. Participants 

indicated whether or not a change occurred. Pashler reported that regardless of ISI, 

participants were no more accurate at detecting changes in upright displays than in 

inverted ones. This finding led Pashler to conclude that familiarity does not facilitate 

change detection. In particular, the lack of any difference in change detection accuracy 

between the two conditions led Pashler to claim that categorical knowledge of the objects 

does not affect the outcome of the detection process. 

Pashler (1988) used a one-shot paradigm, where each stimulus set is only 

presented once in a given trial, after which participants indicate whether they saw a 

change or not. The one-shot paradigm is designed to test accuracy and not response time. 

Because the paradigm used by Pashler only measured accuracy, it is possible that the 

presence of a familiarity effect was missed. As summarized below, recent evidence from 

response time experiments suggests that there are some conditions under which change is 

facilitated by categorical knowledge of the identities of the objects (Jones et al., 2003; 

LaPoint et al., 2010), or by expertise with the contents of a scene (Werner & Thies, 

9 
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2000). The single one-shot presentation of each stimulus set also limits the time available 

for detection, which could have hidden an effect of familiarity in Pashler's study, if 

present (Richards, 2002). 

In contrast to Pashler (1988), a potential role of familiarity on change blindness 

has been suggested in several studies in which a flicker paradigm was used. The flicker 

paradigm is arguably more suitable for examining change blindness than the one-shot 

paradigm used by Pashler. In constrast to the one-shot paradigm, the flicker paradigm 

allows more time for participants to detect a change and it also allows for the 

measurement of response time. In the flicker paradigm, two displays (A and A') are 

repeatedly presented in a cyclical pattern, separated by a blank ISI, until the observer 

indicates that they notice a change (see Figure 3). Response time is measured. In some 

flicker paradigm experiments, the participant is also asked to indicate which element of 

the display changed, yielding an accuracy measurement in addition to response time. 

Figure 3. The flicker paradigm, showing the two displays (A and A'), repeatedly 
presented in a cyclical pattern, separated by a blank ISI (shown as black screens). 

10 
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In a flicker paradigm experiment, Jones et al. (2003) found that heavy users of 

alcohol detected changes in images of alcohol bottles more quickly than changes in other 

kinds of objects. For the present purposes, the Jones et al. findings suggest that how we 

categorize an object has an effect on how well we detect changes in it. Werner and Thies 

(2000), also using a flicker paradigm, found that football players, when presented with 

two alternating images of football being played, detected changes in those images more 

quickly than amateurs when performance was compared to control scenes not involving 

football. This difference in change detection between professionals and amateurs was 

more pronounced in situations where the changing object in the football scene was 

important to the interpretation of the scene. Consistent with the conclusions of Jones et al. 

(2003), these results support the view that how people categorize stimuli can influence 

change detection. 

Merely showing that categorization can be used in change detection is not 

sufficient to establish an effect of familiarity. The participants in Jones et al. (2003) may 

simply have been directing more attention to objects in a scene that interested them more 

(alcohol bottles, in this case). Similarly, the football players in Werner and Thies (2000) 

may have been more likely to examine the parts of a scene that were relevant to playing 

football earlier in search. These studies speak to the subjective salience of the objects in a 

scene whereby participants could have directed more attention to certain objects in a 

scene, or to parts of a scene that are of special interest. To establish an effect of 

familiarity, it is necessary to determine whether changes in readily categorizable objects 

11 
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are detected more efficiently than changes in less categorizable objects in situations 

where salience does not play a role. The study that brings us closest to this ideal, to date, 

is an unpublished dissertation by Richards (2002). Using a flicker paradigm, Richards 

found evidence for an effect of familiarity on change blindness. However, Richards' 

results are subject to the criticism that his familiar stimuli (Figure 4a) are different from 

his unfamiliar stimuli (Figure 4b) in terms of featural composition (e.g., angled vs. 

vertical/horizontal) and visual complexity. Thus, it is impossible to confidently interpret 

the impact of familiarity in Richards' experiments because differences in performance 

across the familiar vs. unfamiliar stimuli may be entirely driven by the featural 

differences between the stimuli rather than by familiarity itself. 

U-L ©-© 
a. Familiar change b. Unfamiliar change 

Figure 4. Two-feature change from Richards (2002). 

To summarize, there is indirect evidence from Jones et al. (2003) and from 

Werner and Thies (2000) that categorical information can affect a person's ability to 

detect change in the environment. However these results cannot speak directly to the 

12 
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question of whether object familiarity affects change blindness. The results from more 

direct examinations of familiarity on change blindness are divergent. Pashler (1988) 

found no effect of familiarity. Richards (2002) concludes that familiarity had an effect on 

detecting change, but the conclusions from that study are compromised because it was 

not possible to directly compare the familiar and unfamiliar stimuli. 

Present Research 

The objective of the present research was to examine the role of object familiarity 

on change blindness. Three experiments were performed in which change blindness was 

examined using a flicker paradigm. Familiarity was manipulated by presenting letter 

stimuli in an upright orientation versus an inverted orientation. Experiment 1 established 

a familiarity effect: changes to inverted letters took significantly longer to detect than 

changes to upright letters. Experiments 2 and 3 replicated this finding and provided 

evidence to support the development of a stage model of change blindness. 

Preliminary Model 

A preliminary model of change blindness using Sanders' (1990) stage approach 

can be outlined based on research by Smilek et. al. (2000). Smilek et al. used a flicker 

paradigm in which alternating stimulus sets (A and A') were presented separated by a 

blank screen (see Figure 3). In addition to manipulating Set Size (number of stimulus 

alternatives), Smilek et al. varied the Change Size (i.e., the number of LED elements that 

changed in the target) from trial to trial. For example, l_ alternating with F was a large 

13 
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change (3 features), whereas F alternating with an E was a small change (1 feature). An 

interaction between Change Size and Set Size was found. Additive factors logic, as will 

be elaborated on later, holds that two interacting factors in a serial processing system 

affect the same stage (Sternberg, 1969; see also Johnson & Proctor, 2004; Pachella, 1974; 

Sanders, 1998). The interaction between Change Size and Set Size in Smilek et al., 

therefore, suggests that these factors affect a common stage. 

Richards, Tombu, Stolz, and Jolicoeur (2004) localized the effect of Change Size 

between the very early stages of processing, which Sanders (1990) calls the 

Preprocessing stage, and the attentional bottleneck, which Sanders calls Response choice, 

and which others refer to as the decision-making or response selection stage (Dux, 

Ivanoff, Asplund, & Marois, 2006). Thus, in terms of Sanders' model, Change Size has 

its effects on the stages between Preprocessing and Response choice, and thus in the 

Feature Extraction stage, or the Identification stage, or possibly both. By additive factors, 

the interaction between Set Size and Change Size (Smilek et al., 2000) would indicate 

that Set Size would also have its effects in at least one of the stages affected by Change 

Size (i.e., at the Feature Extraction or Identification stages). This assignment corresponds 

with Sanders placement of Signal Discriminability (~=Change Size) and Number of 

Alternatives (~=Set Size) at both the Feature Extraction and Identification stages (See 

Figure 5). 

A preliminary attempt at locating the role of familiarity on change detection can 

be made by referring to Sanders (1990), who shows Word Frequency as having its effects 

14 
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at the Identification stage (Figure 5). If familiarity has an effect, we might reasonably 

predict that familiarity would affect the same stage as Word Frequency, which also relies 

on the ability to categorize stimuli. 

Pre-processing 

I 
Feature 

Extraction 

T 
Identification 

T 
Search 

terminates 

Unique Transient 

Set Size / Number of Stimulus Alternatives 

Change Size / Stimulus Discriminability 

Word Frequency 

Predict: Familiarity 

Figure 5. Preliminary stage model of change blindness. This model combines Sanders' 
(1990) stage model for choice reaction with results and vocabulary from Smilek et al. 
(2000) and Richards et al. (2004). Sanders' Identification stage showed the effect of 
Word Frequency, from which is predicted an effect of familiarity on the Identification 
stage. 
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EXPERIMENT ONE 

Establishing the Effect of Familiarity on Letters 

Experiment 1 was designed to test for an effect of familiarity on change detection. 

Familiarity was manipulated by presenting letter stimuli in an upright orientation versus 

an inverted orientation. The time required to detect a change in an upright letter 

surrounded by other upright letters was compared directly with the time required for 

detecting a change in an inverted letter surrounded by other inverted letters. The present 

research used a flicker paradigm (see Figure 3) based on Smilek et al. (2000) and 

Richards (2002). Pashler (1988) did not manipulate change size but replaced letters at 

random, without reference to how many elements of the letters were changing. Explicitly 

manipulating change size in the current experiments, as Smilek et al. (2000) and Richards 

(2002) did, allowed for an examination of how the size of change contributes to the effect 

of familiarity, while removing Change Size fluctuation as a source of variability. This 

difference in methodology turns out to be important, because as it is reported in this 

dissertation, the effect of Orientation is significant only when letters are changed in a 

small way, but not when they are changed in a large way. 

As noted above, Richards' (2002) participants were exposed to unfamiliar stimuli 

which were visually quite different from the familiar stimuli, that is, familiar stimuli were 

square and contained exclusively horizontal and vertical lines, whereas unfamiliar stimuli 

were round and contained mostly diagonal lines. In addition, the familiar and unfamiliar 

stimuli were not matched for the surface area they covered. Richards' letters and "wagon 
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wheels" differed in degree of familiarity, but they also differed in form. In the current 

experiments, unfamiliar stimuli were visually matched as closely as possible to the 

familiar stimuli by inverting them. Inverting the stimuli does not change the roundness or 

squareness, size, configuration, surface area, or visual interest of the stimuli. It is a 

manipulation that isolates familiarity from other effects. 

To summarize, Experiment 1 was designed to test whether familiarity plays a role 

in detecting visual changes. Familiarity was manipulated by varying the orientation 

(upright versus inverted) of the letter stimuli. 

Method 

Participants. Participants (w=30) were drawn from the undergraduate psychology 

pool at Carleton University and were compensated with 1% course credit towards their 

final grade. The number of participants chosen was based on earlier pilot research, and is 

typical to that used in the literature. Participants were assumed to have normal or 

corrected-to-normal visual acuity. No data were collected on the age or gender of 

participants. 

Design. A 5 (Set Size: 4, 7, 10, 13, 16) x 2 (Feature Change Size: small vs. large) 

x 2 (Orientation: Upright vs. Inverted) within-subjects design was used. Set Size refers to 

the number of objects (i.e., letters) in the display. Each display consisted of one target 

and either 3, 6, 9, 12, or 15 distractors. The target was the only object in the display that 

changed. In keeping with Pashler (1988), the orientation of the distractors always 

matched the orientation of the target. Change Size is defined by the number of features 

17 



Experiment 1: Establishing the Effect of Familiarity on Letters 18 

(i.e., the presence or absence of equal sized line segments) that changed in the target. In 

this experiment, either one or three features changed (Figure 6). Familiar displays 

consisted of targets and distractors that were upright, whereas targets and distractors in 

unfamiliar displays were all inverted. Unfamiliar stimuli were created, in keeping with 

Pashler's paradigm, by reflecting the upright stimuli across the horizontal axis. Each level 

within a factor appeared an equal number of times in each trial block of 100. 

Figure 6. Illustration of sizes of feature-change in upright letters. 
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I feature change 3 feature change 

Upright 

inverted 

n m 13 n 
iQ SB 

Figure 7. Comparison matrix of feature change sizes for letters, showing both familiar 
(upright), and unfamiliar (inverted) stimuli. 

Materials/Stimuli. Stimuli were displayed on a 17" Phillips 170S LCD Monitor. 

The experimental box was a Macintosh Blue and White G3 with 416MB of RAM, 

running MacOS 9.2.2 (See Figure 8). The presentations were programmed using the 

PsyScript 5.1d3 experiment scripting application (Bates & D'Oliveiro, 2003), running 

under the AppleScript programming language, version 1.83. Equal sized line segments 

correspond to features. Thus U —• L is a one feature alternation (small change), and 

F —• L is a three feature alternation (large change) (see Figure 6). The letters appeared as 

bright white (rgb values: 65535,65535,65535) on a black (rgb values: 0,0,0) background. 
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