
Incremental Change Propagation from Software to

Performance Models

by

Taghreed Arafat Mohammad Altamimi

A thesis submitted to the Faculty of Graduate and Postdoctoral

Affairs in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Electrical and Computer Engineering

Carleton University

Ottawa, Ontario

© 2019

Taghreed Arafat Mohammad Altamimi

 ii

Abstract

Model-Driven Engineering (MDE) enables the automatic generation of performance

models from software design models by model transformations. The performance models

are used for performance analysis of the software under development, to guide the design

choices from an early stage and to ensure that the system will meet its performance

requirements. The software model evolves during development, so inconsistencies may

appear between the software and performance models. This research aims at keeping the

software and performance models synchronized.

An important concept in model transformations is the mapping between the source and

target (meta)models, which can be specified in a reusable manner with the help of mapping

patterns. In this research we propose a subclass of such patterns, called containment-based

mapping patterns. used to map a group of containment-related source model elements into

a group of target model elements. We focus on these patterns because the containment

relationship is frequently found in metamodel specifications. The containment mapping

patterns are applied in the context of a non-trivial transformation from UML software

models extended with MARTE performance annotations into Layered Queueing Network

(LQN) performance models. We show how the mapping patterns can be applied for

designing the transformation rules for a batch transformation implemented in a specific

language. (The complete implementation of the batch transformation was done in separate

work). In this research, we extend the batch transformation to generate, beside the target

model, a traceability model between the mapped source and target elements. After solving

the generated LQN model with an existing solver, the performance results are fed back to

the software model by following the cross-model trace links.

 iii

The next objective of the research is to design (based on the mapping patterns), implement

and evaluate an incremental change propagation (ICP) approach to re-synchronize the

software and performance models. During the development process, when the software

model evolves, we detect the changes with the Eclipse EMF Compare tool, then

incrementally propagate them to the LQN model. The proposed ICP is implemented with

the Epsilon Object Language (EOL) and is evaluated by applying it to a set of case studies.

 iv

Acknowledgements

First and foremost, I would like to thank my thesis supervisor Professor Dorina C. Petriu,

for the patient guidance, the encouragement and the advice she has provided throughout

the five years as her student. I have been extremely fortunate to have a supervisor who

cared so much about my work, and who responded to my questions and queries so

promptly.

I was always dreaming of this moment, but it never came to my mind that it will come

without my brother, Dr. Loay, who always believed in me. I will never forget how happy

he was the moment I told him that I got my PhD admission. He was always encouraging,

helping and advising me. Even during his illness, he never forgot to follow up and ask me

about my research. Loay is always my role model in life. I wish he was here to see that his

sister fulfilled her dream.

This journey would not have been possible without the support of my parents, who always

supported me to follow my dreams. Their prayers have been lighting my path, for me to

achieve my goals.

I owe thanks to a very special person, my husband Wissam for his continued and unfailing

love, support and understanding during my pursuit of the Ph.D. degree, that made the

completion of this thesis is possible. You were always around at times I thought that itôs

impossible to continue, you helped me to keep things in perspective. I greatly value your

contribution and deeply appreciate your belief in me.

Special thanks to my kids Tayem and Merriam, who always were patient and gave me

happiness during this long journey.

It is not a fair task to acknowledge all the people who made this Ph.D. thesis possible with

 v

a few words. However, many thanks to my cousins, friends and everyone who supported

me and surrounded me with love and care.

 vi

This work is dedicated to

My beloved brother Dr. Loay Arafat Altamimi

My Parents Arafat Altamimi, Faridah Altamimi

My dear husband Wissam Altamimi

and

 My lovely kids Tayem &Merriam

My brothers, Raed & Mutaz

 vii

Table of Contents

Abstract .. ii

Acknowledgements .. iv

Table of Contents .. vii

List of Tables .. xi

List of Figures .. xii

List of Code Fragments ... xvi

List of Acronyms ... xvii

1 Chapter: Introduction .. 1

1.1 Motivation .. 1

1.2 Research Objectives ... 4

1.3 Thesis Contributions ... 5

1.4 Thesis Contents .. 7

2 Chapter: Background and State of the Art .. 9

2.1 Model Transformations .. 9

2.1.1 Transformation Languages ... 9

2.1.2 Batch versus Incremental Transformation ... 12

2.2 Model Driven Analysis of Non-Functional Properties (NFP) 20

2.2.1 Generate Analysis Models from Software Models .. 20

Generating Performance Models .. 21

Generating Dependability Models .. 23

2.3 Co-evolution of Software and Analysis Models ... 24

2.4 Model Comparison ... 25

2.5 Traceability ... 25

 viii

2.6 Higher-order transformation ... 26

2.7 Patterns for Model Transformation .. 28

3 Chapter: Overview of the Proposed Integration Approach 33

3.1 Integration of NFP analysis into the MDE process .. 33

3.2 Examples of integration .. 35

3.2.1 Performance analysis roundtrip .. 35

3.2.2 Incremental change propagation (ICP) .. 36

3.3 Source Model.. 38

3.4 Target Model .. 42

4 Chapter: Containment-based Mapping Patterns .. 45

4.1 Definition of mapping patterns ... 45

4.2 Specifying Containment-based Mapping Patterns in UML.. 46

4.3 Classifying and documenting of Containment-based mapping Patterns 47

4.3.1 Classification of Containment-based mapping .. 47

4.3.2 Documenting the mapping patterns.. 47

4.4 Mapping patterns applied between source and target metamodels. 48

4.5 Mapping Patterns applied to One Metamodel .. 51

4.6 Application of mapping patterns in the context of UML+MARTE and LQN 57

4.7 Using Containment-based mapping patterns for Transformation Rule Design 63

4.7.1 Rule based on the S-T Mapping pattern ... 64

4.7.2 Rule based on the Containment Mapping pattern .. 66

4.7.3 Rule based on Virtual Container and Mutually Exclusive Containers pattern 69

5 Chapter: Performance analysis round trip .. 72

5.1 Batch Transformation ... 72

5.1.1 Extending the batch transformation to generate the Traceability model 72

 ix

5.1.2 Automate the Transformation Process ... 74

5.2 Feedback of Performance Results to the software Model .. 76

5.3 Performance Analysis ... 77

6 Chapter: Incremental Change Propagation (ICP) .. 81

6.1 Change Detection Phase ... 81

6.2 Forms of mapping ... 83

6.3 Incremental Change Propagation (ICP) .. 86

6.3.1 Assumptions ... 86

6.3.2 Notation .. 87

6.3.3 ICP main steps.. 89

6.3.4 Potential Extension ... 91

7 Chapter: ICP Application Cases ... 92

7.1 Case study 1: Applying Façade Pattern .. 92

7.2 Case study 2 : Changing from sequence of activities to graph 105

7.3 Case study 3: Changing container (Move) ... 113

7.4 Case study 4: Updating stereotype attribute ... 116

8 Chapter: ICP Evaluation ... 119

8.1 Evaluating the Correctness of ICP.. 119

8.2 Case studies .. 121

8.2.1 Secure communication pattern ... 121

8.2.2 Virtual Proxy pattern .. 126

8.3 Evaluation of ICP Run time efficiency ... 130

8.3.1 ICP execution time versus type of change ... 130

8.3.2 ICP execution time versus number of changes .. 131

8.3.3 ICP execution time versus the size of the model.. 134

 x

9 Chapter: Conclusion ... 136

9.1 Completed work ... 136

9.2 Limitations .. 138

9.3 Directions for future research ... 138

Appendices ... 140

Appendix A: Summarized ICP Algorithm .. 140

Appendix A.1: Summarized ICP Case 1 Algorithm ... 140

Appendix A.2: Summarized ICP Case 2 Algorithm ... 142

Appendix A.3: Summarized ICP Case 3 Algorithm ... 143

Appendix A.4: Summarized Algorithm for Move Difference .. 143

Appendix A.5: Summarized Algorithm for Add New Element Difference 144

Appendix A.6: Summarized Algorithm for Delete Element Difference 144

Appendix A.7: Summarized Algorithm for Change Difference ... 144

Appendix A.8: Summarized Algorithm for Update Stereotype attribute Difference 144

Appendix A.9: Summarized Algorithm for Update attribute difference 145

References .. 146

 xi

List of Tables

Table 2-1 Comparison Criteria ... 16

Table 2-2 Comparison of incremental transformation approaches 19

Table 4-1 High-level view of the transformation rules to transform UML+MARTE to LQN

elements .. 65

Table 8-1 Execution time for ICP based on number of changes 133

 xii

List of Figures

Figure 3-1 Performance Analysis Roundtrip .. 36

Figure 3-2 Incremental Change propagation (ICP) .. 38

Figure 3-3 Deployment diagram of Ecommerce System .. 41

Figure 3-4 Activity diagram of Place Order Scenario .. 41

Figure 3-5 Activity diagram for Browse Catalogue Scenario .. 42

Figure 3-6 Activity diagram for Browse Cart Scenario .. 42

Figure 3-7 LQN Emfatic Ecore metamodel .. 43

Figure 3-8 LQN Model generated from e-commerce software model 44

Figure 4-1 Collaboration elements .. 46

Figure 4-2 Collaboration use elements ... 47

Figure 4-3 Containment-based mapping patterns relationships.. 48

Figure 4-4 S-T Mapping Pattern: definition ... 49

Figure 4-5 S-T Mapping Pattern: application ... 49

Figure 4-6 Containment Mapping Pattern: definition ... 50

Figure 4-7 Containment Mapping Pattern: application .. 51

Figure 4-8 Simple Container Pattern: definition ... 51

Figure 4-9 Simple Container Pattern: application .. 52

Figure 4-10 Intermediate Container Pattern: definition .. 52

Figure 4-11 Intermediate Container Pattern: application .. 53

Figure 4-12 Virtual Containers Pattern: definition ... 54

Figure 4-13 Virtual Containers Pattern: application ... 55

Figure 4-14 Mutually Exclusive Containers: definition ... 55

 xiii

Figure 4-15 Mutually Exclusive Containers Pattern: application 56

Figure 4-16 LQN metamodel with some patterns applied .. 56

Figure 4-17 Mapping {Device, Artifact} to {Processor, Task} 59

Figure 4-18 Mapping {Artifact, AcceptEventAction} to {Task, Entry} 59

Figure 4-19 Mapping {Artifact, CallOperationAction} to {(EntryPhaseActivities Xor

TaskActivities), Activity} ... 60

Figure 4-20 Mapping {Artifact, DecisionNode) to {TaskActivities, Precedence} 61

Figure 4-21 Mapping {CallOperationAction, ControlFlow} to {Activity, Synchcall} 61

Figure 4-22 Mapping Device properties to Processor properties 62

Figure 4-23 High-level view of the mapping between the source and target models 64

Figure 4-24 Example of Implementation of S-T mapping pattern 65

Figure 4-25 Implementation of mapping {Model, Device} to {Lqnmodel, Processor}... 67

Figure 4-26 Implementation of Mapping {Artifact, CallOperationAction} to

{(EntryPhaseActivities Xor TaskActivities), Activity} .. 71

Figure 5-1 Trace Metamodel .. 74

Figure 5-2 Response time for class1 users .. 79

Figure 5-3 Throughput for class1 users .. 80

Figure 6-1 Example of difference file ... 83

Figure 7-1 Deployment diagram for Example 1 ... 92

Figure 7-2 Activity Diagram for Example1 .. 93

Figure 7-3 Original Lqn for Example1 .. 94

Figure 7-4 Mapping OpaqueAction to Activity .. 97

Figure 7-5 Example 1: LQN after propagating diff 1 and 2 ... 98

 xiv

Figure 7-6 Example1: LQN after creating new task F and propagating diff 4& 6 100

Figure 7-7 Example 1: LQN after propagating diff 13 ... 102

Figure 7-8 Example1: LQN after adding new Synchcall and propagating difference ... 104

Figure 7-9 Example1: Updated Trace Model ... 105

Figure 7-10 Example 2: Activity partitions without graph pattern 106

Figure 7-11 Changed Example 2: Activity partition A2 with graph pattern 106

Figure 7-12 Original LQN for Example 2 in Emfatic Ecore format............................... 107

Figure 7-13 Intermediate step for adding Task-activities ... 107

Figure 7-14 Example 2: LQN after Propagating Differences 1 through 5 109

Figure 7-15 Example 2: LQN after adding new Precedence .. 110

Figure 7-16 Example2: LQN after adding reply entry and replyactivity........................ 111

Figure 7-17 Graphical representation of LQN model before and after propagating all

changes .. 114

Figure 7-18 Example 2: Updated Trace model ... 114

Figure 7-19 Deployment Diagram before moving Artifact .. 115

Figure 7-20 Deployment Diagram after moving Artifact F .. 116

Figure 7-21 Moving task F from processor D2 to processor D1 116

Figure 7-22 Example4: Activity diagram after updating Host demand of

CalloperationActionPh1 .. 117

Figure 7-23 LQN after updating Hostdemandmean of CallOperationActionph1 Activity

... 118

Figure 8-1 Activity Diagram of Browse Catalogue scenario before Secure communication

pattern ... 122

 xv

Figure 8-2 Activity Diagram of Browse Catalogue scenario Secure communication pattern

... 123

Figure 8-3 LQN model after change propagating ... 123

Figure 8-4 Graphical representation of LQN before applying Secure Communication

pattern ... 124

Figure 8-5 Graphical representation of LQN after applying Secure Communication pattern

... 125

Figure 8-6 Activity diagram for Browse Cart scenario before Proxy pattern 126

Figure 8-7 Activity diagram for Browse Cart scenario after Proxy pattern 127

Figure 8-8 LQN model before applying Proxy pattern ... 128

Figure 8-9 LQN model after Incremental Change Propagation 129

Figure 8-10 Comparing ICP execution time for different types of change 133

Figure 8-11 Execution time for different size of models when apply update attribute change

... 135

Figure 8-12 Execution time for 1000 elements model size when apply create new element

change ... 135

 xvi

List of Code Fragments

Code Fragment 4-1 Transformation Rule Model2Lqnmodel ... 68

Code Fragment 4-2 Operation getDevices ... 68

Code Fragment 4-3 Operation hasStereotype ... 68

Code Fragment 4-4 Transformation Rule Device2Processor ... 68

Code Fragment 5-1 Ant build file ... 75

 xvii

 List of Acronyms

AC AttributeChange

EMF Eclipse Modeling Framework

EOL Epsilon Object language

Epsilon Extensible Platform of Integerated Languages for Model Management

ETL Epsilon Transformation Language

HOT Higher-order Transformation

ICP Incremental Change Propagation

LQN Layered Queuing Networks

MARTE Modeling and Analysis of Real-Time and Embedded Systems

MDE Model Driven Engineering

NFP Non-Functional Properties

OMG Object Management Group

RAC Resource Attachment Change

RC Reference Change

SAC StrereotypeAttributeChange

UML Unified Modeling Language

 1

1 Chapter: Introduction

1.1 Motivation

Model-Driven Engineering (MDE) shifts the focus of software development from code to

models. The emergence of MDE has enabled the generation of formal analysis models

(such as Markov chains, Queueing Networks, Layered Queueing Networks, Stochastic

Petri Nets, Stochastic Process Algebra, fault trees, etc.) for the verification of Non-

Functional Properties (NFP) (such as performance, reliability, availability, fault-tolerance,

scalability, security, maintainability, etc.). The analysis models can be automatically

derived by model transformations from the software models built for development.

The main motivation of this research is the need to seamlessly integrate formal analysis

models for NFPs into the MDE process, in order to guide the design choices from an early

stage and to ensure that the system under construction will meet its non-functional

requirements. More specifically, this research focusses on the integration of performance

analysis based on Layered Queueing Network [1][2][3] models in the model-driven

engineering process using UML [4] [5]. The source software models are extended with

MARTE [6] performance annotations, as described in more details in the thesis. The

transformation from UML+MARTE to LQN is non-trivial because there is a large semantic

difference between the source and the target models. Moreover, some aspects of the source

model (such as nesting of software components or concrete data values) are not captured

in the target model. This prevents us from using bi-directional transformations, which have

the advantage of providing model synchronization for free [7] .

An important concept in model transformations is the mapping between the source and

target (meta)models, addressed by mapping patterns. In this research we propose a subclass

 2

of such patterns called containment-based mapping patterns, which take into account the

containment relationship when mapping the source and target (meta)models. Mapping is

defined as the correspondence between elements of the source and target (meta)models. A

design pattern in software design is defined as a reusable solution to a commonly occurring

design problem within a given context [8]. Combining the definitions of mapping and

design patterns, we define a mapping pattern as a reusable solution to a commonly

occurring mapping problem between source and target metamodels in a specific context.

A UML-based notation for specifying the definition and application of the mapping

patterns, independent of the language used for implementing the transformation, is

proposed in the thesis. Such a mapping specification is reusable and can be used to design

different kinds of transformation (such as batch or incremental) implemented in different

model transformation languages (such as ATL [9] , QVT [10] , Epsilon [11]).

The motivation for the mapping patterns is to answer a challenging question that is ñwhat

needs to be transformed into whatò, thus shifting the focus from the implementation of the

mapping by transformation rules to the mapping itself. We show how the containment-

based mapping patterns are applied to the design of transformations from UML+MARTE

to LQN, both for batch and incremental transformations. (Please note that the complete

implementation of the batch transformation in Epsilon ETL was done in separate work). In

this research, we extended the batch transformation to generate, beside the target model, a

traceability model containing trace links between mapped source and target elements. After

solving the generated performance model with an existing solver, the performance results

are fed back to the software model by following the cross-model trace links. The software

 3

developers can see the performance results as MARTE stereotype attributes, using a

standard UML editor.

Another motivation of the research is to keep the software and analysis models consistent

after the software model evolves during the software development process to meet

functional or non-functional requirements. The proposed incremental change propagation

aims to keep UML software model and performance model consistent with each other.

More specifically, the thesis presents the design (based on the mapping patterns),

implementation (in Epsilon EOL language) and evaluation of an incremental change

propagation (ICP) approach to re-synchronize the software and performance models after

any kind of change. During the development process, when the software model evolves,

we detect the changes with the Eclipse EMF Compare tool, then incrementally propagate

them to the LQN model. The proposed ICP is implemented with the Epsilon Object

Language (EOL) and it is evaluated by applying it to a set of case studies.

Other aspects that motivate the work in this thesis are as follows:

¶ Change propagation is still an open problem [12] in the literature. The proposed

incremental change propagation approach fulfils the need addressed by the authors in

[13] [14] for supporting evolution and co-evolution between different artifacts such as

analysis and design models.

¶ Improving the quality of nonfunctional requirements with the help of analysis models.

According to [15] solutions to model evolution should be integrated with model quality

solutions and model consistency challenges, since the goal of model evolution is to

improve the quality of the system.

 4

¶ Providing automated support for performance evaluation as early as possible in the life

cycle, in order to help the developers to understand and interpret the performance

results from the point of view of the software rather than the performance model.

¶ Gaining experience with a new family of languages Epsilon (standing for Extensible

Platform of Integrated Languages for model management) intended for model

transformation and model management [11]. Epsilon is interesting because, according

to [103] it has been adopted in the industry as well as in the academia.

1.2 Research Objectives

The proposed research is in alignment with the objectives of an industrial initiative called

PolarSys [16], created by major industry players and tool providers to develop and support

open source MDE tools over Eclipse. In this research, we use the open-source tool Papyrus

[17] developed under the PolarSys umbrella. There are many benefits to the software

industry from the integration of the NFP analysis in the MDE process, for example

improving the quality of software products by early detection and solution of NFP

problems, in addition to avoiding project cancellation due to NFP failure.

The objectives of the proposed research are summarized in this section.

a. The objectives of the containment-based mapping patterns are as follows:

¶ Provide high level specification of mapping between source and target

(meta)models.

¶ Answer a challenging question that is ñwhat needs to be transformed into whatò,

thus shifting the focus from the implementation of the mapping by transformation

rules to the mapping itself.

b. The performance analysis roundtrip has three objectives:

 5

¶ Automating the generation of cross-model traces.

¶ Developing the performance analysis roundtrip for performance results feedback to

the UML+MARTE model based on cross-model traces.

¶ The ability to store the software model and its performance results in the same file

offers opportunities for further automating the analysis. For example, it could be

used to complete the automation process in the performance improvement approach

based on software antipatterns proposed in [18]. So far, the method for detecting

antipatterns takes as input an XML file built by hand, which combines information

about the software model and the performance results. This step could be automated

now by applying our approach. This would relieve the analysts of repetitive error-

prone manual actions.

c. The incremental change propagation approach has its own objectives:

¶ Support (semi-)automatic co-evolution of software model and analysis model.

¶ Support incremental propagation of (small) changes between the software model

and analysis model.

1.3 Thesis Contributions

The contributions of this research are summarized as follows:

1. Propose a set of containment-based mapping patterns which are used to map a group

of containment-related source model elements into a group of target model elements.

A UML-based notation for specifying the definition and application of the mapping

patterns, independent of the language used for implementing the transformation, is used

in the thesis. Such a mapping specification is reusable and can be applied to the design

of different kinds of transformation (such as batch or incremental) implemented in

 6

different model transformation languages. We apply the patterns in the context of a

non-trivial transformation from UML software models annotated with MARTE

performance information into Layered Queueing Network (LQN) performance models

(see Chapter 4).

2. Help designers to improve their design by feeding back the performance results to the

software model via performance analysis roundtrip. First we extend the batch

transformation to generate, beside the target model, a traceability model containing

trace links between the mapped source and target elements. After generating the

performance model and solving it with an existing solver, the performance results are

fed back to the software model by following the cross-model trace links (see Chapter

5).

3. Develop a fully automated incremental change propagation (ICP) approach from the

UML+MARTE software model (the source) to the LQN performance model (the

target). The ICP is designed by reusing the pattern-based mapping specification

between the source and target models (introduced in Chapter 4) and is implemented in

the EOL language (see Chapter 6). ICP applications are given in Chapter 7 and the ICP

evaluation is presented in Chapter 8.

The results of this research are published in the following three papers and another two are

in preparation:

¶ Taghreed Altamimi, Mana Hassanzadeh Zargari, and Dorina C. Petriu,

ñPerformance analysis roundtrip: automatic generation of performance models and

results feedback using cross-model trace linksò, In Proceedings of the 26th Annual

 7

International Conference on Computer Science and Software Engineering

CASCONô16, pp. 208-217, 2016.

¶ Chen Li, Taghreed Altamimi, Mana Hassanzadeh Zargari, Giuliano Casale, and

Dorina C. Petriu, ñTulsa: A Tool for Transforming UML to Layered Queueing

Networks for Performance Analysis of Data Intensive Applications,ò In

Proceedings of International Conference on Quantitative Evaluation of Systems

QEST 2017, Springer LNCS vol. 10503, pp. 295-299, 2017.

¶ Taghreed Altamimi and Dorina C. Petriu. ñIncremental change propagation from

UML software models to LQN performance modelsò, In Proceedings of the 27th

Annual International Conference on Computer Science and Software Engineering

CASCONô17, pp.120-131, 2017.

1.4 Thesis Contents

This section presents the overall organization of the thesis proposal and the content of each

chapter.

Chapter 2 describes the background and state of the art in model transformation, model

driven analysis of nonfunctional properties (NFP), coevolution of software and analysis

models, comparison and traceability of models.

Chapter 3 describes a high-level view of the proposed approach.

Chapter 4 presents the containment-based mapping patterns and applies them in the context

of the transformation from UML+MARTE as source to LQN as target. It continues by

describing the application of the mapping patterns to the design of the transformation rules

for a batch transformation implemented in ETL.

 8

Chapter 5 extends the batch transformation with a trace model and shows how to realize a

performance analysis roundtrip by using the trace model for feeding back the performance

results to the software model.

Chapter 6 presents the algorithm for the whole ICP from UML+MARTE to LQN, including

the change detection phase and the incremental change propagation steps.

Chapter 7 presents the propagation of different kinds of changes with more details.

Chapter 8 describes the evaluation of the ICP by applying it to a few case studies.

Chapter 9 concludes the thesis and discusses future research directions.

 9

2 Chapter: Background and State of the Art

2.1 Model Transformations

Model transformations are considered crucial to Model Driven Engineering (MDE). In [19]

a model transformation is defined as an automatic generation of target models from source

models according to a given set of transformation rules. The source and target models are

specified with modeling languages, which in turn are defined by metamodels describing

the abstract syntax and static semantics of the language. According to OMGôs guide [20],

a metamodel is a model that not only defines a modeling language, but is also expressed

using a modeling language. The authors in [21] classify the transformations according to

the source and target metamodels to two types: exogenous and endogenous. In exogenous

transformations, the source and target metamodels are different. For instance, the

transformation from UML software model to Layered Queueing Network (LQN)

performance model proposed in [22] and presented in chapter 5 is exogenous. Exogenous

transformations are also called in-out place transformation. Second, the endogenous

transformations (known also as in-place transformation) are those in which the source and

target model has the same metamodel. For example, refactoring UML class diagrams is an

endogenous transformation.

2.1.1 Transformation Languages

Model transformation languages can be classified in three styles: declarative, imperative

and hybrid. Each style has benefits and drawbacks. Declarative languages are more

concerned with ñwhatò rather than ñhowò, focusing more on identifying what are the

mapping between the elements in the source model and the elements in the target model.

Declarative language provide short, compact and brief transformations [23]. They can be

 10

very useful in the cases where the mapping is simple because the source and target

metamodels are very similar. However, they cannot handle the more complicated cases

when the source and target metamodels are different in terms of their structures [11].

On the other hand, imperative languages focus on óhowô rather than ówhatô. They specify

how the transformation is supposed to be executed and present it as a sequence of actions.

Imperative transformation languages are similar to general purpose languages such as C++

or Java [23]. They can handle more complex transformations and give a higher level of

control to the user. However, imperative languages have some drawbacks, for instance the

user needs to tackle some issues like tracing, resolving target elements, and orchestrating

the transformation execution. This means that the language operates at a low level of

abstraction. The last style, hybrid languages, which is a combination of the previous two,

helps in overcoming the shortcoming of the imperative and declarative languages.

QVT, ATL and ETL are examples of hybrid languages as they are capable to handle

complex transformation as they have the imperative features and providing a declarative

rule-based execution scheme [11].

QVT (Query/View/Transformation) defined by the Object Management Group (OMG),

consists of set of model transformation languages. QVT has two levels of declarative

architecture: QVTr-Relational language that support generating traces, creating object

templates and matching object patterns and QVTc-Core language that focuses on matching

patterns where a set of variables are evaluated against a set of models. QVT relational and

core levels are the execution semantics framework for the imperative part that utilizes them

to invoke the imperative representations of transformations [10] .

 11

ATL (Atlas Transformation Language) was developed by the ATLAS group and built

on top of the Eclipse platform. ATL expresses the transformation as a set of rules that

represent the mapping between the target elements and the source elements [9].

ETL (Epsilon transformation language) is a declarative/imperative language from the

Epsilon family, specialized for model transformations and offers powerful and concise

language constructs. Also, the Epsilon engine takes over a number of tasks (such as what

rule to apply next) that must be handled explicitly by a Java transformation. Epsilon is a

family that provides different languages for model management tasks, such as Epsilon

Validation Language (EVL), Epsilon Transformation Language (ETL), Epsilon

Comparison Language (ECL), Epsilon Merging Language (EML), Epsilon Wizard

Language (EWL), Epsilon Generation Language (EGL), Epsilon Object Language (EOL)

and Epsilon Transformation Language (ETL) [11].

The batch transformation from UML+MARTE software model to LQN performance

model is implemented in Epsilon in [22]. We built our incremental change propagation

technique using the EOL language, a stand-alone general language that can be used to

automate some general tasks. In this thesis, EOL facilitates reading from different files

with different formats, like UML models and XMI files, and provides a mechanism to write

and change LQN files and Trace files. Epsilon also provides an orchestration workflow

solution extended from ANT [24] to a number of model management tasks developed in

task-specific languages. In chapter 5, we discuss how we took advantage of ANT to

automate the multi-step transformation that was developed in [22]. The transformation

model represents the mapping between source and target models is generated automatically

by Epsilon Haetae tool that is an extensible static analysis framework for the Epsilon

 12

platform [25]. It takes as input the textual ETL transformation definition (transformation

rules) and translates them to an ETL transformation model.

The Transformation Model conforms to the ETL and EOL metamodels [25]. An EOL

program can have more than one module, whose body is a block consisting of a number of

statements and operations that perform extra functions on the objectôs types. EolElement

is a super type for Expression and Statement. The root metaclass in the ETL metamodel is

EtlModule which consists of a number of transformation rules. TransformationRule has a

name and refers to a source and many target parameters. A guard is optional in an ETL rule

and can be an EOL expression or block of EOL statements. The body of the rule is an EOL

statement [26][11]. For more clarification let us look at the example of Device2Processor

(see Code Fragment 4-4) rule representation in the transformation model. The

Device2Processor class is an instance of TransformationRule metaclass bearing the name

ñDevice2Processorñ. Each rule has source and targets that are instances of an Expression

class that is an EolElement whose type is ModelElementType. The elementName is Device

in case of source and Processor in case of target.

2.1.2 Batch versus Incremental Transformation

Incremental transformation is becoming the alternative solution to the traditional solution

(i.e., batch transformation) when the source model evolves during the software

development. According to [21] [27], incremental transformation is defined as the ability

to transform only the elements in the source model that have been changed and ignore the

others.

In the literature, there are two main approaches for incremental transformation as noted in

[12] [28].The first approach is the batch transformation that depends mainly on rerunning

 13

the whole transformation from scratch, even though not all parts of the source model have

been evolved, and merge the existing target model with the new one [29]. However,

rerunning the whole transformation does not maintain the transformation context which

specifies the model transformation system execution state such as variable values and

partial matches [28] and merging depends heavily on the trace information generated by

the transformation language [12][30].

The second more practical solution is Incremental transformation. It focuses only on

examining the elements of the target model affected by changes in the source model and

propagating those changes from the source to the target model, without consuming time to

re-execute the whole transformation. Incremental approaches are more economical in terms

of execution time compared to the batch transformation [30], more practical and efficient

[28][31], especially in large-scale systems [32], by avoiding unnecessary overhead caused

by rerunning the whole transformation [33].

A good example of incremental approach can be found in [32]. The authors proposed a

framework for incremental transformation. They developed two algorithms ShouldExist

and DoesExist to identify the action that needs to be taken to change the target model

according to the change in the source model. Our approach is similar to their approach in

terms of checking the existence of a changed element in the source model, and then

checking the existence of its corresponding element in the target model. However, in [32]

is not taken into consideration that the changed element in the source model may need to

satisfy some conditions in order create an effect in the target model. Our approach satisfies

such conditions (called guards) which are verified before propagating the effect to elements

in the target model.

 14

Another technique for incremental transformation called Logic-based SLD Resolution

presented in [30] is built in the context of Tefkat transformation language and can only

support declarative transformations. On the other hand, it supports only atomic changes

(element insertion and deletion) [33]. Our approach is built in the context of the ETL hybrid

transformation language and supports both atomic changes (element insertion, deletion)

and composite changes (element updating and moving).

The approach proposed in [34] is similar to our approach, as it supports incremental model

synchronization in a unidirectional transformation. It is applied to class diagrams and

relational database diagrams as source and target models, respectively. It depends on the

old traces to update or delete elements in the target model. For creating a new element, it

uses a knowledge base that contains information about the pattern of the transformation.

However, the new element is created only at the end of the synchronization, which means

that no modification can be done on the new element until the end of the synchronization.

Our approach is different, as it supports change propagation between source and target

models with very different metamodels. It was applied to a source model conforming to

the UML metamodel and produces a target model conforming to the LQN metamodel.

Each metamodel has different references and different elements with different properties.

As a result, that difference brings more challenge and complexity in the interpretation of

the change in UML and propagating it to LQN. Another difference that distinguishes our

approach is that it needs to check some guards in order to decide whether a source element

change will lead or not to the creation of a target element. In addition, our approach checks

if the propagated change affects internally other elements in the target and updates them

even if their source elements did not necessarily change.

 15

The impact on the system performance model when applying a design pattern to a Service

Oriented Architecture (SOA) design model is investigated in [35]. This work has been done

in our performance research group at Carleton. The Role Based Modeling Language

(RBML) is used to define the SOA design patterns applied to the source model. The

changes produced by the pattern application are propagated to the performance model. The

similarity between [35] and our work is that both use the transformation between software

models in UML+MARTE and LQN performance models. One difference is that in [35]

only modifications due to SOA design pattern applications are propagated to the LQN

model via refactoring rules specific to every pattern, while in our case any modification to

the software model detected with EMF Compare can be propagated to the LQN model.

Another difference is that in our work we make use of mapping patterns to specify the

mapping between source and target (meta)models in a reusable and implementation

language independent way.

Forward and backward change propagation between source model and target model

generated by an ATL transformation is proposed in [36] . The forward propagation depends

on re-executing the whole batch transformation. The backward method does not support

insertion in the target model. In the same context of ATL the authors of [31] proposed an

incremental approach that supports only the imperative parts of the language, but does not

support composite changes (e.g., move).

In the context of graph transformations, approaches such as [37][38][28] support

incrementality. They were developed in the context of the VIATRA framework where the

execution of the transformation is driven by change and based on graph pattern matching.

However, only [38] supports composite change (update and move). In fact, the execution

 16

semantics of graph transformations is different from hybrid model transformation

languages, such as ETL. Hybrid languages provides the designer with more practical

solutions based on the problem at hand [27]. In graph transformations, models are

represented as a graphs and the transformation is based on graph theory [39]. In the same

graph context, in [40][41] are proposed bidirectional incremental approaches based on

Triple Graph Grammars, which are classified as declarative languages.

Different examples of bidirectional transformation languages, such as [7][42] and others,

can be found in the survey paper [43], which discusses how bidirectionality supports

incrementality. However, bidirectional transformation is not suitable for the problem we

consider, because in our transformation not all properties of the source model are captured

in the target model. For instance, the structural nesting of components cannot be

represented in LQN, where the tasks that are counterparts of components cannot be nested.

Another example why the transformation from UML to LQN is not bidirectional is that

LQN does not retain which entry corresponds to which activity partition, so we miss this

information when transforming back from LQN to UML.

Table 2-2 compares the previously discussed incremental approaches with our proposed

approach based on different criteria discussed in Table 2-1.

 Table 2-1 Comparison Criteria

Comparison criteria Explanation

Technique Used The name of the technique used to apply the

incremental transformation

Language Style The classification of the transformation language used

in the incremental transformation

Language Framework The specific name of the transformation language

 17

Change Type What is the type of change?

1) Atomic (single change) such as delete or insert.

2) Composite (set of changes) such as update or move

Source What is the source model that represents the input of

the transformation

Target What is the target model that represents the output of

the transformation

Conditions If the incremental approach checks guard conditions

that the source model element should satisfy before

creating a new element in the target model

Profile If the incremental transformation supports propagating

a change in the value of a stereotype attribute when the

source model element is extended with that stereotype.

Mapping Specification of mapping between source model

elements and target model elements

Automated Change detection If the changes are detected manually or by a tool

Arbitrary or restricted

changes

If the designer can apply any change or only specific

changes

 18

Reference Technique

Used

Language

Style

Language

Framework

Change Type Source Target C
o

n
d
itio

n
s

P
ro

file

m
a

p
p
in

g

C
h

a
n
g

e

d
e

te
c
tio

n
Arbitrary (A)

or Restricted

changes(R)
Atomic Composite

In
s
e
rt

D
e

le
te

U
p

d
a

te

m
o

v
e

[40] Triple Graph

Grammar (TGG)

Declarative Graph

Transformation

Language

ã ã x x Class

diagram

Database

schema
ã x x x R

[41] Triple Graph

Grammar(TGG)

Declarative Graph

Transformation

Language

ã ã ã ã SysML

model

AUTOSAR

model
(Automotive

Open System

Architecture)

ã x ã ã A

[30] Logic-based

SLD resolution

Declarative Tefkat ã ã x x Class

diagram

Database ER

diagram
ã x x x R

[37] Graph pattern

matching

Hybrid VIATRA2 ã ã ã x Graph Relational

DB
ã x x x R

[38] Graph pattern

matching

Hybrid VIATRA2 ã ã ã ã XML -

based

Domain

specific

workflow

JPDL

Domain

specific

(XML -based

language)

ã x ã ã A

[28] Graph pattern

matching

Hybrid VIATRA2 ã ã ã x Petri nets Petri nets ã x x ã R

[32] ShouldExist and

DoesExist

algorithm

n.a IBM Rational

Rose
ã ã ã x UML

design

model

Domain-

Specific

Models

(ESCM)

x ã x ã R

 19

 Table 2-2 Comparison of incremental transformation approaches

[35] Coupled

transformation

Hybrid QVT ã ã ã x UML

design

Model

Performance

model (LQN)
ã ã x x R

[34] Incremental

model

Synchronization

Hybrid QVT ã ã ã x Class

diagram

Database

schema
x x ã x A

[31] Live

transformation

support for ATL

Hybrid ATL ã ã ã x Class Relational

DB
ã x x ã A

Proposed

approach

Incremental

change

propagation

(ICP)

Hybrid ETL ã ã ã ã UML

design

Model

Performance

model (LQN)
ã ã ã ã A

 20

In summary, the type of software artifact impacts the change mechanism that is required

[44][45]. Only one of the examined approaches [35] supports incrementality between

analysis models and design models, similar to our approach. However, it only supports

some specific kinds of changes due the application of SOA design patterns, while our

approach supports arbitrary changes detected by the EMF Compare tool. Additionally, the

mapping between UML+MARTE to LQN was hard coded in the transformation from [35],

while in our work we make use of mapping patterns to specify the mapping between source

and target (meta)models in a reusable and implementation language-independent way. Our

approach is the only one that updates the old traces after propagating the changes. Few

approaches in literature support composite changes [33]; ours is one of them. According to

the last comparison criterion, few approaches support the propagation of changes in the

attribute values of stereotypes applied to the source model elements. The interest in

handling stereotypes comes from the fact that the transformations from software to

performance models takes as input UML software model with MARTE profile annotations.

2.2 Model Driven Analysis of Non-Functional Properties (NFP)

2.2.1 Generate Analysis Models from Software Models

Model-Driven Engineering (MDE) shifts the focus of software development from code to

models. The emergence of MDE has enabled the generation of formal analysis models for

Non-Functional Properties (NFP) verification, such as performance, reliability, fault-

tolerance, scalability, security, availability, maintainability, cost, etc. The analysis models

can be automatically derived by model transformations from the software models built for

development. Many modeling formalisms and tools have been developed (such as

queueing networks, stochastic Petri nets, stochastic process algebras, fault trees, formal

 21

logic, probabilistic time automata, etc.) for the analysis of various non-functional

properties (NFP). In this thesis, the Unified Modeling Language is used to represent the

software model. There are different UML profiles defined to bridge the gap between

analysis and UML software models. For example, MARTE (The UML Performance Profile

for Modeling and Analysis of Real-Time and Embedded Systems (MARTE)) [6] extends

UML with timing concepts, resources and workload required for quantitative performance

and schedulability analysis. The UML Profile for Schedulability, Performance and Time

(SPT) [46] is a precursor of MARTE that was defined for UML 1.X. Both SPT and

MARTE are used for annotating the performance properties of UML models. MARTE has

been extended with a dependability profile called DAM that can be used for annotating

dependability properties (such as availability, reliability, safety) of UML models [47].

Generating Performance Models

In the software performance engineering field, there have been significant efforts to

integrate performance analysis into the software development process by using different

performance modeling formalisms: queueing networks, Petri nets, stochastic process

algebras, Layered Queueing Networks (LQN), and simulation. Performance model

represents the quantifiable attributes of the system such as response time (how quickly the

system responds to an event) or throughput (how much work the system can achieve in a

specific time). A good survey of the techniques for deriving performance models from

UML models is given in [4], and later in the book [5]. A few early examples of derivation

of different kinds of performance models from UML are as follows. The technique

presented in [48] follows the Software Performance Engineering (SPE) [49] methodology

very closely, generating the same kind of models as in [49], but it cannot take as input

 22

UML files produced with standard editors. In [50] UML models are transformed into Petri

Nets, but the contention for hardware resources is not considered. In [51] it is presented a

transformation from UML to Stochastic Process Algebra.

The performance research group from Carleton University has implemented UML-to-LQN

transformations in different languages (such as graph-rewriting language Progres, text

transformation language XSLT and general-purpose language Java) and was the first to use

the standard UML metamodel libraries that were current at the time and the standard

performance profiles SPT [46] and MARTE [6].

The most comprehensive model transformation of the Carleton group, which takes as input

a number of different software models (including UML+SPT and UML+MARTE) and

generates a number of target performance models (such as LQN, QN and Petri nets) is the

PUMA transformation [52][53] and its extensions for Service-oriented Architecture,

PUMA4SOA [54]. PUMA uses an intermediate model called Core Scenario Model (CSM)

[53]. This way, PUMA succeeds in minimizing the large semantic gap between UML

models and performance models and reduces the complexity of the transformation at the

cost of having two separate transformations: one from UML+MARTE to CSM [55] and

another from CSM to LQN [56].

Comparing the light-weight Epsilon ETL transformation developed in [22] with PUMA,

the ETL transformation goes directly from UML+MARTE to LQN, eliminating the

intermediate model used in PUMA. Thus, the transformation is faster (as there is no need

to generate and store an intermediate model) and supports easily inter-model traceability

between the source and target models. Other differences stem from the languages used to

implement the transformations. Epsilon ETL is a declarative/imperative language

 23

specialized for model transformations, which offers more powerful and concise language

constructs for transformation than general-purpose languages. Also, the Epsilon engine

takes over a number of tasks (such as what rule to apply next) that must be handled

explicitly by a Java transformation. On the other hand, PUMA was developed in Java, a

general-purpose language that does not provide built in operations to help navigating the

source model, which makes the transformation code more detailed and complicated. In this

thesis we built our incremental change propagation (ICP) approach based on the mapping

patterns and the ETL transformation [22], which takes as input a UML software model

with MARTE performance annotations, and generates a corresponding Layered Queueing

Network (LQN) performance model in an XML format understood by the existing LQN

solvers.

Generating Dependability Models

Dependability represents the ability of the system to perform its tasks in a specific time

(reliability, availability) and to function correctly under stressful conditions (robustness).

There are several approaches in the literatures proposing to generate dependability analysis

models from software models. For instance, in [57] it is proposed an algorithm to convert

fault tree models (FT) to equivalent Generalized Stochastic Petri Nets (GSPN) and

Stochastic Reward Nets (SRN). The dependability of the system can be improved by using

fault tolerance, which is defined as avoiding failure in the presence of fault mechanisms.

FT analysis is an example of dependability analysis approach, where the system is exposed

to predetermined failures and the FT analysis identifies which part of the system was the

reason of that failure.

 24

Another example of dependability analysis can be found in [58], where the authors propose

an algorithm to automatically synthesize dynamic fault trees (DFT) - an extension of FT -

from UML software models. Several approaches, such as [59][60][61][62][63], propose

the derivation of state based analysis models SPN (Stochastic Petri Net), GSPN, and SRN

from UML models.

2.3 Co-evolution of Software and Analysis Models

In the context of Model-Driven Engineering (MDE), where the models are at the heart of

the life cycle of system development, model evolution cannot be avoided. The different

types of models used are very exposed to change during the software development cycle

due to different reasons, such as responding to new functional requirements, improving

their quality, or reducing the complexity. In the literature, there are different classifications

of model evolution. For instance, in [64] model evolution is classified in four types: 1)

regular evolution, where the model changes 2) metamodel evolution, where the metamodel

changes and then accordingly the models need to be updated to be conformant to their new

metamodels; 3) platform evolution that leads to change in the application framework and

code generators; 4) abstraction evolution due to the use of a new modeling language. In

[65] another classification is suggested: 1) local/syntactic model evolution refers to changes

in models due to changes in metamodels; 2) local/content-related model evolution refers

to changes to model elements due to addition, deletion or update; 3) systemic/syntactic

model evolution, concerned with changes in the modeling language; 4) systemic/content-

related, concerned with merging different parts of the system. According to [66] the main

reasons for model evolution are requirement evolution, language evolution and change in

style (refactoring).

 25

In this research, we focus on local/content-related model or regular model evolution. We

consider evolving the software model with the goal of improving the nonfunctional

requirements represented in the analysis models without changing the functionality. Such

evolution can be called refactoring. It minimizes the complexity and improves the quality

of the model. This is considered in [67] and [68] a necessary tool for handling model

evolution. We use refactoring to evolve a UML+MARTE software model that represents

the source model, and then automatically propagate all changes incrementally to the

performance model (LQN), whose results are used for performance analysis.

2.4 Model Comparison

There are two ways to detect model changes according to the literature [69] [70] [71]: a)

an operator-based approach that detects the changes as a set of operations [72], or b) direct

comparison (e.g., by using EMF Compare [73]) to detect the differences between two

versions of the same model. Direct comparison has advantages, especially in the case when

comparing models that contain elements with unique identifiers [74] (UML is such a

model). Therefore, we use the open-source EMF Compare tool to determine the differences

between two versions of the same UML source model. EMF Compare depends on

IdentifierEObjectMatcher.DefaultIDFunction that matches elements with the same

identifiers [73]. According to [75], using Static Identity-Based Matching approach (which

states that every model element has a unique identifier) can be faster and more user-

independent, in the sense that no configuration is needed from the user 's side.

2.5 Traceability

Traceability plays an important role in MDE for building relationships between source

model elements and target model elements, by establishing trace links between those

http://git.eclipse.org/c/emfcompare/org.eclipse.emf.compare.git/tree/plugins/org.eclipse.emf.compare/src/org/eclipse/emf/compare/match/eobject/IdentifierEObjectMatcher.java#n268

 26

elements to track, analyze and propagate the impact of change which results from evolving

software models. There are different classifications of traceability approaches in the

literatures. For example, [76] categorize the traceability approaches in three types:

requirements, modeling and transformation. The requirements approach focuses on tracing

the requirements in different development phases in the development life cycle to give the

stakeholders a better understanding of the requirements semantics. Modeling approaches

focus on tracing the relationship between different elements in different models.

Transformation approaches focus on generating automatically trace links during the

transformation. Trace links represent the relations between source and target elements.

Different classifications based on storing and managing the trace links were proposed in

[77]. Embedded traceability links are those where the trace links are stored internally with

the models. Using this approach has the disadvantage that it pollutes the model by including

all traces inside it. Another approach is external traceability links, which solves the

pollution problem by storing the trace links as a separate model. In this thesis, we use

external traceability links that fall in the transformation category, as they are generated

automatically by running the transformation. The traceability links are used in this research

for two purposes: to feed back the performance results to the UML software model and

during the change propagation process. The traces themselves evolve when the UML

model evolves. Therefore, they need to be updated during the change propagation. Further

details about using traceability links are provided in chapter 5 and 6.

2.6 Higher-order transformation

A higher-order transformation (HOT) is defined in [78] [79] as a transformation that takes

a transformation model as input and/or produces such a model as output. The textual ETL

 27

transformation definition (transformation rules) is translated to an ETL transformation

model. The ETL transformation model conforms to the ETL metamodel and represents the

mapping between source and target models. Two advantages of the transformation model

are highlighted in [80], which compares model transformation with transformation model.

First, using a transformation model allows for focusing more on the properties of the

transformation than on its execution. Secondly, transformation models enable the

construction of higher-order transformation (HOT).

According to [78] [81], change propagation can be realized as a higher-order

transformation which takes a transformation model as one of its inputs. In [78], HOT is

classified into four types: a) transformation synthesis creates a new transformation from

data modeled in other forms; b) transformation analysis processes other transformations to

extract meaningful data; c) transformation (de)composition merges or splits other

transformations, according to a (de)composition criterion; and d) transformation

modification manipulates the logic of an input transformation.

In literature, a typical example of HOT is presented in [78] and developed in the AmmA

framework. An ATL textual transformation is translated to an ATL transformation model

by TCS injector [82]. An ATL transformation model is the input to HOT that produces

another ATL transformation model, which is translated to a textual transformation program

by TCS extraction. The input and output models conform to the ATL metamodel.

The proposed higher order transformation (HOT) for realizing Incremental Change

propagation (ICP) takes ETL transformation model conforming to the ETL metamodel as

an input for ICP, while the output is an updated performance model. Another example of

HOT can be found in [83], which verifies the correctness of the ETL language. The first

 28

step transforms an ETL transformation to DSLTrans, which is a graph transformation

language; the second step verifies the transformation with the SyVOLT tool, which

provides a symbolic execution of DSLTrans transformations.

2.7 Patterns for Model Transformation

Design patterns for model transformations provide solutions for a number of model

transformation specification and design problems, improving the quality of model trans-

formation. An important concept in model transformations is the mapping between the

source and target (meta)models, which is addressed by mapping patterns. Success of MDE

approach depends on mapping quality [84]. In this thesis we discuss a subclass of such

patterns, called containment-based mapping patterns, which are used to map a group of

containment-related source model elements into a group of target model elements (see

Chapter 4). In this section we focus on two main categories of related works: mapping

patterns and model transformation patterns.

Model Transformation Patterns

Patterns are a popular technique in the field of software engineering to solve recurring

design problems. Model transformation patterns have been proposed and adopted in [85]

[86] [87] [88] [89] [90] to solve model transformation problems. In [91] model transfor-

mation patterns are defined as ñdescriptions of transformation rules and transformations

that are customized to solve a general model transformation design problem in a particular

contextò. Model transformation patterns are identified and classified in [92] [91]. Both

provide a catalogue of design patterns in the following categories:

¶ Rule modularization patterns are concerned with improving the structure of the

transformation rules by organizing them and their relationships to enhance the

 29

transformation flexibility , maintainability and quality. An example of such pattern

is the Phased Construction pattern [93], used to decompose the transformation into

phases or stages, where each phase is considered a sub-transformation with one rule

for creating objects of one target type.

¶ Optimization patterns focus on improving the efficiency of transformation

execution. As an example Remove Duplicated Expression Evaluations pattern to

cache the expressions values in the rules in order to avoid the recurrence in their

evaluations [91].

¶ Model to text patterns to generate code from models. An example is the Visitor

pattern to traverse the model [27].

¶ Expressiveness patterns provide the transformation language with extra abilities

when it has a limitation. For example, the Simulating Explicit Rule Scheduling

pattern helps in putting a constraint in the order of rules application [91].

¶ Architectural patterns are concerned with organizing the transformation systems or

the relationships between the transformations in order to enhance their modularity

and efficiency. An example of such pattern is the Transformation Chain to split up

the transformations into sequences of sub-transformations.

¶ Bidirectional transformation (Bx) patterns are concerned with maintaining

consistency between the source and target model, by defining not only a forward

transformation from source to target, but also a backward transformation from

target to source. For instance, Auxiliary Correspondence Model pattern is used to

map the source and target metamodels.

 30

¶ Classical patterns are related to popular design patterns [8] such as the Template

pattern.

The model transformation patterns listed above are targeting the transformation rules to

achieve the goals for each category and are concerned with the level of detail provided by

the model transformation languages. As opposed to this, we focus on mapping patterns at

a higher-level of abstraction, independent of the transformation language, concentrating on

the conceptual relations between the source and target metamodels.

Mapping Patterns

In [90] are introduced four mapping patterns in model transformations between concrete

and abstract domain specific language (DSL). These mapping patterns are: a) element

mapping to map elements from the source model to elements from the target model; b)

attribute mapping to map a property of a source element to a property of a target element;

c) element mapping variability to map one element from the source model to many

elements from the target model and d) link mapping to map a relationship between source

elements to a relationship between target elements. The first three patterns can be

considered as special cases of the S-T mapping pattern presented in detail in chapter 4. The

other mapping patterns discussed in this thesis introduce more complex mapping problems,

such as mutually exclusive containers and virtual container (presented in chapter 4) that

map a group of source elements (i.e., a special container and contained elements) to a

corresponding group of target elements.

Another kind of mapping approach between models is a weaving model (AMW) proposed

in [94] [95] , which defines a set of links between the source and target metamodels. A

weaving metamodel based on EMF is presented in [96] in the context of the ATL language.

 31

AMW was extended in [97] where the MeTAGeM framework was proposed for generating

model transformation code for hybrid transformation languages such ATL and ETL by

High Order Transformation (HOT). Weaving models and matching transformations to

semi-automate the development of transformations are proposed in [98]. A weaving model

captures the relations between source and target models and the corresponding matching

transformation generate the weaving models. The approach can be applied when the source

and target metamodels have a similar structure. A set of pre-defined mapping operation

(MOps) are proposed in [99] to generate executable ATL code out of HOT and MOps.

MOps are used to specify the mapping by extending AMW.

In general, a weaving model does not support complex mapping such as the containment-

based mapping patterns presented in this thesis, which are mapping a group of source

elements involved in a containment relation to a group of related target elements. A

disadvantage of AMW are its platform limitations (a compatible versions of Eclipse is

needed [100]). As opposed to it, our proposed mapping patterns are independent of the

transformation language/platform selected for implementation. In [101] is presented a

generic mapping algorithm that focuses on simple mapping models by analyzing the target

metamodel to solve the ambiguity caused by the semantic gap between the mapping models

and model transformation. Since this algorithm is based on ñas good as possibleò principle,

it might require user interaction to solve the ambiguity correctly.

In [102] it is stated that traceability is a core topic in model transformations and

representing the transformation by mapping allows one to query the transformation by

algebraic operations. The paper focuses on chain transformations and suggested

mathematical operations for transformation chaining. However, the paper does not discuss

 32

how to handle guard conditions. The paper does not discuss the inconsistency of traces

when the source model evolves. In our case we are interested in keeping the trace model

consistent after evolving the source model therefore the traces are updated after every

propagation of changes.

 33

3 Chapter: Overview of the Proposed Integration Approach

3.1 Integration of NFP analysis into the MDE process

The main objective of the thesis is to integrate the NFP analysis based on quantitative

models into the MDE process. More specifically, we are interested in the integration of

performance analysis within the software development process, by using quantitative

performance models (e.g., LQN [3] [1]) that are automatically derived from the software

models (e.g., UML) extended with performance annotations (e.g., MARTE [6]).

Performance analysis conducted by solving the performance models helps detecting the

performance trouble spots and suggests how to change the software model in order to meet

the performance requirements [53]. The integration of performance analysis in the MDE

process presented in the thesis is implemented in the context of Epsilon, a new family of

language consisting of different languages such as Epsilon Object Language (EOL) and

Epsilon Transformation Language (ETL) [11]. According to [103], Epsilon has been

adopted in industry (such as IBM Haifa, Telefonica, WesternGeco, Siemens, and NASAôs

Jet Propulsion Laboratory) as well as in academia (such as the Universities of Texas, Oslo,

Kassel and Ottawa). Also, Epsilon has a very active forum that provides an immediate

technical support.

The proposed integration approach consists of the following:

a) We developed two integration use cases: performance analysis roundtrip (Section

3.2,1) and incremental change propagation (Section 3.2.2). In both cases, we make use

of the containment-based mapping patterns presented in Chapter 4 to specify the

mapping between UML source models annotated with MARTE profile (presented in

section 3.3) to LQN target performance models (presented in section 3.4).

 34

b) The batch transformation developed separately in [22] corresponds to the

implementation in Epsilon ETL of the mapping patterns application. It automatically

generates LQN performance models P from UML software models S annotated with

the standard MARTE profile. In this thesis, we extended the transformation from [22]

to generate a trace model along with the performance model, which contains cross-

model trace links between elements from S and P mapped to each other by the

transformation.

c) The goal of the performance analysis roundtrip is feeding back to S the performance

results. After solving the performance model P with an existing solver, the performance

results are fed back to the software model S by following the cross-model trace links in

reverse. The proposed roundtrip gives the software developers the ability to see the

performance results using a standard UML editor and the ability to assess as early as

possible the performance effects of different architecture, design, implementation and

deployment alternatives, in order to satisfy the performance requirements.

d) Analysis and change of UML model: the UML software model is modified by the

designer/analyst, who adds, deletes, updates and/or moves some model elements. The

reasons for change are diverse: in the case of the performance roundtrip, the changes

are intended to fix performance problems highlighted by the performance results, while

in the case of ICP, the changes can be due to adding new functional features to the

system or improving functional and non-functional requirements. This step produces a

changed version Sô of the original UML model, S. Please note that the designer/analyst

is responsible for making changes to the UML software model and to verify whether

the model is correct after the changes. The performance analyst can analyze the

 35

performance results and evaluate if the performance results meet the performance

requirements after propagating the changes to the performance model by ICP.

e) Automatic change detection: All changes between the S and Sô need to be detected. For

this purpose, in this research we use an existing tool, EMF Compare which

automatically detects all the differences between S and Sô.

f) Automatic incremental propagation of changes (ICP): The differences found in the

previous step, the mapping patterns applied to the source and target metamodels, the

trace model, the ETL transformation model and the old LQN model P become inputs

to the ICP module used to propagate the changes to the target model P, which is denoted

as Pô after being changed.

Section 3.2.1 describes briefly the performance analysis roundtrip process, and Section

3.2.2 the incremental change propagation (ICP) process. The last two sections of the

chapter describe a running example of source and target model.

3.2 Examples of integration

3.2.1 Performance analysis roundtrip

The performance analysis roundtrip aims to help developers understand and interpret the

performance results in the context of the software model rather than the performance

model. As shown in Figure 3-1, a UML software model with MARTE performance

annotations (as described in Section 3.3) is taken as input in Step1 by a ETL batch

transformation, which was developed in previous work [22] and extended in this thesis

with the facility to generate a trace model along with the LQN target model. Cross model

traceability means having direct trace links between S and P, which helps in different ways:

a) propagate small changes from S to P, b) support the co-evolution of the software and

 36

performance model, and c) import the performance results obtained by solving P to the

software domain. Point (c) is discussed in more detail in chapter 5, while (a) and (b) are

discussed in chapter 6. Pô represents the LQN model with performance results obtained

after solving P with an existing solver in Step 2, and Sô is the software model with

performance results stored as values of MARTE stereotype attributes. In order to feed back

the performance results from Pô to Sô in Step 3, the trace links are traversed in reverse,

starting from elements in Pô to the corresponding elements in Sô. Steps 4 and 5 represent

the analysis and new changes made until the performance requirements are satisfied.

 Figure 3-1 Performance Analysis Roundtrip

3.2.2 Incremental change propagation (ICP)

Another objective of the thesis is to design, implement and evaluate an Incremental

Change Propagation (ICP) technique from a UML+MARTE software model to the

corresponding LQN model. During the development process, the UML model evolves

in order to meet the functional and non-functional requirements. This continuous

evolution creates inconsistencies between the software and analysis models. There is

 37

an urgent need to support the evolution of the performance model (or other analysis

models) in step with the software model. Therefore, we develop an Incremental Change

propagation technique that detects the changes with the EMF Compare tool, then

incrementally propagates them to the LQN model to keep it synchronized.

As shown in Figure 3-2, the entire process is ñprimedò by transforming the original

source UML+MARTE model for the first time with the batch transformation developed

in previous work (Step1). The outcome is the performance model P and the Trace

model. Please note that the batch transformation is able to generate an entire target

model at once from an entire source model, but it does not support incremental

transformation. During the software development process, the following chain of

actions is repeated many times:

¶ A decision is taken in Step2 to change the software model S for a number of reasons

(such as adding new functionality, improving the system architecture, improving

non-functional properties, etc.)

¶ Different changes are applied to S manually or automatically in Step3, producing a

changed model Sô, which is now out-of-synch with the performance model P.

¶ The differences between S and Sô are detected with the help of the tool EMF

Compare in Step 4.

¶ The ICP module (Step 5) takes as input the following: performance model P, trace

model, differences between S and Sô and mapping patterns between the source and

target (meta)models, which provide a high-level specification focusing more on

"what needs to be transformed into what" rather than "how". ICP takes into account

 38

the set of changes between S and Sô and propagates them to the target model P'

(Step6), synchronizing it with Sô.

¶ After deriving Pô, it is solved with an existing LQN solver in Step 7, obtaining

performance results for a range of workload and configurations, which allows us to

evaluate whether the performance requirements are satisfied after propagating the

changes (step7).

The whole ICP approach is implemented in Epsilon Object Language (EOL) an

imperative programming language for creating, querying and modifying EMF (Eclipse

Modeling Framework) models [104].

 Figure 3-2 Incremental Change propagation (ICP)

3.3 Source Model

The source model taken as input by the transformation to performance model is a UML 2.5

[105] software model annotated with MARTE [6] performance information. The source

model contains two types of UML diagrams: a deployment diagram representing the

 39

structure of the system and one or more activity diagrams representing the behaviour.

The deployment diagram contains a set of UML nodes stereotyped «device» that represent

physical computational resources with processing capability, and a set of artifacts

representing software components, each deployed on a device. Each activity diagram

represents a scenario that is the realization of a use case and models the interaction between

software components. The behavior of each participating component is modeled inside an

ActivityPartition with one dimension (also known as a swimlane) which belongs to an

ActivityGroup. A swimlane contains different types of action nodes and control nodes

linked together by edges. Examples of types of action nodes are: a) AcceptEventAction -

executed when an event has been triggered; b) SendSignalAction - responsible for creating

and transmitting signal instances to the target object; c) CallOperationAction - transmits a

message representing an operation call request to the target object and waits until a reply

is received; and d) Opaque Action - a type of UML abstract class considered as an

executable node included within the behaviour. The control nodes are responsible for the

flow of tokens between other nodes. Examples of control nodes are the initial node, which

indicates the starting point of the execution of the scenario and the final node, which

indicates the termination point of the execution. ForkNode, JoinNode, MergeNode, and

DecisionNode are other examples of control nodes. Other type of model element is

ControlFlow, an activity edge responsible for passing tokens from its source node to its

destination node. The activity edges interconnect activity nodes into a graph that represents

the behaviour of an activity as a sequence of subordinate units.

In this chapter we use the example of e-commerce system model introduced by the authors

of a book on software performance analysis [5] as the source model for our transformation.

 40

The system contains three performance-critical use cases selected for performance

analysis: Browse Catalogue, Browse Cart, and Place Order. Figure 3-3 represents the

annotated deployment diagram of the system, showing the run-time architecture and the

allocation of software components to hardware processing nodes. The system has three

classes of customers with a population of $N1, $N2 and $N3 users, respectively. (Note that

$N1, $N2 and $N3 are variables in the MARTE annotations). Each of the users is deployed

on its own UserDevice host. In order to insure this, the multiplicity of UserDevice1 is $N1,

and so on.

Each class of users is executing repeatedly the use case corresponding to its class. The

scenarios that represent the realization of the three use cases are modeled by three activity

diagrams: PlaceOrder scenario is given in Figure 3-4, BrowseCatalogue scenario is given

in Figure 3-5 and BrowseCart scenario is given in Figure 3-6. For running the batch

transformation successfully and get the expected results, the source model needs to satisfy

the following assumptions: The namespace for each device element needs to be initialized

to the UML element containing it; also, the namespace for each artifact needs to be

initialized to the device containing it. Each artifact has at least one defined corresponding

activity partition and both should have same name. ControlFlow has a property called

inPartition, which must be set only if the control flow is defined inside an ActivityPartition;

for those ControlFlow representing call requests that cross the border between

ActivityPartitions, the inPartition property does not have to be set.

 41

 Figure 3-3 Deployment diagram of Ecommerce System

 Figure 3-4 Activity diagram of Place Order Scenario

 42

 Figure 3-5 Activity diagram for Browse Catalogue Scenario

Figure 3-6 Activity diagram for Browse Cart Scenario

3.4 Target Model

The target model for this transformation is the Layered Queuing Network (LQN) model

[1][2][3]. LQN is a performance model that is extended from queuing networks and

can represent nested services (i.e., a server may also be also a client to other servers). An

LQN model is a graph whose nodes are either software tasks (parallelograms) or hardware

devices (circles) and the arcs denote service requests. Figure 3-8 shows the LQN model

generated from the e-commerce example [22]. The tasks with outgoing but no incoming

 43

arcs play the role of clients (also called reference tasks), the intermediate nodes with both

incoming and outgoing arcs are usually software servers and the leaf nodes are hardware

servers. A software or hardware server node can be either a single-server or a multi-server.

Software tasks have entries corresponding to different services (represented as smaller

parallelograms inside the tasks). The LQN metamodel is shown in Figure 3-7, and is based

on the XML schema defined in the LQN user manual [3]. The Epsilon transformation

engine, however, requires that the target metamodel be represented in EMF Ecore (the

metamodeling language of the underlying platform Eclipse EMF [104]). The Eclipse

framework offers a language called Emfatic, designed to represent EMF Ecore models in

 Figure 3-7 LQN metamodel

textual form. Therefore, we used the Emfatic language to express the metamodel from

Figure 3-7 in a textual form, which in turn was converted into EMF Ecore.

Like the XML-based metamodel from [3], the root model element of the LQN metamodel

is lqnmodel, which is composed of one or more processor model elements by using

 44

composition associations. In other words, lqnmodel and processor have a whole-part

relationship, following the hierarchy of the XML-based metamodel. Processor is

composed of tasks, which in turn is composed of entries or task-activities. Entry is the

parent of entry-phase-activities model element. task-activities and entry-phase-activities

are mutually exclusive containers of activity model element. Activity is the parent of

children of type synch-call and asynch-call. Task-activities element is composed of

elements of three types: Activity, Precedence and Reply-entry. Reply-entry is the parent

of Reply-activity. In addition, the elements named Pre, Pre-or, Pre-and, Post, Post-or

and Post-and are all children of Precedence model elements.

 Figure 3-8 LQN Model generated from e-commerce software model

User1 {$N1}

start1

[1000,1]

(0 1)

User2 {$N2}

start2

[1000,1]

(0 1)

User3 {$N3}

start3

[1000,1]

(0 1)

UserDevice1

{$N1}

CustomerInterface {$N}

custInt1

[1]

(1)

custInt2

[1]

(1)

custInt3

[1]

(1)

UserDevice2

{$N2}

UserDevice3

{$N3}

CustomerProcess

browse

[0.5,1]

(1 0)

cart

[0.5,0.5]

(1 0)

placeOrder

[2.7]

(1) (1) (0.4) (1)

RemoteProc

CatalogServer

catInfo

[2]
Proc1

CartServer

update

[2]

cartInfo

[2]

empty

[2]

CustomerServer

custInfo

[2]

DeliveryOrderProc

delivOrder

[1.5,0.2]

(1 0)

Proc5 Proc4 Proc2

OrderServer

newOrder

[2]

Proc3

 45

4 Chapter: Containment-based Mapping Patterns

4.1 Definition of mapping patterns

In model transformations, the understanding of the source and target metamodels is an

essential requirement for mapping the source model elements to target model elements.

Once the mapping is identified at a high-level of abstraction, it can be implemented as a

transformation with any available model transformation language. The main advantage of

the separation of concerns between mapping and the implementation of the transformation

is the independence of the mapping from the language used for implementing the

transformation. Thus, the designer has the opportunity to focus more on the conceptual

aspects of the relations between source and target (meta)models [106] and has flexibility

in choosing the language for implementation. Our vision is compatible with other research

projects who have studied the specification of mapping between metamodels as an

independent concept [107] [108] [109] [96].

In this chapter we present a set of patterns called containment-based mapping patterns

which take into account the containment relationship when mapping the source and target

(meta)models. Mapping is defined as the description of the correspondence between the

source and target (meta)models. A design pattern in software design is defined as a reusable

solution to a commonly occurring problem within a given context [8]. Combining the

definitions of mapping and design patterns, we define a mapping pattern as a reusable

solution to a commonly occurring mapping problem between source and target metamodels

in a specific context. The goal of the mapping patterns is to answer a challenging question

that is ñwhat needs to be transformed into whatò, thus shifting the focus from the

implementation of the mapping by transformation rules to the mapping itself.

 46

4.2 Specifying Containment-based Mapping Patterns in UML

In UML patterns can be represented by Collaborations. According to UML2.5 [105]

Collaboration is a way to represent how a set of instances interacting with each other to

accomplish a specific goal. Every instance in the Collaboration plays a collaborationRole

which defines the use of that instance. The relationships between the instances in the

Collaboration are represented as Connectors between the collaborationRoles that are

played by those instances. The Connectors identify the communications paths between the

instances that participate in the Collaboration. The application of the pattern in a specific

context is called a CollaborationUse. In a CollaborationUse, instances from that context

are binding to the collaborationRoles of the Collaboration by roleBindings. Each

roleBinding shows every instance with its collaborationRole.

The Collaboration is shown with its internal structure (collaborationRoles, Connectors) as

an ellipse shape stereotyped «Collaboration» (see Figure 4-1). The collaborationRoles are

considered the Properties of the Collaboration. The CollaborationUse is shown as ellipse

within the internal structure compartment of the context Classifier. Each CollaborationUse

has a name and a Collaboration type. The roleBindings in the CollaborationUse are

implemented by Dependencies (see Figure 4-2).

 Figure 4-1 Collaboration elements

 47

 Figure 4-2 Collaboration use elements

4.3 Classifying and documenting of Containment-based mapping Patterns

4.3.1 Classification of Containment-based mapping

In this section we classify the mapping patterns in two categories: Figure 4-3 shows the

relationships between these patterns.

1. Mapping patterns applied between source and target metamodels:

i) S-T mapping pattern.

ii) Containment mapping pattern.

2. Mapping patterns applied to one metamodel (source or target) to define the group

of model elements involved in a containment relationship:

i) Simple Container pattern

ii) Intermediate Container pattern.

iii) Virtual Container pattern.

iv) Mutually Exclusive Containers pattern.

4.3.2 Documenting the mapping patterns

In this section we use a specific template for documenting the mapping patterns. The

template, inspired by [8], includes pattern name (usually a few words describing the

problem), problem description (describing the context of the problem and when to apply

the pattern), solution (describing the elements that the solution consist of) and example

 48

(showing the application of the pattern in a specific context). All applications in this chapter

are given in the context of UML+MARTE model as a source model and LQN as a target

model. There is a large semantic difference between the source and target models (see

Sections 3.3 and 3.4). The mapping between source and target models are explained in the

following subsections. As mentioned earlier, we specify the mapping patterns in UML, so

the pattern notation is independent of the transformation language. Some examples of

collaborationRoles used in the pattern definition are:

¶ sContainer: a container instance from the source model.

¶ sElement: contained instance from the source model.

¶ tContainer: container instance from the target model.

¶ tElement: contained instance from the target model.

Figure 4-3 Containment-based mapping patterns relationships

4.4 Mapping patterns applied between source and target metamodels.

i) S-T mapping pattern

Problem description: an element or property in the source model needs to be mapped to

an element(s) or property(ies) in the target model. ñS-Tò in the pattern name stands for

 49

Source-to-Target).

Solution: S-T mapping pattern has two collaborationRoles: source refers to an element,

property or stereotype property from the source model and target refers to an element or

property from the target model. An element or property from the source model could be

mapped to one or more elements or properties in the target model (see Figure 4-4).

 Figure 4-4 S-T Mapping Pattern: definition

Example: A device d from the UML source model plays the role of source and is mapped

to Processor p from the LQN target model that plays the role of target (both shown in

orange in Figure 4-5). Other examples of mapping properties and stereotype properties

presented in section 4.4. Please note that we did not show the stereotype «GaExecHost»

constraints for Device for keeping the figures more readable.

 Figure 4-5 S-T Mapping Pattern: application

ii) Containment mapping pattern.

Problem description: A source model has a containment relationship in which an object

contains other objects and their existence depends on the existence of the containing object.

The containing object is called container and the contained object(s) is (are) content(s).

The container-content relationship is also denoted as parent-child. The source containment

submodel is mapped to a target containment submodel. When a new object needs to be

 50

created in the target model, its container needs to be identified with respect to the

containment relationship in the source model.

Solution: This pattern has four collaborationRoles: sContainer, tContainer, sElement and

tElement (Figure 4-6). The container sContainer from the source model is mapped to the

container tContainer in the target model and the content (called sElement) of sContainer

is mapped to the content (called tElement) of tContainer. In other words, the containment

relationship in the source model is mapped to the containment relationship in the target

model. Thus, if tElement needs to be created in the target model its tContainer is identified

by matching a group { sContainer, sElement} from the source model with a group

{ tContainer, tElement} from the target model. Please note that this pattern definition uses

the application of the S-T pattern (via a CollaborationUse, as defined in the UML standard).

 Figure 4-6 Containment Mapping Pattern: definition

Example: in Figure 4-7, m is an instance of Model type and plays the role of sContainer.

Model is a container of Device in the source model. An instance d of type Device from the

source model plays the role of sElement. An instance lqnmodel of type Lqnmodel from the

target model plays the role of tContainer and is mapped to an instance m (both shown in

green). Lqnmodel is a container of Processor. The instance p of Processor type plays the

role of tElement and is mapped to sElement d of Device type (both shown in orange).

 51

 Figure 4-7 Containment Mapping Pattern: application

4.5 Mapping Patterns applied to One Metamodel

i) Simple Container pattern

Problem: Two elements of a metamodel are involved in a simple containment relationship

when the container and contained element are directly connected by a containment

association.

 Figure 4-8 Simple Container Pattern: definition

Solution: the pattern is applied when the container and contained elements are connected

directly. Figure 4-8 defines a Simple Container pattern from the target model. It has two

collaborationRoles: tContainer played by the containing object and containedElement

played the contained object(s).

Example: processor is an instance of type Processor and plays the role of tContainer,

while t is an instance of type Task and plays the role of containedElement (see Figure 4-9).

Other applications examples are shown in red color in Figure 4-16.

 52

 Figure 4-9 Simple Container Pattern: application

ii) Intermediate Container pattern.

Problem: There may be a need to generate a nested container for an element in between an

existing container and that element.

Solution: This pattern has three collaborationRoles:

existingContainer, intermediateContainer and tElement. The intermediateContainer

represents the content of the existingContainer and plays the role of container for tElement

(See Figure 4-10).

 Figure 4-10 Intermediate Container Pattern: definition

 53

 Figure 4-11 Intermediate Container Pattern: application

Example: Figure 4-11 shows that t: Task is an existing container in the target model, task-

activities plays the role of intermediateContainer, and Precedence plays the role of

tElement. Another example of applying the Intermediate Container pattern is shown in

Figure 4-16 (blue color) where Reply-entry plays the role of tElement.

iii) Virtual Container pattern

Problem description: UML diagrams are classified into structural diagrams and behavioral

diagrams. When a UML+MARTE software model is transformed into an LQN

performance model, there is no separation of concerns between the structural and

behavioral views in LQN, because a performance model captures the performance

properties of the system in a single view.

Solution: This pattern helps to remove the separation between an element (sElement-

Structural) from the structural view and its behavior represented by a collection of

(sElement-Behavioural) from the behavior view. In the source model there may be no

 54

direct association between (sElement-Structural) and (sElement-Behavioural), even if they

are modeling different aspects of the same instance. In order to make clear which

behavioural element corresponds to a given structural element, the pattern has a constraint

that sElement-Structural and all its (sElement-Behavioural) should have the same name

(see Figure 4-12). Using name matching, the pattern establishes a ñvirtual containerò

relationship between (sElement-Structural) and its corresponding (sElement-Behavioural).

 Figure 4-12 Virtual Containers Pattern: definition

Example: In the source models, an Artifact is a structural construct that models a deployed

component. Artifact is mapped to an LQN Task (both shown in green in Figure 4-13). At

the same time, we are interested in the runtime behavior of the component represented by

the Artifact, which is described in the source model by different activity partitions included

in the activity diagrams modeling scenarios. Although there is no direct association

between an Artifact and its corresponding behaviours described by ActivityPartitions, we

apply the Virtual Container pattern with a name-matching constraint to bring together the

structural and behavioural views of each component. The CollaborationUse applying the

Virtual Container pattern in Figure 4-13 , shows that instance a of type Artifact, playing

the role of sElement-Structural, is treated as a ñvirtual containerò of the actual contents of

actPart of type ActivityPartition that describe the component behavior. More details about

the contents of ActivityPartiton are given in in Figure 4-18.

 55

 Figure 4-13 Virtual Containers Pattern: application

i) Mutually exclusive Containers pattern

Problem description: Sometime content(s) in the model has(ve) two mutually exclusive

containers. Only one of them should exist at a given time.

Solution: As shown in Figure 4-14 the Mutually Exclusive Containers pattern has three

collaborationRoles: tContainer1 and tContainer2 are mutually exclusive containers, and

tElement is the contained element. The content has a constraint helping to decide which

container to use.

 Figure 4-14 Mutually Exclusive Containers: definition

Example: According to the LQN metamodel, Activity has two mutually exclusive

containers entry-phase-activities and task-activities (shown with green color in Figure

4-16). They play the role of tContainer1 and tContainer2, respectively. The LQN activity

ac plays the role of tElement and has a constraint based on the entry type (see Figure 4-15).

