Incremental ChangePropagation from Software to
Performance Models

by

Taghreed Arafat Mohammad Altamimi

A thesis submitted to the Faculty of Graduate and Postdoctoral
Affairs in partial fulfillment of the requirementsr the degree of

Doctor of Philosophy
in

Electrical and Computer Engineering

Carleton University
Ottawa, Ontario

© 2019

Taghreed Arafat Mohammad Altamimi

Abstract

Mo d-Bti ven Engineering (MDE) enabl es the a
models from software design models by mode
are used for performance anal ysithedesignt he s
choices from an early stage and to ensure that the system will meet its performance
requirementsThe software model evolves during development, so inconsistencies may
appear between the software and performance models. This research aims at keeping the
softwae and performance models synchronized.

An important concept in model transformations is the mapping between the source and
target (meta)models, which can be specified in a reusable manner with the help of mapping
patterns. In this research we proposel&kass of such patterns, called containrizged

mapping patterns. used to map a group of containnedated source model elements into

a group of target model elements. We focus on these patterns because the containment
relationship is frequently founith metamodel specifications. The containment mapping
patterns are applied in the context of a4tvial transformation from UML software

models extended with MARTE performance annotations into Layered Queueing Network
(LQN) performance models. We showwihdhe mapping patterns can be applied for
designing the transformation rules for a batch transformation implemented in a specific
language. (The complete implementation of the batch transformation was done in separate
work). In this research, we extend th&tch transformation to generate, beside the target
model, a traceability model between the mapped source and target elements. After solving

the generated LQN model with an existing solver, the performance results are fed back to

the software model by floiwing the crossnodel trace links.

The next objective of the research is to design (based on the mapping patterns), implement

and evaluate an ncr ement al change propagqathiromi geCR
software and performaneéompmdrt sprdDoessag wh
mod el evol ves, we detect the changes wit
incrementally pr opag dhee@ropodecIGP it implemdnied WitltQN mo

the Epsilon Object Language (EOL) and is evaluated plyayy it to a set of case studies.

Acknowledgements

First and foremost, | would like to thank my thesis supervisor Professor Dorina C. Petriu,
for the patient guidance, the encouragement and the advice she has provided throughout
the five years as hetulent. | have been extremely fortunate to have a supervisor who
cared so much about my work, and who responded to my questions and queries so
promptly.

| was always dreaming of this moment, but it never came to my mind that it will come
without my brotherDr. Loay, who always believed in me. | will never forget how happy

he was the moment | told him that | got my PhD admission. He was always encouraging,
helping and advising me. Even during his illness, he never forgot to follow up and ask me
about my resarch. Loay is always my role model in life. | wish he was here to see that his
sister fulfilled her dream.

This journey would not have been possible without the support of my parents, who always
supported me to follow my dreams. Their prayers have bgkting my path, for me to
achieve my goals.

| owe thanks to a very special person, my husband Wissam for his continued and unfailing
love, support and understanding during my pursuit of the Ph.D. degree, that made the
completion of thisthesisgossi bl e. You were always aroun
impossible to continue, you helped me to keep things in perspective. | greatly value your
contribution and deeply appreciate your belief in me.

Special thanks to my kids Tayem and Merriam, whaags were patient and gave me
happiness during this long journey.

It is not a fair task to acknowledge all the people who made this Ph.D. thesis possible with

a few words. However, many thanks to my cousins, friends and everyone who supported

me and surnanded me with love and care.

This work is dedicated to
My beloveddrotherDr. Loay Arafat Altamimi
My Parents Arafat Altamimi, FaridaAltamimi
My dear husbandlVissam Altamimi
and
My lovelykids Tayem&Merriam

My brothersRaed & Mutaz

Vi

Table of Contents

ADSITACT ... e e e e e e e e e s Ii.
ACKNOWIEAGEMENTS ... e e e e e e e eeeer s s e e e e e e e e e e e eeeeeesesrnnneeeaes \Y
Table Of CONENTS.....cccoiiiiiiiiiie e rre e rmees e e s smmme e VI
LISt Of TADIES ...t Xi
LIS OF FIQUIES....ceeeeiieeeeeee ettt e e eeee e e e e Xii
List Of COde FragmentS........cceiiiii e eeeeeeeeeeeee et e XVi
IS Ao A od (0])Y/ 2 PO RRRSTPP XVii
1 Chapter: INTrOdUCTIONoooiiiiiiee e e e e e e e e e aeeeas 1
1.1 IMOTIVALION ...ttt e e et e e ennr e e e e e e eas 1
1.2 RESEArCh ODJECHIVES. ... mnee 4
1.3 THeSIS CONIIDULIONSceiiiiiiiiie e rme e 5
1.4 TRESIS CONENES.....ueiiiiiiiitie et iret et rme e e e s et e eeeme e e 7

2 Chapter: Background and State of the Art..........cccueeiiiiiiiiicemi e Q
2.1 Model TranSfOrMAatIONS.uviieiiiiiii e rcee e e 9
2.1.1 Transformation LANQUAGOES.uuuiiiiiieeiiiiiceee et e e e e e e smees s eeeens 9
2.1.2 Batch versus Incremental Transformation..............cccvviviieeeiieeeeeee e 12

2.2 Model Driven Analysis of Nottrunctional Propertie@NFP)...............cooooeiieieee 20
2.2.1 Generate Analysis Models from Software Models............ccccvviiieeneee s 20
Generating PBormance MOEIS.........coiiiiiiiiiiii e e 21
Generating Dependability MOEIS...........uuuuiiiiiiriiee e eeee s 23

2.3 Co-evolution of Software and Analysis MOdEIS..........ccvvviiiiiiiieecce 24
24 Model COMPANTSODcoi ittt erre e e e e e e e e e e eeaeaaeaaaeeeeeeenrees 25
2.5 THACEADIITY ...t ee et e e e e e s e e as 25

Vil

2.6 Higherorder transSformation...........ccooooi oo 26

2.7 Patterns for Model Transformation.............ccoveeiiiimeeiiie e 28

3 Chapter: Overview of the Proposed Integration Approach.............ccccvvveeeinnne 33
3.1 Integration of NFP analysis into tDE ProCess..........ccccvvveeeriiiiiemmnniiiieeeeene 33
3.2 Examples of INtegratiQn..........ccoooieiiiii i 35
3.2.1 Performance analysiS rOBMMIP.couiiuurrrrreeiieeeeeeeee e e e e s eeere e e e 35
3.2.2 Incremental change propagation (ICP).......ccccooiiiiiiiiiiiccceeeeeeeeeeeeeeeeeeev e 36

3.3 SOUICE MOUEL.......iiiiiiiie e 38
3.4 Target MOGEL......eeeeeiiieee e e e e en e as 42

4 Chapter: Containmentbased Mapping Patterns.........cccccccvieiiiiiiiicceeeen, 45
4.1 Definition of Mapping PatternS.......cccccccceciieiiiiirceeeeeeeeeeeeeeeeeeeeeeerreeeee e . 4D
4.2 Specifying Containmerbtased Mapping Patterns in UML................cccccceveeee.... 46
4.3 Classifying and documenting of Containméaised mapping Pattemns................ a7
4.3.1 Classification of Contamentbased MapPinNg..........ccooeerurrrrrrimemerreeeeeeennnnens a7
4.3.2 Documenting the mapping PatternS.......ccoceeeeeeiiieiiiccceeeeeeeeeeeeeeeeveeevveevieeen e AT

4.4 Mapping @tterns applied between source and target metamodels................... 48
4.5 Mapping Patterns applied to One Metamodel...............ooo oo v 51
4.6 Application of mapping patterns in the context of UML+MARTE and LQN......57

4.7 Using Containmenbased mapping patterns for Transformation Rule Design...63
4.7.1 Rule based on the BMapping Pattern.........ccccuuuuuiiiirmreeeeeeeeeeeeeeeeeeeeeeeeeeas 64
4.7.2 Rule based on the Containment Mapping pattern..........ccccoeviiiieerriiivinnnend 66

4.7.3 Rule based on Virtual Container and Mutually Exclusive Containers patter69

5 Chapter: Performance analysis round trip............ccevviiiiiiiiiiieeseeeeeeeee e 72
51 Batch TransformMation............cccooooeiiei it eere e e e e e 72
5.1.1 Extending the batch transformation engrate the Traceability model............. 72

viii

5.1.2 Automate the Transformation PrOCESS.......c.oveuiee et e s 74

5.2 Feedback of Performance Results to the software Model...................ccceeee..... 76
5.3 Performance ANAIYSIS.cooiiiiiiiii e 77

6 Chapter: Incremental Change Propagation (ICP).............coovvviviiviiiiccceeeeeninnnns 81
6.1 Change Detection PhasSe............cooo i mmmr e 81
6.2 FOrmS Of MaPPING......eeiiiiieeiiiitree e renr e e e e e e enensneeed 83
6.3 Incremental Change Propagation (ICP).........ccoooiiiiii i eee 86
B.3.1 ASSUMPLIONS. . .uutuiitiiiiiiieee s s e s rmme e e e e e e e e e et e e e e e e e e eeeesaeeesassssaeeeaeeeaaeaaaaeaeeeaansrssnnens 86

O 30 o] =i (o] o F TP PP PP PPPPPI 87
(S T T (8 m o 4= 1 g T = o £ EEUPRRPRIN 89
6.3.4 Potential EXIENSION...........uuiiiiiiiieei et rmmme e 91

7 Chapter: ICP APPlICALION CaSES........uuuiiiiiiiiiiiiiiieeeeeiirireire e e e e 92
7.1 Case study 1: Applying Facade PatterN.............oovvviviieemiiieieeee e 92
7.2 Case study 2 : Changing from sequence of activities to graph....................... 105
7.3 Case study 3: Changing container (MONE)........cceoeeiiiiiiii i 113
7.4 Case study 4: Updating stereotype attribute............ccccoeviiieec e, 116

8 Chapter: ICP EVAlUALiONueiiiii e eeeeeeeeeee e 119
8.1 Evaluating the Correctness of ICP.............ooiiiiii e 119
8.2 CASE STUAIES. ...ttt rmene e e e e e nnne e 121
8.2.1 Secure COMMUNICALION PALLEIN........uvvviiiiiiiiiiitiirreeee e e e e e eeeeeeee e e e e e e e e seeeeaanaaanes 121
8.2.2 Virtual ProXy Patterml.......ccooeiiiiii et e e e e 126

8.3 Evaluation of ICP Run time effiCIENCY.........ccoviiiiiiiiiiiieeeeieee e 130
8.3.1 ICP execution time versus type of change.........cccovvviiiiiemiiiiiee 130
8.3.2 ICP execution time versus number of changes...........cccccccoeiiecceee e, 131
8.3.3 ICP execution timeersus the size of the model...............ccciiiieeciiiien. 134

LS I O ¢ =10 1 (=] G 0] o o3 [0 1] o] o HS 136

9.1 COMPIELE VBIK ... eees e e e e enen e 136
9.2 LIMIEAIONS ...t 138
9.3 Directions for future reSEarCh..............ccuuviiiiiieee e 138
Y o] 01T 0o [0l 2SS PP PP PP PP UURPPPPPTPPN 140
Appendix A: Summarized ICP Algorithm..............cooiiiiiiee e 140
Appendix A.1: Summarized ICP Case 1 Algorithm..........ccccvvveiiiiiceeieee e, 140
Appendix A.2: Summarized ICP Case 2 Algorithm..............cccooiviiieeeiiiiiccceee e, 142
Appendix A.3: Summarized ICP Case 3 AfNM ... 143
Appendix A.4: Summarized Algorithm for Move Difference...........cccoeeiiiiiiimeeeeee, 143
Appendk A.5: Summarized Algorithm for Add New Element Difference................. 144
Appendix A.6: Summarized Algorithm for Delete Element Difference.................... 144
Appendix A.7: Summarized Algorithm for Change Difference................ooeoeev e 144

Appendix A.8:Summarized Algorithm for Update Stereotype attribute Difference.144

Appendix A.9: Summarized Algorithm for Update attribute difference.................... 145

R B B N CES. . .. et e e ettt e et e et eaa et 146

List of Tables

Table 21 CompariSON CrHLEIA.........cceieeeeeeeiiiieeieeee e mmmr e e 16
Table 22 Comparison of incremental transformatagproaches..............ccccovvvvvvnees 19
Table 41 High-level view of the transformation rules to transform UML+MARTE to LQN
BlBIMEBINTS. ... 65

Table 81 Execution time for ICP based on number of changes......................... 133

Xi

List of Figures

Figure 31 Performance Analysis ROUNAID.uueieiiiiiee e 36
Figure 32 Incremental Change propagation (ICR)...........cccoovviiiiiieeere e, 38
Figure 33 Deployment diagram of Ecommerce System............oeeevvvvvieeeeiieee e, 41
Figure 34 Activity diagram of Place Order SCenario.............cceeevvivvieeeiiieee e 41
Figure 35 Activity diagram for Browse Catalogue Scenario...........cccceeveeeeieeeeennnns 42
Figure 36 Activity diagram for Browse Cart Scenario.................vvvvvuuiceeeeeennnnnnnnn. 42
Figure 37 LQN Emfatic Ecore metamodel ... 43
Figure 38 LQN Model generated from@mmerce software model....................... 44
Figure 41 Collaboration elements.............coooiiiiiiiieeee e 46
Figure 42 Collaboration UsSe €lemMENLS............oovviiiiiiiiimee e 47
Figure 43 Containmenbased mapping patterns relationships................c.cc.vveeee.... 48
Figure 44 ST Mapping Pattern: definition.............ccccoovvviiiiieee e 49
Figure 45 ST Mapping Pattern: appldion...............cccoeeiiiiiiiiiecciccie e 49
Figure 46 Containment Mapping Pattern: definitian................cooovveee e, 50
Figure 47 Containment Mapping Pattern: application.................cccccvvceeeeveivivinnnnn. 51
Figure 48 Simple Container Pattern: definition.................oovviiccciiiieeeee 51
Figure 49 Simple Container Pattern: application..............ccccoeveiieecvevviviiiiieee e 52
Figure 410 Intermediate Container Pattern: definition...............ccccccvvceceeveeevininnnnn. 52
Figure 411 Intermediate Container Pattern: application................ocoovveeeeeeveninnnnnn. 53
Figure 412 Virtual Containers Pattern: definitian...................oooviemiiiiie e, 54
Figure 413 Virtual Containers Pattern: applicatian..............ccccceeivieeeieeeeeeeeiiineee, 55
Figure 414 Mutually Exclusive Containers: definition...............coooovvvivccciini e, 55

Xii

Figure 416 LQN metamodel with some patterns applied...............coiiccceveeennnnnns 56
Figure 417 Mapping {Device, Artifact} to {Processor, Task}.........ccccceeeveeeirereeeenns 59
Figure 418 Mapping {Artifact, AcceptEventAction} to {Task, Entry}..................... 59

Figure 419 Mapping {Artifact, CallOperatiorction} to {(EntryPhaseActivities Xor
TaSKACLIVITIES), ACHVITY}.....cc e emere e s e e e e e e e e e e eeeea) 60
Figure 420 Mapping {Artifact, DecisionNode) to {TaskActivities, Precedence}....61
Figure 421 Mapping {CallOperationAction, ControlFlow} to {Activity, Synchcall}.61
Figure 422 Mapping Device properties to Processor properties...........cccccueeee. 62
Figure 423 Highlevel view of the mapping between the source and tangeels......64
Figure 424 Example of Implementation of Bmapping pattern..................ccceee. 65
Figure 425 Implementation of mapping {Model, Device} to {Lgnmodel, Process@¥

Figure 426 Implementation of Mapping {Artifact, CallOperationActioh to

{(EntryPhaseActivities Xor TaskActivities), ACtVItY}.........ccceeeeiiiiiiiiiiee e 71
Figure 51 Trace Metamodel...........cooooiiiiiiiiiir e 74
Figure 52 Response time for ClasS1 USErS......ccooeiiiiieiiiiiieeeiei e 79
Figure 53 Throughput for ClaSS1 USEIS......cccoeiiiiiiiiiiiiiieeeii e 80
Figure 61 Example of difference file........ccccoooiiiiiiiiiiiceei e 83
Figure 71 Deployment diagram for Example.l...........ooovriiiiiicccee e, 92
Figure 72 Activity Diagram for Examplel............ccoooiiiiiiiiiiiccciiiie e 93
Figure 73 Original Lgn for Examplel..........cccoooiriiiiiiiceei e 94
Figure 74 Mapping OpaqueACtion t0 ACHVILY..........cccvvriiiiieiiieeee e 97
Figure 75 Example 1: LQN after propagating diff 1 and.2............ccccceeviivieeencnnnnnn ! 98

Xiii

Figure 76 Examplel: LQN after creating new task F and propagating diff 4&.6.100
Figure 77 Example 1: LQN after propagating diff 13...........ccccooviiiiiiiceciiiiiiiiinnnn. 102

Figure 78 Examplel: LQN after adding new Synchcall and propagating differeriz!

Figure 79 Examplel: Updated Trace Model..............oovvvveiiiiccrieiieeceeeee e 105
Figure 710 Example 2: Activity partitions without graph pattern.......................... 106
Figure 711 Changed Example 2: Activity partition A2 with graph pattern........... 106
Figure 712 Original LQN for Example 2 in Emfatic Ecore format........................ 107
Figure 713 Intermediate step fadding Taskactivities...............cccccceeeiiiiiieecennvnnnnnns 107
Figure 714 Example 2: LQN after Propagating Differences 1 through.5............. 109
Figure 715 Example 2: LQN after adding new Precedence.............ccccccvvveemeneee. 110
Figure 716 Example2: LQN after adding reply entry and replyactivity................ 111

Figure 717 Graphical representation of LQN model before and after propagating all

G AN et ————————————— 114
Figure 718 Example 2: Updated Trace model..............ccoovviiiieeeiiiiii e, 114
Figure 719 Deployment Diagram before moving Artifact..............ccooeeivieeeeeen. 115
Figure 720 Deployment Diagram after moving Artifact E................oooooiiiieeeeen. 116
Figure 721 Moving task F from processor D2 to processor.D1.................cc...e.. 116

Figure 722 Example4: Activity diagram after updatindHost demand of
CalloperatioNACHONPRL.........uuuiiiie e eeeer e e e e 117

Figure 723 LQN after updating Hostdemandmean of CallOperationActionphl Activity

Figure 81 Activity Diagram of Browse Catalogue scenario before Secure communication

= 11 =] o PP 122

Xiv

Figure 82 Activity Diagram of Browse Catalogue scenario Secure communication pattern

Figure 83 LQN model after change propagating.........cccceeeeeeeiiieeeiciiiiieeeeeeeeeeee 123
Figure 84 Graphicalrepresentation of LQN before applying Secure Communication
02 11 (<] o PP PPUPPT 124

Figure 85 Graphical representation of LQN aftgplying Secure Communication pattern

... 125
Figure 86 Activity diagram for Browse Cart scenario before Proxy pattern........ 126
Figure 87 Activity diagram for Browse Cart scenario after Proxy pattern........... 127
Figure 88 LQN model before applying Proxy pattern...........cccoeeeeiviieeecinnnnennnnn. 128
Figure 89 LQN model afteincremental Change Propagation..................c....oee... 129
Figure 810 Comparing ICP execution time for different types of change............ 133

Figure 811 Execution time for different size of models when apply update attribute change

XV

List of Code Fragments

Code Fragment-4 Transformation Rule Model2Lgnmodel.............cccovvvvivieeeneen. 68
Code Fragment-2 Operation getDeVICES........uuiiiiiieiie e ccceeiiciie e eeveeee s 68
Code Fragment-8 Operation hasSStereotyPe.........uuuuuiiiierieieccceieise e e e 68
Code Fragment-4 Transformation Rule Device2ProCcessor............ccccvvvvvvvieneeeennn. 68
Code Fragment-8 Ant BUild file..........oveiiiieiii e 75

XVi

List of Acronyms

AC AttributeChange

EMF Eclipse Modeling Framework

EOL Epsilon Object language

Epsilon Extensible Platform of Integerated Languages for Model Managet
ETL Epsilon Transformation Language

HOT Higherorder Transformation

ICP Incremental Change Propagation

LON Layered Queuing Networks

MARTE Modeling and Analysis of Redlime and Embedded Systems
MDE Model Driven Engineering

NFP Non-FunctionalProperties

OMG Object Management Group

RAC Resource Attachment Change

RC Reference Change

SAC StrereotypeAttributeChange

UML Unified Modeling Language

Xvii

1 Chapter: Introduction

1.1 Motivation

ModelDriven Engineering (MDEshifts the focus of software development from code to
models. The emergence of MDE has enabled the generation of formal analysis models
(such as Markov chains, Queueing Networks, Layered Queueing Networks, Stochastic
Petri Nets, Stochastic Process Algebra, fault trees, fetic.)dhe verification ofNon
Functonal Properties (NFRsuch as performance, reliability, availability, fatdterance,
scalability, security, maintainability, e}c.The analysis models can be automatically
derived by model transformations from the software models built for development.

The main motivation of this researchtie need to seamlessly integrédemal analysis
models for NFPs into the MDE process, in order to guide the design choices from an early
stage andto ensure thathe system under constructiomll meet its nonfunctional
requirementsMore specifically, this research focusses on the integration of performance
analysis based on Layered Queueing Netwdik2][3] models in the modeadriven
engineering process using UM4] [5]. The source software models are extended with
MARTE [6] performance annotations, as described in more detatlseirthesis. The
transformation from UML+MARTE to LQN is natrivial becausehere is a large semantic
difference between the source and the target mddelgover some aspectsf the source

model (such as nesting of software componenisoncrete dataalueg are not captured

in the target model. This prevents us from usindif@ctional transformations, which have

the advantage of providing model synchronization for ff8e

An important concept in model transformations is the mapping between the source and

target (meta)models, addressgdnapping patterns. In this researchpr@posea subclass

of such patternsalled containmerbased mapping patternghich take into account the
containment relationship when mapping the source and target (meta)n\baletsng is
defined as the correspdence betweeslements othe source and target (meta)models. A
design pattern in software design is defined r@sigble solution to a commonly occurring
designproblem within a given conteXB]. Combining the definitions of mapping and
design patterns, we define a mapping pattern as a reusable solution to a commonly
occurring mapping problem between source and target metamodedpé@tific context.

A UML-based notation for specifying traefinition and application of thenapping
patterns independent of the language uskxt implemening the transformationis
proposed in the thesiSuch a mapping specification is reusable andbeansed to design
different kinds of transformation (such as batch or incremeimt@lemented in different

model transformation languages (such as AJJL, QVT [10], Epsilon[11]).

The motivationfor the mapping patternsistoansveer c hal | engi ng questic
needs to be transformed into whato, thus s
mapping by transformation rules to the mapping itd8& show how the containment
based mapping patterns are applied to tlsgdeof transformations from UML+MARTE

to LQN, bothfor batch and incremental transformatio(Rlease note that the complete
implementation of the batch transformatiorEsilonETL was done irseparatevork). In

this research, wextenadthe batch transformation to generdteside theéargetmodel, a
traceability model containing trace links between magoedce and targetements. After
solving thegenerategberformance model with an existing solver, the performance results

are fed bek to the software model by following the crassdel trace links. The software

developers can see the performance results as MARTE stereotype attributes, using a
standard UML editor.
Anothermotivationof the research i® keepthe software and analysimodels consistent
after the software model evolves durinthe softwaredevelopment process to meet
functional or noAfunctional requirements. The proposed incremental change propagation
aims to keep UML software model and performance model consistdneach other
More specifically, the thesis presents ttlesign (based on the mapping patterns),
implemenation (in Epsilon EOL language)and evaluation ofani ncr e ment al ch
propagati on (rl-eaCyPn c hatptpeiozma fhjga @of e rmoalsadfet e r
any kind. oDurcihmghgtehe devel spié¢waad @lr oeeslsy e
we detect the changes with the Eclipse EMF
t hem t o t heTheLpgoNosen ¢C® eslimplemented with the Epsilon Object
Language (EOL) and it is evaluated by applying it to a set of case studies.
Other aspects thatotivatethe work in this thesis are as follows:
1 Change propagation is still an open probl§l2] in the literature The proposed
incremental change propagation approach fulfils the need addiigssee authos in
[13] [14] for supporting evolutionrad ceevolution between different artifacts suas
analysis and design models
1 Improving the quality of nonfunctional requirementith the help ofanalysis models.
According to[15] solutions to model evolution shoubdéintegratel with model quality
solutionsand model consistenaghallengessince the goal of model evolution tis

improve the quality of the system.

1 Providng automatedgpportfor performance evaluaticas early as possible in thie
cycle in order to help the developers to understand atetpret the performance
results from the point of view of the softvearather thathe performance model.

1 Gaining experience with a nefamily of language<$psilon(standing for Extensible
Platform of Integrated Languages for modabhnagement)intended for model
transformatiorand model managemefdtl]. Epsilon is interesting becausecarding
to [103] it has been adopted fheindustry as well as itheacademia

1.2 Research Objectives

The proposed research is in alignment with the objectives of an industrial initiative called

PolarSyq416], created by major industry players and tool providers to develop and support

open source ME tools over Eclipse. In this research, we use the-sparce tool Papyrus

[17] developed under the PolarSys umbrella. There are many benefits to the software

industry from the integration of the NFP analysistiie MDE process, for example

improving the quality of software products by early detection and solution of NFP
problems, in addition to avoiding project cancellation due to NFP failure.
Theobjectives of theproposedesearclaresummarizedn this sectio.
a. Theobjectives of theontainmenbased mapping patteraseas follows
1 Provide high level specification of mapping betweenurce and target
(metgmodels.

1 Answer a challenging question thatish at needs to beofransf
thebBifting the focus from the i mpl ement
rules to the mapping itself.

b. The performance analysisundtrip haghreeobjectives:

1 Automating the gneration otrossmodel traces.
1 Developingthe performance analysis roundtigp performance resulteedbacko
the UML+MARTE modelbased on crossiodel traces
1 The abilityto storethe software model and its performance results in the same file
offers opportunities for furtheautomating the analysis. For examplezauld be
used to complete the autotioam process in the performaniocgprovement approach
based on software antipatterns proposed 8. So far, the method for detecting
antipatterns takes as input an XML file buijt lband, which combines information
about the software model and the performance results. This step could be automated
now by applying our approachhis would relieve the analysts of repetitive error
prone manual actions.
c. The incremental change propagatepproach haiss ownobjectives:
1 Support (sem)automatic ceevolution of software model and analysis model.
1 Supportincremental propagatn of (small changs betweenthe software model
and analysis model.
1.3 Thesis Contributions
The contribution®f thisresearch arseummarizeds follows:
1. Propose set ofcontainmentased mapping patternghich are used to mapgroup
of containmentelated source model elements intgraupof target model elements
A UML-based notation for specifying thkefinition and application of theapping
patternsindependent of the language usadmplemening the transformationis used
in the thesisSuch a mapping specification is reusable and can be applied to the desig

of different kinds of transformation (such as batch or incremental) implemented in

different model transformation languag®ge apply the patterns in the context of a
nontrivial transformation from UML software modelannotated with MARTE
performance iformationinto Layered Queueing Network (LQNerformance models
(see Chapter 4)

2. Help designers tanprowe thar designby feedingbackthe performance results the
software modelvia performance analysis roundtripFirst we extend the batch
transforméion to generatebeside thaargetmodel, a traceability model containing
trace links betweerthe mappedsource and targetlements. Aftergenerating the
performance modeaind solving itwith an existing solver, the performance results are
fed back to thesoftware model by following the crossodel trace linkgsee Chapter
5).

3. Developa fully automated incremental change propagafiG®) approach from the
UML+MARTE software model (the source) to the LQN performance model (the
target). The ICP is designedby reusing the pattefbased mapping specification
between the source and target modietsoduced inChapter4) andis implemented in
the EOL languagesée Chapte8). ICP applications are given in Chapter 7 and the ICP
evaluation is presented in Chapger

Theresults of this research are published inftilewing threepapersand another two are

in preparation
1 Taghreed Altamimi, Mana Hassanzadeh Zargamnd Dorina C. Petriu,

APerformance analysis roundtrip:andaut oma-

results feedback using cres®del trace link§ , Prbceedings of the 26th Annual

International Conference on Computer Science and Software Engineering
CA S CONppl26s217, 2016
1 Chen Li,Taghreed Altamimi, Mana Hassanzadeh ZargdBiuliano Casaleand
Dorina C. Petriu i T A To®ldor Transforming UML to Layered Queueing
Net wor ks for Performance Anal ysins of
Proceeding®f International Conference on Quantitative Evaluation of Systems
QEST 2017 Springer LNCS vol10503 pp. 295299, 2017
1 TaghreedAltamimi and DorinaC. Petriu.fi | n c r echaage praphgation from

UML software model s t o InPrQddedipgs oftheslhman c e
Annual International Conference on Computer Science artav&ef Engineering
CA S CONppl20-131, 2017

1.4 ThesisContents

This section presents the overall organization of the thesis proposal and the cardeht of

chapter

Chapter2 describes théackground andtate ofthe art in modeltransformation, model

driven analysis of nonfunctional properties (NFP), coevolution of software and analysis

models, comparison and traceabibifymodels

Chapter 3escribes highlevel view of theproposed approach.

Chapter $presentshecontainmentbasednapping pattermandappliesthem inthe context

of the transformation froftUML+MARTE as sourceo LQN as targetlt continues by

describing the application of the mapping patterns to the design of the transformation rules

for a batch transformatiamplemented in ETL.

Chapter Sextends the batch transformation with a trace maddshows how torealize a
performance analysis roundtrip bging thetrace model fofeeding back the performance
results to the software model

Chapte6 presentshealgorithm for thavhole ICPfrom UML+MARTE to LQN, including
the change detection phase &melincrementathange propagation steps.

Chapter 7 presentbe propagation of different kinds of changeth moredetails.
ChapterB describes thevaluation dthe ICPby applying it to a few case studies

Chapter9 concludes théhesisand discusses future research directions

2 Chapter: Background and Sate ofthe Art

2.1 Model Transformations

Model transformations are considerdcial to Model DriverEngineerindMDE). In [19]
amodel transformatiors definedasanautomatic generation of target models from source
modelsaccording taa givenset of transformation rule¥he source and target modale
specified withmodeling language which in turn are defined byetamodelgsiescriting

the abstract syntax and static setita of the languagé\ccording to OM® guide[20],
ametamodel is a model thabt onlydefines a modeling languageutis also expressed
using a modeling languag&he authas in [21] classify the transformati@accordingto

the source and targetetamodel$o two types exogenous and endogenolmsexogenous
transformations,the source and target metamodels are different. For instance, the
transformation from UML software model tbhayered Queueing Network (LQN)
performance modgiroposedn [22] and presented in chapters exogenousExogenous
transformationsare also called in-out place transformationSecond,the endogenous
transformationgknown also ai-place transformatiorgre those in whickthe source and
target model hathe same metamoddtor example, refactoring UML class diagsaisan
endogenous transformation

2.1.1 Transformation Languages

Model transformation languages can be classifietthreestyles declarative, imperative
and hybrid.Each style has benefits and drawback®eclarative languagesre more
concerned witth wh at 0 r at h,dacusingma@eron fdéntfying what are the
mapping between the elements in the source model and the elements in the target model.

Declarative languagprovide short, compact and brief transformagifz8]. Theycan be

very usefulin the casesvherethe mapping is simpléecausethe source and tget
metamodels are very similar. Hewer,they cannot handle the more complicated cases
when the source and target metamodels are different in terms of their str{ictlires

On the other handmperative languagefocus ond h o w 6 thare twhh el ey specify
how the transformatiois supposed to be executadd present it as a sequence of actions.
Imperative transformation languagresimilar to general purpose languagech as C++

or Java[23]. They can handle more complex transformatiand givea higher level of
control to the useHowever,imperative languages haseme drawback for instance the
user needs to tackle some issues like tracemplving target elements, and orchestrating
the transformation executioifhis means that thianguage operaseat alow level of
abstractionThe laststyle, hybrid languageswhich isa combination of therpvious two,
helps in overcoming the shortcoming of the imperative and declarative languages.
QVT, ATL and ETL are examples of hybrid languages as #weycapable to handle
complex transformation as they have the imperative featurepraniling a dedrative
rule-based execution scherfiel].

QVT (Query/View/Transformation) defined by the Object Management Group (OMG)
consists of set of model transformation languages. QVT has two leveisclarative
architecture QVTr-Relationallanguage thasupport generating traces, creating object
templats and matching object patterand QVTeCore language th&bcuseson matching
patterrs where a set ofariables are evaluated agaiaset of moded. QVT relational and
core levels are the execution semantics framework for the imperative part that tindine

to invoke theimperative repesentations of transformatiofi®] .

1C

ATL (Atlas Transformation Language) was developed by the ATLAS group and built
on top of the Eclipse platform. ATL expresses the transformation as a set of atles th
represent the mapping between the target elements and the source g@ments

ETL (Epsilon transformation language) is a declaratie/imperative langagefrom the
Epsilon family, specialized for model traf@mationsand offers powerful and concise
language constructélso, the Epsilon engine takes over a number of tasks (such as what
rule to apply next) that must be handdlicitly by a Java transformatiokpsilonis a
family that provides different languagés model management tasksuch asEpsilon
Validation Language (EVL), Epsilon Transformation Language (ETL), Epsilon
Comparison Language (ECL), Epsilon Merging Laage (EML), Epsilon Wizard
Language (EWL)Epsilon Generation Language (EZEpsilonObject Language (EOL)
and Epsilon Transformation Language (ETL}].

The batch transformation from UML+MARTEsoftware model to LQN performance
model is implemented in Epsilan [22]. We built our incremental change propagation
techniqueusingthe EOL languagea standalonegeneral language that cée used to
automate some generalsks. In this thesi€OL facilitates reading from different files
with different formas,like UML models and XMl filesand providea mechanism to write
and chang&.QN files and Trace files. Epsilon also providas orchestration workflow
solutionextended from ANT[24] to a number of model management tasks develaped
taskspecific language In chapter5, we discuss how we took advantage ANT to
automate themulti-step transformation thatas developedn [22]. The transformation
model represents the mapping between source and target msapeisrated automatically

by Epslon Haetae tool that is an extensible static analysis framework for the Epsilon

11

platform [2.9t Jakes as input theextual ETL transformation definitiofiransformation
rules)andtranslate themto an ETL transformation model.

The Transformation Model conforme the ETL and EOL metamode]s 2.5Ah EOL
program can have more than one module, whoslg is a block consisting of a number of
statements and operations that perform extra functions am thg etypes.GeEslElement

is a super type fdExpressiorandStatementThe root metaclass in the ETL metamodel is
EtIModulewhich consists of a numbef transformation ruleslransformationRuléas a

name and refers to a source and many target parameters. A guard is optin&dllinrule

and can be an EOL expression or block of EOL statements. The body of the rule is an EOL
staement[26][11]. For more clarificatioret uslook at the example ddevice2Processor

(see Code Fragment4-4) rule representation in the transformation model. The
Device2Processarlass is an instance dfansformationRulenetaclass bearing the name
fiDevice2Processdr . Each rule has source Expreabsionar get .
class that is akolElementvhose type iModelElementTyperheelementNames Device

in case of source arRrocessolin case of target.

2.1.2 Batch versuslncremental Transformation

Incremental transformation is becoming the alternative solution to the traditional solution
(i.e., batch transformation) when the source model evolves during the software
developmentAccording to[21] [27], incremental transformatiois defined aghe ability

to transform only thelements in the source model that have been changed and ignore the
others.

In the literature, there are two main approaches for incremental transformation as noted in

[12] [28].The firstapproach is the batch transformation that depends mainly on rerunning

12

the whole tansformatiorfrom scratchgven though not all parts of the source model have
been evolvedand merge the existing target model with the new [@9%. However,
rerunningthe whole transformation does not maintain the transformation comtesh
specifiesthe model transformation system execution stateh asvariable valuesand
partial matche$28] and merging depends heavily on the trace information generated by
the transformation languag®2][30].

The secondmnore practical solution is Incremental transformation. It focuses only on
examining the eleants of the target model affected by changes in the source model and
propagatinghosechanges fronthe source to the target modalithout consuming timé&o
re-executehe whole transformation. Incremental approaches are more economical in terms
of execution time compadto the batch transformatidB0], more practical and efficient
[28][31], especiallyin largescale systemi82], by avoiding unnecessary overhead caused
by rerunning the whole transformati{88].

A good example of incremental approach can be fourj@2h The authors proposed a
framework for increnental transformation. They developed two algoritfBhsuldExist

and DoesEXxistto identify the action that needs to be taken to change the target model
according to the change in the source model. Our approach is similar to their approach in
terms of chedkg the existence o& changed element in the source model, and then
checkingthe existence of its corresponding elemerthatarget model. However, i32]

is nottaken into consideration that the changednedmt in the source modelay need to
satisfy some conditions in order createeffectin the target model. Our approach satisfies
suchconditions (called guasgjlwhich are verified before propagating the effealeamens

in thetarget model.

13

Another tehnique for incremental transformation called Lelgased SLD Resolution
presented if30] is built in the context ofTefkattransformation languagand can only
support declarative transformatsrOn the other hand, it supports only atomic changes
(element insertion and deletid3B]. Our approach is built in the contextb€ETL hybrid
transformation language and suppdobth atomic changegelement insertion, deletion)

and composite changes (element updating and moving).

The approach proposed[B¥] is similar to our approaghs it supports incremental model
syndironization ina unidirectional transformation. lis appliedto class diagramsand
relational database diagrams source and target modeisspectively. It depends on the

old traces to update or delete elements in the target ntemtetreating a new elemeritt

uses &nowledge base thabntainsinformation about the pattern of the transformation.
However, the new elemeistcreated only athe end of the synchronizatiomhich means

that no modification can be done on the new elemastit the end of the synchronization

Our approach is differenas it supports change propagation between source and target
modelswith very different metamdels. It was applietb a source modatonforming to

the UML metamodel angroduces darget modekonforming to theLQN metamodel
Eachmetamodel has different references and different elements with different properties.
As a result, that differendarings morechallenge and complexity in the interpretation of
the change in UML and propagating it to LQN. Anott#ferencethat distinguisksour
approachs thatit needs to check some guards in order to decide whether a source element
change will lead orat to the creation of a target elemdntaddition, our approach checks

if the propagated change affects internally other elements in the targepdaigshem

even iftheir source elements did nmécessarilghange.

14

The impact on the system perfornrsarmodel when applying a design pattern 8eavice
Oriented Architecture (SOAJesign model is investigatau[35]. This work has been done

in our performance research group at Carlefime Role Based Modeling Language
(RBML) is used to define th8&0A design patterngpplied to the source modelhe
changes produced by the pattern application are propagated to the performance model. The
similarity betweerj35] and our work is that both use the transformation between software
models in UML+MARTE and LQN performance modeBnedifference is that if35]

only modifications due t&OA design pattern applicatisrare propagated to the LQN
modelvia refactoring rules specific to every pattenmile in our case any modification to

the software model detected with EMF Compeae bepropagated to the LQN model.
Another difference is that in our work we make use of mapping patterns to specify the
mapping between source and target (meta)models in a reusable and implementation
languagendependent way.

Forward and backward change propagation between source model and target model
generated bgnATL transformatioris proposed if36] . The forwardpropagatiordepends

on re-executing the whole batch transformatidie backward method does not support
insertion in the target modeh the same context of ATL the authafs[31] proposedan
incremental approach that suparhly theimperativeparts of the languagbut doesnot
support composite chang@sg.,move).

In the context of graph transformatgynapproachessuch as[37][38][28] support
incrementality Theyweredevelopedn the context ofthe VIATRA frameworkwhere the
execution bthe transformation is driven by change and based on graph pattern matching

However, only{38] suppors composite chang@ipdate and move)n fact, the execution

15

semantics ofgraph transformatios is different from hybrid model transformation
languagessuch as ETLHybrid languages provides the designer with more malct
solutions based on the probleat hand [27]. In graph transformatios, models are
representeds a graphs arttie transformations based on graph theof$9]. In the same
graphcontext,in [40][41] are proposedbidirectional incremental approaels based on
Triple Gragh Grammarswhichareclassified asleclarative language

Different examples of bidirectional transformation languagesh aq7][42] and others
can be found irthe survey papef43], which discussetow bidirectionalitysuppors
incrementality However bidirectional transformation isot suitablefor the problemwe
considerpecausén our transformatiomot all properties fothe source model are captured
in the target modelFor instance, thetmuctural nesting of componentamot be
represented ihQN, where the tasks thate counterparts @bmponents cannot be nested.
Anotherexample why the transformation from UML t@N is not bidirectional is that
LQN does not retain which entry corresponds to which activity partition, soisgethis
information when transforming back from LQN to UML

Table 2-2 compares the previously discussed incremental approaches with our proposed

approach based on different criteria discusséhlrie 21.

Table 2-1 Comparison Criteria

Comparison criteria Explanation

Technique Used The name of the technique used to apply
incremental transformation

Language Style The classification of theransformation language us
in the incremental transformation

Language Framework The specific name of the transformation language

16

Change Type

What is the type of change?
1) Atomic (single change) such as delete or insert.
2) Compositg(set of changes) such as update or m

Source What is the source model thapresentshe input of
the transformation

Target What is the target model thegpresentshe output of
the transformation

Conditions If the incremental approach checfjgard conditions
that the source model element should satisfy be
creating a new element in the target model

Profile If the incremental transformation supports propaga
a change in the value of a stereotype attribute whe
source model elementéxtendedvith that stereotype

Mapping Specification of mapping between source mc

elements and target model elements

AutomatedChange detectior

If the changes are detected manually oakyol

Arbitrary or restricted

changes

If the designer can apply any change or only spe
changes

17

Reference| Technique Language Language Change Type Source Target Arbitrary (A)
Used Style Framework | Atomic | Composite O 5|3 |80 |0 Restricted
- |9 < , % §., § g%-—; change$R)
[40] Triple Graph Declarative | Graph Alalx |x Class Database Alx | x | X R
Gramman(TGG) Transformation diagram | schema
Language
[41] Triple Graph Declarative | Graph alala |a SysML AUTOSAR | 3Ix |2 |3 A
Grammar(TGG) Transformation model model
Language (Automotive
Open System
Architedure)
[30] Logic-based Declarative | Tefkat Alalx |x Class Database ER| 5| x | x | X R
SLD resolution diagram | diagram
[37] Graph pattern | Hybrid VIATRAZ2 Alala |x Graph Relational Aalx [X | x R
matching DB
[38] Graph pattern | Hybrid VIATRA2 Alala |a XML - JPDL alx 1ala A
matching based Domain
Domain specific
specific (XML -based
workflow | language)
[28] Graph pattern | Hybrid VIATRA2 313/3 |x Petri nets | Petri nets Aalx |x |a R
matching
[32] ShouldExisand | n.a IBM Rational Alala |x UML Domain Alx |a R
DoesExist Rose design Specific
algorithm model Models
(ESCM)

18

[35] Coupled _ Hybrid QVT Alala |x UML Performance | 313 [x | X
transformation design model (LQN)
Model
[34] Incremental Hybrid QVT Alal3a |x C_Iass Database X|x |4 |x
model diagram | schema
Synchronization
[31] Live _ Hybrid ATL Alala |x Class Relational alx |x |a
transformation DB
support for ATL
Proposed | Incremental Hybrid ETL alala |a UMI__ Performance | 313 |3 | 3
approach | change design model (LQN)
propagation Model
(ICP)

Table 2-2 Comparison of incremental transformation approaches

18

In summarythetype of software artifact imgés the change mechanism that is required
[44][45]. Only one of the examined approacH&8] suppors incrementalitybetween
analysis models and design modelsnilar toour approachHowever, it only supports
some specific kinds of emges due thapplication of SOA design patters) while our
apprach supportarbitrarychangesletected byhe EMF Compareool. Additionally, the
mapping between UML+MARE to LQN was hard coded the transformation frorf85],
while in our work we make use of mapping patterns to specify the mapping between source
and target (meta)models in aisable and implementation languagdependent wayOur
approach is the onlgnethat update the old tracesfter propagating the changésw
approachem literaturesupport composite changi@3]; oursis one of themAccording to

the last comparison criteriofew approachesupportthe propagation of changes in the
attribute values of stereotyp@pplied tothe sourcemodel elemerst The interest in
handling stereotypes comes from the fact tthat transformations from software to

performance models takes as input UML software model with MARTE profile annotations.

2.2 Model Driven Analysis of Non-Functional Properties (NFP)

2.2.1 Generate Analysis Models from Software Models

ModelDriven Engineering (MDE) shifts the focus of software development from code to
models. The emergence of MDias enablethegeneration of formal analysis models for
Non-Functional PropertiesNFP) verification such asperformance reliability, fault-
tolerance scalability,security,availability, maintainability,cost,etc. The analysismodels

can beautomatically derived by model transformations from the software models built for
development Many modeling formalisms and tools have betsveloped(such as

gueueing networks, stochastic Petri nets, stochastic process aldabitasees, formal

20

logic, probabilistic time automata, étctor the analysis ofvarious norfunctional
propeties (NFP).In this thesisthe Unified Modeling Languagés used to represent the
softwaremodel. There aredifferent UML profiles definedto bridge the gap between
analysis and UML software models. For example, MARTIEe(UML Performance Profile
for Modeling and Analysis of Redlime and Embedked Systems (MARTE) [6] extends
UML with timing concepts, resources andrkload required for quantitative performance
and schedulability analysi$he UML Profile for Schedulability, Performance and Time
(SPT)[46] is a precursor of MARTE that wasefined for UML 1.X Both SPT and
MARTE areused for annotating the performance properties of UML mo&ARKRTE has
been extended with @ependability profilecalled DAM thatcan be used for annotating

dependabilitypropertiegsuch as availability, reliability, safetgf UML models[47].

Generating Performance Models

In the software performance engineering fielldere have been significant efforts to
integrate performance analysis into the software development process by using different
performance modeling formalisms: queueing networks, Petri nets, stochastic process
algebras,Layered Queueing Networks (LQNpBnd simulation.Performance model
represents thquantifiable attributes of the systemch as response time (how quickly the
system responds #m event)or throughpt (how much work the system can achievain
specific time).A good survey of the technigs for deriving performance models from
UML models is given iff4], and later in the boo}5]. A few early examples of derivation

of different kinds of performance models from UML are as follows. The technique
presented if48] follows theSoftware Performance Engineerirf@RB [49] methodology

very closely, generating the same kind of models 449 but it cannot take as input

21

UML files produced with standard editors.[60] UML models are transformed into Petri
Nets, but the contention for hardware resources is not congidefé1] it is presented a
transformation from UML to Stochastic Process Algebra.

The performance research group from Carleton University has implementeddJMN
transformations in different languages (such as graphiting language Progres, text
transformation language XSLT and gengraipose language Java) and was the firsséo u

the standard UML metamodel libraries that were current at the time and the standard
performance profiles SP#6] and MARTE[6].

The most comprehsive model transformation of the Carleton group, which takes as input
a number of different software models (including UML+SPT and UML+MARTE) and
generates a number of target performance models (such as LQN, QN and Petri nets) is the
PUMA transformation[52][53] and its extensions foBerviceoriented Architecture,
PUMA4SOA[54]. PUMA uses an intermediate model cdll@ore Scenario Model (CSM)

[53]. This way, PUMA succeeds in minimizing the large semantic gap between UML
models and performance models and reduces the complexity of the transformation at the
cost of having two gmrate transformations: one from UML+MARTE to C$585] and
another from CSM to LQNbB6].

Comparingthe light-weight EpsilonETL transformatiordevelopedn [22] with PUMA,

the ETL transformationgoes directly from UML+MARE to LQN, eliminatingthe
intermediate modalsed in PUMA Thus, the transformation is faster (as there is no need
to generate and store an intermediate model) and supports eastiypaatelr traceability
between the source and target modéither diffeences stem from the languages used to

implement the transformation€Epsilon ETL is a declarative/imperative langge

22

specialized for model traftsmations, which offers more powerful and concise language
constructsfor transformationthan generalpurpose language#lso, the Epsilon engine

takes over a number of tasks (such as what rule to apply next) that must be handled
explicitly by a Java transformation. On the other hand, PUMA was developed in Java, a
generalpurpose language that dasst provide built in operations to help navigating the
source model, which makes the transformatiotlemoredetailed andomplicatedIn this

thesis we built our incremental change propagation (ICP) apphzsed on thenapping
patterns and th&TL transformation[22], which takes as input a UML software model

with MARTE performance annotations, agenerates a corresponding Layered Queueing
Network (LQN) performance model im&XML format understood by the existing LQN

solvers

Generating DependabilityM odels

Dependabilityrepresentshe aility of the system to perforris tasks in a specific time
(reliability, availability) andto function correctly under stressful conditiomelustness
There are several approaches in the literatures proposyemeratelependability analysis
models fran software modeld-or instancein [57] it is proposed an algorithm to convert
fault tree models (FT) to equivalent Generalized Stochastic Petri NEGSPN) and
Stochastic Reward Ne{SRN). The dependabilitpf the system can be improved by using
fault tolerancewhich is defined as avoiding failure in the presence of fauichanisms
FT analysids an example adlependabilityanalysis approachvherethe systenis exposed

to predetermined failussandthe FT analysis identifiewhich part of the system was the

reason of tht failure.

23

Another examplef dependability analysisan be found if68], wherethe authos propose
an algorithm tautomaticallysynthesize dynamic fault trees (DFTan extensiomf FT -
from UML software nodek. Several approachesuch ag59][60][61][62][63], propose
thederivation ofstate based analysis mod8BN(Stochastic Petri NgtGSPN, and SRN
from UML models

2.3 Co-evolution of Software and AnalysisModels

In the context of ModeDriven Engineering (MIE), wherethe models aratthe hearbof
the life cycle of system developmenipdelevolution cannot beavoided Thedifferent
types ofmodelsusedare very exposed to change during the software development cycle
due to different reasonsuch as responding to new functional requirementproving
thar quality, or reducingthe complexityIn the literature, there are different classification
of model evolution. Fomstance, in64] model evolutionis classified infour types 1)
regular evolutionwhere the model changgsmetamodel evolutigavhere the metamodel
changesndthen accordingly the models need to be updated to be conformant teetheir
metamodels 3) platform evolutiorthat leads to change in the application framework and
code generatorgl) abstraction evolutiordue to the use & new modeling languagi
[65] another classificatiois suggestedl) local/syntactic model evolutiaefers to change
in modelsdueto change in metamodels2) local/contentrelated model evolutiorefers
to changes to model elememise b addition,deletion or updag; 3) systemifsyntactic
model evolutionconcerned witlchanges in the modeling languadé systemifcontent
related conceredwith merging different parts of the systeAtcording to[66] the main
reasons for model evolution amequirement evolutiodanguageesvolutionand change in

style (refactoring)

24

In this research, we focus on local/contegiited model or regular model evolutiéie
consider evolving the software modeith the goal of improving the nonfunctional
requirementsepresenteth the analys models without changing thenctionality. Such
evolution can bealledrefactoring It minimizes the complexity and improwghe quality
of the model. This is considered [87] ard [68] a necessaryool for handling model
evolution.We use refactoring tevolvea UML+MARTE software model thatepresents
the source modeland then automaticallpropagateall changes incrementally to the
performance mod€LQN), whose results are used for performaacalysis

2.4 Model Comparison

There are twavaysto detecimodelchanges according to the literatig®] [70] [71]: a)
anoperatofbased approach that detettte changes as a set of operatipty, or b) direct
comparison(e.g., byusing EMFCompare[73]) to detect the differencdsetween two
versions of the same modBlirect comparisohas advantagesspeciallyin the casevhen
comparing modelghat containelements with unique identifief§4] (UML is such a
model) Therefore, we usheopensourceEMF Compare tool taleterminghe differences
betweentwo versions ofthe same UML source model EMF Compare depends on
IdentifierEObjectMatcher.DefaultiDFution that matches elements witthe same
identifiers[73]. According to[75], using Static IdentiyBased Matching approach (which
states that every model element has a unique identifier) can be fasteroendser
independentin thesense that no configuration is needed from the'sseate.

2.5 Traceability

Traceability plays an important rola MDE for building relationships between source

model elements and target model elements, by establishing trace links bé#tasen

25

http://git.eclipse.org/c/emfcompare/org.eclipse.emf.compare.git/tree/plugins/org.eclipse.emf.compare/src/org/eclipse/emf/compare/match/eobject/IdentifierEObjectMatcher.java#n268

elements to track, analyze and propagate the impact of change which results from evolving
software modelsThere are different classificatisrof traceability approaches in the
literatures. For exampld,76] categorize the traceability approaches in three types
requirements, modeling and transformation. The requirements approadgtsfmttscing

the requirements differentdevelopment phas&s the development life cycke give the
stakeholders better understanding dfie requirements semantidslodeling approaches
focus on tracing the relationshipetween different elements in different models.
Transformation approaches focus on generating automatically trace dinikg the
transformation.Trace links represent the relatobhetween source and target elements.
Different classificatiors based on storing and managing the trace lm&ese proposed in
[77]. Embedded traceabilithnks are thosavhere the trace linkarestored internally with

the nodels Usingthisapproach hathedisadvantage that it pollutes the modeirmjuding

all traces inside itAnother approachis external traceabilitylinks, which solves the
pollution problem by storing the trace links as a separate mipd#iis thesiswe use
external traceability links thdall in the transformatiortategory as thg are generated
automatically by running the transformatidine traceability linksreusedin this research

for two purposesto feedback the performance results to the UML software model and
during thechange propagatioprocess The traces themselves evolve when the UML
modelevolves Therefore, they need to be updated during the change propaéatitrer
detailsabout using tracedlty links areprovided in chapteb and®6.

2.6 Higher-order transformation

A ihghorder tr alnksdiiddrenmaitfieoah7 @ $t mansf or mati on t

a transformation model as i nptirbetxtoalHTbr pr o

26

transformation definition(transformation rulésis translated to an ETL transformation
model. The ETL transformation model conforms to the ETL metamodel and represents the
mapping between source and target modeis advantages of thteansformation model

are highlighted if80], which compares model transformation with transformation model.
First, using a transformation model allows for focusing more on the properties of the
transformation than on its execution. Secondly, transformation models enable the
construction of higheorder transformation (HOT).

According to [78] [81], change propagationcan be realized as higherorder
transformation which takes a transformation model as one of its inpy#&8], HOT is
classified into four types: djansformation synthesisreats a new transformatiofnom

data modeled in other formig) transformation analysiprocesses other transformations to
extract neaningful data; c)transformation (de)compositiomerges or splits other
transformations, according to a (de)composition criterion; andtralysformation
modificationmanipulats the logic of an input transformation

In literature, a typical example of HOT is presente{7B] and developed in the AmmA
framework. An ATL textual trarfermation is translated to an ATL transformation model

by TCS injectof82]. An ATL transformation model is the input to HOT that produces
another ATL transformation model, which is translated to a textual transformation program
by TCS extraction. The put and output models conform to the ATL metamodel.

The proposedhigher order transformation (HOTpr realizing Incremental Change
propagatior(ICP) takesETL transformation model conforming to the ETL metamaazel
aninput for ICP, while the output israupdated performance model. Another example of

HOT can be found ifi83], which verifies the correctness of the ETL language. The first

27

step transforms an ETLansformation to DSLTrans, which is a graph transformation
language; the second step verifies the transformation with the SyVOLT tool, which
provides a symbolic execution of DSLTrans transformations.
2.7 Patterns for Model Transformation
Desipgant t erns f or model transformations ©pro
transformation specificatnighbe godl degi gh mpo
f o r maAniimpaertant concept in model transformations is the mapping between the
source ad target (meta)models, which is addressed by mapping paterrtsess of MB
approach depends on mapping qudi@¥]. In this thesiswe discuss a subclass of such
patterns, called containmebased mapping patterns, which are used to mgqo@p of
containmentelated source model elements intgraup of target model elemés (see
Chapter 4)In this section w focus on two main categories of related works: mapping
patternaandmodeltransformatiorpatterns
Model Transformation Patterns
Patterns are a popular technique in the field of software engineering to solve gecurrin
design problemaviodel transformatiompatternshavebeenproposed anadoptedn [85]
[86] [87] [88] [89] [90] to solve model transformation problenis.[91] model tranfor-
mation patternare definedas fidescriptions of transformation rules and transformations
that are customized to solve a general model transformation design problem in a particular
c o nt ®adel oransformation patternare identified andlassifiedin [92] [91]. Both
provide a cataloguef design patterns ithe following categories:

1 Rule modularization patternare concermeed with improving thestructure of the

transformation rules by organizing them and their relationshipsnb@ancethe

28

transformatiorflexibility , maintainabilityand quality.An exampleof such pattern
is thePhased Constructigrattern[93], usedo decompose the transformation into
phases or stageshereeach phases considered aubtransformatiorwith one rule
for creatingobjectsof one target type.

Optimization patternsfocus on improving the efficiencyf transformation
execution.As an exampld&kemove Duplicated Expression Evaluatiqradtern to
cache the expressions values in the rulesrderto avoid the recurrence in their
evaluationg91].

Model totext patterngo generate code from modehn exampleis the Visitor
pattern to traverse the modar].

Expressivenespatternsprovide the transformation language with extra abilities
when it has a limitationFor examplethe Simulating Explicit Rule Scheduling
pattern helps in putting a constraint in the order of rules applic@idn
Architectural patterngreconceredwith organizing the transformation systems or
the relationships between the transformationsrderto enhance their modularity
and eficiency. An exampleof such pattern ithe Transformation Chaito split up
the transformatiaminto sequences of sttbansformatios.

Bidirectional transformation (Bx) patterngre concered with maintaining
consistency betweethe source and target madey defining not only a forward
transformation from source to target, but also a backward transfornfedion
target to source~or instance Auxiliary Correpondence Model patteia usedto

map the source and target metamodels.

28

1 Classicalpatternsare related to popular design pattef@issuch aghe Tenplate
pattern.

The model transformation patterns listed above are targeting the transformation rules to
achieve the goals for each category and are concerned with the level of detail provided by
the model transformation languages. As opposed to thiggams on mapping patterns a
a higrer-level of abstractionindependent of the transformation languagecentrahg on
the conceptual relatierbetweerthe source and target metamodels.
Mapping Patterns
In [90] are introducedour mgping patterns in model transformatsdpetween concrete
and abstract domain specific language (DSL). These mapping patterns dsment
mappingto map elements from the source model to elements from the target model; b)
attribute mappingo map a progrty of a source element to a property of a target element;
c) element mapping variabilityo map one element from the source model to many
elements from the target model andidk mappingto map a relationship between source
elements to a relationshipetveen target elements. The first three patterns can be
considered as special cases of thei8apping pattern presenteddetail in chapter 4The
other mapping patterns discussed in this thesis introduce more complex mapping problems,
such as mutuallgxclusive containers and virtual container (presented in chapter 4) that
map agroup of source elements (i.e., a special container and contained elements) to a
correspondingroupof target elements.
Another kind of mapping approach between modelsassaing mode(AMW) proposed
in [94] [95] , which defines a set of links between the source and target metamfdels

weaving metamael based on EMF is presenteddf] in the context ofheATL language.

3C

AMW was etendedn [97] where the MeAGeM framework was proposed for generating
model transformation code for hybrid transformation languages such ATL and ETL by
High Order Transformation (HOTWWeaving moded and matching transformatisro
semiautomate the development of transformatiareproposed if98]. A weavingmodel
captures the relations between source and target modeleeandrrespondinghatching
transformation generate the weaving models. The approach can be applied wharcthe s
and target metamodelsmve asimilar structure. A set gbre-defined mapping operation
(MOps) are proposed iM99] to generate executable ATL code out of HOT and MOps.
MOpsareused to specify the mapping by extending AMW.

In general, a weamg model does not support complex mapping such as the containment
based mapping patterns presented in tiésis which are mapping group of source
elements involved in a containment relation tgraup of related target elementsA
disadvantage oAMW are its platform limitationsa compatible versions of Eclipse
needé [100]). As opposed to it, oyproposed mapping patterase independentf the
transformation languagglatform selected for implementatiom [101] is presentech
generic mapping algorithm that focuses on simple mapping models by analyzing the target
metamodel to solve the ambiguity causedh®semantic gap between the mapping models
and model transformation. Since d hgrsi, mdigmlrd
it might require user interaction to solve the ambiguity correctly.

In [102] it is statedthat traceability is a core topic in model transformati@amd
representing the transformation by mapping all@mnsto query the transformation by
algebraic operations. The paper focwess on chain transformations and suggested

mathematical operations for transformation chainkhgwever, he paperdoesnotdiscuss

31

how to handle guard condition§he paper does not discuss the inconsistency of traces
when the saorce modekvolves In our case we are interested in keeping the trace model
consistent after evolving the source model therefore the traces are updatexvexfyer

propagation othangs.

32

3 Chapter: Overview of the Proposedntegration Approach

3.1 Integration of NFP analysisinto the MDE process

The main objectiveof the thesiss to integrate thélFP analysis based on quantitative

models into the MDE procesklore specifically,we are interested in thategration of

performance analysis within the software development process, by using quantitative
performance models (e.g., LQR] [1]) that areautomatically derived from the software
models (e.g., UML) extended with perforntan annotations (e.g., MARTHS]).

Performance analysis conducted by solving the performance models helps detecting the

performance trouble spots and suggests how to elthegsoftware model in order to meet

the performance requiremen&3]. The integratiorof performance analysis ihe MDE
procesgpresented in the theds implemetted in the context of Epsilom new family of
language consisting of different languages suckpsslon Object Language (EOL) and

Epsilon Transformation Language (EJT[11]. According to[103], Epsilon has been

adopted in industry (such M Haifa, TelefonicaWesternGecdSiemensandN A S A6 s

JetPropulsionLaboratory as well as in academia (suchtlasUniversitiesof Texas,Oslo,

Kasseland Ottawg. Also, Epsilon has a very active forum that provides an immediate

technical support.

The prgosed integration approacbnsists of théollowing:

a) We developedwo integrationuse casesperformance analysis roundtrifSection
3.2,) and incremental change propagat{8ection 3.2.2 In both cases, we make use
of the containmenbasedmapping patternpresented in Chapter # specify the
mapping betweetML source modelannotated with MARTE profil§presented in

section 3.3Jo LQN targetperformance mods{presented in section 3.4)

33

b) The batch transformationdevelgped separately in[22] corresponds tothe
implementationn Epsilon ETLof the mapping patternapplication It automatically
generatse LQN performance modglP from UML software model S annotated with
the standardARTE profile. In this thesiswe extended the transformatifsom [22]
to generatea tracemodelalong withthe performance modgwhich contairs cross
model trace links betweerlements fromS and P mappedto each other by the
transformation

c) The goal of the performance analysis roundtripeeding backo Sthe performance
results After solving the performance modeivith an existing solver, the performance
results are fed back to the software mdley following the crossnodel trace linkén
reverse. The proposed roundtrip gives the software developers the ability to see the
performance results using a standard UML editor and the ability to assess as early as
possible the performance effedf different architecture, design, implementation and
deployment alternatives, in order to satisfy the performance requirements

d) Analysis and bangeof UML model: the UML software modas modified by the
designefanalyst, who addsleletesupdatesandor movessomemodelelementsThe
reasons for changarediverse in the case of the performance roundtrip, the changes
are intended to fix performance problems highlighted by the performance results, while
in the case of ICP, the changes can be due ton@ddiw functional features to the
system or improvindunctional anchon-functional requirement§ his step produces
changedrersionS of theoriginal UML model, S. Please note that tliesigner/analyst
is responsible for making changesthe UML software modebndto verify whether

the model iscorrect after the changes. Tiperformance analyst caanalyzethe

34

performance results and evaluate if the performance results meet the performance
requirementsfter propagating the changesthe performance odelby ICP.

e) Automatic change detectioAll change between th8andS éeed to be detected. For
this purpose in this researchwe usean existing tool, EMF Compare which
automaticallydetecs all thedifferences betweeSandS 6

f) Automatic incrementalpropagationof changeqICP). The differencesfound in the
previous stepthe mapping patternapplied to the source and target metamqdiés
trace modelthe ETL transformation modedndthe oldLQN modelP become inpwt
tothelCP moduleused to propagate the changes to the target niyaehich isdenoted
asP after being changed

Section 3.1 describes briefly the performance analysis roundtripcess and Section

3.22 the incremental change propagati@G€P) process The last two sections of the

chapter describe a running example of source and target model.

3.2 Examples of integration

3.2.1 Performance analysis roundtrip

The performance analysis roundtrip aitnshelp deelopersunderstandnd interpret the

performance resultgr the contextof the softwaremodel rather thanthe performance

model As shown inFigure 3-1, a UML software model with MARTE performance
annotations (as described Section 3.3)is taken as inpuin Steplby a ETL batch
transformationwhich wasdevelopedn previouswork [22] and extended in this thesis
with the facility togenera¢ a trace modellong withthe LQN targetmodel Cross model
traceability means having direct trace links betw&andP, which helgin different ways:

a) propagate small changesnr&to P, b) support the cevolution of the software and

35

performance model, and c) import the performance results obtaynsolving P to the

software domainPoint (c) is discussecth moredetail in chapteb, while (a) and (b) are
discussed in chapté&: P Gepresents the LQN model with performance resultained
after solvingP with an existing solvein Step 2 and S6 is the

performance results stored as valueBIARTE stereotype attributeln order to feed back
the performance results fromdo S @n Step 3, thdrace linksaretraversedn reverse,
starting from elements iR @ the corresponding elementsSndSteps4 and5 represent

the analysis andewchangesnadeuntil the performacerequirementsre satisfied

UML Software Evolved UML

*— Software YES
Model (5] Model (5')
UML Software
eet the
Model (5') with
o ETL Batch [:-r:m(me}n‘::le Requirement?
Transformation P
results
L NO
LaQN
Performance] Trace Model
Model (P)
l Decisions Process To
Solve P with LQN <)) Feedback the o Change
e solver performance results
j using Trace®

P’ with
performance
results

Apply Changes
(e To (S')

Figure 3-1 Performance Analysis Roundtrip

3.2.2 Incremental change propagation (ICP)

Anot her obijteceiss dgasignpimplemdnteand evaluate lacremental

Change Propagation (ICR)e ¢ h rf ir gastdeML + MART E
correspondi Daurli@N mdheceldevel opment

i n order t o maad

evolution creates inconsistenci

36

proces

sof tv

sof twarteh emo d

«

<

-foubre i d maplecit . ®madt £onti nuc

dhebet wser

an urgent need t o tshwep ppoerrtf otrhmea nevo Imotdied n (
model s) in step withewdevedfotpwame | med eIlmen
propagati on dtedsghhrtei qaleantgheast wi t h t he EMF
i ncrement adtlhyemprtop adet € QN model to keep i
As shown 42npnheFiegnutrier ép rpirotegde § $ anings ftohremior i gi
source UML+MARTE model for the first ti me
in previous work (Step1l). TPanduTt heme i s

mode®Il ease hetbdathht ttansfor mati otnarigetabl

mo d e | at once from an entire source mod
transf oDuraitn goanft thekkav el op ment process, t he
actions is repeated many ti mes:

T Adecision is taken in StSeEp2 &aonuoumbhegeofl
(suals adding new functionality, I mprovi i
nofmuncti onal properties, etc.)

T Different charmgasuat eyappilmaeStoggmddaoal hy
change d&wtoideeH | @ Snycave houti t h t he Pper f or ma

T The differencedarbeetdweteenctEdand t& t he he
Compare in Step 4.

T ThleCmod (ISd¢ etpa kbe)s talseoil h moweirnfgo:r ma R,c et rmeoddee |
model , di Wwé e&n ala rma popeitn g bpatweemns he sour
target (meh iag) imoovditedl dslgasele ci f i cat i oommn f ocus

wh at needs to be transf.drCiratteisni aotwhart!

37

the set of G&ha¥hgerd peowagates thR'm t

(St ®&)p, synchroShizing it with

T After déirtisvisngi vRedan exi st nn®t e@Nt7asion ivreg

performance results for a range of wor ki

evaluate whether the perfor mamce nrge ¢ uhier

chas(gteep7

The whole I CP approach is i mplemented

i mperative programming | anguage for creat

Model ing Franewo4lk) model s

e UMLSoftware Decisions Process To NO
Model (S) Change S eet the
Requirement?
) P’ with
o ETL Batch performance
Transformation results

Evolved UML
LaN 6 Solve P’ After
Performance Trace Model Software .
Model(s’) Propagating Change:
Model (P)
(Changes Detection by
Mapping Differences [~ O EMF Compare Updated

patterns

Performance
Model (P")

!

F Incremental Change e
-\ Propagation (ICP) Propagate Changes

Figure 3-2 Incremental Change propagation (ICP)

3.3 Source Model
The source model taken as input by the transformatiperformance moded a UML 2.5
[105] software model annotated with MART[E] performance information. The source

model contains two types of UML diagrams: a deployment diagram representing the

38

structure of the system and ocmemore activity diagrams representing the behaviour.

The deployment diagram contains a set of UML nodes stereokgaette> that represent
physical computational resources with processing capability, and a set of artifacts
representing software compans, each deployed on a device. Each activity diagram
represents a scenario that is the realization of a use case and models the interaction between
software components. The behavior of each participating component is modeled inside an
ActivityPartition with one dimensiorfalso known as a swimlane) which belongs to an
ActivityGroup A swimlane contains different types of action nodes and control nodes
linked together by edgeExamples otypes of action nodesre a) AcceptEventAction
executed when an emt has been triggered; 8&ndSignalActionresponsible for creating

and transmitting signal instances to the target obje@atiDperationAction transmits a
message representing an operation call request to the target object and waits until a reply
is received; and dDpaque Action- a type of UML abstract class considered as an
executable node included within the behaviour. The control nodes are responsible for the
flow of tokens between other nodes. Examples of control nodes are the initialvhazte
indicates the starting point of the execution of the scenario and the fingl wbidé
indicates the termination point of the executiBorkNode, JoinNode, MergeNadand
DecisionNodeare other examples of control nodes. Other type of model eleiment
ControlFlow, an activity edge responsible for passing tokens from its source node to its
destination node. The activigglges interconnect activity nodato a graph that represents

the behaviour of an activity @assequence of subordinate units.

In thischaptemwe use the example ofmmerce system model introdudegtheauthors

of a book on softwangerformance analysis] as the sotce model for our transformation.

3¢

The system contains three performandécal use cases selected for performance
analysis:Browse CatalogueBrowse Cart andPlace Order Figure 3-3 represents the
annotated deployment diagram of the system, showinguthtme architecture and the
allocation of software components to hardware processing nodes. The system has three
classes of customers with a populatio$ifl, $N2and$N3users, respectively. (Note that

$N1, $N2and$N3are variables in the MARTE anrabions). Each of the users is deployed

on its own UserDevice host. In order to insure this, the multiplicitysafrDeviceis $N1,

and so on.

Each class of users is executing repeatedly the use case corresponding to its class. The
scenarios that repregehe realization of the three use cases are modeled by three activity
diagramsPlaceOrderscenario is given ifrigure3-4, BrowseCataloguscenarids given

in Figure 35 and BrowseCartscenariois given in Figure 3. For running thebatch
transformation successfully and get the expected results, the source model needs to satisfy
the followingassumptionsThe namespace for each device element needs to be initialized

to the UML element containing it; also, the namespace for each artifad$ tede
initialized to the device containing Each artifact has at least one defined corresponding
activity partition and both should have same na@entrolFlow has aproperty called
inPartition, which must be set only if the control flow is definedide arActivityPartition

for those ControlFlow representing call requests that cross tharder between

ActivityPartitions theinPartition property does not have to be.set

4C

«devices
«GaExecHost>
Proc3

<«artifact»

«device»

Order Server

«artifacts
Delivery Order Process

«devices «GaExecHost>
«GaExecHosts User Device3
Proc4 N
e «artifact>»
«<artifacts «Scheduler:
Cart Server User3
/ \
«devices «devices
«GaExecHost: «GaExecHost»
Proci Remote Proc
«artifact= «artifact>
Customer Process Customer Interface

«device»
«GaExecHosts
User Devicel

«<tevices
«GaExecHost>»
Proc2

cartifact»
Customer Server

«device»
«GaExecHost»
Proc5

«devices
«GaExecHost>»
User Device2

«artifact»
«Schedulers
Useri

«<artifact»
Catalog Server

«<artifact>
«Schedulers
User2

Figure 3-3 Deployment diagram of Ecommerce System

User3 Custemer Interface Customer Process Delivery Order Process. Customer Server
«pastep- @ start3 ustint3 | placeOrder delivorder | antinfo
4 -4
o bo Custint3 / —
L hceOrder Get Cart Info > go to Aciept Cust Info
90 Cartfito go to Akcept Create n —
Run Gustomer Interface3 (T [o 9o to delivOrder o
A «Pastep=
create new ore
«PaStep- Get Info from DB
] laceOrder Call f]
«PaSteps] «PaSteps
Display Page] = (create newtrder
Call Request to custint3 g0 badkte Car} e s s
Pastep- || s wPaSl;pw ’
isplay Page 3 e Sy | wPasteps
— | | send custinto
goto «<Pastep» foto—————
|Cust Info Call go back to cregte ne
gp back'to placeorder call i Send Dlescr
{

«PaStepp
Sendsignal3
f«a asscemblf data

ge to joih from build errpr g

«PaStep»
(Create new order cal
go tolforl

00 send page3
«PaSteps
Send Page3

«Pastepn

o back t

Figure 3-4 Activity diagram of Place Order Scenario

| aPasteps
Send Desar

«PaStepn
Send Deser

User1 Customer Interface Customer Process Catalog Server

«PaStep> @ start1 > Customer Interface Request1 Browse Catalogue Request ‘ > Catalogue Info Request

GoTpNext / /
Browse Reque Get CatalogueInfo G

Accept Hequest Get DB info
Past «PaStep>»
aaliens i Catalogue Info Call Request «PaStep=
Call Request To S5L-S1 Browse Catalogue \ i
Send

«PaStep»

Cal Display Pag

Brose
Go td end1 Go'Back

Go|To Send Page
605 end1
«PaStep») «PaStep» «PaStep»
Sendsignal1 Send Page1 Send Cataloug

Figure 3-5 Activity diagram for Browse Catalogue Scenario

User2 Customer Interface Customer Process Cart Server
«PaStep»@ start2 > Accept C:stomerzl ftaiace > Accept Browse Cart Request > Accept Cart Info Call Request
equest

Accept Ca/
/Get BrowseCart et Cart ot
go to request
goto «PaStep» «PaStep»
Browse Cart Call Reques Cart Info Call Reques

ghasteny Display Pagd cart
Call Request to Customer Interface

go to Accept Get Info from DB

«PaStep»
Get Info from DB
Build Page cart
«PaStep» «PaStep»
Display Page ca Build Page Ca kil [—

go to sendfignal2
Send Page cart
goto end2 CallRequest2

go back
«PaStep»
SendSignal2

«PaStep»
Send Page 2

«PaStep»

end2 Send Cart Info

Figure 3-6 Activity diagram for Browse Cart Scenario

3.4 Target Model

The target model for this transformation is theydr@d Queuing Network (LQNnodel
[1][2][3]. LQN is a performance model that is extended from queuing netandk

can represent nested services (i.e., a server may also be also a client to otherAervers).
LQN model is a graph whose nodes are either software tasks (parallelogrémasjware
devices (circles) and the arcs denote service requegtse 38 shows the LQN model

generated from the-@mmerce examplR2]. The tasks with outgoing but no incoming

42

arcs play the role of clients (also callederence tasks), the intermediate nodes with both
incoming and outgoing arcs are usually software servers and the leaf nodes are hardware
servers. A software or hardware server node can be either asengée or a muliserver.
Software tasks have ems corresponding to different services (represented as smaller
parallelograms inside the taskEhe LQN metamodel is shown figure 37, and is based

on the XML schema defined in the LQN user mari@§l The Epsilon trasformation

engine, however, requires that the target metamodel be represented iEdeké-(the
metamodeling language of the underlying platform Eclipse BHMH]). The Eclipse

framework offers a language called Emfatic, desigoe@present EMF Ecore models in

0.1
el Epre o
e or_=Pre-or |
0.1
e and| IPre-and|

1.* + actRpre
+ actRPreAnd| 1..* 1

H ActivityR

= Lgnmodel

1..*| + processors

= Processor E Precedence

+ + precedence| *
1.4 + tasks

+ actRPreOr

+ activitie + reply entry

+ asyncheallg * *

QAsynchCaII| | = Syncheall |

1.* | + reply-activity

Figure 3-7 LQN metamodel

textual form. Therefore, we used the Emfatic language to express the metamodel from
Figure 37 in a textual form, which in turn was converted into EMF Ecore.
Like the XML-based metamodel froff], the root model element of the LQN metamodel

is Ilgnmode] which is composed of one or mopeocessormodel elements by using

43

composition associations. In other wordtgpmodeland processorhave a wholgart
relationship, following the lerarchy of the XMEbased metamodelProcessoris
composed ofasks which in turn is composed ehtriesor taskactivities Entry is the
parent ofentry-phaseactivitiesmodel elementaskactivitiesandentry-phaseactivities
are mutuallyexclusive containersf activity model elementActivity is the parent of
children of typesynchcall and asynchcall. Taskactivities element is composed of
elements of three typeActivity, PrecedenceandReply-entry. Replyentryis the parent
of Reply-activity. In addition, the elements namPde, Pre-or, Pre-and Post Postor

andPostandare all children oPrecedencenodel elemerst

larll start2 start3
[1000 1] [1000,1] [1000,1]

custintl custint2 custint3
UserDevicel [[1 erDevlceS
{$N1}
/ Customerinferface {$N} /

@ (€3] (

browse cart placeOrder
[0.5.1] [0.5.0.5] 2.7]

UserDevice2
{$N2}
Cuslcr?erproces

0N 1
update cartinfo empty custinfo delivOrder
2] 21 21 [2 [1.5,0.2]

catinfo
2]

CatalogServer

CartServer CustomerServer

T L

Figure 3-8 LQN Model generated from ecommerce software model

DeliverydrderProc

(0)
newOrder
21
OrderServer

44

4 Chapter: Containment-basedMapping Patterns

4.1 Definition of mapping patterns

Il n model transformations, the understandin
essemeédqguailrement for mapping the source mod
Once the mapping -lieveldeoft idhdstdr aactt iaosnh, ia giht
transf ovi mat amry avail able model transfor mat
tdh separation of concerns between mapping &
is the independence of t he manppiemegntroaq
transformhuspnt he designer has the opportu
asptes of the relations bet Wddabnd olua s ef laenxdi |
in choosing the | anrOgrwiaigné cdmpatibleiwithptheesesecht at i o
projects who have studied the specification of mappibhgtweenmetamodelsas an
independent concefit07][108] [109] [96].

In this chaptemwe present a set of patterns calt@htainmenbased mapping patterns

which take into account the containment relationship when mapping the source and target
(meta)models. Mapping is filred as the description of the correspondence between the
source and target (meta)models. A design pattern in software design is defined as a reusable
solution to acommonly occurring problem within a given conté&. Combining the

definitions of mapping and design patterns, we define a mapping pattern as a reusable
solution to a commonly occurring mapping problem between source and target dedsgamo

in a specific context. The goal of the mapping patterns is to answer a challenging question

that isiwh a t needs to be ottrhaunss f ©hmimfetdi nignt toh ewhfa

i mpl ementation of the mapping by transform

45

4.2 Specifying Containment-basedMapping Patternsin UML

In UML patterns can beepresentedy Collaborations According to UML2.5[105]
Collaborationis a way to represent how a setimftancesnteracting with each other to
accomplish a specific godtveryinstancdn the Collaborationplays acollaborationRole
which defines the use of that instance. The relationships between the instances in the
Collaboration are represented a&onnectorsbetween thecollaborationRolesthat are
played by those instances. TBennectorsdentify the communications paths between the
instances that participate in tB®llaboration The application of the pattern in a specific
context is called &ollaborationUse In aCollaborationUseinstances from that context
are binding to thecollaborationRdes of the Collaboration by roleBindings Each
roleBindingshows every instance with isllaborationRole

TheCollaborationis shown with its internal structuredllaborationRoles, Connectgras

an ellipse shape stereotyp&dollaboratiom (seeFigure4-1). ThecollaborationRolesre
considered th@ropertiesof theCollaboration The CollaborationUsds shown as ellipse
within theinternal structure companent of the contextlassifier EachCollaborationUse
has a name and @ollaboration type. The roleBindingsin the CollaborationUseare

implemented byependencieéeeFigure4-2).

uCollaborationn
“Pattern Name

||E| CullahuratiunRuleﬂﬂm—“mr—l@ CnllahnratiunRuIe2|

Figure 4-1 Collaboration elements

46

Q Structured Class

@Jnratiunmeh Pa@

T T
r Ll
L]

!
')

i
roleBinding 1}/ {roleBinding2
S _p2:Part

Figure 4-2 Collaboration use elements

4.3 Classifying and documentingof Containment-basedmapping Patterns
4.3.1 Classification of Containment-based mapping
In this section weclassify the mapping pattesin two categoriesFigure 4-3 shows the
relationships betweendbe patterns.
1. Mapping patterns applied between source and target metamodels:
i) ST mappingpattern.
i) Containment mappingattern.
2. Mapping patterns applied to one metamodel (source or target) to defigetipe
of model elements involved in a containment relationship:
i) Simple Container pattern
i) Intermediate Container pattern.
iii) Virtual Container pattern
iv) Mutually ExclusiveContainers pattern.
4.3.2 Documenting the mapping patterns
In this section we use a specific template for documenting the mapping patteen
template inspired by[8], includespattern name (usually a few words desching the
problem),problem description (describing the context of the problem and when to apply

the pattern)solution (descriling the elements that the solution consistaijlexample

47

(showing the application of the patterraispecific context)All applications in this chapter

are givenin the context of UML+MARTE model as a source model and LQN as a target

model. There is a large semantic difference between the source and target (sedels

Sections 3.3 and 3.4Jhemapping betweesource and targebtodelsare explained in the

following subsectionsAs mentionecearlier, we specifythe mapping patterns in UML, so

the pattern notation is independent of the transformation language. Some examples of

collaborationRolesised in the pattern definition are:

9 sContainer a containemstancdrom the source model.

i sElementcontained instarefrom the source model.

1 tContainer. container instance from the target model.

1 tElementcontained instance from the target model.

Containment-based
mapping patterns

1
1
i
! Containers
i
i

’7 variants

-

Using

5-T mapping pattern

Mutually Exclusive
Containers Pattern

Simple Container

Pattern

Intermediate
Container Pattern

Virtual Container
Pattern

Figure 4-3 Containment-based mapping patterns relationships

4.4 Mapping patterns applied between source and targehetamodels.

i) ST mapping pattern

Problem descriptionan element or propertin the source model needs to be mapped to

an element(s) or property(ie) the target modelit S 0

in the

pattern

48

n

-

C

Sourceto-Target).

Solution: ST mapping pattern has twemllaborationRolessourcerefers to an element,
property or stexotype property from the source model aamdjet refers to an element or
property from the target model. An elementproperty from the source model could be

mapped to one or more elements or properties in the target (sedEigure 44).

uCollaborations
=22 5-T mapping

] |
| =l source | L= target |
1 1.*

Figure 4-4 ST Mapping Pattern: definition

Example: A deviced from the UML source model playtherole of sourceandis mapped
to Processop from the LQN target model that playhe role of target (both shown in
orange inFigure 4-5). Other examples of mapping properties and stereotype properties
presented irsectbn 4.4 Please note that we did not show the stereokgeExecHost

constraints foDevicefor keeping the figures more readable.

= Mapping Pattern Application

—spuUrce
=] _d: Device L:— ——

Figure 4-5 ST Mapping Pattern: application

i) Containment mapping pattern.
Problem description’A sourcemodel has a containment relationshpwhich an object
contairs other objects and their existence depends on the existEtiheecoraining object.
The containing object is callezbntainerand the contained object(s) is (aentent(s)
Thecontainercontentrelationship is also denoted@arentchild. The source containment

submodel is mapped to a target containment submodel. &inew object needs to be

49

created in the target model, its container needs to be identified with respect to the
containment relationship in the source model.

Solution: This pattern has four collaborationRole€ontainertContainer sElementand
tElement(Figure4-6). The containesContainerfrom the source model is mapped to the
containentContainerin the target model and the content (cab&lement of sContainer

is mapped to the content (call&lemen} of tCortainer. In other words, the containment
relationship in the source model is mapped to the containment relationship in the target
model. Thus, ifElemeniheeds to be created in the target modeCbntaineris identified

by matching agroup {sContainer sElemerit from the source model with group
{tContainer, tElemen} from the target model. Please note that this pattern definition uses

the application of the-F pattern (via a CollaborationUsas defined in the UML standard).

uCollaborations
2> Containm entMappingPattern

- ource i
--------- B —
S '+ mapE: 5-T mapping

Figure 4-6 Containment Mapping Pattern: definition

Example: in Figure4-7, mis an instance dflodeltype and playsherole of sContainer
Modelis a container obevicein the source model. An instand®f type Devicefrom the
source model playtherole of sElementAn instancdgnmodelof typeLgnmodelfrom the
target model laystherole oftContainerandis mapped to an instanece (both shown in
green) Lgnmodelis a container ofProcessor Theinstancep of Processottype playsthe

role oftElementandis mapped tosElement of Devicetype (bothshownin orangg.

5C

E containm entMappingPatternApplication

=l m: Model I‘_sCuntainer tContainer{ (= lqnmodel: Lgnmodel

. -
= -
s -

- -

-~

@thﬂappingpaﬂemﬁpp: ContainmentMappingPattern

—— e
e -

E1_d: Device _|sFlement tElement | =l E:Prucessur

Figure 4-7 Containment Mapping Pattern: application

4.5 Mapping Patterns applied toOne Metamodel

i) Simple Containerpattern
Problem:Two elements of a metamodel @amgolved in a simple containment relationship
when the container and contained element directly connected by a containment

association.

aCollaborationn
2> SimpleContainer

| = tContainer |

| =1 containedElement |

Figure 4-8 Simple Container Pattern definition

Solution: the patterris applied when the container and contained elements are connected
directly. Figure4-8 defines a Simple Container pattern from the target modehslttwo
collaborationRolestContainer played by the containing object amdntainedElement
playedthe contained obje®).

Example: processoris an instance of typBrocessorand plays the role afCortainer,

while tis an instance of typEaskand plays the role aontainedElemer(seeFigure4-9).

Otherapplications examples are shown in red coldfigure4-16.

51

= SimpleContainerApplication

| =1 processor: Processor |
J«‘:‘&t(:u:-ntainer
[

@ECuntainerﬂpp: Simpl@

I
IIk:-""crl:nnt.v':im:u:IEIE:mE:nt

| =1 t: Task |

Figure 4-9 Simple Container Pattern: application

i) Intermediate Container pattern.
Problem:There may be a need to generate a nested container for an elemenéeentztw
existing container and that element.
Solution: This pattern has three collaborationRoles:
existingContaingr intermediateContainerand tElement The intermediat€ontainer
represents the content of tlestingContaineand plays the role of contanfortElement

(SeeFigure4-10).

uCollaborationn
27 IntermediateContainer

| = existingContainer |

| =l intermediateContainer |

| =l tElement |

Figure 4-10 Intermediate Container Pattern: definition

52

5 Inter mediateContainerApplication

—| (=1 task-activities: TaskActivities

?‘:interm ediateContainer
b

At
%
A
i

merm ediateContainerApp: IntermediatEC@

£

£,
#
e
£
&

i
£
[tElement

—| =] precedence: Precedence

Figure 4-11 Intermediate Container Pattern: application

Example:Figure4-11 showsthatt: Taskis an existing container in the target modisk
activities plays the role ofintermediateContainerand Precedenceplays the role of
tElement Another example of applying the Intermediate Container pattern is shown in
Figure4-16 (blue color) wherd&Replyentryplays the role ofElement

iii) Virtual Container pattern
Problem descriptionlUML diagrams are classified into structural diagrams and behavioral
diagrams. When a UML+MARTE software model is transformed into an LQN
performance model, there is no separation of concerns between the structural and
behavioral views in LOQN, because arfpemance model captures the performance
properties of the system in a single view.
Solution: This pattern helps to remove the separation between an elesig@ment
Structura) from the structural view and its behavior represented by a collection of

(sHementBehavioura) from the behavior view. In the source model there may be no

53

direct association betweesHlemeniStructura) and 6ElemeriBehavioura), even if they

are modeling different aspects of the same instance. In order to make clear which
behaioural element corresponds to a given structural element, the pattern has a constraint

that sElemeniStructuraland all its §ElemenBehavioural)should have the same name
(seeFigure 4-12) . Using name matching, the patter)

relationship betweersElemeniStructura) and its correspondingElementBehavioural)

uCollaborations
22 VirtualContainer

Behavioural.name

sElement-Structural.name=sElement- Il‘

| =] sElement-5tructural: SourceParameterType |

| = sElement-Behavioural: SourceParameterType |

Figure 4-12 Virtual Containers Pattern: definition

Example:In the source models, &atifactis a structural construct that models a deployed
componentArtifact is mapped to an LQN Tagkoth shown in green iRigure4-13). At

the same time, we are interested in the runtime behavior of the component represented by
the Artifact, which is described in the source model by dffeactivity partitions included

in the activity diagrams modeling scenarios. Although there is no direct association
between an Artifact and its corresponding behaviours describAdtlwtyPartitions we

apply the Virtual Container pattern with a namatching constraint to bring together the
structural and behavioural views of each component. The CollaborationUse applying the
Virtual Container pattern ifigure4-13, showsthat instance of type Artifact, playing

the role ofsElementStructural i s treated as a Avirtual con
actPartof typeActivityPartitionthat describe the compondyghavior More details about

the contents oActivityPartitonare given inn Figure4-18.

54

Figure 4-13Virtual Containers Pattern: application

i) Mutually exclusive Containers pattern
Problem description'Sometime content(s) in the model has(ve) two mutually exclusive
containers. Only one of them should exist at a given time.
Sdution: As shown inFigure4-14 the Mutually Exclusive Containers pattern has three
collaborationRolestContainerlandtCortainer2 are mutually exclusive containend
tElementis the contained element. The content has a constraint helping to decide which

container to use.

Figure 4-14 Mutually Exclusive Containers: definition

Example According to the LQN metamodel Activity has two mutually exclusive
containersentry-phaseactivities and taskactivities (shown with green color ifrigure
4-16). They play the rolef tContainerl andtContainer2 respectively. The LQNdivity

acplaysthe roleof tElementand has a constraint basedtbaentry type(seeFigure4-15).

55

