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Abstract 

Model-Driven Engineering (MDE) enables the automatic generation of performance 

models from software design models by model transformations. The performance models 

are used for performance analysis of the software under development, to guide the design 

choices from an early stage and to ensure that the system will meet its performance 

requirements. The software model evolves during development, so inconsistencies may 

appear between the software and performance models. This research aims at keeping the 

software and performance models synchronized. 

An important concept in model transformations is the mapping between the source and 

target (meta)models, which can be specified in a reusable manner with the help of mapping 

patterns. In this research we propose a subclass of such patterns, called containment-based 

mapping patterns. used to map a group of containment-related source model elements into 

a group of target model elements. We focus on these patterns because the containment 

relationship is frequently found in metamodel specifications. The containment mapping 

patterns are applied in the context of a non-trivial transformation from UML software 

models extended with MARTE performance annotations into Layered Queueing Network 

(LQN) performance models. We show how the mapping patterns can be applied for 

designing the transformation rules for a batch transformation implemented in a specific 

language. (The complete implementation of the batch transformation was done in separate 

work). In this research, we extend the batch transformation to generate, beside the target 

model, a traceability model between the mapped source and target elements. After solving 

the generated LQN model with an existing solver, the performance results are fed back to 

the software model by following the cross-model trace links.  
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The next objective of the research is to design (based on the mapping patterns), implement 

and evaluate an incremental change propagation (ICP) approach to re-synchronize the 

software and performance models. During the development process, when the software 

model evolves, we detect the changes with the Eclipse EMF Compare tool, then 

incrementally propagate them to the LQN model. The proposed ICP is implemented with 

the Epsilon Object Language (EOL) and is evaluated by applying it to a set of case studies. 
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1    Chapter:  Introduction  

1.1 Motivation   

Model-Driven Engineering (MDE) shifts the focus of software development from code to 

models. The emergence of MDE has enabled the generation of formal analysis models 

(such as Markov chains, Queueing Networks, Layered Queueing Networks, Stochastic 

Petri Nets, Stochastic Process Algebra, fault trees, etc.) for the verification of Non-

Functional Properties (NFP) (such as performance, reliability, availability, fault-tolerance, 

scalability, security, maintainability, etc.). The analysis models can be automatically 

derived by model transformations from the software models built for development. 

The main motivation of this research is the need to seamlessly integrate formal analysis 

models for NFPs into the MDE process, in order to guide the design choices from an early 

stage and to ensure that the system under construction will meet its non-functional 

requirements. More specifically, this research focusses on the integration of performance 

analysis based on Layered Queueing Network [1][2][3] models in the model-driven 

engineering process using UML [4] [5]. The source software models are extended with 

MARTE [6]  performance annotations, as described in more details in the thesis. The 

transformation from UML+MARTE to LQN is non-trivial because there is a large semantic 

difference between the source and the target models. Moreover, some aspects of the source 

model (such as nesting of software components or concrete data values) are not captured 

in the target model. This prevents us from using bi-directional transformations, which have 

the advantage of providing model synchronization for free  [7] . 

An important concept in model transformations is the mapping between the source and 

target (meta)models, addressed by mapping patterns. In this research we propose a subclass 
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of such patterns called containment-based mapping patterns, which take into account the 

containment relationship when mapping the source and target (meta)models. Mapping is 

defined as the correspondence between elements of the source and target (meta)models. A 

design pattern in software design is defined as a reusable solution to a commonly occurring 

design problem within a given context [8]. Combining the definitions of mapping and 

design patterns, we define a mapping pattern as a reusable solution to a commonly 

occurring mapping problem between source and target metamodels in a specific context. 

A UML-based notation for specifying the definition and application of the mapping 

patterns, independent of the language used for implementing the transformation, is 

proposed in the thesis. Such a mapping specification is reusable and can be used to design 

different kinds of transformation (such as batch or incremental) implemented in different 

model transformation languages (such as ATL [9] , QVT [10] , Epsilon [11] ). 

The motivation for the mapping patterns is to answer a challenging question that is ñwhat 

needs to be transformed into whatò, thus shifting the focus from the implementation of the 

mapping by transformation rules to the mapping itself. We show how the containment-

based mapping patterns are applied to the design of transformations from UML+MARTE 

to LQN, both for batch and incremental transformations. (Please note that the complete 

implementation of the batch transformation in Epsilon ETL was done in separate work). In 

this research, we extended the batch transformation to generate, beside the target model, a 

traceability model containing trace links between mapped source and target elements. After 

solving the generated performance model with an existing solver, the performance results 

are fed back to the software model by following the cross-model trace links. The software 
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developers can see the performance results as MARTE stereotype attributes, using a 

standard UML editor. 

Another motivation of the research is to keep the software and analysis models consistent 

after the software model evolves during the software development process to meet 

functional or non-functional requirements. The proposed incremental change propagation 

aims to keep UML software model and performance model consistent with each other. 

More specifically, the thesis presents the design (based on the mapping patterns), 

implementation (in Epsilon EOL language) and evaluation of an incremental change 

propagation (ICP) approach to re-synchronize the software and performance models after 

any kind of change. During the development process, when the software model evolves, 

we detect the changes with the Eclipse EMF Compare tool, then incrementally propagate 

them to the LQN model. The proposed ICP is implemented with the Epsilon Object 

Language (EOL) and it is evaluated by applying it to a set of case studies. 

Other aspects that motivate the work in this thesis are as follows: 

¶ Change propagation is still an open problem [12] in the literature. The proposed 

incremental change propagation approach fulfils the need addressed by the authors in 

[13] [14] for supporting evolution and co-evolution between different artifacts such as 

analysis and design models. 

¶ Improving the quality of nonfunctional requirements with the help of analysis models. 

According to [15] solutions to model evolution should be integrated with model quality 

solutions and model consistency challenges, since the goal of model evolution is to 

improve the quality of the system. 
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¶ Providing automated support for performance evaluation as early as possible in the life 

cycle, in order to help the developers to understand and interpret the performance 

results from the point of view of the software rather than the performance model. 

¶ Gaining experience with a new family of languages Epsilon (standing for Extensible 

Platform of Integrated Languages for model management) intended for model 

transformation and model management [11]. Epsilon is interesting because, according 

to [103] it has been adopted in the industry as well as in the academia.  

1.2 Research Objectives  

The proposed research is in alignment with the objectives of an industrial initiative called 

PolarSys [16], created by major industry players and tool providers to develop and support 

open source MDE tools over Eclipse. In this research, we use the open-source tool Papyrus  

[17] developed under the PolarSys umbrella. There are many benefits to the software 

industry from the integration of the NFP analysis in the MDE process, for example 

improving the quality of software products by early detection and solution of NFP 

problems, in addition to avoiding project cancellation due to NFP failure. 

The objectives of the proposed research are summarized in this section.  

a. The objectives of the containment-based mapping patterns are as follows: 

¶ Provide high level specification of mapping between source and target 

(meta)models. 

¶ Answer a challenging question that is ñwhat needs to be transformed into whatò, 

thus shifting the focus from the implementation of the mapping by transformation 

rules to the mapping itself. 

b. The performance analysis roundtrip has three objectives: 
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¶ Automating the generation of cross-model traces. 

¶ Developing the performance analysis roundtrip for performance results feedback to 

the UML+MARTE model based on cross-model traces. 

¶ The ability to store the software model and its performance results in the same file 

offers opportunities for further automating the analysis. For example, it could be 

used to complete the automation process in the performance improvement approach 

based on software antipatterns proposed in [18]. So far, the method for detecting 

antipatterns takes as input an XML file built by hand, which combines information 

about the software model and the performance results. This step could be automated 

now by applying our approach. This would relieve the analysts of repetitive error-

prone manual actions.  

c. The incremental change propagation approach has its own objectives: 

¶ Support (semi-)automatic co-evolution of software model and analysis model. 

¶ Support incremental propagation of (small) changes between the software model 

and analysis model. 

1.3 Thesis Contributions 

The contributions of this research are summarized as follows: 

1. Propose a set of containment-based mapping patterns which are used to map a group 

of containment-related source model elements into a group of target model elements. 

A UML-based notation for specifying the definition and application of the mapping 

patterns, independent of the language used for implementing the transformation, is used 

in the thesis. Such a mapping specification is reusable and can be applied to the design 

of different kinds of transformation (such as batch or incremental) implemented in 
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different model transformation languages. We apply the patterns in the context of a 

non-trivial transformation from UML software models annotated with MARTE 

performance information into Layered Queueing Network (LQN) performance models 

(see Chapter 4).  

2. Help designers to improve their design by feeding back the performance results to the 

software model via performance analysis roundtrip. First we extend the batch 

transformation to generate, beside the target model, a traceability model containing 

trace links between the mapped source and target elements. After generating the 

performance model and solving it with an existing solver, the performance results are 

fed back to the software model by following the cross-model trace links (see Chapter 

5). 

3. Develop a fully automated incremental change propagation (ICP) approach from the 

UML+MARTE software model (the source) to the LQN performance model (the 

target). The ICP is designed by reusing the pattern-based mapping specification 

between the source and target models (introduced in Chapter 4) and is implemented in 

the EOL language (see Chapter 6). ICP applications are given in Chapter 7 and the ICP 

evaluation is presented in Chapter 8. 

The results of this research are published in the following three papers and another two are 

in preparation: 

¶ Taghreed Altamimi, Mana Hassanzadeh Zargari, and Dorina C. Petriu, 

ñPerformance analysis roundtrip: automatic generation of performance models and 

results feedback using cross-model trace linksò, In Proceedings of the 26th Annual 
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International Conference on Computer Science and Software Engineering 

CASCONô16, pp. 208-217, 2016. 

¶ Chen Li, Taghreed Altamimi, Mana Hassanzadeh Zargari, Giuliano Casale, and 

Dorina C. Petriu, ñTulsa: A Tool for Transforming UML to Layered Queueing 

Networks for Performance Analysis of Data Intensive Applications,ò In 

Proceedings of International Conference on Quantitative Evaluation of Systems 

QEST 2017, Springer LNCS vol. 10503, pp. 295-299, 2017. 

¶ Taghreed Altamimi  and Dorina C. Petriu. ñIncremental change propagation from 

UML software models to LQN performance modelsò, In Proceedings of the 27th 

Annual International Conference on Computer Science and Software Engineering 

CASCONô17, pp.120-131, 2017. 

1.4 Thesis Contents 

This section presents the overall organization of the thesis proposal and the content of each 

chapter. 

Chapter 2 describes the background and state of the art in model transformation, model 

driven analysis of nonfunctional properties (NFP), coevolution of software and analysis 

models, comparison and traceability of models. 

Chapter 3 describes a high-level view of the proposed approach.  

Chapter 4 presents the containment-based mapping patterns and applies them in the context 

of the transformation from UML+MARTE as source to LQN as target. It continues by 

describing the application of the mapping patterns to the design of the transformation rules 

for a batch transformation implemented in ETL. 
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Chapter 5 extends the batch transformation with a trace model and shows how to realize a 

performance analysis roundtrip by using the trace model for feeding back the performance 

results to the software model.  

Chapter 6 presents the algorithm for the whole ICP from UML+MARTE to LQN, including 

the change detection phase and the incremental change propagation steps.  

Chapter 7 presents the propagation of different kinds of changes with more details.  

Chapter 8 describes the evaluation of the ICP by applying it to a few case studies.  

Chapter 9 concludes the thesis and discusses future research directions.  
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2    Chapter: Background and State of the Art  

2.1 Model Transformations 

Model transformations are considered crucial to Model Driven Engineering (MDE). In [19] 

a model transformation is defined as an automatic generation of target models from source 

models according to a given set of transformation rules. The source and target models are 

specified with modeling languages, which in turn are defined by metamodels describing 

the abstract syntax and static semantics of the language. According to OMGôs guide [20], 

a metamodel is a model that not only defines a modeling language, but is also expressed 

using a modeling language. The authors in [21] classify the transformations according to 

the source and target metamodels to two types: exogenous and endogenous. In exogenous 

transformations, the source and target metamodels are different. For instance, the 

transformation from UML software model to Layered Queueing Network (LQN) 

performance model proposed in [22] and presented in chapter 5 is exogenous. Exogenous 

transformations are also called in-out place transformation. Second, the endogenous 

transformations (known also as in-place transformation) are those in which the source and 

target model has the same metamodel. For example, refactoring UML class diagrams is an 

endogenous transformation. 

2.1.1 Transformation Languages  

Model transformation languages can be classified in three styles: declarative, imperative 

and hybrid. Each style has benefits and drawbacks. Declarative languages are more 

concerned with ñwhatò rather than ñhowò, focusing more on identifying what are the 

mapping between the elements in the source model and the elements in the target model. 

Declarative language provide short, compact and brief transformations [23]. They can be 
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very useful in the cases where the mapping is simple because the source and target 

metamodels are very similar. However, they cannot handle the more complicated cases 

when the source and target metamodels are different in terms of their structures [11].  

On the other hand, imperative languages focus on óhowô rather than ówhatô. They specify 

how the transformation is supposed to be executed and present it as a sequence of actions. 

Imperative transformation languages are similar to general purpose languages such as C++ 

or Java [23]. They can handle more complex transformations and give a higher level of 

control to the user. However, imperative languages have some drawbacks, for instance the 

user needs to tackle some issues like tracing, resolving target elements, and orchestrating 

the transformation execution. This means that the language operates at a low level of 

abstraction. The last style, hybrid languages, which is a combination of the previous two, 

helps in overcoming the shortcoming of the imperative and declarative languages.   

QVT, ATL and ETL are examples of hybrid languages as they are capable to handle 

complex transformation as they have the imperative features and providing a declarative 

rule-based execution scheme [11].  

QVT (Query/View/Transformation) defined by the Object Management Group (OMG), 

consists of set of model transformation languages. QVT has two levels of declarative 

architecture: QVTr-Relational language that support generating traces, creating object 

templates and matching object patterns and QVTc-Core language that focuses on matching 

patterns where a set of variables are evaluated against a set of models. QVT relational and 

core levels are the execution semantics framework for the imperative part that utilizes them 

to invoke  the imperative representations of transformations [10] . 
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ATL (Atlas Transformation Language) was developed by the ATLAS group and built 

on top of the Eclipse platform. ATL expresses the transformation as a set of rules that 

represent the mapping between the target elements and the source elements [9]. 

ETL (Epsilon transformation language) is a declarative/imperative language from the 

Epsilon family, specialized for model transformations and offers powerful and concise 

language constructs. Also, the Epsilon engine takes over a number of tasks (such as what 

rule to apply next) that must be handled explicitly by a Java transformation. Epsilon is a 

family that provides different languages for model management tasks, such as Epsilon 

Validation Language (EVL), Epsilon Transformation Language (ETL), Epsilon 

Comparison Language (ECL), Epsilon Merging Language (EML), Epsilon Wizard 

Language (EWL), Epsilon Generation Language (EGL), Epsilon Object Language (EOL) 

and Epsilon Transformation Language (ETL) [11].  

The batch transformation from UML+MARTE software model to LQN performance 

model is implemented in Epsilon in [22]. We built our incremental change propagation 

technique using the EOL language, a stand-alone general language that can be used to 

automate some general tasks. In this thesis, EOL facilitates reading from different files 

with different formats, like UML models and XMI files, and provides a mechanism to write 

and change LQN files and Trace files. Epsilon also provides an orchestration workflow 

solution extended from ANT [24] to a number of model management tasks developed in 

task-specific languages. In chapter 5, we discuss how we took advantage of ANT to 

automate the multi-step transformation that was developed in [22]. The transformation 

model represents the mapping between source and target models is generated automatically 

by Epsilon Haetae tool that is an extensible static analysis framework for the Epsilon 
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platform  [25]. It takes as input the textual ETL transformation definition (transformation 

rules) and translates them to an ETL transformation model. 

The Transformation Model conforms to the ETL and EOL metamodels [25]. An EOL 

program can have more than one module, whose body is a block consisting of a number of 

statements and operations that perform extra functions on the objectôs types.  EolElement 

is a super type for Expression and Statement. The root metaclass in the ETL metamodel is 

EtlModule which consists of a number of transformation rules. TransformationRule has a 

name and refers to a source and many target parameters. A guard is optional in an ETL rule 

and can be an EOL expression or block of EOL statements. The body of the rule is an EOL 

statement [26][11]. For more clarification let us look at the example of Device2Processor 

(see Code Fragment 4-4) rule representation in the transformation model. The 

Device2Processor class is an instance of TransformationRule metaclass bearing the name 

ñDevice2Processorñ. Each rule has source and targets that are instances of an Expression 

class that is an EolElement whose type is ModelElementType. The elementName is Device 

in case of source and Processor in case of target.   

2.1.2 Batch versus Incremental Transformation 

Incremental transformation is becoming the alternative solution to the traditional solution 

(i.e., batch transformation) when the source model evolves during the software 

development. According to [21] [27], incremental transformation is defined as the ability 

to transform only the elements in the source model that have been changed and ignore the 

others.    

In the literature, there are two main approaches for incremental transformation as noted in 

[12] [28].The first approach is the batch transformation that depends mainly on rerunning 
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the whole transformation from scratch, even though not all parts of the source model have 

been evolved, and merge the existing target model with the new one [29]. However, 

rerunning the whole transformation does not maintain the transformation context which 

specifies the model transformation system execution state such as variable values and 

partial matches [28] and merging depends heavily on the trace information generated by 

the transformation language [12][30]. 

The second more practical solution is Incremental transformation. It focuses only on 

examining the elements of the target model affected by changes in the source model and 

propagating those changes from the source to the target model, without consuming time to 

re-execute the whole transformation. Incremental approaches are more economical in terms 

of execution time compared to the batch transformation [30], more practical and efficient 

[28][31], especially in large-scale systems [32], by avoiding unnecessary overhead caused 

by rerunning the whole transformation [33]. 

A good example of incremental approach can be found in [32]. The authors proposed a 

framework for incremental transformation. They developed two algorithms ShouldExist 

and DoesExist to identify the action that needs to be taken to change the target model 

according to the change in the source model. Our approach is similar to their approach in 

terms of checking the existence of a changed element in the source model, and then 

checking the existence of its corresponding element in the target model. However, in [32] 

is not taken into consideration that the changed element in the source model may need to 

satisfy some conditions in order create an effect in the target model. Our approach satisfies 

such conditions (called guards) which are verified before propagating the effect to elements 

in the target model.  
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Another technique for incremental transformation called Logic-based SLD Resolution 

presented in [30] is built in the context of Tefkat transformation language and can only 

support declarative transformations. On the other hand, it supports only atomic changes 

(element insertion and deletion) [33]. Our approach is built in the context of the ETL hybrid 

transformation language and supports both atomic changes (element insertion, deletion) 

and composite changes (element updating and moving).  

The approach proposed in [34] is similar to our approach, as it supports incremental model 

synchronization in a unidirectional transformation. It is applied to class diagrams and 

relational database diagrams as source and target models, respectively. It depends on the 

old traces to update or delete elements in the target model. For creating a new element, it 

uses a knowledge base that contains information about the pattern of the transformation. 

However, the new element is created only at the end of the synchronization, which means 

that no modification can be done on the new element until the end of the synchronization. 

Our approach is different, as it supports change propagation between source and target 

models with very different metamodels. It was applied to a source model conforming to 

the UML metamodel and produces a target model conforming to the LQN metamodel. 

Each metamodel has different references and different elements with different properties. 

As a result, that difference brings more challenge and complexity in the interpretation of 

the change in UML and propagating it to LQN. Another difference that distinguishes our 

approach is that it needs to check some guards in order to decide whether a source element 

change will lead or not to the creation of a target element. In addition, our approach checks 

if the propagated change affects internally other elements in the target and updates them 

even if their source elements did not necessarily change.  
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The impact on the system performance model when applying a design pattern to a Service 

Oriented Architecture (SOA) design model is investigated in [35]. This work has been done 

in our performance research group at Carleton. The Role Based Modeling Language 

(RBML) is used to define the SOA design patterns applied to the source model. The 

changes produced by the pattern application are propagated to the performance model. The 

similarity between [35] and our work is that both use the transformation between software 

models in UML+MARTE and LQN performance models. One difference is that in [35] 

only modifications due to SOA design pattern applications are propagated to the LQN 

model via refactoring rules specific to every pattern, while in our case any modification to 

the software model detected with EMF Compare can be propagated to the LQN model. 

Another difference is that in our work we make use of mapping patterns to specify the 

mapping between source and target (meta)models in a reusable and implementation 

language independent way. 

Forward and backward change propagation between source model and target model 

generated by an ATL transformation is proposed in [36] . The forward propagation depends 

on re-executing the whole batch transformation. The backward method does not support 

insertion in the target model. In the same context of ATL the authors of [31] proposed an 

incremental approach that supports only the imperative parts of the language, but does not 

support composite changes (e.g., move). 

In the context of graph transformations, approaches such as [37][38][28] support 

incrementality. They were developed in the context of the VIATRA framework where the 

execution of the transformation is driven by change and based on graph pattern matching. 

However, only [38] supports composite change (update and move). In fact, the execution 
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semantics of graph transformations is different from hybrid model transformation 

languages, such as ETL. Hybrid languages provides the designer with more practical 

solutions based on the problem at hand [27]. In graph transformations, models are 

represented as a graphs and the transformation is based on graph theory [39]. In the same 

graph context, in [40][41] are proposed bidirectional incremental approaches based on 

Triple Graph Grammars, which are classified as declarative languages.  

Different examples of bidirectional transformation languages, such as [7][42] and others, 

can be found in the survey paper [43], which discusses how bidirectionality supports 

incrementality. However, bidirectional transformation is not suitable for the problem we 

consider, because in our transformation not all properties of the source model are captured 

in the target model. For instance, the structural nesting of components cannot be 

represented in LQN, where the tasks that are counterparts of components cannot be nested. 

Another example why the transformation from UML to LQN is not bidirectional is that 

LQN does not retain which entry corresponds to which activity partition, so we miss this 

information when transforming back from LQN to UML. 

Table 2-2 compares the previously discussed incremental approaches with our proposed 

approach based on different criteria discussed in Table 2-1. 

                                                                   Table 2-1 Comparison Criteria 

Comparison criteria Explanation 

Technique Used The name of the technique used to apply the 

incremental transformation 

Language Style The classification of the transformation language used 

in the incremental transformation 

Language Framework The specific name of the transformation language  
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Change Type What is the type of change?  

1) Atomic (single change) such as delete or insert. 

2) Composite (set of changes) such as update or move  

Source What is the source model that represents the input of 

the transformation 

Target What is the target model that represents the output of 

the transformation 

Conditions If the incremental approach checks guard conditions 

that the source model element should satisfy before 

creating a new element in the target model 

Profile If the incremental transformation supports propagating 

a change in the value of a stereotype attribute when the 

source model element is extended with that stereotype. 

Mapping Specification of mapping between source model 

elements and target model elements  

Automated Change detection  If the changes are detected manually or by a tool 

Arbitrary or restricted 

changes 

If the designer can apply any change or only specific 

changes  
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[40] Triple Graph 

Grammar (TGG) 

Declarative Graph 

Transformation 

Language 

ã ã x x Class 

diagram 

Database 

schema 
ã x x x R 

[41] Triple Graph 

Grammar(TGG) 

Declarative Graph 

Transformation 

Language 

ã ã ã ã SysML 

model 

AUTOSAR 

model 
(Automotive 

Open System 

Architecture) 

ã x ã ã A 

[30] Logic-based 

SLD resolution 

Declarative Tefkat ã ã x x Class 

diagram 

Database ER 

diagram 
ã x x x R 

[37] Graph pattern 

matching 

Hybrid VIATRA2 ã ã ã x Graph Relational 

DB 
ã x x x R 

[38] Graph pattern 

matching 

Hybrid VIATRA2 ã ã ã ã XML -

based 

Domain 

specific 

workflow 

JPDL 

Domain 

specific 

(XML -based 

language ) 

ã x ã ã A 

[28] Graph pattern 

matching 

Hybrid VIATRA2 ã ã ã x Petri nets Petri nets ã x x ã R 

[32] ShouldExist and 

DoesExist 

algorithm 

n.a IBM Rational 

Rose 
ã ã ã x UML 

design 

model 

Domain-

Specific 

Models 

(ESCM) 

x ã x ã R 
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                                                                                Table 2-2 Comparison of incremental transformation approaches 

[35] Coupled 

transformation 

Hybrid QVT ã ã ã x UML 

design 

Model 

Performance 

model (LQN) 
ã ã x x R 

[34] Incremental 

model 

Synchronization 

Hybrid QVT ã ã ã x Class 

diagram 

Database 

schema 
x x ã x A 

[31] Live 

transformation 

support for ATL 

Hybrid ATL ã ã ã x Class Relational 

DB 
ã x x ã A 

Proposed 

approach 

Incremental 

change 

propagation 

(ICP) 

Hybrid ETL ã ã ã ã UML 

design 

Model 

Performance 

model (LQN) 
ã ã ã ã A 



 20 

In summary, the type of software artifact impacts the change mechanism that is required 

[44][45]. Only one of the examined approaches [35] supports incrementality between 

analysis models and design models, similar to our approach. However, it only supports 

some specific kinds of changes due the application of SOA design patterns, while our 

approach supports arbitrary changes detected by the EMF Compare tool. Additionally, the 

mapping between UML+MARTE to LQN was hard coded in the transformation from [35], 

while in our work we make use of mapping patterns to specify the mapping between source 

and target (meta)models in a reusable and implementation language-independent way. Our 

approach is the only one that updates the old traces after propagating the changes. Few 

approaches in literature support composite changes [33]; ours is one of them. According to 

the last comparison criterion, few approaches support the propagation of changes in the 

attribute values of stereotypes applied to the source model elements. The interest in 

handling stereotypes comes from the fact that the transformations from software to 

performance models takes as input UML software model with MARTE profile annotations.  

2.2 Model Driven Analysis of Non-Functional Properties (NFP) 

2.2.1 Generate Analysis Models from Software Models 

Model-Driven Engineering (MDE) shifts the focus of software development from code to 

models. The emergence of MDE has enabled the generation of formal analysis models for 

Non-Functional Properties (NFP) verification, such as performance, reliability, fault-

tolerance, scalability, security, availability, maintainability, cost, etc. The analysis models 

can be automatically derived by model transformations from the software models built for 

development. Many modeling formalisms and tools have been developed (such as 

queueing networks, stochastic Petri nets, stochastic process algebras, fault trees, formal 
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logic, probabilistic time automata, etc.) for the analysis of various non-functional 

properties (NFP). In this thesis, the Unified Modeling Language is used to represent the 

software model. There are different UML profiles defined to bridge the gap between 

analysis and UML software models. For example, MARTE (The UML Performance Profile 

for Modeling and Analysis of Real-Time and Embedded Systems (MARTE)) [6] extends 

UML with timing concepts, resources and workload required for quantitative performance 

and schedulability analysis. The UML Profile for Schedulability, Performance and Time 

(SPT) [46] is a precursor of MARTE that was defined for UML 1.X. Both SPT and 

MARTE are used for annotating the performance properties of UML models. MARTE has 

been extended with a dependability profile called DAM that can be used for annotating 

dependability properties (such as availability, reliability, safety) of UML models [47]. 

Generating Performance Models 

In the software performance engineering field, there have been significant efforts to 

integrate performance analysis into the software development process by using different 

performance modeling formalisms: queueing networks, Petri nets, stochastic process 

algebras, Layered Queueing Networks (LQN), and simulation. Performance model 

represents the quantifiable attributes of the system such as response time (how quickly the 

system responds to an event) or throughput (how much work the system can achieve in a 

specific time). A good survey of the techniques for deriving performance models from 

UML models is given in [4], and later in the book [5]. A few early examples of derivation 

of different kinds of performance models from UML are as follows. The technique 

presented in [48] follows the Software Performance Engineering (SPE) [49] methodology 

very closely, generating the same kind of models as in [49], but it cannot take as input 
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UML files produced with standard editors. In [50] UML models are transformed into Petri 

Nets, but the contention for hardware resources is not considered. In [51] it is presented a 

transformation from UML to Stochastic Process Algebra. 

The performance research group from Carleton University has implemented UML-to-LQN 

transformations in different languages (such as graph-rewriting language Progres, text 

transformation language XSLT and general-purpose language Java) and was the first to use 

the standard UML metamodel libraries that were current at the time and the standard 

performance profiles SPT [46] and MARTE [6]. 

The most comprehensive model transformation of the Carleton group, which takes as input 

a number of different software models (including UML+SPT and UML+MARTE) and 

generates a number of target performance models (such as LQN, QN and Petri nets) is the 

PUMA transformation [52][53] and its extensions for Service-oriented Architecture, 

PUMA4SOA [54]. PUMA uses an intermediate model called Core Scenario Model (CSM) 

[53]. This way, PUMA succeeds in minimizing the large semantic gap between UML 

models and performance models and reduces the complexity of the transformation at the 

cost of having two separate transformations: one from UML+MARTE to CSM [55] and 

another from CSM to LQN [56]. 

Comparing the light-weight Epsilon ETL transformation developed in [22] with PUMA, 

the ETL transformation goes directly from UML+MARTE to LQN, eliminating the 

intermediate model used in PUMA. Thus, the transformation is faster (as there is no need 

to generate and store an intermediate model) and supports easily inter-model traceability 

between the source and target models. Other differences stem from the languages used to 

implement the transformations. Epsilon ETL is a declarative/imperative language 
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specialized for model transformations, which offers more powerful and concise language 

constructs for transformation than general-purpose languages. Also, the Epsilon engine 

takes over a number of tasks (such as what rule to apply next) that must be handled 

explicitly by a Java transformation. On the other hand, PUMA was developed in Java, a 

general-purpose language that does not provide built in operations to help navigating the 

source model, which makes the transformation code more detailed and complicated. In this 

thesis we built our incremental change propagation (ICP) approach based on the mapping 

patterns and the ETL transformation [22], which takes as input a UML software model 

with MARTE performance annotations, and generates a corresponding Layered Queueing 

Network (LQN) performance model in an XML format understood by the existing LQN 

solvers. 

Generating Dependability Models  

Dependability represents the ability of the system to perform its tasks in a specific time 

(reliability, availability) and to function correctly under stressful conditions (robustness). 

There are several approaches in the literatures proposing to generate dependability analysis 

models from software models. For instance, in [57] it is proposed an algorithm to convert 

fault tree models (FT) to equivalent Generalized Stochastic Petri Nets (GSPN) and 

Stochastic Reward Nets (SRN). The dependability of the system can be improved by using 

fault tolerance, which is defined as avoiding failure in the presence of fault mechanisms. 

FT analysis is an example of dependability analysis approach, where the system is exposed 

to predetermined failures and the FT analysis identifies which part of the system was the 

reason of that failure. 
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Another example of dependability analysis can be found in [58], where the authors propose 

an algorithm to automatically synthesize dynamic fault trees (DFT) - an extension of FT - 

from UML software models. Several approaches, such as [59][60][61][62][63], propose 

the derivation of state based analysis models SPN (Stochastic Petri Net), GSPN, and SRN 

from UML models.               

2.3 Co-evolution of Software and Analysis Models 

In the context of Model-Driven Engineering (MDE), where the models are at the heart of 

the life cycle of system development, model evolution cannot be avoided. The different 

types of models used are very exposed to change during the software development cycle 

due to different reasons, such as responding to new functional requirements, improving 

their quality, or reducing the complexity. In the literature, there are different classifications 

of model evolution. For instance, in [64] model evolution is classified in four types: 1) 

regular evolution, where the model changes 2) metamodel evolution, where the metamodel 

changes and then accordingly the models need to be updated to be conformant to their new 

metamodels;  3) platform evolution that leads to change in the application framework and 

code generators; 4) abstraction evolution due to the use of a new modeling language. In 

[65] another classification is suggested: 1) local/syntactic model evolution refers to changes 

in models due to changes in metamodels; 2) local/content-related model evolution refers 

to changes to model elements due to addition, deletion or update; 3) systemic/syntactic 

model evolution, concerned with changes in the modeling language; 4) systemic/content-

related, concerned with merging different parts of the system. According to [66] the main 

reasons for model evolution are requirement evolution, language evolution and change in 

style (refactoring).  
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In this research, we focus on local/content-related model or regular model evolution. We 

consider evolving the software model with the goal of improving the nonfunctional 

requirements represented in the analysis models without changing the functionality. Such 

evolution can be called refactoring. It minimizes the complexity and improves the quality 

of the model. This is considered in [67] and [68] a necessary tool for handling model 

evolution. We use refactoring to evolve a UML+MARTE software model that represents 

the source model, and then automatically propagate all changes incrementally to the 

performance model (LQN), whose results are used for performance analysis.     

2.4 Model Comparison  

There are two ways to detect model changes according to the literature [69] [70] [71]:  a) 

an operator-based approach that detects the changes as a set of operations [72], or b) direct 

comparison (e.g., by using EMF Compare [73]) to detect the differences between two 

versions of the same model. Direct comparison has advantages, especially in the case when 

comparing models that contain elements with unique identifiers [74] (UML is such a 

model). Therefore, we use the open-source EMF Compare tool to determine the differences 

between two versions of the same UML source model. EMF Compare depends on 

IdentifierEObjectMatcher.DefaultIDFunction that matches elements with the same 

identifiers [73]. According to [75], using Static Identity-Based Matching approach (which 

states that every model element has a unique identifier ) can be faster and more user-

independent, in the sense that no configuration is needed from the user 's side. 

2.5 Traceability  

Traceability plays an important role in MDE for building relationships between source 

model elements and target model elements, by establishing trace links between those 

http://git.eclipse.org/c/emfcompare/org.eclipse.emf.compare.git/tree/plugins/org.eclipse.emf.compare/src/org/eclipse/emf/compare/match/eobject/IdentifierEObjectMatcher.java#n268


 26 

elements to track, analyze and propagate the impact of change which results from evolving 

software models. There are different classifications of traceability approaches in the 

literatures. For example, [76] categorize the traceability approaches in three types: 

requirements, modeling and transformation. The requirements approach focuses on tracing 

the requirements in different development phases in the development life cycle to give the 

stakeholders a better understanding of the requirements semantics. Modeling approaches 

focus on tracing the relationship between different elements in different models. 

Transformation approaches focus on generating automatically trace links during the 

transformation. Trace links represent the relations between source and target elements. 

Different classifications based on storing and managing the trace links were proposed in 

[77]. Embedded traceability links are those where the trace links are stored internally with 

the models. Using this approach has the disadvantage that it pollutes the model by including 

all traces inside it. Another approach is external traceability links, which solves the 

pollution problem by storing the trace links as a separate model. In this thesis, we use 

external traceability links that fall in the transformation category, as they are generated 

automatically by running the transformation. The traceability links are used in this research 

for two purposes: to feed back the performance results to the UML software model and 

during the change propagation process. The traces themselves evolve when the UML 

model evolves. Therefore, they need to be updated during the change propagation. Further 

details about using traceability links are provided in chapter 5 and 6. 

2.6 Higher-order transformation  

A higher-order transformation (HOT) is defined in [78] [79] as a transformation that takes 

a transformation model as input and/or produces such a model as output. The textual ETL 
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transformation definition (transformation rules) is translated to an ETL transformation 

model. The ETL transformation model conforms to the ETL metamodel and represents the 

mapping between source and target models. Two advantages of the transformation model 

are highlighted in [80], which compares model transformation with transformation model. 

First, using a transformation model allows for focusing more on the properties of the 

transformation than on its execution. Secondly, transformation models enable the 

construction of higher-order transformation (HOT).  

According to [78] [81], change propagation can be realized as a higher-order 

transformation which takes a transformation model as one of its inputs. In [78], HOT is 

classified into four types: a) transformation synthesis creates a new transformation from 

data modeled in other forms; b) transformation analysis processes other transformations to 

extract meaningful data; c) transformation (de)composition merges or splits other 

transformations, according to a (de)composition criterion; and d) transformation 

modification manipulates the logic of an input transformation.  

In literature, a typical example of HOT is presented in [78] and developed in the AmmA 

framework. An ATL textual transformation is translated to an ATL transformation model 

by TCS injector [82]. An ATL transformation model is the input to HOT that produces 

another ATL transformation model, which is translated to a textual transformation program 

by TCS extraction. The input and output models conform to the ATL metamodel.  

The proposed higher order transformation (HOT) for realizing Incremental Change 

propagation (ICP) takes ETL transformation model conforming to the ETL metamodel as 

an input for ICP, while the output is an updated performance model. Another example of 

HOT can be found in [83], which verifies the correctness of the ETL language. The first 
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step transforms an ETL transformation to DSLTrans, which is a graph transformation 

language; the second step verifies the transformation with the SyVOLT tool, which 

provides a symbolic execution of DSLTrans transformations. 

2.7 Patterns for Model Transformation  

Design patterns for model transformations provide solutions for a number of model 

transformation specification and design problems, improving the quality of model trans- 

formation. An important concept in model transformations is the mapping between the 

source and target (meta)models, which is addressed by mapping patterns. Success of MDE 

approach depends on mapping quality [84]. In this thesis we discuss a subclass of such 

patterns, called containment-based mapping patterns, which are used to map a group of 

containment-related source model elements into a group of target model elements (see 

Chapter 4). In this section we focus on two main categories of related works: mapping 

patterns and model transformation patterns. 

Model Transformation Patterns 

 

Patterns are a popular technique in the field of software engineering to solve recurring 

design problems. Model transformation patterns have been proposed and adopted in [85] 

[86] [87] [88] [89] [90] to solve model transformation problems. In [91] model transfor-

mation patterns are defined as ñdescriptions of transformation rules and transformations 

that are customized to solve a general model transformation design problem in a particular 

contextò. Model transformation patterns are identified and classified in [92] [91]. Both 

provide a catalogue of design patterns in the following categories:  

¶ Rule modularization patterns are concerned with improving the structure of the 

transformation rules by organizing them and their relationships to enhance the 
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transformation flexibility , maintainability and quality. An example of such pattern 

is the Phased Construction pattern [93], used to decompose the transformation into 

phases or stages, where each phase is considered a sub-transformation with one rule 

for creating objects of one target type.  

¶ Optimization patterns focus on improving the efficiency of transformation 

execution. As an example Remove Duplicated Expression Evaluations pattern to 

cache the expressions values in the rules in order to avoid the recurrence in their 

evaluations [91]. 

¶ Model to text patterns to generate code from models. An example is the Visitor 

pattern to traverse the model [27]. 

¶ Expressiveness patterns provide the transformation language with extra abilities 

when it has a limitation. For example, the Simulating Explicit Rule Scheduling 

pattern helps in putting a constraint in the order of rules application [91]. 

¶ Architectural patterns are concerned with organizing the transformation systems or 

the relationships between the transformations in order to enhance their modularity 

and efficiency. An example of such pattern is the Transformation Chain to split up 

the transformations into sequences of sub-transformations. 

¶ Bidirectional transformation (Bx) patterns are concerned with maintaining 

consistency between the source and target model, by defining not only a forward 

transformation from source to target, but also a backward transformation from 

target to source. For instance, Auxiliary Correspondence Model pattern is used to 

map the source and target metamodels. 
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¶ Classical patterns are related to popular design patterns [8] such as the Template 

pattern. 

The model transformation patterns listed above are targeting the transformation rules to 

achieve the goals for each category and are concerned with the level of detail provided by 

the model transformation languages. As opposed to this, we focus on mapping patterns at 

a higher-level of abstraction, independent of the transformation language, concentrating on 

the conceptual relations between the source and target metamodels.  

Mapping Patterns 

In [90] are introduced four mapping patterns in model transformations between concrete 

and abstract domain specific language (DSL). These mapping patterns are: a) element 

mapping to map elements from the source model to elements from the target model; b) 

attribute mapping to map a property of a source element to a property of a target element; 

c) element mapping variability to map one element from the source model to many 

elements from the target model and d) link mapping to map a relationship between source 

elements to a relationship between target elements.  The first three patterns can be 

considered as special cases of the S-T mapping pattern presented in detail in chapter 4. The 

other mapping patterns discussed in this thesis introduce more complex mapping problems, 

such as mutually exclusive containers and virtual container (presented in chapter 4) that 

map a group of source elements (i.e., a special container and contained elements) to a 

corresponding group of target elements.  

Another kind of mapping approach between models is a weaving model (AMW) proposed 

in [94] [95] , which defines a set of links between the source and target metamodels. A 

weaving metamodel based on EMF  is presented in [96] in the context of the ATL language. 
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AMW was extended in [97] where the MeTAGeM framework was proposed for generating 

model transformation code for hybrid transformation languages such ATL and ETL by 

High Order Transformation (HOT). Weaving models and matching transformations to 

semi-automate the development of transformations are proposed in [98]. A weaving model 

captures the relations between source and target models and the corresponding matching 

transformation generate the weaving models. The approach can be applied when the source 

and target metamodels have a similar structure. A set of pre-defined mapping operation 

(MOps) are proposed in [99] to generate executable ATL code out of HOT and MOps. 

MOps are used to specify the mapping by extending AMW. 

In general, a weaving model does not support complex mapping such as the containment-

based mapping patterns presented in this thesis, which are mapping a group of source 

elements involved in a containment relation to a group of related target elements.  A 

disadvantage of AMW are its platform limitations (a compatible versions of Eclipse is 

needed [100]). As opposed to it, our proposed mapping patterns are independent of the 

transformation language/platform selected for implementation. In [101] is presented a 

generic mapping algorithm that focuses on simple mapping models by analyzing the target 

metamodel to solve the ambiguity caused by the semantic gap between the mapping models 

and model transformation. Since this algorithm is based on ñas good as possibleò principle, 

it might require user interaction to solve the ambiguity correctly.  

In [102] it is stated that traceability is a core topic in model transformations and 

representing the transformation by mapping allows one to query the transformation by 

algebraic operations. The paper focuses on chain transformations and suggested 

mathematical operations for transformation chaining. However, the paper does not discuss 
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how to handle guard conditions. The paper does not discuss the inconsistency of traces 

when the source model evolves. In our case we are interested in keeping the trace model 

consistent after evolving the source model therefore the traces are updated after every 

propagation of changes.   
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3    Chapter: Overview of the Proposed Integration Approach  

3.1 Integration of NFP analysis into the MDE process 

The main objective of the thesis is to integrate the NFP analysis based on quantitative 

models into the MDE process. More specifically, we are interested in the integration of 

performance analysis within the software development process, by using quantitative 

performance models (e.g., LQN [3] [1]) that are automatically derived from the software 

models (e.g., UML) extended with performance annotations (e.g., MARTE [6]). 

Performance analysis conducted by solving the performance models helps detecting the 

performance trouble spots and suggests how to change the software model in order to meet 

the performance requirements [53]. The integration of performance analysis in the MDE 

process presented in the thesis is implemented in the context of Epsilon, a new family of 

language consisting of different languages such as Epsilon Object Language (EOL) and 

Epsilon Transformation Language (ETL) [11]. According to [103], Epsilon has been 

adopted in industry (such as IBM Haifa, Telefonica, WesternGeco, Siemens, and NASAôs 

Jet Propulsion Laboratory) as well as in academia (such as the Universities of Texas, Oslo, 

Kassel and Ottawa). Also, Epsilon has a very active forum that provides an immediate 

technical support. 

The proposed integration approach consists of the following:  

a) We developed two integration use cases: performance analysis roundtrip (Section 

3.2,1) and incremental change propagation (Section 3.2.2). In both cases, we make use 

of the containment-based mapping patterns presented in Chapter 4 to specify the 

mapping between UML source models annotated with MARTE profile (presented in 

section 3.3) to LQN target performance models (presented in section 3.4).  
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b) The batch transformation developed separately in [22] corresponds to the 

implementation in Epsilon ETL of the mapping patterns application. It automatically 

generates LQN performance models P from UML software models S annotated with 

the standard MARTE profile. In this thesis, we extended the transformation from [22] 

to generate a trace model along with the performance model, which contains cross-

model trace links between elements from S and P mapped to each other by the 

transformation.  

c) The goal of the performance analysis roundtrip is feeding back to S the performance 

results. After solving the performance model P with an existing solver, the performance 

results are fed back to the software model S by following the cross-model trace links in 

reverse. The proposed roundtrip gives the software developers the ability to see the 

performance results using a standard UML editor and the ability to assess as early as 

possible the performance effects of different architecture, design, implementation and 

deployment alternatives, in order to satisfy the performance requirements. 

d) Analysis and change of UML model: the UML software model is modified by the 

designer/analyst, who adds, deletes, updates and/or moves some model elements. The 

reasons for change are diverse: in the case of the performance roundtrip, the changes 

are intended to fix performance problems highlighted by the performance results, while 

in the case of ICP, the changes can be due to adding new functional features to the 

system or improving functional and non-functional requirements. This step produces a 

changed version Sô of the original UML model, S. Please note that the designer/analyst 

is responsible for making changes to the UML software model and to verify whether 

the model is correct after the changes. The performance analyst can analyze the 
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performance results and evaluate if the performance results meet the performance 

requirements after propagating the changes to the performance model by ICP. 

e) Automatic change detection: All changes between the S and Sô need to be detected. For 

this purpose, in this research we use an existing tool, EMF Compare which 

automatically detects all the differences between S and Sô. 

f) Automatic incremental propagation of changes (ICP): The differences found in the 

previous step, the mapping patterns applied to the source and target metamodels, the 

trace model, the ETL transformation model and the old LQN model P become inputs 

to the ICP module used to propagate the changes to the target model P, which is denoted 

as Pô after being changed.  

Section 3.2.1 describes briefly the performance analysis roundtrip process, and Section 

3.2.2 the incremental change propagation (ICP) process.  The last two sections of the 

chapter describe a running example of source and target model.   

3.2 Examples of integration 

3.2.1 Performance analysis roundtrip 

The performance analysis roundtrip aims to help developers understand and interpret the 

performance results in the context of the software model rather than the performance 

model. As shown in Figure 3-1, a UML software model with MARTE performance 

annotations (as described in Section 3.3) is taken as input in Step1 by a ETL batch 

transformation, which  was developed in previous work [22] and extended in this thesis 

with the facility to generate a trace model along with the LQN target model. Cross model 

traceability means having direct trace links between S and P, which helps in different ways: 

a) propagate small changes from S to P, b) support the co-evolution of the software and 
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performance model, and c) import the performance results obtained by solving P to the 

software domain. Point (c) is discussed in more detail in chapter 5, while (a) and (b) are 

discussed in chapter 6. Pô represents the LQN model with performance results obtained 

after solving P with an existing solver in Step 2, and Sô is the software model with 

performance results stored as values of MARTE stereotype attributes. In order to feed back 

the performance results from Pô to Sô in Step 3, the trace links are traversed in reverse, 

starting from elements in Pô to the corresponding elements in Sô. Steps 4 and 5 represent 

the analysis and new changes made until the performance requirements are satisfied. 

                   

                                               Figure 3-1 Performance Analysis Roundtrip 

3.2.2  Incremental change propagation (ICP) 

Another objective of the thesis is to design, implement and evaluate an Incremental 

Change Propagation (ICP) technique from a UML+MARTE software model to the 

corresponding LQN model. During the development process, the UML model evolves 

in order to meet the functional and non-functional requirements. This continuous 

evolution creates inconsistencies between the software and analysis models. There is 
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an urgent need to support the evolution of the performance model (or other analysis 

models) in step with the software model. Therefore, we develop an Incremental Change 

propagation technique that detects the changes with the EMF Compare tool, then 

incrementally propagates them to the LQN model to keep it synchronized.  

As shown in Figure 3-2, the entire process is ñprimedò by transforming the original 

source UML+MARTE model for the first time with the batch transformation developed 

in previous work (Step1). The outcome is the performance model P and the Trace 

model. Please note that the batch transformation is able to generate an entire target 

model at once from an entire source model, but it does not support incremental 

transformation. During the software development process, the following chain of 

actions is repeated many times:  

¶ A decision is taken in Step2 to change the software model S for a number of reasons 

(such as adding new functionality, improving the system architecture, improving 

non-functional properties, etc.)  

¶ Different changes are applied to S manually or automatically in Step3, producing a 

changed model Sô, which is now out-of-synch with the performance model P. 

¶ The differences between S and Sô are detected with the help of the tool EMF 

Compare in Step 4. 

¶ The ICP module (Step 5) takes as input the following: performance model P, trace 

model, differences between S and Sô and mapping patterns between the source and 

target (meta)models, which provide a high-level specification focusing more on 

"what needs to be transformed into what" rather than "how".  ICP takes into account 
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the set of changes between S and Sô and propagates them to the target model P' 

(Step6), synchronizing it with Sô.  

¶ After deriving Pô, it is solved with an existing LQN solver in Step 7, obtaining 

performance results for a range of workload and configurations, which allows us to 

evaluate whether the performance requirements are satisfied after propagating the 

changes (step7). 

The whole ICP approach is implemented in Epsilon Object Language (EOL) an 

imperative programming language for creating, querying and modifying EMF (Eclipse 

Modeling Framework) models [104].    

      
                                               Figure 3-2 Incremental Change propagation (ICP)  

 

3.3 Source Model 

The source model taken as input by the transformation to performance model is a UML 2.5 

[105] software model annotated with MARTE [6] performance information. The source 

model contains two types of UML diagrams: a deployment diagram representing the 
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structure of the system and one or more activity diagrams representing the behaviour.  

The deployment diagram contains a set of UML nodes stereotyped «device» that represent 

physical computational resources with processing capability, and a set of artifacts 

representing software components, each deployed on a device. Each activity diagram 

represents a scenario that is the realization of a use case and models the interaction between 

software components. The behavior of each participating component is modeled inside an 

ActivityPartition with one dimension (also known as a swimlane) which belongs to an 

ActivityGroup. A swimlane contains different types of action nodes and control nodes 

linked together by edges. Examples of types of action nodes are: a) AcceptEventAction - 

executed when an event has been triggered; b) SendSignalAction - responsible for creating 

and transmitting signal instances to the target object; c) CallOperationAction - transmits a 

message representing an operation call request to the target object and waits until a reply 

is received; and d) Opaque Action - a type of UML abstract class considered as an 

executable node included within the behaviour. The control nodes are responsible for the 

flow of tokens between other nodes. Examples of control nodes are the initial node, which 

indicates the starting point of the execution of the scenario and the final node, which 

indicates the termination point of the execution. ForkNode, JoinNode, MergeNode, and 

DecisionNode are other examples of control nodes. Other type of model element is 

ControlFlow, an activity edge responsible for passing tokens from its source node to its 

destination node. The activity edges interconnect activity nodes into a graph that represents 

the behaviour of an activity as a sequence of subordinate units.  

In this chapter we use the example of e-commerce system model introduced by the authors 

of a book on software performance analysis  [5] as the source model for our transformation.  
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The system contains three performance-critical use cases selected for performance 

analysis: Browse Catalogue, Browse Cart, and Place Order. Figure 3-3 represents the 

annotated deployment diagram of the system, showing the run-time architecture and the 

allocation of software components to hardware processing nodes. The system has three 

classes of customers with a population of $N1, $N2 and $N3 users, respectively. (Note that 

$N1, $N2 and $N3 are variables in the MARTE annotations). Each of the users is deployed 

on its own UserDevice host. In order to insure this, the multiplicity of UserDevice1 is $N1, 

and so on.  

Each class of users is executing repeatedly the use case corresponding to its class. The 

scenarios that represent the realization of the three use cases are modeled by three activity 

diagrams: PlaceOrder scenario is given in Figure 3-4, BrowseCatalogue scenario is given 

in Figure 3-5 and BrowseCart scenario is given in Figure 3-6. For running the batch 

transformation successfully and get the expected results, the source model needs to satisfy 

the following assumptions: The namespace for each device element needs to be initialized 

to the UML element containing it; also, the namespace for each artifact needs to be 

initialized to the device containing it. Each artifact has at least one defined corresponding 

activity partition and both should have same name. ControlFlow has a property called 

inPartition, which must be set only if the control flow is defined inside an ActivityPartition; 

for those ControlFlow representing call requests that cross the border between 

ActivityPartitions, the inPartition property does not have to be set. 
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                                     Figure 3-3 Deployment diagram of Ecommerce System 

 

 

                                   Figure 3-4 Activity diagram of Place Order Scenario 
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                               Figure 3-5 Activity diagram for Browse Catalogue Scenario 

 

Figure 3-6 Activity diagram for Browse Cart Scenario 

3.4 Target Model 

The target model for this transformation is the Layered Queuing Network (LQN) model 

[1][2][3]. LQN is a performance model that is extended from queuing networks and  

can represent nested services (i.e., a server may also be also a client to other servers). An 

LQN model is a graph whose nodes are either software tasks (parallelograms) or hardware 

devices (circles) and the arcs denote service requests. Figure 3-8 shows the LQN model 

generated from the e-commerce example [22]. The tasks with outgoing but no incoming 
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arcs play the role of clients (also called reference tasks), the intermediate nodes with both 

incoming and outgoing arcs are usually software servers and the leaf nodes are hardware 

servers. A software or hardware server node can be either a single-server or a multi-server. 

Software tasks have entries corresponding to different services (represented as smaller 

parallelograms inside the tasks). The LQN metamodel is shown in Figure 3-7, and is based 

on the XML schema defined in the LQN user manual [3]. The Epsilon transformation 

engine, however, requires that the target metamodel be represented in EMF Ecore (the 

metamodeling language of the underlying platform Eclipse EMF [104]). The Eclipse    

framework offers a language called Emfatic, designed to represent EMF Ecore models in 

 

                                                    Figure 3-7 LQN metamodel                     

textual form. Therefore, we used the Emfatic language to express the metamodel from 

Figure 3-7 in a textual form, which in turn was converted into EMF Ecore.  

Like the XML-based metamodel from [3], the root model element of the LQN metamodel 

is lqnmodel, which is composed of one or more processor model elements by using 
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composition associations. In other words, lqnmodel and processor have a whole-part 

relationship, following the hierarchy of the XML-based metamodel. Processor is 

composed of tasks, which in turn is composed of entries or task-activities. Entry is the  

parent of entry-phase-activities model element. task-activities and entry-phase-activities 

are mutually exclusive containers of activity model element. Activity is the parent of 

children of type synch-call and asynch-call. Task-activities element is composed of 

elements of three types: Activity, Precedence and Reply-entry. Reply-entry is the parent 

of Reply-activity. In addition, the elements named Pre, Pre-or, Pre-and, Post, Post-or 

and Post-and are all children of Precedence model elements. 

             

                  Figure 3-8 LQN Model generated from e-commerce software model                   
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4    Chapter: Containment-based Mapping Patterns 

4.1 Definition of mapping patterns 

In model transformations, the understanding of the source and target metamodels is an 

essential requirement for mapping the source model elements to target model elements. 

Once the mapping is identified at a high-level of abstraction, it can be implemented as a 

transformation with any available model transformation language. The main advantage of 

the separation of concerns between mapping and the implementation of the transformation 

is the independence of the mapping from the language used for implementing the 

transformation. Thus, the designer has the opportunity to focus more on the conceptual 

aspects of the relations between source and target (meta)models [106] and has flexibility 

in choosing the language for implementation. Our vision is compatible with other research 

projects who have studied the specification of mapping between metamodels as an 

independent concept [107] [108] [109]  [96].  

In this chapter we present a set of patterns called containment-based mapping patterns 

which take into account the containment relationship when mapping the source and target 

(meta)models. Mapping is defined as the description of the correspondence between the 

source and target (meta)models. A design pattern in software design is defined as a reusable 

solution to a commonly occurring problem within a given context [8]. Combining the 

definitions of mapping and design patterns, we define a mapping pattern as a reusable 

solution to a commonly occurring mapping problem between source and target metamodels 

in a specific context. The goal of the mapping patterns is to answer a challenging question 

that is ñwhat needs to be transformed into whatò, thus shifting the focus from the 

implementation of the mapping by transformation rules to the mapping itself. 
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4.2 Specifying Containment-based Mapping Patterns in UML  

In UML patterns can be represented by Collaborations. According to UML2.5 [105] 

Collaboration is a way to represent how a set of instances interacting with each other to 

accomplish a specific goal. Every instance in the Collaboration plays a collaborationRole 

which defines the use of that instance. The relationships between the instances in the 

Collaboration are represented as Connectors between the collaborationRoles that are 

played by those instances. The Connectors identify the communications paths between the 

instances that participate in the Collaboration. The application of the pattern in a specific 

context is called a CollaborationUse. In a CollaborationUse, instances from that context 

are binding to the collaborationRoles of the Collaboration by roleBindings. Each 

roleBinding shows every instance with its collaborationRole. 

The Collaboration is shown with its internal structure (collaborationRoles, Connectors) as 

an ellipse shape stereotyped «Collaboration» (see Figure 4-1). The collaborationRoles are 

considered the Properties of the Collaboration. The CollaborationUse is shown as ellipse 

within the internal structure compartment of the context Classifier. Each CollaborationUse 

has a name and a Collaboration type. The roleBindings in the CollaborationUse are 

implemented by Dependencies (see Figure 4-2). 

                   
                                                  Figure 4-1 Collaboration elements 
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                                               Figure 4-2 Collaboration use elements 

4.3 Classifying and documenting of Containment-based mapping Patterns  

4.3.1 Classification of Containment-based mapping 

In this section we classify the mapping patterns in two categories: Figure 4-3 shows the 

relationships between these patterns. 

1. Mapping patterns applied between source and target metamodels:  

i) S-T mapping pattern. 

ii)  Containment mapping pattern. 

2. Mapping patterns applied to one metamodel (source or target) to define the group 

of model elements involved in a containment relationship: 

i) Simple Container pattern 

ii)  Intermediate Container pattern. 

iii)  Virtual Container pattern. 

iv) Mutually Exclusive Containers pattern. 

4.3.2 Documenting the mapping patterns 

In this section we use a specific template for documenting the mapping patterns. The 

template, inspired by [8], includes pattern name (usually a few words describing the 

problem), problem description (describing the context of the problem and when to apply 

the pattern), solution (describing the elements that the solution consist of) and example 
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(showing the application of the pattern in a specific context). All applications in this chapter 

are given in the context of UML+MARTE model as a source model and LQN as a target 

model. There is a large semantic difference between the source and target models (see 

Sections 3.3 and 3.4). The mapping between source and target models are explained in the 

following subsections. As mentioned earlier, we specify the mapping patterns in UML, so 

the pattern notation is independent of the transformation language. Some examples of 

collaborationRoles used in the pattern definition are: 

¶ sContainer: a container instance from the source model. 

¶ sElement: contained instance from the source model. 

¶ tContainer: container instance from the target model. 

¶ tElement: contained instance from the target model. 

 

Figure 4-3 Containment-based mapping patterns relationships 

4.4 Mapping patterns applied between source and target metamodels. 

i) S-T mapping pattern 

Problem description: an element or property in the source model needs to be mapped to 

an element(s) or property(ies) in the target model.  ñS-Tò in the pattern name stands for 
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Source-to-Target).     

Solution: S-T mapping pattern has two collaborationRoles: source refers to an element, 

property or stereotype property from the source model and target refers to an element or 

property from the target model. An element or property from the source model could be 

mapped to one or more elements or properties in the target model (see Figure 4-4). 

 
                                                      Figure 4-4 S-T Mapping Pattern: definition  

Example: A device d from the UML source model plays the role of source and is mapped 

to Processor p from the LQN target model that plays the role of target (both shown in 

orange in Figure 4-5). Other examples of mapping properties and stereotype properties 

presented in section 4.4. Please note that we did not show the stereotype «GaExecHost» 

constraints for Device for keeping the figures more readable. 

 
                                              Figure 4-5 S-T Mapping Pattern:  application 

ii)  Containment mapping pattern. 

Problem description: A source model has a containment relationship in which an object 

contains other objects and their existence depends on the existence of the containing object. 

The containing object is called container and the contained object(s) is (are) content(s). 

The container-content relationship is also denoted as parent-child. The source containment 

submodel is mapped to a target containment submodel. When a new object needs to be 
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created in the target model, its container needs to be identified with respect to the 

containment relationship in the source model. 

Solution: This pattern has four collaborationRoles: sContainer, tContainer, sElement and 

tElement (Figure 4-6). The container sContainer from the source model is mapped to the 

container tContainer in the target model and the content (called sElement) of sContainer 

is mapped to the content (called tElement) of tContainer. In other words, the containment 

relationship in the source model is mapped to the containment relationship in the target 

model. Thus, if tElement needs to be created in the target model its tContainer is identified 

by matching a group { sContainer, sElement} from the source model with a group 

{ tContainer, tElement} from the target model.  Please note that this pattern definition uses 

the application of the S-T pattern (via a CollaborationUse, as defined in the UML standard).                        

 

                                         Figure 4-6 Containment Mapping Pattern: definition  

Example: in Figure 4-7, m is an instance of Model type and plays the role of sContainer. 

Model is a container of Device in the source model. An instance d of type Device from the 

source model plays the role of sElement. An instance lqnmodel of type Lqnmodel from the 

target model plays the role of tContainer and is mapped to an instance m (both shown in 

green). Lqnmodel is a container of Processor. The instance p of Processor type plays the 

role of tElement and is mapped to sElement d of Device type (both shown in orange).  
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                                         Figure 4-7 Containment Mapping Pattern: application 

4.5 Mapping Patterns applied to One Metamodel 

i) Simple Container pattern 

Problem: Two elements of a metamodel are involved in a simple containment relationship 

when the container and contained element are directly connected by a containment 

association.                     

                                   

                                                Figure 4-8 Simple Container Pattern: definition  

Solution: the pattern is applied when the container and contained elements are connected 

directly. Figure 4-8 defines a Simple Container pattern from the target model. It has two 

collaborationRoles: tContainer played by the containing object and containedElement 

played the contained object(s). 

Example: processor is an instance of type Processor and plays the role of tContainer, 

while t is an instance of type Task and plays the role of containedElement (see Figure 4-9). 

Other applications examples are shown in red color in Figure 4-16. 
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                                             Figure 4-9 Simple Container Pattern: application 

ii)  Intermediate Container pattern. 

Problem: There may be a need to generate a nested container for an element in between an 

existing container and that element. 

Solution: This pattern has three collaborationRoles:  

existingContainer, intermediateContainer and tElement. The intermediateContainer 

represents the content of the existingContainer and plays the role of container for tElement 

(See Figure 4-10 ). 

           
                                Figure 4-10 Intermediate Container Pattern: definition  
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                                        Figure 4-11 Intermediate Container Pattern: application 

Example: Figure 4-11  shows that t: Task is an existing container in the target model, task-

activities plays the role of intermediateContainer, and Precedence plays the role of 

tElement. Another example of applying the Intermediate Container pattern is shown in 

Figure 4-16 (blue color) where Reply-entry plays the role of tElement.                 

iii)  Virtual Container pattern  

Problem description: UML diagrams are classified into structural diagrams and behavioral 

diagrams. When a UML+MARTE software model is transformed into an LQN 

performance model, there is no separation of concerns between the structural and 

behavioral views in LQN, because a performance model captures the performance 

properties of the system in a single view.  

Solution: This pattern helps to remove the separation between an element (sElement-

Structural) from the structural view and its behavior represented by a collection of 

(sElement-Behavioural) from the behavior view. In the source model there may be no 
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direct association between (sElement-Structural) and (sElement-Behavioural), even if they 

are modeling different aspects of the same instance. In order to make clear which 

behavioural element corresponds to a given structural element, the pattern has a constraint 

that sElement-Structural and all its (sElement-Behavioural) should have the same name 

(see Figure 4-12). Using name matching, the pattern establishes a ñvirtual containerò 

relationship between (sElement-Structural) and its corresponding (sElement-Behavioural). 

 

                                 Figure 4-12 Virtual Containers Pattern: definition  

Example: In the source models, an Artifact is a structural construct that models a deployed 

component. Artifact is mapped to an LQN Task (both shown in green in Figure 4-13). At 

the same time, we are interested in the runtime behavior of the component represented by 

the Artifact, which is described in the source model by different activity partitions included 

in the activity diagrams modeling scenarios. Although there is no direct association 

between an Artifact and its corresponding behaviours described by ActivityPartitions, we 

apply the Virtual Container pattern with a name-matching constraint to bring together the 

structural and behavioural views of each component. The CollaborationUse applying the 

Virtual Container pattern in Figure 4-13 , shows that instance a of type Artifact, playing 

the role of sElement-Structural, is treated as a ñvirtual containerò of  the actual contents of 

actPart of type ActivityPartition that describe the component behavior. More details about 

the contents of ActivityPartiton are given in in Figure 4-18.  
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                                                Figure 4-13 Virtual Containers Pattern: application 

i) Mutually exclusive Containers pattern 

Problem description: Sometime content(s) in the model has(ve) two mutually exclusive 

containers. Only one of them should exist at a given time.  

Solution:  As shown in Figure 4-14 the Mutually Exclusive Containers pattern has three 

collaborationRoles: tContainer1 and tContainer2 are mutually exclusive containers, and 

tElement is the contained element. The content has a constraint helping to decide which 

container to use. 

                                                                  

                                      Figure 4-14 Mutually Exclusive Containers: definition  

Example: According to the LQN metamodel, Activity has two mutually exclusive 

containers entry-phase-activities and task-activities (shown with green color in Figure 

4-16). They play the role of tContainer1 and tContainer2, respectively. The LQN activity 

ac plays the role of tElement and has a constraint based on the entry type (see Figure 4-15). 


































































































































































