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Abstract

This thesis presents a novel approach to solving Computational Geometry problems
in parallel, by using Analog Hopfield Neural Networks, which are simplified models of
the human brain. The use of massively parallel analog networks requires a radically
different approach to geometric problem solving because (i) time is continuous in-
stead of the usual discretized time step used for sequential or parallel processing, and
(ii) geometric data is represented by analog components instead of the usual digital
representation. We present anelog nelwork algorithms for the following geometrical

problems:
o Minimum weight triangulation of planar point sets or of polygons with holes.

o Finding the smallest £ so that two given point scts are ¢-congruent via trans-

lation.

o Partition a set of points into k clusters such that the maximum diameter of

the clusters is minimized.

We also present an improvement to Hopfield's solution for the Euclidean Trav-
elling Salesman Problem.

For each network, we present a detailed analysis of the network’s parameters,
together with proofs that the networks indeed produce feasible solutions.  Ex-
perimental results presented in each chapter demonstrate the performance of our

networks,

it
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Chapter 1

Introduction

1.1 Neural Networks

‘The nervou system in human beings and animals excels in processing sensory in-
formation and performs very difficult computational tasks with enormous speed and
accuracy. Modern digital computers, on the other band. can perform numerical
computations, like multiplying huge numbers at blinding speed. Yet, they cannot
* perform “scemingly” simple tasks like understanding unconstrained human speech.
Artificial neural systems, which are biologically inspired, are based on mathematical
models of the activity of the brain and the nervous system. Artificial neural sys-
tems or simply. Neural Networks (NN), are also widely known as analog computers,
neurocomputers, adaptive systems., connectionist models, and parallel distributed
processors [Simpson 1989]. The primary goal of the research in this area has been
to build machines that mimic the capability of human information processing in
tasks such as vision. speech, olfaction, knowledge processing and motor-control.
The theory of artificial neural networks is the outcome of the convergence of many

disciplines, including psychology. mathematics, neuroscience, physics, engineering,
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computer science. philosophy. biology and linguistics. The motive behind this uni-
fication among the sciences is the pursuit of a common goal namely. to build

intelligent machines that will eventually reproduce human information processing!

1.1.1 The “Real” Neural System

The mammalian nervous system consists of highly interconnected nerve cells called
neurons. The neuron communicates information to and from the various parts of

the body. A simplified representation of the biological neuron is shown in Figure 1.1,

Figure 1.1 A Simplified Biological Neuron.

N

dendries

cell hody

N
- P

(

The three important parts of the neuron are the cell body called the soma,
several spine-like extensions of the cell body called dendrites and a single uerve
fiber called the aron that branches out from the soma and connects to many other
neurons. Input signals from other neurons are received by the dendrites through
connection points called the “synapse”™. This connection between neurons mediates

the “strength™ with which a signal crosses from one neuron to the o her. On receiving,
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a signal at the synapse, these inputs are transmitted to the cell body, where they
are summed and averaged with all other such signals. If the average is sufficiently
large, the ccll “fires” by sending a signal through the axon to other neurons. There
are some inputs which tend to excite the cell by causing it to “fire” and there are
some others which inhibit such firing. In its simplest form, the biclogical n=uron
can be considered a threshold unit - a processing element that collects inputs and
produces an output ouly if the sum of the input exceeds an internal threshold value.
A brief look at how the human brain processes information will provide an insight

into the capabilities of the mind - specifically, its adaptiveness and resilience.

1.1.2 Processing in the Human Brain

In the human brain there are a massive number of neurons, estimated to be between
10" and 10, all of which are operating in a highly parallel and distributed manner.
Input is channeled from many sources, and computation is done in parallel by the
millions of nerve cells. The time taken to process a single piece of information
from input to output is typically in the millisecond range while a modern digital
computer can process one step of a program in a few nanoseconds. But the reason
why the brain is far superior in information processing is that the processing is done
in parallel while a computer processes information serially. Knowledge is stored in
the interconnections between neurons and new information is added to the brain
by adjusting these interconnection strengths - this mechanism is believed to be the
reason for our ability to generalize knowledge. The biological neuron is not merely a
threshold unit but is rather a very complex computing device. The computations not
only take place in the soma but the dendrites and the synaptic interconnections are
also actively computing [Grossberg 1982, Grossberg 1986]. Information is stored in
a distributed manner whereby each idea or concept is stored not just in one neuron,
but is spread across many neurons and their interconnections. This makes it highly
fault tolerant. which means that damage to individual neurons does not degrade its

overall performance [Simpson 1989, Hopfield et al. 1983].
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Artificial neural systems strive to model only a restricted form of the information

processing capability in humans,

1.1.3 The “Artificial” Neural System

Analogous to the biological neuron in the nervous system, the basic unit of an
artificial neural system is the “artificial” neuron. These artificial counterparts of
a biological neuron also known as processing elements, nodes, short-term memory,
threshold logic units. or simply neurons, they are the computing components in an

“artificial” neural system. A model neuron is shown in Figure 1.2,

Figure 1.2 An Artificial Neuron.

5] | (weights)

€; (bias)
(inputs)

3» Sj (Output)

The neuron can be described by of a set of inputs, the processor and an out-
put. Inputs come from all other neurons. There is an additional input from the
environment which is known as external input or simply, input bias. Each of the
inputs carry (or, are associated with) a weight which corresponds to the strength
of the synaptic interconnection. The artificial neuron mimics the basic threshold

function performed by the biological neuron. Input signals are multiplied by their

corresponding weights and the weighted aggregate is then compared to an internal
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threshold value. An output signal is generated only if the collected input signal
strength exceeds the threshold. Using vector notation?!, we represent the inputs by
8 = [81,82,...,8iy...,5N]", where s, is the output of neuron 7,7 =1... N. The col-
lection of weights that adjoins ncuron i forms a vector T; = [ty;, 20, ... oLy .oy ING]
where {,, represents the strength of the connection from neuron j to i. The external
input to neuron 1 is represented by ¢,. The computation that is performed in each
neuron @ can be expressed as follows:

N

S, =g (Zs, -1, + c,)

7=1
where, g() is a function to be described shortly. A weighted sum of the inputs
and external bias is calculated and passed through a threshold function g{), which
determines the output of the neuron. We shall now discuss the various threshold

functions g{) commonly used in artificial neural systems.

1.1.4 Threshold Functions

Also known as activation functions, squashing functions, or signal functions, these
functions map the possibly infinite input domain of neuron inputs to a prespecified
range of output - typically. between 0 and 1. We desire these threshold functions
to be monotonic. Commonly studied examples of the threshold function g() are one

of the following [Simpson 1989]:

A linear function: g(r) = ar, where a is a constant and regulates the magnifica-

tion of the internal activity r of the neuron (Figure 1.3).

Non-linear ramp function: The output of the neuron is confined to some range

[~v.49] and g() takes the form (Figure 1.4):

+9 ifr>4
g(ry =8 ¢ iflr| <~

-4 ifr<+

IWe use a superscript f to denote the transpose of a vector.
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Figure 1.3 A linear threshold function.

g(x)

A

Figure 1.4 A Non-linear Ramp threshold function.
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A step function: The neuron emits +~ if its activity z is positive and —& otherwise
(Figure 1.5). The following represents such a step function:
+y fx>0

g(z) =
—& otherwise

where, v and & are positive scalars. Often v = 1 and § = 0, giving a binary

output.

Figure 1.5 A step function.

g(x)

+Y

-

Sigmoid function: This is the most widely used squashing function. The sigmoid
function is an S-shaped function that is bounded, monotonic, non-decreasing
and provides a graded, non-lincar response. Sigmoid functions are, for exam-

ple, the hyperbolic tangent function (Figure 1.6)
glr) = tanh(rx).
and the augmented ratio of squares

?/1+2% fr>0
g(r) = ]
0 otherwise.
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‘I."igure 1.8 The hyperbolic tangent function.
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The sigmoid function that is widely used in statistics, physics, chemistry and
sociology. and which will also be used in this thesis is the logistic function
(Figure 1.7):

1
giz) = 3 {tanh(-:-;#) + 1}
1
l + e-.’u/ﬁ

where the parameter § is positive and less than unity and determines the
steepness of the curve. For the remainder of this thesis let & > 19 be a

“Jarge” value for which tanh(A) 2 1 and hence g(Af) =~ 1.

All of the above threshold functions (with the exception of the simple linear
function) constrain the output of the neuron to intervals such as [0,1] or {-1,1],

which enables a simple encoding of the results of a neural network.

1.1.5 Interconnection Schemes

The computational power of an artificial neuron can be realized to its full potential

by connecting these simple neurons into networks to achieve massive parallelism.
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Figure 1.7 The logistic function.

0.5

The simplest of such networks is the single-layer neural network, where we have a

group of neurons arranged in a layer as shown in Figure 1.8.

Figure 1.8 A single layer neural network.

uj

The circles on the left serve only as points of distribution for input and no com-
putation is performed here. More complex models are built similarly by combining
several such lavers to form multi-layer neural networks. The output from one layer
becomes the input (along with some weights) for another layer. These layers are
also known as slabs or fields. The information flow amongst the processing elements

in different layers could either be feedforward or feedback. In the feedforward
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networks, the interconnection information propagates only in one direction, from
one layer to another, whereas in the feedback network, there is information flow
amongst processing elements in either direction. An example of such feedback and
feedforward networks is shown in Figure 1.9. Once the neurons are connected to
each other to form a network, in a feedforward or feedback fashion, tremendoas

computational power results [Wasserman 1989).

Figure 1.9 Feedforward and Feedback networks.

ul

w2

(a) Feedforward network

uj i1 )® 3 S]
12
Ly
u
2 = 22 P 5

(b) Feedback network

Two important traits of the human brain which have intrigued researchers for

decades are its ability to learn through training and its ability to retrieve or recall

information on the basis of associated cues. The pioneering attempts that were made




Chapter 1. Introduction 11

in building artificial neural networks started with modeling networks that could
learn by experience. The distinction between the characteristics of feedforward and

feedback networks is better understood in the light of learning.

1.1.6 Learning in Artificial Neural Networks

The history of learning follows very closely the history of artificial neural net-
works themselves and dates back to 1943 when McCulloch & Pitts introduced
the first mathematical model of an artificial neuron [McCulloch and Pitts 1943).
Their work created a lot of excitement because they were able to show how
such networks of artificial neurons could exhibit sophisticated behaviour by mak-
ing use of very simple computations [McCulloch 1965]. The major drawback in
these networks was the lack of learning capabilities. Rosenblatt then general-
ized the McCulloch-Pitts model by adding the learning ability. This was the
birth of the well-known Perceptron. Rosenblatt was able to exhibit and math-
ematically prove the learning capabilities in 2-layered perceptrons only. His at-
tempts to extend the learning procedure to multi-layered perceptirons were futile
[Rosenblatt 1957, Rosenblatt 1958b, Rosenblatt 1958a].

Widrow introduced an idea similar to that of a perceptron, called the adap-
tive linear element (‘adaline’, for short) [Widrow 1959, Widrow 1960]. Learning in
a 2-layered adaline was demonstrated in [Widrow and Hoff 1960]. All this initial
excitement was dampened when Minsky & Papert proved that there are severe re-
strictions on what the single-lavered perceptrons can represent and hence, on what
they can learn! This work, along with other studies on perceptrons is described in
their influential book Perceptrons [Minsky and Papert 1969]. Several years went by
without a theoretically sound learning algorithm for multi-layered neural networks.
The interest was once again restored with the invention of the back-propagation

learning algorithm by Rumelhart, Hinton & Williams for systemaiicaﬂy training

multi-layer artificial neural networks. This is also commeonly known as the General-
ized Delta Rule with Back Propagation of Error [Rumelhart ef al. 1986).
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Let us understand what learning exactly means in our context. The learning
part of the network consists of modifying the internal system to reflect experience
and produce a desirable behaviour pattern. A set of inputs and an expected output,
together called a training pair. are presented to the network. The learning algorithm
constantly adjusts the internal weights so that the desired output is matched closely.
The network is usually trained over a number of training pairs and after repeated
iterations of learning, the error between the actual outputs and target outputs is
reduced to an acceptable value. At this point, the network is said to have been
trained and the correct set of weights has been learnt. The network can now be

used for recognition, i.e., to classify unknown test cases.

The learning procedure therefore consists of starting the network with a random
set of weights and using the various training pairs to arrive at a set of weights in a
feedforward manner. Feedforward networks have been traditionally used for tasks
for which the desired output is known, for e.g., in pattern recognition and speech

recognition [Pao 1989].

Learning could be classified further into supervised and unsupervised learning,
Supervised learning is presented a training set consisting of an input vector and a
desired output. As the network learns, its outputs are compared to the “ideal” out-
put. In the unsupervised learning, the training set consists only of an input vector.
The networks developed by Rosenblatt and Widrow & Hofl, incorporated supervised
learning only. On the other hand, D.O. Hebb introduced a model for unsupervised
learning [Hebb 1949]. This concept is based on the self-organization propertics of
the brain and hence is a far more plausible model of the biological learning exhibited
in human beings. With an input vector presented to it, the network learns by self-
organizing the data and the output of such a network must be generally transformed
into a comprehensible form after the learning process. Unsupervised learning can be
useful in situations where only a problem representation is known with no knowledge
of the desired solution. For example, in areas like constrained optimization, the aim
is Lo arrive at a feasible solution by choosing from a very large space of possible

solutions. It is infeasible to come with such large training sets if only feedforward
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networks are available. The main aim is to learn, i.e., solve problems without ever
going through a training phase. For such problems, feedback networks have been
successfully used [Hopfield and Tank 1985, Hopfield 1986], where the set of weights
is fixed and learning involves in arriving at a feasible solution (or, an equilibrium
point) while satisfying the constraints of the problem.

Feedback networks are highly interconnected and could be easily described in
terms of an undirected graph, where the vertices represent the neurons and the
edges represent the synaptic connections. They form a complete graph where
every neuron is connected to every other neuron. These networks were origi-
nally proposed as a model of computation for solving signal decision and de-
coding problems in pattern recognition. The research in artificial neural net-
works took a new direction when Hopfield & Tank showed successful applica-
tions of such feedback networks to solve problems in combinatorial optimization
[Hopfield 1982, Hopfield 1984. Hopfield and Tank 1986a, Tank and Hopfield 1987)

In summary, we have two types of learning. one, where the set of weights are
learnt with the help of the desired output (supervised learning), and the other, where
the set of weights is fixed and the network arrives at the desired output using these

weights (unsupervised learning).

1.1.7 Collective Computation

In this section, the following question is addressed: “How do such neural networks
compute?” The answer lies in the manner in which the artificial neurons are con-
nected to one another. The computational behaviour exhibited by neural networks
is significantly different from the computations performed by a traditional computer.
The rich interconnection among the neurons allows them to participate in the com-
putation process as a whole. The basic process of ‘computation’ is a series of state
changcs. starting at an initial state and terminating at a state that corresponds very
closely, if pot exactly, 1o an expected answer. In a traditional computer, this process
can be pictured as a path from the initial state to the desired state, through the con-

figuration space of the computer. as it evolves in time. The initial state is provided







