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Abstract 

Apache Storm is a popular distributed stream processing system which has been widely 

adopted by the key players in the industry including YAHOO and Twitter. An application 

running in Storm is called a topology that is characterized by a Directed Acyclic Graph. 

Isolation Scheduler, the default scheduler for a multitenant Storm platform running 

multiple topologies assigns resources to topologies based on static resource configuration 

information and does not provide any means to prioritize topologies based on their business 

significances. One of the problems with this scheduler is that, performance degradation 

even complete starvation of topologies is possible on a resource constrained cluster. Two 

priority based resource scheduling strategies are proposed in this thesis to overcome these 

problems. A performance analysis based on prototyping and measurements is conducted 

to demonstrate the effectiveness of the proposed techniques. A comprehensive analysis of 

the results leading to key insights into system behavior and performance is presented. 
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Chapter 1: Introduction  

1.1 Background 

With the rise of social media, IOT, wireless sensor networks and intelligent devices such 

as smart phones, we are experiencing a huge growth in the amount of data generated every 

single day. IBM reports that, we create 2.5 quintillion bytes of data every day [1]. 

Extracting meaningful information from this data-sets has become a key point of interest 

for both industry and academia. Business organizations are employing big data processing 

platforms to identify new business opportunities and analyze customer behavior which 

results in higher profit. As an example, in the report presented in [2], SAS notes that, top 

organizations are using various big data analytics strategies which results in immediate 

rewards such as reduction of operational cost for an enterprise, faster and better decision 

making capabilities and more customer focused product and service ideas. Another 

significant impact of big data can be seen in the healthcare industry. With a data-driven 

decision making approach, big data analytics in healthcare is being heavily used to predict 

epidemics, cure disease, improve quality of life and even avoid preventable deaths [3]. 

The term big data can be characterized by three aspects: Volume, Velocity and Variety [4] 

where volume refers to a large volume of data, variety refers to largely heterogeneous data 

and velocity refers to very low latency processing requirements for data. To extract 

meaningful information from big data, a big data processing platform needs to address one 

or more of these 3 aspects.  

Existing research efforts on batch processing have successfully addressed the volume and 

variety aspects of big data processing. Frameworks like Hadoop [5] and Spark [6] have 

emerged which are widely used now a days to process high volume data with varying 
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structures. More recently, a new class of big data processing platform has gained significant 

attention. On such a platform, data generated from external sources are continuously 

pushed to the processing platform with a goal to extract meaningful information in near 

real time. This class of big data processing is known as distributed stream processing which 

addresses the velocity aspect of big data processing. Apache Storm [7] is a popular 

distributed stream processing platform which has been adopted by key players in the 

industry such as Yahoo, Twitter and Spotify [8].  

1.2 Problem Description and Motivation 

Although Storm provides a platform for streaming data analytics, effective resource 

management techniques are required to effectively utilize the resources supported by the 

underlying Storm stream processing system. Isolation Scheduler, the popular scheduling 

algorithm used currently with Storm cannot handle a situation when the Storm cluster is 

resource constrained.  In such a cluster, the available number of resources are not sufficient 

to satisfy the desired resource requirements of the Storm applications submitted to the 

cluster. A more detailed discussion on this case is presented in Section 2.5.1.1. A cluster 

may become resource constrained after the submission of new applications or may be 

explicitly engineered to contain a lower number of resources to achieve high resource 

utilization.  Moreover, Isolation Scheduler does not support application priority. In this 

thesis, two novel resource management techniques are proposed for Apache Storm to 

address these issues. The proposed techniques can effectively handle resource constrained 

Storm clusters. The schedulers use priority based scheduling and provide an effective 

sharing of the available limited number of resources by the application. A high-level 

description of the proposed solution is provided next. 
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1.3  Proposed Solution  

Stream processing applications running on Storm clusters are called topologies. 

Developers package logics for stream processing applications as topologies and submit 

them to Storm clusters to run. Storm follows a master slave architecture where the master 

node is called Nimbus and worker nodes are called Supervisors. Submitted Storm 

topologies are run on the supervisor nodes. A Storm cluster can comprise a number of 

supervisor nodes where multiple Storm topologies are run [8]. To reduce resource 

contention among multiple Storm topologies, Storm currently provides Isolation Scheduler 

[9] which allows developers to specify dedicated number of supervisor nodes for their 

submitted topologies. The scheduler then schedules the topologies by dedicating the 

supervisor nodes to topologies per their desired requirements. Although the scheduler 

prevents resource contention among topologies, as indicated in the previous section, it falls 

short when the cluster does not have enough supervisor nodes to satisfy the desired number 

of supervisor node requirements for all the topologies. In such situations, Isolation 

Scheduler fails to schedule all the submitted Storm topologies which results in partial or 

complete starvation of some of the topologies that are submitted to the cluster.  

This thesis proposes two schedulers for resource constrained Storm clusters where the 

clusters do not have enough supervisor nodes to satisfy desired number of supervisor node 

requirements for the submitted Storm topologies. Both the schedulers use priority 

indications of the topologies and based on the priority indications, proportionally allocates 

limited resources to the topologies and thus prevents starvation of the topologies. The first 

scheduler is called Static Priority Scheduler (SPS). The scheduler uses application level 

priority indications of the topologies and prioritizes resource assignment for topologies 
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with higher priority when the cluster is resource constrained. The priority indications are 

provided by the developers when submitting the topologies to the cluster and these priority 

indications are static and cannot be changed at runtime. SPS can avoid starvation of the 

submitted topologies provided a minimum number of supervisor nodes are present in the 

cluster.  

The second scheduler is called Dynamic Priority Scheduler (DPS). The scheduler utilizes 

dynamic priority indications that are determined by the topologies at runtime based on 

some predefined trigger conditions. The scheduler schedules topologies based on these 

dynamic priority indications where a topology with higher priority receives more 

resources. Using this scheduler may result in temporary starvation of the lower priority 

topologies. The starving topologies cease to starve in time if they also regain their original 

priority. Both the schedulers are discussed briefly in Section 3.2.1 and Section 3.2.2 

respectively.  

To evaluate the performance of the proposed schedulers, prototype systems are developed 

to implement the techniques and associated algorithms. The design and implementation of 

these systems are described in details in Section 3.4, Section 4.1.1 and Section 4.1.2. 

1.4 Scope of the Thesis 

A distributed stream processing system is a part of a stream processing platform comprised 

of a number of data producers, data ingestion layer and the distributed stream processing 

system. This thesis exclusively focuses on devising effective resource management 

techniques for a resource constrained distributed stream processing system and resource 

management for the other components of the stream processing platform is beyond the 

scope of the thesis. Additionally, scheduling on distributed stream processing systems with 
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a fixed number of resources is considered in this thesis and auto-scaling of resources for 

changing the number of resources dynamically based on system load is considered to lie 

outside the thesis scope.  

1.5 Contributions of the Thesis 

The main contributions of this thesis are presented next 

¶ Static Priority Scheduler (SPS): A novel starvation free scheduler that uses static 

priority indications of the topologies to schedule Storm topologies in resource 

constrained Storm clusters running multiple topologies. 

¶ Dynamic Priority Scheduler (DPS): A novel scheduler that schedules topologies in 

resource constrained Storm clusters by utilizing dynamic priority indications that 

are provided by the topologies at runtime. 

¶ Prototype systems are built for the two proposed schedulers and insights into the 

impact of the various system and workload parameters on system behavior and 

performance are presented.  

The proposed resource management techniques are to be deployed by an entity that is 

responsible for proving the stream processing services to the users.  

A paper [10] based on the initial research results has been published in an international 

conference: R. Chakraborty and S. Majumdar, "A priority based resource scheduling 

technique for multitenant Storm clusters," International Symposium on Performance 

Evaluation of Computer and Telecommunication Systems (SPECTS), 2016. pp. 1-6. 

1.6 Thesis Outline 

The rest of the thesis is organized as follows. Chapter 2 provides background information 

on distributed stream processing system and discusses related work. Chapter 3 describes 
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the priority based scheduling techniques in detail. Chapter 4 describes the design and 

implementation of the prototype systems including the topologies used in the various 

experiments. Performance evaluation of the proposed priority based schedulers based on 

prototyping and measurement is also included in this chapter. Lastly, Chapter 5 concludes 

the thesis and discusses possible directions for future research. 
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Chapter 2: Background and Related Work 

This chapter starts by outlining the components of a distributed stream processing platform 

in Section 2.1. Then, characterization and classifications of distributed stream processing 

systems are presented in Section 2.2 and 2.3. Next, in Section 2.4 the internals of a 

distributed stream processing system are discussed in the context of Apache Storm. Finally, 

the chapter is concluded by outlining existing work focused on various resource 

management techniques for distributed stream processing systems in Section 2.5.  

2.1 Components of a Distributed Stream Processing Platform 

Figure 1 illustrates a high level architecture of a distributed stream processing platform 

based on [11,12,13,14]. Such a platform is composed of multiple layers of abstractions 

working in concert. An overview of each of the layers is presented. 

¶ Data Producers: Data Producer or simply the producer layer is the entry point of 

data streams to the distributed stream processing platform and can support various 

data sources including web and social media, mobile and handheld devices, 

wireless sensor networks etc. The data sources in the producer layer push data to 

an intermediate ingestion layer where data is temporarily stored before the 

distributed stream processing system starts processing them. 

¶ Ingestion Layer: Ingestion layer typically consists of message brokers such as 

Apache Kafka [15]. Data pushed by the various data sources in the producer layer 

is stored temporarily by the ingestion layer. Distributed stream processing system 

processes these data by pulling them from the ingestion layer. 

¶ Stream Processing Engine: A distributed stream processing system like Apache 

Storm consumes data from the ingestion layer and processes these data. 
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Usually, a distributed stream processing platform is a part of a complete big data processing 

platform such as lambda architecture [11] and works in conjunction with a batch layer such 

as Hadoop [5] to accommodate a much broader set of queries over the ingested data. 

 As this research is only concerned with distributed stream processing, further details on 

the complete big data processing eco system are not discussed. 

2.2 Key Rrequirements of a Distributed Stream Processing System 

This section outlines the key requirements for a distributed stream processing system based 

on the study found in [16]. The distinguishing features of a distributed stream processing 

system in comparison to traditional data processing systems are captured in the following 

key attributes: 

¶ High data movement: To ensure low processing latency, a distributed stream 

processing system must assure high data movement by processing data in memory 

and by reducing blocking operations (e.g. storage operation) and passive processing 

on data. 

 

 

 

Data 

Ingestion 

Layer 

 

 

Distributed Stream 

Processing Engine 

Figure 1: Distributed Stream Processing Platform  
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¶ Instantaneous process and response model for high volume data: There should 

be a highly-optimized processing model for distributed stream processing systems 

which can minimize overhead and maximize the useful utilization of the resources 

such as CPU, memory. These systems should keep up with high data load and 

process data in a short period. 

¶ Ability  to integrate stored and processed data: Distributed stream processing 

systems should provide means to dispatch processed data to outside storage facilities 

so that application designers can combine live data and historical data to infer 

business critical events starting from a past time frame to the current time frame. 

¶ Data partitioning and scalability:  Distributed stream processing systems should 

anticipate a large amount of continuous data flow and provide means to process these 

data with low latency. To achieve this, distributed stream processing systems must 

support multithreading to take advantage of the modern multi core processors and 

facilitate the partitioning of the continuous data among multiple cores for 

processing. The ability to use multiple machines and processors to process a high 

volume of data in parallel is a key distinctive feature of the different stream 

processing systems. This feature ensures incremental scalability of the stream 

processing applications. 

¶ Predictable and repeatable processing: Distributed stream processing systems 

should provide a deterministic and repeatable processing guarantee. That means 

when supplied with the same input, the processing should result in the same output 

every time when not influenced by other factors. This attribute is essential for fault 

tolerance and recovery from failure.  
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¶ Handling of stream imperfection: In batch style processing, data are always 

present before processing as the store then process model is followed. But in case 

of stream processing, data might be out of sequence or even be delayed. A 

distributed stream processing system should handle these types of stream 

imperfections by introducing strategies such as time outs, storing of data and delayed 

processing. 

¶ Stream based query language: The traditional query language for relational 

database will not suffice for stream based processing. So, it is expected that a 

distributed stream processing system should provide means for a stream based query 

framework with built in stream oriented primitives and operators.  

¶ Processing guarantee with high availability and fault tolerance support:   

Distributed stream processing systems must provide high availability and fault 

tolerance supports to avoid disruption and preserve integrity of the stream 

processing applications. There are various schemes available for distributed systems 

to achieve the desired fault tolerance and high availability which can be used in the 

distributed stream processing systems as well [17]. Distributed stream processing 

systems employ a combination of these strategies to provide processing guarantee. 

For an example: Apache Storm uses a centralized coordination system called 

Apache Zookeeper [18] to offer automatic failover by launching new instances of 

the failed stream processing applications on another machine available to the cluster 

[19]. 
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2.3 Stream Processing Systems Classifications  

Based on the extensive summary presented in [20], Stream Processing systems can be 

subdivided into three main categories: Centralized, Distributed and Massively Parallel. A 

short overview of these categories is presented in the following subsections.  

2.3.1 Centralized Stream Processing Systems 

Early systems proposed like AURORA [21], STREAM [22] fall into the category of 

centralized stream processing systems. AURORA was designed as a single site stream 

processing system by researchers in Brown University and MIT. Stream processing jobs in 

AURORA has a Directed Acyclic Graph (DAG) like structure where the nodes of the graph 

represent operators which represent the processing elements and the edges that represent 

the movement of the stream elements among the operators. A stream is viewed as an 

unbounded sequence of data elements called tuples. Tuples arrive at the input queues of 

stream operators and a scheduler selects which operators to run at a given point in time. 

Each operator functionality is specified in the AURORA query model. After the processing 

is done, the output is again moved to the input queue of the next operator in the processing 

graph. This process keeps on repeating until the output is presented to the sink or end users. 

Another stream processing system in this category is Stanford Stream Data Manager 

(STREAM) [22]. Both AURORA and STREAM have the same single host machine based 

architecture and a DAG based stream processing model. Like AURORA, STREAM also 

has a query model which decides the functionalities of the operators on the DAG structured 

stream processing jobs. While both systems have the provision to provide latency 

requirements for the stream processing jobs, they run on a single host machine and are not 

scalable to cater to growing processing demands due to added data sources and jobs. 
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2.3.2 Distributed Stream Processing Systems 

Distributed stream processing systems like AURORA/Medusa [23] and Borealis [24]  are 

of the second category. Unlike the centralized stream processing systems discussed earlier, 

these systems support a distributed processing model that can be comprised of multiple 

machines. The AURORA/Medusa system was built by the researchers in MIT. This system 

is an extension to the AURORA stream processing system which is discussed in the 

previous section. While the AURORA stream processing system runs on a single host 

machine, an AURORA/Medusa system is comprised of multiple of AURORA nodes that 

collaborate through an overlay network. Each AURORA node in AURORA/Medusa uses 

the AURORA query model where the DAG structured jobs are used to process streams. 

The Medusa system makes it possible for the multiple independent AURORA nodes to be 

organized as a loosely coupled federation under the control of one or more independent 

participants. Each participant is a user with financial and administrative access and holds 

ownership over a set of AURORA nodes, stream processing jobs and data producers 

feeding streams of data to the jobs. 

Another system in this category, Borealis also employs the generic DAG based stream 

processing model and has a distributed architecture comprised of Borealis servers running 

on different ñsitesò. These sites can communicate among themselves and thus can take 

coordinated actions. Unlike modern distributed systems like Storm [7] or Spark Streaming 

[6], there is no master node or centralized control node for the Borealis sites. Each of the 

processing nodes in a Borealis system has an independent admin module which decides if 

the query should run on the local server or on a participating remote server. Each 

Processing node executes a single query processor, which runs the actual query fragments. 



 24 

Processing nodes have a neighborhood optimizer that uses the periodically collected local 

and remote site statistics to balance the load among the processing nodes.  

2.3.3 Massively Parallel Distributed Stream Processing Systems 

In the third category, there are massively parallel distributed stream processing systems 

like Storm and Spark Streaming.  Unlike systems in the previous two categories, these 

massively parallel systems are optimized to run on a cluster with a master slave 

architecture. These clusters can comprise hundreds or even thousands of machines and thus 

these frameworks have the capability to attain impressive performance goals. For example, 

Apache Storm is benchmarked to process a million records per second [7]. These systems 

provide the developers with flexibility to write fairly complex stream processing 

applications with the generic DAG based structure and provides high availability and fault 

tolerance support. 

2.4 Internals of a Distributed Stream Processing System: Apache Storm 

Storm provides developers with Application Program Interface (API) to write distributed 

stream processing applications which runs on a Storm cluster. It is to be noted that, Storm 

is chosen as a representative distributed stream processing system while discussing the core 

concepts because of two reasons: Firstly, including a plethora of systems available in the 

literature would make the discussion lengthy. Secondly and most importantly, this thesis 

is specifically focused on resource management techniques for Apache Storm which is a 

representative of modern day popular stream processing systems.  In the following two 

sections, overview of the system architecture and the stream processing model of Storm 

are discussed. 
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2.4.1 Storm Architecture 

Storm adopts to a master slave based cluster architecture. Figure 2 illustrates a Storm 

cluster with N supervisor node. There are essentially two types of nodes in a Storm cluster: 

¶ Nimbus Node: A single machine running a daemon called Nimbus. Nimbus acts as 

the master node for a Storm cluster. Developers submit Storm job to Nimbus and 

Nimbus distributes the tasks of the job to the worker nodes with the help of the 

scheduler. Nimbus also monitors the cluster state and in case of supervisor node 

failure, it tries to restart the supervisor node or move the processing tasks to other 

supervisor nodes. 

¶ Supervisor Node: There can be multiple supervisor nodes in a Storm cluster with 

each running a daemon called supervisor. Each supervisor node hosts a predefined 

number of worker processes. The actual processing of the components of Storm 

topologies takes place in the worker processes. 

 

Apart from the Nimbus and supervisor nodes, Storm clusters use Apache Zookeeper [18] 

for synchronization and cluster state management. Multiple nodes, each running the 

Figure 2: A Storm Cluster 
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Zookeeper daemon forms an ñensembleò and provides the Nimbus and supervisor nodes 

with replicated synchronization and state management service with eventual consistency.  

2.4.2 Storm Stream Processing Model 

A stream in Storm is modeled as an unbounded sequence of data structures called tuples. 

A tuple is essentially a named list of values of data of types including string, integer, float 

etc. Jobs processing these streams are called topologies in the Storm jargon. A topology is 

comprised of components of two types: 

1. Spouts: Spouts connect to the external data sources. External data sources include 

various types of message brokers such as Kafka and ActiveMQ [11]. A spout 

captures the application logic to connect to these message brokers and pushes 

streams to the downstream processing components. 

2. Bolts: Bolts are the processing components of a Storm topology. Application logic 

for processing of streams is captured in bolts and based on the user defined logic, 

bolts perform various operations such as filter, aggregate on the tuples of the 

stream.  

To run a topology on a cluster, Storm employs three main abstractions. They are: 

¶ A Worker Process, which executes a subset of a topology. Each supervisor has a 

predefined number of slots for worker processes and each slot is a Java Virtual 

Machine (JVM) [25] process where one or more executors of one or more 

components (spouts/bolts) are executed.  

¶ An Executor is a thread of execution spawned by a Worker Process and runs within 

the JVM process of the worker. Executors run one or more tasks of a specific 

component. If there are more than one task of a specific component to be run inside 
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an executor, the executor runs them sequentially. Executors are the basic unit of 

parallelism in Storm jargon. 

¶ A Task is a running instance of a Storm component (Spout/Bolt). The actual 

processing is done by the tasks and they run within their parent executors. By default, 

the number of tasks and number of executors for a given component (spout/ bolt) are 

the same. One reason for developers require more tasks than executors for a 

component is to take advantage of the Storm runtime scaling utility called 

ñrebalanceò [26]. Using rebalance, Storm allows the system to increase the number 

of executors and worker processes for a topology but the number of tasks remains the 

same. Thus, developers can objectively add more tasks than executors if they 

anticipate to scale out during runtime. However, the number of tasks can never be 

less than the number of executors.  

Developers need to decide on the number of worker processes the application will need to 

run. It is also the responsibility of the developers to decide the number of concurrently 

running executors by setting ñparallelism hintò parameter for each component. The 

ñparallelism hintò is the number of concurrent executors for each topology component that 

would run inside the worker processes of the supervisor nodes. 

Storm topologies form a directed acyclic graph (DAG) like structure by connecting Spouts 

and Bolts by various stream groupings. Developers are provided with Storm APIs to write 

application logic for spouts and bolts. The nodes in the graph represent components such 

as spouts, bolts and edges represent stream propagation among the components. Stream 

groupings decide the communication pattern among the components of a Storm topology                      

by deciding how the stream is partitioned among downstream components.  
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Storm provides 8 stream groupings. They are:  

1. Shuffle Grouping: Tuples are randomly distributed among the bolt executor such 

that each bolt executor receives an equal number of tuples. 

2. Local or Shuffle Grouping: If the target bolt executor resides on the same worker 

process, then tuples will be forwarded to that bolt. Otherwise the semantics of 

Shuffle Grouping will apply. In other words, this grouping strategy tries to ensure 

locality to reduce network communication whenever possible.   

3. Fields Grouping: Streams are partitioned by the pre-specified fields and tuples with 

the same value of the field will always go to the same bolt executor. For an example, 

if a stream is partitioned by a ñuser-nameò field, tuples consisting the same user-

name will always go to the same bolt executor whereas tuples having different user 

name will go to different bolt executors.   

4. Partial Key Grouping: This is like the Fields Grouping but tries to balance the load 

of tuples between two downstream bolt executors to achieve better resource 

utilization. 

5. All Grouping: Tuples are replicated and emitted to all the target bolts executors. 

6. Global Grouping: This grouping strategy sends all the tuples to a single bolt 

executor.  

7. None Grouping: If this grouping policy is selected, then Storm will apply the 

default strategy which is the Shuffle Grouping. Application developers select this 

grouping if they are oblivious of the grouping of the tuples. 

8. Direct Grouping: The producer of the tuple decides which bolt executor receives 

the tuple based on some predefined logic. 
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Figure 3 illustrates a Storm topology with one spout and three bolts connected by Shuffle 

Grouping. 

 

Figure 3: A Storm Topology 

2.5 Scheduling in Distributed Stream Processing Systems 

To process streams of data, stream processing jobs representing continuous queries are run 

over the data streams. Distributed stream processing systems abstract these queries with a 

Directed Acyclic Graph (DAG) structure. Vertices on this DAG model represents operators 

which captures the actual processing logic for the query fragments such as joins, filters and 

aggregations. The edges on the DAG model represent flow of data among operators. 

Different distributed stream processing systems have different semantics to design this 

DAG structured jobs. As an example, recall from previous section that Apache Storm 

allows developers to design the stream processing jobs called topologies by implementing 

logics for operators using two abstractions called spouts and bolts. These operator 

abstractions are collectively known as components. Each of the operators in the DAG 

model performs some operations on the incoming data and forwards the resulted 

transformed data to downstream operators or end systems such as a sink database or UI 

[27]. This DAG abstraction is then mapped to the software components of the distributed 

stream processing systems. Depending on the design principles of specific distributed 
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stream processing systems, the operators of the deployed DAG model can be replicated 

throughout several worker servers to ensure scalable and parallel execution of the stream 

processing jobs. Recall from Section 2.4.2 that, Storm provides developers to specify the 

number of concurrent threads for each component (spouts or bolts) of a topology by setting 

the ñparallelism hintò parameter. These running instances are called executors. The 

executors are run on the worker processes of the supervisor nodes in the cluster. 

Scheduling in the distributed stream processing systems refers to the process of mapping 

the operator instances of the DAG structured stream processing jobs to the worker servers 

[28]. Each of the worker servers has a limited resource capacity (CPU cores, memory etc.). 

Developers decide the resource requirement for their stream processing jobs based on the 

nature of the job (e.g. compute or memory intensive) and number of operator instances. It 

is the responsibility of the schedulers to make sure that, all the operator instances of all the 

stream processing jobs are mapped to the available worker servers while respecting their 

individual resource demands. Failing to do so may result in the following scenarios: 

1. Starvation of the stream processing jobs where one or more stream processing jobs 

never get any resource and fails to process any data. 

2. Partial scheduling of the stream processing jobs where some of the operator 

instances of a stream processing job get mapped to the worker servers whereas 

some operator instances do not. This situation can hamper the performance and 

functional correctness of the affected stream processing jobs.  

In this section, state of the art scheduling techniques in the context of distributed stream 

processing systems are briefly discussed. In Section 2.5.1, scheduling techniques for 

Apache Storm are discussed. In Section 2.5.2, scheduling techniques for distributed stream 
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processing systems other than Apache Storm are outlined. Finally, some works which are 

not directly related to scheduling in distributed stream processing systems but have 

motivated this thesis are briefly discussed in Section 2.5.3.  

2.5.1 Scheduling Techniques for Storm 

Scheduling in Apache Storm refers to the process of mapping executors of a Storm 

topology to the worker processes hosted by supervisor nodes [29,30]. As previously 

discussed, executors are the concurrently running threads of the topology components and 

worker processes are Java Processes hosted by the supervisor nodes in a Storm cluster. 

Developers determine the appropriate number of executors for the topology components 

and the required number of worker processes to run these executors. This information is 

provided by the developers at design time by setting appropriate configuration parameters. 

Upon submitting a topology to the cluster, Nimbus invokes the scheduler. The scheduler 

captures the executors for the topology components and notes the desired number of worker 

processes for the topology. Next, the scheduler identifies the free worker processes hosted 

by the supervisor nodes and distributes the executors to the desired number of worker 

processes. 

Available literature on Storm based scheduling techniques can be broadly classified in to 

two categories: 

¶ Offline Scheduling: This type of schedulers is used to formulate an initial schedule. 

They are invoked once for every Storm topology submitted to the Storm cluster. 

This type of schedulers does not adapt to the changes in the system environment 

which means once a Storm topology is scheduled after the submission, a new 

schedule is never computed for that Storm topology. 
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¶ Online Scheduling: These schedulers are always live/active. This type of schedulers 

monitors the quality of the current schedule by periodically assessing the collected 

system/application level statistics and tries to formulate a new schedule if 

necessary. Thus, it is possible for a submitted Storm topology to be rescheduled 

when using an online scheduler. 

2.5.1.1 Offline Schedulers for Storm 

Apache Storm provides two out of the box schedulers. They are called Isolation Scheduler 

and Default Scheduler. Both schedulers are offline schedulers so they cannot adapt to the 

changes in the cluster environment and they are invoked once per topology submission.  

Default Scheduler uses a simple round robin mechanism and produces a schedule where 

each worker process hosts approximately an equal number of executor of the components 

of a submitted topology. The scheduling is a two-stage process where in the first stage, the 

scheduler notes the desired number of worker processes by the topology and captures all 

the executors of the topology components. The scheduler then partitions the executors into 

multiple sets. The number of sets is equal to the desired number of worker processes and 

each set holds approximately an equal number of executors. In the second stage, the 

scheduler identifies the desired number of free worker processes from the available 

supervisor nodes and allocates each set of the executors to one of the worker processes. 

The allocation is done in a round robin fashion where each supervisor node contributes 

approximately an equal number of worker processes. Although this scheduler ensures 

fairness by making sure the number of executors mapped to each worker process remains 

approximately equal and each supervisor node contributes approximately equal number of 

worker processes, it is possible for multiple topologies to be scheduled in the worker 
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processes of the same supervisor node which results in resource contention among the 

topologies. This results in performance degradation of the topologies. Thus, this scheduler 

is not suitable for a multitenant Storm cluster where a Storm cluster is shared by many 

Storm topologies.  

To solve the multitenancy problem, Storm introduced Isolation Scheduler which solves the 

multitenancy problem by providing dedicated supervisor nodes for each topology running 

in the cluster. Developers indicate the desired number of supervisor nodes for the 

topologies in the Storm configuration file. After a topology is submitted to the cluster, the 

scheduler reads the configuration file and allocates the desired number of supervisor nodes 

to the topology. The desired number of worker processes are selected from these dedicated 

supervisor nodes and the executor to worker process mapping follows the same round robin 

strategy as the Default Scheduler. Essentially, the supervisor nodes are ñisolatedò so that 

no two topologies are run on the same supervisor node and thus resource contention among 

topologies are eliminated. 

Both Isolation Scheduler and Default Scheduler can result in partial scheduling or even 

complete starvation of the topologies in a resource constrained Storm cluster. A resource 

constrained Storm cluster does not have enough supervisor nodes to satisfy the requirement 

of all the topologies. Following are few scenarios where using Isolation Scheduler or 

Default Scheduler will result in partial scheduling or complete starvation of the Storm 

topologies:  

¶ Topologies are submitted to the Storm cluster separately at different points in time 

and the cluster allocates resources to the topologies in a First in First out (FIFO) order. 

If topologies that are already submitted have consumed all the supervisor nodes on 
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the cluster and there are not enough supervisor nodes on the resource pool, it is 

possible for newly submitted topologies to starve or remain partially scheduled until 

more resources are added to cluster.  

¶ It is possible for supervisor nodes to become unavailable at runtime due to machine 

failure/network failure. Even in the presence of high availability features, it takes 

some time to make new supervisor nodes available to the cluster. In this interim 

period, topologies running on those supervisor nodes can suffer from partial 

scheduling or even complete starvation.  

¶ Lastly, a Storm cluster can face resource constraint due to scaling out of the topologies 

that require adding new resources to the respective topologies. Storm provides a 

feature called rebalance [26] through which it is possible for runtime scaling out of 

the topologies. In the research presented in [31], it is shown that it takes a significant 

amount of time (on the order of 6 minutes) for making new supervisor nodes available 

to the cluster. A Storm cluster may become resource constrained and a scaled-out 

topology may suffer from performance degradation during this period. 

In all these resource constrained systems, the full functionality of all the submitted 

topologies cannot be supported at the same time. As a result, Isolation Scheduler cannot be 

used in such resource constrained systems.  

Other than the default schedulers, a few offline schedulers are available in the literature. 

They are discussed next.  

In the offline scheduler proposed in [28], authors modeled the executor placement problem 

in the context of Apache Storm as an Integer Linear Programming problem while 

considering heterogeneity of compute and network resources. The authors proposed a 
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generic framework to include various user indicated quality of service metrics to be 

optimized while allocating resources to the executors in a Storm application. A few 

observations can be made in the context of [28]. First, this solution does not provide 

satisfactory performance when the number of executors in a topology and the size of the 

cluster are large. Secondly, the scheduler is an offline scheduler, and unlike an online 

scheduler, it is oblivious to run time changes both at the system and the application levels. 

The offline scheduler presented in [30] places executors of a Storm topology on the same 

node based on their stream grouping. This approach ensures lower network 

communication. The scheduler is run when a Storm topology is submitted to the cluster. 

One aspect of the scheduler is that it does not consider system load as a factor which the 

authors themselves identify as a drawback. 

A similar technique is proposed in [30] where the offline scheduler analyzes the DAG 

structure of the Storm topology and tries to formulate a schedule where the heavily 

communicating executors are placed on the same node and thus minimizes network 

latency. 

A resource aware offline scheduler for Apache Storm is proposed in [32]. This scheduler 

considers both demands and availability of resources in terms of CPU, memory and 

network bandwidth in a Storm cluster. To achieve this, the users are provided with APIs to 

indicate CPU, memory and network bandwidth requirements of a Storm topology when 

submitting the topology to the cluster. Similarly, each worker node in the cluster has its 

resource capacity statically configured in a configuration file. The statistics about resource 

availability and resource consumption are collected and stored periodically in the 

GlobalState module and the resource aware scheduler utilizes these statistics while 
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allocating resources to a submitted Storm topology. The scheduling process has two 

sequential steps. The first step obtains a partial order of the executors to be scheduled using 

the popular Breadth First Search (BFS) algorithm. Use of BFS ensures that adjacent 

executors are placed in close sequence so that heavily communicating executors can be 

mapped to the worker processes of the same supervisor node and thus network 

communication latency is reduced. The next step focuses on selecting a supervisor node to 

host executors such that the selected node has the most available resources to fulfill 

recourse requirement of the executor. While the scheduler investigates the feasibility of 

running multiple Storm topologies, it does not consider a resource constrained Storm 

cluster. Thus, partial scheduling and starvation of topologies remain a possibility when the 

cluster is resource constrained.  

2.5.1.2 Online Schedulers for Storm 

 In the research presented in [33], the authors argue that in the case in which the system is 

experiencing lighter workload, significant performance improvement in terms of average 

tuple processing latency can be achieved by using fewer supervisor nodes as the inter 

supervisor node communication latency is more expensive than the inter worker process 

communication latency for lighter workloads. This technique falls short, however, when 

the system is experiencing higher traffic and the nodes become heavily overloaded. Based 

on these observations, a periodically running online scheduler is proposed. The proposed 

scheduler tries to formulate a schedule where the executors are mapped to the worker 

processes fewer supervisor nodes at the same time makes sure, no supervisor node has 

exceeded its CPU capacity. The capacity is predefined for every supervisor node. CPU load 

due to tuple arrival or traffic across executors is collected periodically by daemons which 
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are deployed throughout the supervisor nodes in the cluster. Using this information, the 

scheduler can determine if a participating worker node is approaching its CPU capacity.  

A prediction based scheduling framework for Apache Storm is proposed in [34] . There 

are essentially two aspects of the proposed framework: a prediction component which 

models and predicts average tuple processing latency, and a scheduler which assigns 

executors to worker nodes based on the prediction model. Authors model average tuple 

processing latency as the summation of average tuple processing latency at each executor 

and average tuple transfer latency between the executors which includes both queuing 

delay and network communication latency. A popular supervised learning algorithm called 

Support Vector Regression is used for the prediction of average tuple processing latency. 

The prediction is used as a guideline to take intelligent decision while mapping executors 

to the worker processes of the supervisor nodes. To facilitate the learning, statistics on 

average tuple processing latency and tuple transfer latency are collected by daemons 

implanted across supervisor nodes which in turn send these statistics to a centralized 

location. Based on this collected data, a prediction model is built. Finally, a greedy 

scheduling algorithm tries to find a feasible schedule using the prediction model with a 

goal of reducing average tuple processing latency.  

A graph partition based scheduler for Apache Storm is presented in [35]. The goal of this 

research is to minimize network load due to data movement among the nodes in a Storm 

cluster while making sure there is no load imbalance in the nodes in terms of compute 

capacity. A weighted graph called communication graph of an application DAG is 

constructed where the weights on the nodes represent the compute capacity requirements 

of the tasks and weights on the edges represent the accumulated total number of all the 
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tuples that are sent from one task to the other. Based on the periodically collected 

application performance statistics from the cluster, this communication graph is optimized 

with an objective to minimize network communication cost due to inter node 

communication while keeping the load imbalance in terms of computational load under a 

certain given limit. 

While the above proposed offline and online schedulers aim at maximizing a given 

performance metric such as average tuple processing latency by formulating intelligent 

executor to worker process mapping, none of them considers a resource constrained 

environment where the available number of resources are not adequate to satisfy the 

resource requirements of the all the submitted topologies. Moreover, resource contention 

due to multiple running topologies is also not considered. The proposed priority based 

schedulers in this thesis aim at formulating a schedule addressing all these issues by 

utilizing application level priority in a static and dynamic manner. 

2.5.2 Scheduling Techniques for Other Distributed Stream Processing Systems  

Scheduling techniques for other distributed stream processing systems available in the 

literature can be broadly categorized in two ways  

¶ Static Operator Placement based scheduling: Upon submission of a DAG structured 

stream processing job, an initial one time operator to worker mapping is formulated 

by this type of schedulers. This type of schedulers does not adapt to run time 

changes and thus stream processing jobs are never rescheduled.  

¶ Dynamic Operator Redistribution based Scheduling: This type of schedulers 

utilizes periodically collected performance and system statistics to assess the 

quality of the current schedule and if required, can formulate a new schedule by 
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voiding the current one. It is to be noted that, there is an overhead associated with 

the dynamic redistribution of the operators. 

 The available researches provide varied opinion while evaluating both the techniques. 

Some are in favor of using dynamic operator redistribution based techniques citing long 

term benefits while the others find the overhead to be a significant factor impacting the 

performance and advocate static operator placement based scheduling.  

2.5.2.1 Static Operator Placement Based Scheduling 

In the research presented in [36], worker nodes hosting the operators of a stream processing 

job in a Borealis stream processing system experience loads which can be formulated as 

linear functions of system input stream rates. Authors argue that, dynamic operator 

redistribution in the presence of short term load variation is associated with significant 

overhead making it completely infeasible for and for some distributed stream processing 

systems. To overcome this problem, authors propose a static operator distribution 

algorithm, which aims to formulate a schedule such that operator to worker node mappings 

are "resilient" to unpredictable load variations. The algorithm is a coherent combination of 

two heuristics where the first heuristic aims at balancing the load of each input stream for 

all the worker nodes while the second heuristic tries to avoid bottlenecks by looking at the 

effects of different input streams on each of the nodes and thus identifying overloaded 

nodes which can be a bottleneck. The algorithm presented also consider communication 

costs and knowledge of specific workload characteristics such as a predefined lower bound 

on the input stream rate.  

In [37], authors proposed a static operator placement based scheduler for System S 

developed by IBM. This system uses admission control which means a submitted job can 



 40 

be rejected if the scheduler deems necessary which is rarely seen in any other distributed 

stream processing system. The periodically running scheduling process is decomposed into 

four sequential steps where each step is a mathematical optimization problem. The first 

step decides the jobs to be admitted, parallelism of the operators in the job and the CPU 

capacity constraints for each job. In the next step, the worker nodes for the admitted jobs 

are selected. The third step updates the processing capacity constraints with respect to the 

selected worker nodes in the second step. The fourth and final step decides the allocation 

of the job operators to the worker nodes. 

Finally, the static priority based scheduler proposed in [27] for the Quasit stream 

processing system [38] is probably the closest research effort to the static priority scheduler 

proposed in this thesis. Like the static priority scheduler, the framework utilizes user 

determined static priority indications for scheduling jobs submitted to the system. 

Although, it is important to note that, while the static priority scheduler proposed in this 

thesis allows priority indication for a job, [27] uses priority indications for operators for a 

specific job. This priority indications are expressed using "priority schemas" of two types: 

1) Absolute priority where an operator is assigned a priority indication in such a way that, 

a higher priority operator is sure to get resources even at the expense of starvation of a 

lower priority operator. 2) Proportional priority where operators are assigned with weights 

depending on their significance. Allocated resources are proportionally shared among these 

operators using a proportional share algorithm. This approach is like our proposed 

scheduler. The key differences between the schedulers proposed in this thesis and the 

scheduler described in [27] are summarized. Firstly, the scheduler in [27] uses static 

priority indications on operator level while our proposed static priority scheduler uses 
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priority indications on job level. Secondly, unlike our proposed schedulers, there is no 

provision of specifying minimum resource requirement for a job in [27]. The significance 

of minimum resource requirement will be detailed in Chapter 3. Thirdly, in addition to the 

static priority scheduler, a dynamic priority scheduler is investigated in this thesis whereas 

research presented in [27] only uses static priority indications for scheduling.  

2.5.2.2 Dynamic Operator Redistribution Based Scheduling 

In the research presented in [39], authors propose a scheduler based on load distribution 

for the Borealis Stream Processing system. The objective of the greedy algorithm presented 

in this paper is to reduce load variation across worker nodes of a Borealis cluster. Authors 

considered a non-linear load model where the input stream rates are unpredictable and have 

transient variations. Authors show that for such a system, average variance and average 

correlation of the measured load across the worker nodes are inversely related and 

minimizing the later helps maximizing the former and vice versa. The proposed scheduler 

tries to formulate a schedule following this objective which translates to better load 

distribution across worker nodes and improved performance of the stream processing jobs. 

System load is measured as CPU utilization and load across worker nodes are collected 

periodically as time series data. Correlation of average load between any two worker nodes 

or operators can be calculated by calculating a correlation coefficient (a real number 

between -1 and +1) of their respective time series data. This concept of correlation 

facilitates the scheduling in two ways: Firstly, if the load correlation between two operators 

is small, then they are placed on the same worker node which results in less variance of 

load and secondly, to reduce frequent operator migration and thus overhead, a pair-wise 

load redistribution algorithm is periodically run with an objective to maximize average 
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node load correlation between two adjacent worker node pairs. 

A simulation based researching the context of Borealis [24] is proposed in [40]. Authors 

proposed a scheduling technique which focuses on minimizing network communication 

cost in a simulated distributed stream processing environment by utilizing the knowledge 

of the underlying network. The scheduler decides placement of operator based on two 

heuristic approaches. In the first approach, the pair wise inter-worker node communication 

latency is considered and a cost model is constructed. Using the second heuristic, the 

operator placement utilizes the cost model developed using the first heuristic. It is to be 

noted that this approach does not consider operator processing cost as well as queuing 

delay. Also unlike researches in [39] [36] [41] load due to continuous flow of streams in 

the system and required load balancing is not taken into account. 

On the other hand, in [41], authors presented another simulation based research which is 

not tied to any specific distributed stream processing Platform. Authors strongly emphasize 

on the importance of run time dynamic operator re-distribution even if it incurs a short-

term overhead. Authors used 3 heuristic based approaches where the first heuristic is used 

to balance the load across worker nodes. The second heuristic aims at limiting the number 

of worker nodes for the distribution of the operators of a query and finally, the third 

heuristic tries to minimize the total communication cost by employing a data-flow aware 

query migration strategy which tries to ensure locality by keeping frequently 

communicating operators on the same node whenever possible. It is to be noted that, 

contrary to the research presented earlier in this section, the authors did not introduce any 

new load balancing strategy and used the existing well known receiver initiated load 

balancing strategy described in [42]. Load distribution is done at the query fragment level 
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(which contains the subset of operators) whereas the research presented in [39] and [36] 

are concerned with operator level load migration. 

2.5.3 Other Related Research   

Although not directly related to distribute stream processing, the following works 

motivated this thesis and require discussion.  

Proportional share based resource scheduling is briefly discussed in operating system 

literature [43]. The idea of using priority based proportional share scheduling for 

distributed data processing platforms is used frequently outside the stream processing 

architecture. For an example, a priority based proportional share scheduler is proposed in 

[44] for Hadoop. Users who are willing to pay a higher price gains higher priority and a 

higher capacity in terms of higher number of map and reduce slots. The pricing policy is 

determined by the overall resource demand in the Hadoop cluster. Resources are 

proportionally shared among the users based on the capacity they are allocated. 

As pointed out, while all the schedulers discussed in this chapter try to maximize/minimize 

a certain performance metric (e.g. average tuple processing latency) none of them 

addresses the problem of scheduling multiple Storm topologies in a resource constrained 

Storm cluster. To the best of our knowledge, no other work has addressed this issue so far.  

In the next chapter (Chapter 3) the priority based schedulers proposed in this thesis are 

discussed where it is shown that by introducing priority based scheduling, it is possible to 

overcome the partial scheduling and starvation problem of the topologies for a resource 

constrained Storm cluster running multiple Storm topologies. 
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Chapter 3: Priority Based Scheduling Techniques 

This chapter discusses the two-proposed priority based schedulers for Apache Storm. 

Section 3.1 provides a short overview of the two priority based schedulers. Section 3.2 

describes the algorithm and other internal details for the Static Priority Scheduler (SPS). 

The second scheduler called Dynamic Priority Scheduler (DPS) is discussed in Section 3.3. 

Finally, Section 3.4 discusses the implementation details for the proposed schedulers.  

3.1 Priority Based Scheduling 

Two priority based scheduling techniques are proposed in this thesis for multitenant 

resource constrained Storm clusters. The first scheduler is called Static Priority Scheduler 

(SPS) and it uses static priority of the topologies based on their business significance as 

indicated by the respective topology developers. Apart from priority indications, 

developers also need to indicate a minimum number of supervisor node requirements for 

the topologies which SPS uses to prevent starvation of the topologies. SPS is agnostic to 

the run time priority changes. 

The second scheduler is called Dynamic Priority Scheduler (DPS). Rather than using user 

indicated static priority, DPS uses topology indicated runtime priority indications and 

formulates the schedule in an online fashion. To use DPS, developers need to write 

application logic for the topologies to send priority indications based on some 

predetermined trigger conditions.  

Storm allows implementation of custom schedulers through its IScheduler [51] Java 

Interface where a single method called schedule needs to be implemented. The scheduler 

is packaged as a .jar file and placed in the library folder of the Nimbus node. The Storm 

configuration file is also updated to instruct the Nimbus to use the custom scheduler. It is 
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also to be noted that Nimbus invokes scheduler periodically with a default period of 10 

seconds. Further discussion for each of the schedulers is provided next. 

3.2 Static Priority Scheduler (SPS) 

SPS utilizes static priority indication to schedule topologies in a resource constrained 

Storm cluster. This priority indications are provided by application developers before 

submitting the topology to the Storm cluster and cannot be altered at runtime. The SPS 

architecture has two components. The first one is the SPS scheduler itself and the second 

one is the Priority Manager (PM). Before submitting topologies, application developers 

need to provide PM with the priority indications and minimum supervisor node 

requirement of the topologies which PM stores in a database. SPS is placed on the Nimbus 

node and Nimbus is instructed to use SPS through appropriately setting the Storm 

configuration parameters. Figure 4 illustrates the SPS architecture. 
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TopologyN 
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Figure 4: SPS Architecture 



 46 

SPS schedules the topologies in a resource constrained Storm cluster by proportionally 

sharing available supervisor nodes among topologies based on their priority indications. A 

lower numeric priority value indicates higher priority. It is possible for multiple topologies 

to be assigned the same priority level. Topologies in a higher level get more resources than 

the topologies in a lower priority level.  

In order to schedule topologies in a resource constrained Storm cluster, SPS needs to know 

four important parameters for every submitted topology. They are: 

1. Desired Number of Supervisor Nodes: As discussed in Chapter 2, the default 

Isolation Scheduler requires the developers to provide the number of desired 

supervisor nodes for every submitted topology in the Storm configuration file. SPS 

provides the developers with the same provision and uses this information while 

scheduling topologies. 

2. Desired Number of Worker Processes: In line with the Isolation Scheduler, this 

information is also provided by the developers at the topology submission time and 

SPS uses this information when scheduling topologies. 

3. Minimum Number of Supervisor Nodes: This parameter is introduced for SPS and 

captures the minimum number of supervisor nodes needed for a topology to run. 

Developers provide this information in the Storm configuration file and SPS uses 

it while scheduling topologies. 

4. Priority: As noted earlier, developers need to specify the priority of each of the 

submitted topologies. It is up to the developers to decide the priority of a topology 

which depends on the business significance of the topology. As an example, a 
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Storm topology used for climate monitoring in a data center can have a higher 

priority than a topology used for data archival. 

SPS can prevent starvation of the topologies if the cluster can satisfy the minimum 

supervisor node requirement of all the topologies. It is to be noted that the notion of 

minimum number of supervisor nodes is different from the desired number of supervisor 

nodes. Developers decide on the desired number of supervisor nodes needed by analyzing 

the nature of the topology, the number of executors for each component and the hardware 

specification of the participating supervisor nodes in the cluster. As an example, consider 

a topology with 4 components (spout/bolt) with each component having 4 executors. 

Additionally, consider each of the supervisor nodes in the cluster to have dual core CPU 

and two worker processes. To ensure the 4 executors of the topology components can run 

in parallel, it is natural to select 4 supervisor nodes as the desired number of supervisor 

nodes for the topology. Doing so ensures that one worker process in each supervisor node 

hosts one executor of each component and executors are not competing for resources (e.g. 

CPU). On the other hand, for the same topology, a minimum of 2 supervisor nodes will be 

needed for the executors of the topologies to run. This is because, for this example, each 

supervisor node has 2 CPU cores and thus 2 worker processes each. The topology has 4 

components and 4 executors for each component. In order to make sure that 4 executors 

can run at least 4 CPU cores need to be allocated to the topology. Thus 2 supervisor nodes 

are selected as the minimum number of supervisor nodes for the topology.  

The complete SPS algorithm is presented in Table 2. Notations used to formulate the 

algorithm are described in Table 1. 
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Table 1: Notations for the SPS and the DPS Algorithm  

Symbol Meaning 

PR = ɑρȟ ςȟ σȣÐɒ Set of distinct priority levels; p is the total 
number of priority levels available. A lower 
numeric value indicates higher priority  

l j ɉÊЀρȟ ςȣÐɊ Total number of topologies in jth priority 
level. 

TPj = { tpij ɒ ɉÊЀρȟ ςȣȢÐȠ ÉЀρȟ ςȣȣȢÌj) Set of all the topologies in the jth priority 
level; tpij is the ith topology of the jth priority 
level. There are В Ì topologies submitted 

to the cluster 
SD= {ÓÄ ɉÊЀρȟ ςȣȢÐȠ ÉЀρȟ ςȣȣȢÌj) Set of desired number of supervisor nodes 

for the ith topology in the jth priority level  
C Total number of supervisor nodes available 

to the cluster 
Wij ɉÊЀρȟ ςȣȢÐȠ ÉЀρȟ ςȣȣȢÌj) Total number of worker slot desired by the 

i th topology of the jth priority level  
CA= {caij} ɉÊЀρȟ ςȣȢÐȠ ÉЀρȟ ςȣȣȢÌj) Set of already allocated number of 

supervisor nodes for each topology; caij is 
the number of supervisor nodes already 
allocated to the ith topology of the jth priority 
level. A newly submitted topology has a 
default value 0.  

CN= {cnij} ɉÊЀρȟ ςȣȢÐȠ ÉЀρȟ ςȣȣȢÌj) Set of newly computed number of 
supervisor nodes for each topology; cnij is 
the number of supervisor nodes computed 
to be allocated to the ith topology of the jth 

priority level  
3- ÓÍ  ɉÊЀρȟ ςȣȢÐȠ ÉЀρȟ ςȣȣȢÌj) Set of minimum number of supervisor node 

requirement of the topologies; smij is the 
minimum number of supervisor node 
required by the ith topology of the jth priority 
level 

Eij (j=1, ςȣȢÐȠ ÉЀρȟ ςȣȣȢÌj) Set of executors for the ith topology of the jth 

priority level  
ST Total number of supervisor node desired by all 

the topologies submitted 

SPj ɉÊЀρȟ ςȣȢÐɊ Total number of supervisor node required by 

all the topologies in the jth  priority level 

PFJ A number representing the maximum of the 

supervisor nodes that can be allotted to the 

topologies of the jth priority level 



 49 

Table 2: The SPS Algorithm 

1     ὋὩὸ  ὅ from the cluster   

2 

░█ ὅ  ίά  

  

3  █▫► ὩὥὧὬ Ὦɴ ὖὙ      

4  █▫► ὩὥὧὬ ὸὴ ɴ Ὕὖ     

5   ὧὲ ÓÍ   

6   ÁÄÄ ÃÎ ÔÏ ÓÅÔ #.  

7  end for  

8    end for  

9       else   

10   
ST= В ίὨ  

 

11   X=min(C,ST)  

12   █▫► ὩὥὧὬ Ὦɴ ὖὙ      

13  SPj=В ίὨ   

14  PFJ = min(X, ὶέόὲὨὅᶻ   

15  Y= PFJ  

16  for  ὩὥὧὬ  ὸὴᶰὝὖ     

17   ὧὲ ÍÉÎ ὣȟὶέόὲὨὖὊᶻ
▒   

18   ÁÄÄ ÃÎ ÔÏ ÓÅÔ #.  

19   9 9 ÃÎ)  

20  end for  

21  8 8 0&)  

22  end for  

23   end else   

24 ╬╪■■ ὙὩίέόὶὧὩὃὰὰέὧὥὸέὶ   
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The SPS algorithm presented in Table 2 starts by querying the cluster for the total number 

of available supervisor nodes C by invoking Storm library functions [line 1]. If the cluster 

has only the minimum number of supervisor nodes to satisfy the cumulative minimum 

supervisor node requirements of the topologies [line 2], SPS allocates each topology with 

their minimum number of supervisor node requirements and adds the number of supervisor 

nodes to be allocated to the set of newly computed number of supervisor nodes CN [Lines 

5,6].  

If the total number of supervisor nodes in the cluster is more than the minimum number of 

supervisor node required by all the topologies, SPS schedules topologies by proportionally 

allocating the available supervisor nodes. To accomplish that, the total number of desired 

supervisor nodes required by all the topologies ST is calculated by adding the individual 

supervisor node requirements of the topologies [line 10]. It is possible for the cluster to 

have more supervisor nodes than ST. In such a situation, the extra nodes should not be 

considered. Thus, the minimum of the C and ST values is chosen [Line 11] to discard extra 

supervisor nodes.  

As discussed earlier, multiple topologies can have the same priority level. Priority levels 

are captured in set PR and are sorted in ascending order where a lower numeric value 

indicates a higher priority. For the jth priority level in PR, the total number of supervisor 

nodes required by the topologies with the given priority level is calculated as SPj [Line 

13]. Next using the equation in line 14, the maximum number of supervisor nodes that can 

be allocated to the topologies in this priority level is calculated as PFj. Finally, using the 

equation in line 17, the number of supervisor nodes to be allocated to each of the topologies 

in the priority level is computed as cnij and added to the set of newly computed number of 
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supervisor nodes CN. The computed cnij value is subtracted from the number of supervisor 

nodes allocated to the topologies of the priority level so that the allocated supervisor nodes 

can be discarded from the subsequent calculations [Line 19]. The steps contained by lines 

13 to 21 are repeated for every priority level in PR and when the number of supervisor 

nodes to be allocated for each of the submitted topologies is calculated and added to CN, 

the ResourceAllocator function is called with CN as an input parameter. 

It is to be noted that, SPS computes proportional share of the supervisor nodes in two steps. 

First, the proportional share of supervisor nodes is calculated for the individual priority 

levels considering the collective desired number of supervisor nodes of the topologies 

belonging to each of these priority levels (Line 14). This is necessary to prevent starvation 

of the topologies with the lower priorities as it ensures that topologies in a higher priority 

level is not allocated with all the available supervisor nodes by starving the lower priority 

topologies. As SPS does not allow dynamic priority change, starvation of these topologies 

can continue indefinitely. In the second step, the computed number of supervisor nodes for 

a priority level are proportionally distributed among the topologies with the given priority 

level based on their individual desired number of supervisor nodes (Line 17). As it is 

possible for topologies with the same priority level to have varying number of desired 

supervisor nodes, this strategy ensures that individual topologies get proportional share of 

supervisor nodes with respect to other topologies belonging to the same priority level. Both 

SPS and DPS use the ResourceAllocator function to allocate the computed supervisor 

nodes to the topologies. The ResourceAllocator function is presented in Table 3 and is 

discussed next. 
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Table 3: The Resource Allocator Algorithm  

 

  

1 ░▪▬◊◄ȡὅὔȟὅὃ 

2 █▫► ὩὥὧὬ Ὦɴ ὖὙ     

3    for  ὩὥὧὬ  ὸὴᶰὝὖ    

4      if  ὧὲ Ȧ  ὧὥ  

5        de allocate  ὸὴ  by flushing currently occupying worker processes 

6      end if  

7       else  

8         remove  ὧὲ  from CN and tpij from TPj 

9       end else 

10      end for 

11    end for        

12  █▫► ὩὥὧὬ Ὦɴ ὖὙ   

13    for  ὩὥὧὬ  ὧὲᶰὅὔ 

14       Using the round robin strategy (similar to the Isolation Scheduler), select Wij worker    

processes from ὧὲ  supervisor nodes 

15     Using the round robin strategy (similar to the Isolation Scheduler), assign executors 

from Eij to the selected Wij  worker processes 

16    end for 

17  end for 
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The ResourceAllocator algorithm starts by deallocating resources from the topologies that 

are consuming numbers of supervisor nodes that are not equal to the respective computed 

values of supervisor nodes. There can be two scenarios where deallocation of resources is 

required while using SPS:  

1.  SPS is invoked every time a new topology is submitted to the cluster. Based on the 

priority indication of the newly submitted topology, already scheduled topologies 

may need to give up resources as the previously computed schedules become invalid 

with the addition of a new topology. As a result, topologies consuming more 

supervisor nodes need to free up the extra supervisor nodes and need to be 

rescheduled according to the newly computed value of supervisor nodes to be 

allocated.  

2. As noted earlier, Nimbus periodically invokes the scheduler with a default period of 

10 seconds. With passing time, it is possible for some topologies to be killed by the 

user or new supervisor nodes to be added to the cluster pool. In situations like these, 

the previously computed schedule also becomes invalid as the free supervisor nodes 

are left unused. The existing topologies can utilize these free supervisor nodes for 

additional performance gain. So, a new schedule will be computed by SPS and 

topologies consuming less resources than the computed values will be rescheduled. 

In line with the above discussion, ResourceAllocator compares the number of 

supervisor nodes already allocated with the computed number of supervisor nodes to 

be allocated for each of the topologies [Line 4 of Table 3]. If the numbers are not 

equal, a new supervisor node allocation will be required for the topology and its 

current allocation is removed [Line 5 of Table 3]. On the other hand, if both the 
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numbers are equal for a topology, then a new allocation is not required and the 

topology with its computed number of supervisor nodes to be allocated value are not 

considered in the further scheduling steps [Line 8 of Table 3]. This step is required 

for preventing unnecessary deallocation of topology resources. The steps are repeated 

for every priority level in PR [Lines 3 to 8 of Table 3]. 

Finally, topologies are allocated the computed number of supervisor nodes and executors 

of the topologies are mapped to their desired number of worker processes. For the ith 

topology in the jth priority level, the desired number of worker processes Wij are selected 

from the computed cnij supervisor nodes [Line 14 of Table 3]. This is done in a round robin 

fashion similar to the default scheduler (presented in Section 2.5.1). Similarly, the 

executors of the topology are also mapped to the selected worker processes following the 

round robin strategy [Line 15 of Table 3].  

3.3 Dynamic Priority Scheduler (DPS) 

Dynamic Priority Scheduler (DPS) uses dynamic priority indication from topologies at 

runtime to formulate schedules in an online fashion. Unlike SPS, application developers 

do not determine priority indications of the topologies, instead all of the submitted 

topologies are assigned with the same initial priority values. Topologies may assume a 

higher or lower priority at runtime based on some trigger conditions such as an increase in 

tuple arrival rate. The DPS architecture is illustrated in Figure 5. 

Similar to SPS, the DPS architecture has two components: the DPS scheduler and the 

Priority Manager (PM). As noted earlier, while using SPS, developers specify the priority 

levels of the submitted topologies in PM whereas in DPS, all the topologies are assigned a 

default priority value by the PM when submitted to the cluster. At runtime, a topology may 
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indicate a change of priority based on some predefined trigger conditions. When PM 

receives the indication, it changes the priority of that topology. Developers need to define 

the required logics for the trigger conditions and implement the logics that will be included 

in the Storm topologies. As the logic for the trigger conditions are highly specific to 

business use cases and the system environments, the responsibility is left to the application 

developers to provide the appropriate trigger logics. When a trigger condition occurs, a 

topology sends the Trigger On indication and PM updates the priority of the topology. DPS 

and then generates a new schedule. Apart from this, PM also assumes two important 

responsibilities which are activation and deactivation of topologies that are explained after 

the presentation of the DPS algorithm.  

 

The DPS algorithm is described in Table 4. The notations used are already discussed in 

Table 1. 

Figure 5: DPS Architecture 
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Table 4: The DPS Algorithm 

1     ὋὩὸ  ὅ from the cluster  

2   
ST= В ίὨ  

3   X=min(C,ST) 

4   █▫► ὩὥὧὬ Ὦɴ ὖὙ     

5  SPj=В ίὨ  

6  P=min(X, SPj) 

7  for  ὩὥὧὬ  ὸὴᶰὝὖ    

8   ὧὲ ÍÉÎ ὢȟὶέόὲὨὖᶻ
▼▀░▒  

9   ÁÄÄ ÃÎ ÔÏ ÓÅÔ #. 

10   8 8 ÃÎ) 

11  end for 

12  end for 

13   end else  

14 ╬╪■■ ὙὩίέόὶὧὩὃὰὰέὧὥὸέὶ  

 

DPS starts by querying the cluster for total number of available supervisor nodes [Line 1]. 

Next, the total number of supervisor nodes required by all the topologies ST is calculated 

in [Line 2]. Next, the minimum of the C and ST values is chosen [Line 3] and stored in 

variable X to discard the extra supervisor nodes that may be present in the cluster. Next, 

DPS Iterates through the priority levels of the topologies. For topologies in the jth priority 

level of PR, total number of supervisor nodes required by the topologies is calculated as 

SPj [Line 5]. Next, minimum of X and SPj is selected and stored in variable P to make sure 

the available supervisor nodes to be allocated to the topologies in the priority levels are not 

more than the desired SPj value [Line 6]. Using the equation in Line 8, proportional 

allocation of P supervisor nodes is computed for each of the topologies with the priority 

level and added to set of newly computed number of supervisor nodes CN. The steps are 

repeated for all the priority levels and finally ResourceAllocator function is called with CN 
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as input parameter. The ResourceAllocator algorithm is presented in Table 3 and already 

discussed in Section 3.1.1 while discussing SPS.  

It is to be noted that, unlike SPS, DPS does not compute the proportional share of 

supervisor nodes for the priority levels. Instead all the available supervisor nodes are 

directly allocated to the topologies in a priority level [Line 6] and only topologies in the 

same priority level shares the supervisor nodes proportionally [Line 8]. Thus, it is possible 

for lower priority topologies to starve in the presence of higher priority topologies. The 

starving topologies may cease to starve in time if they also assume a higher priority based 

on some trigger conditions or topologies running currently at a higher priority assume 

lower priority due to the occurrence of trigger off signals.  

It is established from the above discussion that using the DPS involves runtime 

rescheduling of topologies. Whenever topology priorities are changed, some topologies 

may need to give up supervisor nodes and some topologies may get awarded with more 

supervisor nodes. This nullifies the previously computed schedules for the topologies and 

deallocation of supervisor nodes from some topologies are required. Run time rescheduling 

of topologies can give rise to a number of problems including: 

¶ Tuple Loss: If a running topology is immediately rescheduled without deactivating 

and waiting for existing tuples to be processed first, then the existing tuples already 

present in the system will be lost which may hamper the functional correctness of 

the Storm application [33] . 

¶ Unexpected Termination and Duplication of Executors: A supervisor daemon 

checks Zookeeper for new executor to worker process assignments every 10 

seconds. As a result, if a topology is rescheduled, it is possible that the some of the 
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previous worker processes the topology was occupying are still active while the 

some of the new worker processes from the new schedule have not started. In such 

a situation, if a newly rescheduled topology is immediately activated without 

waiting for some time for the worker processes to properly shut down/start, then 

there can be unpredictable outcome for the topologies including tuple loss, 

duplicate executors, unexpected worker process termination or even complete 

supervisor node termination [45,33] 

Because of the issues mentioned above, ensuring a smooth run time rescheduling thus 

incurs rescheduling overhead [33,30] . These problems are well known and reported by 

other researches such as [33] where the authors introduced two strategies to prevent tuple 

loss and unexpected worker process terminations. Firstly, authors introduced a static delay 

of 30 seconds while rescheduling a topology which gives the worker processes ample time 

to properly shut down/start. Secondly, authors introduced intermediate message dispatcher 

daemons for the worker processes where tuples from one worker process to another is 

transported through the dispatcher daemon. While the approaches introduced in [33] ensure 

a smooth run time rescheduling for the single topology used in the research, they do not 

address rescheduling multiple Storm topologies. Additionally, introducing daemon 

message dispatchers for every single worker processes may also limit the performance and 

scalability of the Storm system as a typical Storm cluster can be comprised of many 

supervisor nodes where each supervisor node can host a number of worker processes. In 

this thesis, a novel approach is introduced for runtime rescheduling of topologies in a 

multitenant Storm cluster. Using an UML Activity Diagram [46] presented in Figure 6, the 

rescheduling approach is described. 
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Figure 6: Activity Diagram fo r Runtime Rescheduling of a Topology 

From Figure 6, it can be seen that after the submission of a topology to the cluster, DPS 

reads the initial priority indication from the PM and schedules the topology accordingly 

(see Section 3.2.2 for the DPS algorithm). At runtime, topologies communicate with PM 

with an indication of the onset of trigger condition. Upon receiving the trigger indication 

from a topology, PM deactivates the topology using the Storm Representational State 

Transfer (REST) API [47] . Deactivating a topology ensures that the spout executors of the 

topology remain inactive and do not pull any new tuples from Kafka. Next, PM waits for 

the topologies to finish processing the existing tuples in the system. Topologies inform PM 

after they have finished processing existing tuples. To accomplish this, topologies use two 

Storm utilities called ñtick tuplesò [48] and the ñNimbus clientò [49]. Tick tuples are signals 
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that are generated from within the topologies with a preconfigured frequency. And the 

Nimbus client makes it is possible for topologies to know if they are in a deactivated state. 

Combining these two utilities, whenever a topology identifies itself in an inactive state and 

there are no tuples left to process, it waits for a predefined number of tick tuples and decides 

that it has finished processing the existing tuples and signals PM. PM receives the signal 

and understands that it is safe to change the priority of the topology. PM then changes the 

priority of the topology and waits for the scheduler to perform the rescheduling. When DPS 

finishes rescheduling the topology, PM activates the topology, and the topology can start 

processing tuples with the new resource allocation.  

3.4 Implementation 

Prototypes for the two schedulers were implemented for Storm version 0.9.6 [50]. Both the 

SPS and DPS scheduling algorithms discussed in Section 3.2 and Section 3.3 are 

implemented in JAVA 1.6 [25] . Storm allows the incorporation of the custom schedulers 

through its IScheduler [51] plugin. The plugin is a Java interface where a single method 

called schedule needs to be implemented by the developers. The Nimbus daemon invokes 

this schedule method when it needs to run the scheduler. The custom scheduler is packaged 

as a standard .jar package and placed on the library folder of the Nimbus node. Nimbus 

then needs to be instructed to use the custom scheduler through appropriate configuration 

parameters in the Nimbus configuration file. Some Storm APIs that are heavily used to 

implement the scheduling steps are listed in [51]. Using these APIs, various operations 

such as allocating executors to worker processes, computing total number of supervisor 

nodes present in the cluster, freeing up worker slots are implemented.  

The PM module is also developed using JAVA. A MySQL [52] database is used in the 
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backend to store priorities of the topologies. The database is accessed using the Java 

Database Connectivity (JDBC) [53]  API. The communication between various topologies 

and the PM module is done through message passing using the Kafka [15] message broker. 

Chapter 4 discusses implementation details specific to Kafka in more details. 
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Chapter 4: Performance Evaluation of the Scheduling Techniques 

The performance of the proposed schedulers is evaluated by conducting a number of 

experiments based on two popular use cases of distributed stream processing systems. This 

chapter describes the use cases and experiments that have been conducted to study the 

performance of the proposed priority based schedulers. Implementation details are 

provided for the Storm topologies and data producers used in the two use cases. Workload 

and system parameters are outlined and performance metrics that are used to evaluate the 

proposed schedulers are identified. The results of the experiments are then presented and 

insights into system behavior and performance resulting from the performance analyses are 

summarized. 

4.1 Use Case-1: Systems Subjected to the Arrival of Batch Data 

The first use case considers a stream processing platform where several producers are 

sending data in small batches to the data ingestion layer. Each batch has a fixed number of 

tuples and after sending a batch of tuples, producers wait for a predefined fixed amount of 

time before sending the next batch. Multiple Storm topologies are then used to process the 

tuples from the ingestion layer. 

 Some popular use cases similar to this scenario is the use of sensors / Internet of Things 

(IOT) devices for business critical data analytics in the field of healthcare [54], urban 

development [55], automotive industry [56], aviation [57] and many more. As an example, 

consider a sensor based real time climate monitoring application for a data center where 

various types of sensors are used to harvest real time climate information including: 

temperature, air-flow, relative humidity etc. for better energy management and protection 

of valuable devices, specifically the servers. A use case of such an application is presented 
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in [58] where Intel partnered with Baidu to deploy a real-time sensor based data center 

monitoring application which resulted in up to 30% lower power consumption and better 

operational management in Baidu data centers. A similar application can be seen in [59] 

where HP uses ñsmart on demand coolingò in their data centers which reduces their 

operational costs by up to 40%.  

The Sensor/IoT devices are usually power and resource constrained devices and use short 

range low rate network communication protocols like ZigBee, MQTT, and Bluetooth etc. 

for data transfer [60]. Devices send measurement data to centralized "IoT Gateways" which 

can communicate over the internet to the outside world. Referring to the data center climate 

monitoring example, servers in a data center are mounted on racks where each rack 

accommodates a number of servers and a data center can have thousands of such servers 

mounted on several racks [61,62]. A number of sensors are placed on each rack on different 

measuring points [63]. These sensors send their measurement data to "Gateways" [64,65]. 

A typical IoT gateway has the responsibility to upload these collected device data to the 

data analytics platform.  

Use Case-1 used in the experimental analysis considers a similar application involving 

sensors where measurement data are collected for two phenomena. Multiple producer 

applications modelling gateways that push batches of synthetically generated data on the 

phenomenon being modelled (e.g. sensor readings) to the data ingestion layer are 

considered. Four Storm topologies are used to process these ingested data. The details of 

the data producers and Storm topologies are discussed in the next sections. 

4.1.1 Data Producers 

For the experiments that are run for Use Case 1, 8 producer applications push batches of 
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synthetically generated readings for the respective phenomena to the ingestion layer of the 

distributed stream processing platform. The internals of the stream processing platform are 

discussed in Section 2.1 of this thesis. Apache Kafka [15] used in the ingestion layer is a 

popular distributed publish/subscribe based messaging system. Kafka can be run as a 

cluster on one or more machines where each machine hosts an independent Kafka message 

broker. Kafka has four important key concepts. They are: 

¶ Topic: Streams of incoming data are categorized into topics. A message is defined 

as a payload of bytes and a topic is a category or feed name to which messages are 

published. 

¶ Partitions: A topic is divided in to multiple parts. Each of these parts is called a 

partition and the partitions are distributed throughout the broker nodes in the Kafka 

cluster. Partitions are the unit of parallelism of a Kafka topic. 

¶ Producers: Producers publish data to topics. If a topic has multiple partitions, then 

multiple brokers can publish data to that topic in parallel, each sending data to a 

separate partition (see Figure 7). 

¶ Consumers: Consumers subscribe to topics and reads the published messages. 

Depending on the number of partitions of a topic, multiple consumers can read data 

from the same topic in parallel. Figure 7 illustrates a Kafka topic T with N 

partitions. N producers are publishing data on the topic and M consumers are 

reading data from the topic in parallel. 
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It is to be noted that, Kafka is not a permanent storage solution for the ingested data. A 

configurable retention period is used for each topic and after the retention period is over, 

data is flushed out from the system.  

To send data into partitions of a topic, Kafka provides developers with the producer API 

[66]. Producers publish streams of messages to topics and Storm topologies are used as 

consumers to process the ingested messages. For each type of stream, a separate Kafka 

topic is created with multiple partitions. For each topic, a producer application is created 

using Java programming language  [25] that pushes messages to the respective Kafka topics 

using the producer API. The producer applications are called Producer1 and Producer2. 

For sending messages to multiple partitions of a topic in parallel, Java threads are used by 

each producer application. 

Based on the type of the data readings, producers send batches of data to two different 

Kafka topics where one of the Kafka topics: Topic1 is for synthetic data readings for the 

first phenomena and the other Kafka topic Topic2 is for synthetic data readings for the 

second phenomenon (see Table 5). Each of the topic has a partition count of 8 which means 

in each topic, 8 producers can push data in parallel. Based on the format and structure of 

Figure 7: Kafka Architecture  
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real world IOT device data collected and examined from [67], a generic message format is 

considered where each message a producer sends to the ingestion layer is structured as a 

Comma Separated Value (csv) line with 4 fields. The format is 

ü <date-time:(String)>,<source:(String)>,<readingValue:(Number)>,<other:(String)> 

The first field <data-time> contains the time stamp of the reading, the second field contains 

the originating source (gateway ID), the third field contains the reading value specific to 

the respective phenomena and the fourth field contains other information which serves as 

meta-data such as: device id, serial number. 

Various workload parameters that are used to control the content of the messages, the 

number of messages in each batch and the time difference between two subsequent batches 

sent by the producer applications are discussed in Section 4.1.3. 

Table 5: Overview of the Data Producers 

Parameter  Value Description 

Types of data readings 2 Two types of readings are considered, each for one 

specific phenomena  

Number of Producers for each 

type of readings 

8 8 data producers, modeled as gateways that push 

synthetically generated messages to Kafka in small 

batches are considered 

Number of Kafka topics 2 One of the Kafka topics: Topic1 is for data readings 

for the first phenomena and the other one: Topic2 is 

for the data readings for the second phenomena. 

Number of partitions for each 

topic 

8 8 producers can transmit batches of data to a topic in 

parallel 

  

4.1.2 Storm Topologies 

4 Storm topologies are used to process the ingested batches of tuples from Kafka. The 

purpose of using the 4 Storm topologies is twofold. Two of the Storm topologies are used 

to infer "Complex Events". A complex event is a simultaneous occurrence of two or more 

independent raw events where each raw event signifies an onset of certain situations that 
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are analyzed over streams of data [68]  and has been the subject of attention for research 

on stream processing systems. In this use case, the two raw events are described as 

following: 

¶ Raw Event 1: A certain proportion of the tuples representing measurement readings 

of the first phenomenon in a batch has crossed a predefined threshold. 

¶ Raw Event 2: A certain proportion of the tuples representing measurement readings 

of the second phenomenon in a batch has crossed a predefined threshold.  

The first topology named EventTP1 is used to detect Raw Event 1 which processes tuples 

from the Kafka topic Topic1. The second topology named EventTP2 is used to detect Raw 

Event 2 by processing tuples from Kafka topic Topic2. Processing time for each tuple is 

characterized by a parameter called service time which is discussed in Section 4.1.5.   

Simultaneous occurrence of Raw Event 1 and Raw Event 2 signifies the occurrence of the 

complex event. Timely detection of a complex event is of interest to the users of the stream 

processing application. Consider the data center climate control application example for 

instance. A complex event in such an application can mean that both temperature and 

humidity levels are out of an operational range and alarms can be generated for external 

automated climate control systems which can take corrective actions such as increasing the 

airflow or decreasing the air cooler temperature to compensate for the degrading humidity 

and temperature.  

The other two topologies are used to persist the ingested data to a storage device (e.g. hard 

drive/ block storage such as "Amazon S3" [69]). As discussed, Kafka is not a permanent 

storage solution and it holds the ingested data for a configurable amount of limited time. 

Thus, data needs to be shipped from Kafka to a permanent storage facility such that further 
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analysis can be performed on these data (e.g. historical analysis by the batch data analytics 

system). Storm topologies are heavily used for data archival and transportation in a big 

data analytics framework and a very detailed example can be found in the Twitter 

technology blog [70]. 

Storm topologies are developed using the Storm library. Both topologies, EventTP1 and 

EventTP2, have the same structure as illustrated in Figure 8. 

 

As shown in Figure 8, both EventTP1 and EventTP2 have four components. The first 

component in each topology is a spout which reads data from a Kafka topic (Topic1 for 

EventTP1 and Topic2 for EventTP2) and pushes tuples to the downstream bolts for further 

processing. Storm provides support for reading data from Kafka by a spout library called 

"KafkaSpout" [71]. The next component is a bolt called "Parse Bolt" which parses the 

comma separated value (csv) structured tuples in multiple fields and forwards the <source> 

and <reading-value> field of each tuple to downstream "Event Detector Bolt". Next, the 

"Event Detector Bolt" in each topology identifies the occurrence of the raw events (Raw 

Event 1 for EventTP1 and Raw Event 2 for EventTP2) on a batch by processing the contents 

of <reading-value> field for each tuple. Note that, for both the topologies, a raw event is 
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detected if 80% tuples are a batch has crossed a predefined threshold. The event detection 

result is then passed to the next downstream bolt called the "Event Dispatcher Bolt" which 

writes the event detection decisions to a Kafka topic. End systems such as a web based 

User Interface (UI)/Alarm system reads from the Kafka topic to signal the detection of the 

raw events. Simultaneous occurrence of both the raw events signifies onset of a complex 

event.  

The remaining two topologies that are used for data archival are called ArchivalTP1 and 

ArchivalTP2. ArchivalTP1 is used for archiving ingested data from Topic1 and 

ArchivalTP2 is used for archiving ingested data from Topic2. The topologies have a similar 

structure with 3 components (see Figure 9). The first component is the Kafka spout like the 

ones used in EventTP1 and EventTP2. The next component is a bolt called "Archival Bolt" 

which appends a new time stamp to each ingested tuple, adds an archival tag (e.g. a storage 

device identifier) and forwards the tuple to next bolt. Finally, the last bolt on the processing 

chain "Batch Dispatcher Bolt" which batches up the tuple for predefined batch length and 

dispatches them to disk for archival. 
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Figure 9: Topology Structure for ArchivalTP1 and ArchivalTP2  
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Table 6 lists the resources that need to be provisioned for the 4 topologies. Both EventTP1 

and EventTP2 are allotted 8 supervisor nodes. Recall that, 8 producers send batches of 

tuples in parallel to the Kafka. Thus, each component (spout/bolt) of EventTP1 and 

EventTP2 are assigned 8 concurrent executors (see Table 6 Column 5) where one batch is 

processed on the worker process of one supervisor node. The rest of the topologies 

(ArchivalTP1 and ArchivalTP2) are assigned 4 supervisor nodes each because they have 4 

concurrent threads per topology component. The number of supervisor nodes and the 

worker processes for a given topology are kept equal following the resource provisioning 

best practices provided by Storm [72]. 

Table 6: Topology Resource Provisioning 

Topology Desired Number 

of Supervisor 

Nodes 

Desired Number 

of Worker 

Processes 

Number of 

Topology 

Components 

Number of 

Executors/ 

concurrent threads 

per topology 

component 

EventTP1 8 8 4 8 

Event TP2 8 8 4 8 

ArchivalTP1 4 4 3 4 

ArchivalTP2 4 4 3 4 

4.1.3 System Configuration 

To run the experiments, Storm, Zookeeper and Kafka clusters are set up on an Amazon 

EC2 cloud infrastructure [73]. Storm and Kafka both use Zookeeper for state management 

and cluster synchronization. In total 32 nodes, running on the Amazon EC2 cloud 

infrastructure are used. Amazon provides different types of EC2 nodes depending on the 
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CPU and memory capacity. Among the different types of EC2 nodes available, 26 c4.large 

type EC2 nodes are used for the Storm cluster. 3 m4.large type EC2 nodes are used for the 

Zookeeper cluster and the 3 m4.large type EC2 nodes are used for the Kafka cluster. Table 

7 captures the detailed system configuration for the individual clusters. 

Table 7: System Configuration for the Clusters 

Cluster Type Configuration Parameter Value 

Storm cluster Number of nodes in the 

cluster 

26 

Type of EC2 instance c4.large 

Number of CPU 

cores/instance 

2 

CPU clock frequency 2.8 GHz 

RAM 3.75 GB 

Zookeeper cluster  Number of nodes in the 

cluster 

3 

Type of EC2 instance m4.large 

Number of CPU 

cores/instance 

2 

CPU clock frequency 2.8 GHz 

RAM 8 GB 

Kafka cluster Number of nodes in the 

cluster 

3 

Type of EC2 instance m4.large 

Number of CPU 

cores/instance 

2 

CPU clock frequency 2.8 GHz 

RAM 8 GB 

 

Among the 26 nodes dedicated for Storm clusters, 1 node is used for running the Nimbus, 

1 node is used for running the User Interface (UI), and 24 nodes are used for running the 

supervisor nodes where each supervisor node hosts 2 worker processes. The producer 

applications are run on a local machine equipped with 16 GB of RAM and an Intel Core-

i7 processor with a clock speed of 2.4 GHz running on Windows-7 operating system. The 

local machine communicates with the clusters set up on the cloud through internet provided 
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by Carleton University with a download speed of 97 Mbps and upload speed of 98.21 

Mbps.  

Please note that, the average tuple transfer time between the local machine and the Kafka 

cluster that is set up on the Amazon EC2 cloud, is in the order of few milliseconds. This is 

significantly smaller in comparison to the average tuple processing latency, that is in the 

order of hundreds of milliseconds. 

4.1.4 Performance Metrics 

Performance of the schedulers is evaluated using 2 performance metrics:  

(1) Average complex event inference latency (TE): A complex event is the simultaneous 

occurrence of Raw Event 1 (Detected by EventTP1) and Raw Event 2 (Detected by 

EventTP2). Detection of both Raw Event 1 and Raw Event 2 contributes to the 

inference of the occurrence of a complex event. The complex event inference 

latency is the estimate from the raw event detection latencies that are measured first. 

Detection latency for Raw Event 1 is measured by taking two timestamps using 

System. currentTimeMillis() from Java Library, one after Producer1 has sent a 

batch of tuples to Kafka and another after the topology EventTP1 finishes detecting 

the raw event by processing this batch of tuples from Kafka. These two timestamps 

are taken by a separate application called ñPerfò that is run on the local machine 

after it receives the respective messages from Producer 1 and EventTP1. The 

detection latency computed by ñPerfò is the difference between these two 

timestamps (in seconds). For Raw Event 2, detection latency is measured in a similar 

way after receiving similar messages from Producer2 and EventTP2. A complex 

event inference latency is estimated as the maximum of these two raw event 
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detection latencies. Average complex event inference latency is thus computed by 

taking average of all the computed complex event inference latencies. 

(2) Average tuple processing latency (TT): Average tuple processing latency is the 

average time in seconds a tuple takes to be processed by the Storm topologies. To 

compute TT, batch processing latencies are computed for topologies. To compute 

batch processing latency of EventTP1, two timestamps are taken using System. 

currentTimeMillis() from Java Library, one after the Producer1 finishes sending a 

batch and one after EventTP1 finishes processing the batch. These two timestamps 

are taken by the ñPerfò application after it receives the respective messages from the 

producer and the topology. The ñPerfò application then takes the difference between 

the two timestamps to compute the batch processing latency. By dividing the batch 

processing latency by the number of tuples in that batch, tuple processing latency 

for that batch is computed. Average tuple processing latency for EventTP1 is then 

computed by computing tuple processing latency for every batch in the experiment 

and taking the average of all the computed tuple processing latencies. Similarly, 

average tuple processing latency for EventTP2, ArchivalTP1 and ArchivalTP2 are 

computed by ñPerfò in a similar way after receiving similar messages from 

corresponding producers and the topologies.   

The average tuple processing latency for the higher priority topologies is computed 

as the average of the mean tuple processing latency for EventTP1 and EventTP2. 

Similarly, the average tuple processing latency for the lower priority topologies is 

computed as the average of the mean tuple processing latency for ArchivalTP1 and 

ArchivalTP2.  
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4.1.5 Workload Parameters 

This section describes the various workload parameters used in the experiments. 

¶ Batch Gap (BG): The Batch gap, is the time difference in seconds between successive 

batches of tuples sent by the producers. After sending a batch of tuples, a producer 

waits for the time specified by the batch gap before sending the next batch of tuples. 

If an event is to be inferred from a batch, it must be done within the time frame of the 

BG before the next batch of tuples arrives. 

¶ Batch Length (BL): Batch length is the number of tuples present in each batch sent by 

the producers. 

¶ Total Number of Batches (BT): Total number of batches is the total number of batches 

that are sent by the producers in each experiment. 

¶ Event Factor (EP): Event factor is the ratio of the number of batches that will generate 

raw events for the two topologies (EventTP1 and EventTP2) to the total number of 

batches in the experiment (BT). It is a real number between 0 and 1. This parameter 

essentially indicates the proportion of batches that will cause the trigger to be in the 

ON state. As an example, if BT has a value of 80 and EP has the value of 0.2 then for 

16 consecutive batches, raw events will be detected and the trigger will be in the on 

state for the two topologies detecting raw events.  

¶ Priority Levels (PR): Two distinct priority levels are used for the experiments, they 

are: 

o Priority Level, PR = 1: Denotes topologies with higher priorities  

o Priority Level, PR = 2: Denotes topologies with lower priorities  

While using SPS, two of the topologies: EventTP1 and EventTP2 are assigned 
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higher priority (PR=1) and topologies ArchivalTP1 and ArchivalTP2 are assigned 

lower priority (PR=2). 

¶ Service Time (Shigh and Slow): Service time is the amount of CPU time in seconds 

each tuple takes to complete its processing on a Storm topology. In line with the 

researches in [39,41,31], fixed values of service times are used in the experiments. 

Specific values of service time used in the synthetic workload that is used in the 

different experiments are generated with the help of a method that computes the 

factorial of a large number. The method is called iteratively with the number of 

iterations chosen in such a way that a desired value of service time is achieved. Two 

different service times are used for the topologies depending on their priority levels. 

Tuples processed by a topology with higher priority (Priority Level, PR = 1) has a 

service time Shigh whereas tuples processed by a topology with lower priority 

(Priority Level, PR = 2) has a service time of Slow. Note that the values of Slow used 

in an experiment is set to half the value of Shigh. 

Each experiment is repeated 3 times and average results are computed. Note that, fixed 

values of workload parameters (e.g. service time, batch length, batch gap) are used in each 

experiment, thus close values for a given metric are achieved in each of the three 

repetitions. 

4.1.6 Performance Evaluation of the Priority Based Schedulers 

The experiments to evaluate the performance of the proposed priority based schedulers are 

run for two scenarios. In the first scenario, a resource constrained Storm cluster is 

considered. The proposed priority based schedulers are intended to be used in a resource 

constrained Storm cluster where the available cluster resources are not sufficient to fulfill 
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the desired resource requirements of the submitted topologies but are sufficient to meet 

their minimum resource requirements. Recall from Section 2.5.1.1 that, in such situations, 

the default Isolation Scheduler cannot be used because of the partial scheduling or even 

complete starvation of the topologies that are submitted to the cluster. Thus, the Isolation 

Scheduler is not considered during evaluation of system performance in this scenario and 

only the performances of SPS and DPS are evaluated. In the second scenario, the cluster 

has adequate number of supervisor nodes to fulfill the desired supervisor node 

requirements of all the topologies and performance of the proposed priority based 

schedulers are evaluated against the default Isolation Scheduler.  

4.1.7 Performance Evaluation for a Resource Constrained Storm Cluster 

The proposed priority based schedulers are intended to be used in a resource constrained 

Storm cluster where the cluster does not have adequate number of supervisor nodes to 

satisfy desired number of supervisor node requirements for all the topologies. As noted 

earlier, in such a cluster, Isolation Scheduler fails to schedule all the topologies and thus, 

is not considered any further. The two proposed schedulers use priority indication from the 

topologies to proportionally allocate the available limited resources to the topologies. SPS 

uses static priority indication of the topologies which are provided by the developers in the 

topology submission time while DPS uses runtime dynamic priority indication of the 

topologies which are generated by the topologies at runtime based on some predefined 

trigger conditions.  

Recall from Table 6 that a total number of 24 supervisor nodes are desired by the 4 

topologies used in the experiment. For the resource constrained case, the available number 

of supervisor nodes in the cluster is reduced to 16. For such a cluster, resource provisioning 
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of the topologies using SPS is captured in Table 8.  

Table 8: Topology Resource Provisioning using SPS 

Topology Name Priority Level 

(PR) 

Desired Number 

of Supervisor 

Nodes 

Minimum 

Number of 

Supervisor 

Nodes 

Number of 

Supervisor 

Nodes Allocated 

EventTP1 1 8 4 6 

EventTP2 1 8 4 6 

ArchivalTP1 2 4 2 2 

ArchivalTP2 2 4 2 2 

 

SPS allocates topologies with available supervisor nodes in the resource constrained cluster 

using the algorithm described in Section 3.2. Developers provide the priority indication 

and minimum number of supervisor node requirements for each topology at topology 

submission time (see Column 2 and 4 of Table 8).  The priority indications of the topologies 

are determined by the developers based on the business significances of the topologies. For 

the minimum number of supervisor node selection, the system configuration of the cluster 

needs to be taken into consideration. As described is Table 7, each supervisor node in the 

cluster has 2 CPU cores and thus each supervisor node hosts 2 worker processes each. 

Recall from Table 6 that both EventTP1 and EventTP2 have 8 executors per component 

and 8 worker processes. Thus, at least 4 supervisor nodes are needed for these topologies 

to run. Similarly, 2 supervisor nodes are needed at minimum for the low priority 

ArchivalTP1 and ArchivalTP2 (Column 2 and 4 of Table 8). The resource provisioning for 

the topologies remains unchanged throughout the experiment while using SPS as it does 

not allow run time priority change of the topologies.  

On the other hand, DPS reacts to the reported trigger indications from the topologies and 
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reschedules the topologies accordingly. Recall from Section 3.3 that topologies report the 

trigger indications based on predefined logic. For the experiments in this use case, 

EventTP1 and EventTP2 report the trigger condition when a predefined percentage of 

tuples in a batch crosses threshold.  Table 9 captures the supervisor nodes allocated to the 

topologies when using DPS. Initial priority levels of the topologies can be seen from 

Column 2 and it can be seen that all topologies are assigned the same initial priority level. 

In such a situation, using the DPS algorithm described in Section 3.3, the available 16 

supervisor nodes are proportionally shared among the 4 topologies (see Column 4 of Table 

9). When a trigger ON indication is reported by EventTP1 and EventTP2 at runtime, they 

are assigned a higher priority level (Column 3) and all the available supervisor nodes are 

allocated to them (see column 5).  The lower priority topologies e.g. ArchivalTP1 and 

ArchivalTP2 are temporarily starved (0 supervisor nodes are allocated) until the higher 

priority topologies finish inferring complex events and send trigger OFF indication. 

Table 9: Topology Resource Provisioning using DPS 

Topology Initial Priority 

Level (PR) 
 Priority 

Level (PR) 

when Trigger 

ON 

Number of 

Supervisor 

Allocated (Event 

Trigger OFF)  

Number of 

Supervisor 

Allocated (Event 

Trigger ON) 

EventTP1 2 1 5 8 

EventTP2 2 1 5 8 

ArchivalTP1 2 2 3 0 

ArchivalTP2 2 2 3 0 

A summary of the parameters used in the experiments is presented in Table 10. The 

parameters are divided into 2 categories: workload and system. The experiments are run 

following a factor at a time method where one of the parameters is changed while others 

are held at their default values (indicated in bold at Table 10).  
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Table 10: Summary of Parameters Used in the Experiments 

Parameter Type Parameter Value 

Workload Batch Gap (BG) {40,60,80} seconds 

Batch Length (BL) {60,80,100} tuples 

Total Number of Batches 

(BT) 

80 

Event Factor (EP) {0.2,0.5,0.8} 

Service Time for Higher 

Priority Topologies (Shigh) 

{0.1,0.2,0.3} seconds 

 Service Time for Lower 

Priority Topologies (Slow) 

(Shigh/2)  

System Total Number of 

Topologies 

4 

Total Number of 

Supervisor Nodes Present 

in the Cluster 

16 

Total Number of 

Supervisor Nodes Desired 

by the Topologies 

24 

Number of Kafka Topics  2 

Number of Parallel 

Producers in Each Topic  

8 

 

4.1.7.1 Effect of Batch Gap (BG) 

As discussed before, Batch Gap (BG) indicates the time difference in seconds between two 

successive batches that are sent by a producer. Complex events need to be inferred within 

this time frame so that a decision on the occurrence of events in the current batch is 

available before the next batch of tuples arrive on the system. Following three outcomes 

are possible from processing a batch of tuples by the topologies inferring events: 
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1. Trigger OFF: Trigger condition is not satisfied for the topologies that are detecting 

raw events (EventTP1 and EventTP2). Thus, no trigger ON indication is sent by the 

topologies and their priority is also not changed by the PM (see Table 9 Column 4). 

2. Trigger ON: Trigger condition is satisfied by EventTP1 and EventTP2 and a trigger 

on indication is reported to PM. PM changes the priority of the topologies to a 

higher priority level (from priority level 2 to priority level 1) and EventTP1 and 

EventTP2, the topologies with higher priority get all the available supervisor nodes 

(see table 9, Column 5). 

3. Event Occurred: Raw event is inferred. The raw events and the composition of 

complex event are discussed on Section 4.1.2 

Figure 10 captures the effect of BG on complex event inference latency TE. For any value 

of BG, SPS results in a higher TE than that of DPS. Being an offline scheduler, SPS cannot 

react to run time trigger indications sent by the topologies. Thus, both event inferring high 

priority topologies are allocated 6 resources statically whereas DPS can react to the priority 

indications of the topologies and allocates 8 supervisor nodes to each of the high priority 

topologies. Thus, high priority topologies are allocated more supervisor nodes when DPS 

is used and that results in a 38% lower TE than that of SPS. It can be also seen that, 

increasing the value of BG has no effect on the TE values obtained by any of the schedulers. 

This is because, while the number of tuples in a batch and the service time for each tuple 

remains the same, the event inference latency is not impacted by a higher value of BG which 

only provides a longer time window for topologies to infer complex events. 
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For every value of BG, average tuple processing latency (TT) for higher priority topologies 

is higher for SPS compared to that of DPS (see Figure 11). Again, DPS allocates more 

supervisor nodes to topologies while a trigger condition is satisfied (see Column 5 of Table 

9). Thus, for the default EP value of 0.5 and total number of batches (BT) of 80, trigger 

condition will remain satisfied for the topologies detecting raw events (EventTP1 and 

EventTP2) for 40 batches and these topologies will get 8 supervisor nodes each. For the 

remaining 40 batches, DPS will allocate 5 supervisor nodes to the 2 topologies. On the 

other hand, SPS will keep the initial allocation of 6 supervisor nodes to the higher priority 

topologies throughout the experiment. Thus, for any given BG value, DPS results in a lower 

TT value for topologies with higher priority compared to that of SPS (see Figure 11).  

  

BG (seconds) TE ï SPS (seconds) TE ï DPS (seconds) 

40 26.47061 19.12407 

60 26.56657 19.33002 

80 26.57641 19.25067 

Figure 10: Effect of BG on TE 
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Conversely, Figure 12 shows that for every value of BG, TT for lower priority topologies is 

significantly higher for DPS than that for SPS. With DPS, when higher priority topologies 

are inferring complex events, lower priority topologies are temporarily starved as all the 

available supervisor nodes are allocated to the higher priority topologies. Thus, for Ep value 

of 0.5 and total number of batches (BT) of 80, lower priority topologies will starve for 40 

batches as all of the available supervisor nodes in the cluster are allocated to the higher 

priority topologies (EventTP1 and EventTP2) while lower priority topologies (ArchivalTP1 

and ArchivalTP2) starve (see Column 5 of Table 9). Note that this starvation is temporary 

and lower priority topologies are allocated supervisor nodes again when the higher priority 

topologies report a trigger off indication after successfully inferring all the complex events 

in those 40 batches. Also, increasing the BG values increases the starvation time of the 

lower priority topologies while using DPS. For an example, when BG is 40 seconds, 

topologies starve for 40*40 = 1600 seconds whereas when BG = 60 seconds, topologies 

starve for 40*60=2400 seconds before getting back the supervisor nodes to start processing 

the tuples that are waiting in Kafka to be processed. As discussed in Section 4.1.1, each of 

the ingested tuples in Kafka has a sequential id called offset and Kafka stores these tuples 

BG(seconds) TT ï SPS (seconds) TT ï DPS (seconds) 

40 0.328057 0.277038 

60 0.33307 0.280137 

80 0.333196 0.277828 

Figure 11: Effect of BG on TT (Higher Priority Topologies) 
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for a preconfigured retention period. Topologies keep track of the offsets of the tuples that 

are pulled from Kafka and periodically stores the information on Zookeeper [71] . Thus, 

when the starving lower priority topologies get back their supervisor nodes, they can start 

processing the leftover tuples by looking at the last offset information stored in Zookeeper. 

The default retention period in Kafka is 168 hours or 7 days [74] which is more than enough 

for the lower priority topologies to resume operation and complete processing of the 

leftover tuples. On the other hand, as SPS is oblivious to run time priority indication and 

topologies are never rescheduled thus lower priority topologies are never starved. Thus, 

increasing BG values has no effect on TT when using SPS.  

4.1.7.2  Effect of Service Time (Shigh and Slow) 

From Figure 13, it can be seen that TE increases with the increase in Shigh. Service time 

signifies the amount of CPU time in seconds each tuple takes to be processed. Thus, a 

higher value of Shigh signifies a higher CPU time for each tuple. To infer complex events, 

all the tuples in the batch needs to be processed. For any given value of Shigh, TE for SPS is 

Figure 12: Effect of BG on TT (Lower Priority Topologies)  
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higher than that of DPS. This is because of the allocation of more supervisor nodes to 

topologies inferring complex events by DPS than that of SPS (see Table 8 and Table 9). 

Another observation that can made from Figure 13 is that for higher values of Shigh, the 

difference in TE values between SPS and DPS is higher. For an example, from Figure 13, 

when Shigh=0.1, TE resulted using SPS is 21% higher than that of DPS whereas when 

Shigh=0.3, TE resulted using SPS is 39% higher than that of DPS. To explain this, recall that 

Storm is a pull based system. The number of tuples that Storm pull into the system from 

Kafka per topology is dictated by two parameters: (1) fetchSizeBytes and (2) 

maxSpoutPending [71,72]. The first parameter defines how many tuples are pulled at a 

time from Kafka and the second parameter defines the maximum number of tuples that can 

be present in the system per topology at a given time. If the system already has tuples equal 

to the number set by maxSpoutPending parameter, no tuples are pulled from Kafka until 

the existing tuples are processed. Thus, in Storm, at any given time, the maximum number 

of tuples that can be present in the system per topology is fixed. Thus, while the number of 

supervisor nodes allocated to the topologies and the number of tuples that are pulled in the 

system per topology remain same, an increase in Shigh signifies more contention for CPU 

resources. Thus, in lower values of Shigh, difference in TE values achieved using SPS and 

DPS is lower and vice versa (see Figure 13).  

Same discussion applies for the effect of Shigh on average tuple processing latency TT for 

higher priority topologies presented in Figure 14. 
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 From Figure 15, for lower priority topologies, TT values increase with the increase in Slow 

for both SPS and DPS for the reasons discussed earlier. Recall from Section 4.1.5 that that 

Slow= (Shigh/2). Values of TT resulted using DPS are much higher than that of SPS for any 

values of Slow because of the starvation of lower priority topologies that occurs using DPS. 

The reasoning behind the starvation of the lower priority topologies and thus a significantly 

higher TT values while using DPS is already discussed in Section 4.1.7.1. 
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Figure 13: Effect of Shigh on TE 

Shigh (seconds) TT ï SPS (seconds) TT ï DPS (seconds) 

0.1 0.219918 0.183072 

0.2 0.33307 0.280137 

0.3 0.473854 0.38406 

Figure 14: Effect of Shigh on TT (Higher Priority Topologies)  
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4.1.7.3 Effect of Batch Length (BL) 

From Figure 16, one can see that as value of BL increases, TE value also increases for both 

SPS and DPS. A higher value of BL signifies more number of tuples in a batch. As discussed 

on Section 4.1.2, occurrence of the complex events is determined by processing all the 

tuples in a batch. Thus, a higher value of BL translates to a higher TE value for both SPS 

and DPS. Also, it can be observed from Figure 16 that for any value of BL¸ TE resulted 

using SPS is approximately 50 % higher than that of DPS. This is because, DPS allocates 

a higher number of supervisor nodes to the topologies while they are inferring complex 

events than that of SPS (see Table 8 and Table 9).  
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Figure 15: Effect of Slow on TT (Lower Priority Topologies)  
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  Figure 16: Effect of BL on TE 

From Figure 17, for any value of BL, SPS results in a higher Average tuple processing 

latency (TT) than that of DPS for higher priority topologies. Recall from Table 8 and 9 that 

DPS allocates more supervisor nodes to the topologies detecting events (EventTP1 and 

EventTP2) when a trigger condition is in ON state. Thus, for EP value of 0.5 and total 

number of batches (BT) of 80, lower priority topologies will starve for 40 batches as all of 

the available supervisor nodes in the cluster are allocated to the higher priority topologies 

(EventTP1 and EventTP2). For the remaining 40 batches, DPS will allocate 5 supervisor 

nodes to the 2 topologies inferring complex events. On the other hand, SPS will keep the 

initial allocation of 6 supervisor nodes to the higher priority topologies throughout the 

experiment (see Table 8). Thus, DPS results in lower TT (~ 13%) values for topologies with 

higher priority. Also, recall from Section 4.1.7.2 that, at any given time, the maximum 

number of tuples that can be present in the system per topology is fixed. Thus, TT does not 

change with a change in BL for any of the schedulers.  
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Conversely, as seen on Figure 18, for lower priority topologies, DPS results in much higher 

values of TT for any BL. The reasoning behind this is already discussed on Section 4.1.7.1. 

  

Figure 17: Effect of BL on TT (Higher Priority Topologies) 
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Figure 18: Effect of BL on TT (Lower Priority Topologies) 
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4.1.7.4 Effect of Event Factor (EP)  

From Figure 19, it can be seen that TE values obtained using DPS are approximately 35% 

higher than that of SPS for any Ep. Increasing EP increases the number of complex events 

to be inferred by the topologies. Recall that, DPS allocates the event detecting topologies 

with 8 supervisor nodes when their trigger indication is in ON state and does not change 

the schedule until all the complex events are successfully inferred (see Table 9). When EP 

is 0.2, topologies are allocated 8 supervisor nodes for 16 consecutive batches, when EP is 

0.5, topologies are allocated 8 supervisor nodes for 40 consecutive batches and when EP 

is 0.8, topologies are allocated 8 supervisor nodes for consecutive 64 batches out of 

BT=80 batches. Whereas, SPS allocates the event inferring topologies with 6 resources 

and never changes the schedule (see Table 8). 

  

EP TE ï SPS (seconds) TE ï DPS (seconds) 

0.2 26.34626 19.38702 

0.5 26.47061 19.33002 

0.8 25.92391 19.26717 

Figure 19: Effect of EP on TE   
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Similar observations can be made from Figure 20 on the effect of EP on TT obtained by 

higher priority topologies.  

 

  

From Figure 21, one can see that a higher value of EP results in higher TT for lower priority 

topologies while using DPS. A higher EP value translates to a longer starvation time while 

using DPS. Given the default batch gap BG is 60 seconds and total number of batches BT 

is 80, when EP is 0.2, lower priority topologies starve for 16*60 = 960 seconds before they 

regain 3 supervisor nodes each and resumes processing tuples (Table 9). Similarly, when 

EP is 0.5, lower priority topologies starve for 40*60=2400 seconds. This is reflected on 

Figure 21. TT values for SPS remains uninfluenced by EP as SPS keeps the initial supervisor 

node allocation throughout the experiment and lower priority topologies never starve 

(Table 8). 

  

EP TT ï SPS (seconds) TT ï DPS (seconds) 

0.2 0.327086 0.317942 

0.5 0.328057 0.280137 

0.8 0.333045 0.260422 

Figure 20: Effect of EP on TT (Higher Priority Topologies)  
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4.1.7.5 Additional Experiments on a Smaller System 

In order to investigate the effect of the number of resources on performance, the 

experiments for the resource constrained case presented in Section 4.1.7 are repeated on a 

smaller system comprising 8 supervisor nodes. The smaller cluster was set up using 

machines available in Carleton Universityôs Real Time and Distributed Systemsô lab. The 

4 topologies used in the experiments are already described in Section 4.1.2. The 

performance metrics and the workload parameters for the experiments are the same as those 

described in Section 4.1.4 and Section 4.1.5 respectively. The VMware [86] virtualization 

hypervisor is used to set up the nodes (Virtual Machines). The nodes are connected through 

a private local area network using a 100 Mbps Ethernet connection. Once again, the 

experiments are run following a factor at a time method where one of the parameters is 

changed while others are held at their default values. 

All the experiments investigating the impacts of BG, BL, Shigh, Slow and EP show that the 

relative performances of the scheduling policies do not change with a change in the number 

of nodes. The performance trends for SPS and DPS are similar to the ones observed in the 

Figure 21: Effect of EP on TT (Lower Priority Topologies)  
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corresponding experiments performed on the Amazon EC2 cluster comprising 16 

supervisor nodes described Section 4.1.7.  

4.1.8 Performance Evaluation for a Resource Unconstrained Storm Cluster 

A resource unconstrained Storm cluster has the adequate number of supervisor nodes to 

satisfy requirements for all the topologies. For such a cluster, SPS, DPS and Isolation 

Scheduler are expected to perform comparably with one another as all 3 of the schedulers 

provision the topologies with their desired number of supervisor nodes. To validate this, 

performance of SPS and DPS are compared with that of the Isolation Scheduler in a 

resource unconstrained Storm cluster comprising 24 supervisor nodes. 4 Storm topologies 

that were discussed in Section 4.1.2 are used. Total number of supervisor node desired by 

the topologies can be calculated from Table 6 which is 24. The cluster also has 24 

supervisor nodes available.   Other than the total number of supervisor nodes present in the 

cluster, all other parameters and their values are kept same as Table 10. Similar to the 

experiments in Section 4.1.7, a factor at a time method is used to run the experiments where 

one of the parameters is changed while others are held at their default values (indicated in 

bold at Table 10). 

4.1.8.1 Effect of Batch Gap (BG) 

Batch Gap refers to the amount of time producers wait between sending of subsequent 

batches of tuples to Kafka. Topologies inferring complex events need to identify individual 

raw events within the time duration BG so that before the next batch of tuples arrive, a 

decision for the presence of complex event on the current batch is made. A resource 

unconstrained Storm cluster has adequate number of supervisor nodes to satisfy the desired 

number of supervisor node requirements of all the topologies, so SPS, DPS and Isolation 
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Scheduler produce the same resource allocation for the topologies where each topology 

gets their desired number of supervisor nodes (see Table 6). Thus, average complex event 

inference latency (TE) values also remain similar as seen on Figure 22. For any value of 

BG, TE achieved by all 3 schedulers remain same (~18 seconds). It is to be noted that, while 

SPS and Isolation Scheduler results in very similar values of TE, values of TE are slightly 

higher for DPS. This is because of the temporary deactivation overhead of topologies while 

using DPS that is discussed briefly Section 3.2.2. It can be also seen that, increasing the 

value of BG has no effect on the TE values obtained by any of the 3 schedulers. This is 

because, while the number of tuples in a batch and the service time for each tuple remains 

the same, the event inference latency is not impacted by a higher value of BG which only 

provides a longer time window for topologies to infer complex events.  

  

BG (sec) TE- Isolation(sec)  TE- SPS (sec) TE- DPS (sec) 

40 18.64072 18.99564 19.87266 

60 18.7413 19.22793 20.2056 

80 18.7739 19.19507 20.16501 

Figure 22: Effect of BG on TE 
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Similar observations can be made for the average tuple processing latency (TT) for higher 

priority topologies (as seen on Figure 23) as well as for the lower priority topologies (see 

Figure 24). Note that, TT is the average tuple processing latency while TE refers to average 

complex event inference latency. A complex event is inferred by processing all the tuples 

in a batch. Thus, as expected TE is significantly higher than TT.  SPS and Isolation Scheduler 

results in very similar TT values whereas because of the additional overhead resulting from 

the temporary deactivation of topologies, DPS results in slightly higher values of TT. Once 

again, increasing BG values also have no effect on the TT values as a higher value of BG. 

 

BG (sec) TT- Isolation(sec)  TT- SPS (sec) TT- DPS (sec) 

40 0.16335 0.163779 0.1678441 

60 0.161568 0.16497 0.1710583 

80 0.1645127 0.1644863 0.1707059 
Figure 23: Effect of BG on TT (Higher Priority Topologies) 

 

 

BG (sec) TT- Isolation(sec)  TT- SPS (sec) TT- DPS (sec) 

40 0.236887 0.238913 0.248231 

60 0.237425 0.242956 0.247315 

80 0.237834 0.233661 0.252401 

Figure 24: Effect of BG on TT (Lower Priority Topologies) 

 

 

0.2

0.215

0.23

0.245

40 60 80

T T
(s

e
co

n
d

s)

BG(seconds

Isolation

SPS

DPS

0.11

0.13

0.15

0.17

40 60 80

T T
(s

e
co

n
d

s)

BG (seconds)

Isolation

SPS

DPS



 95 

4.1.8.2 Effect of Service Time (Shigh and Slow) 

Service time indicates the amount of CPU time each tuple takes to be processed on a Storm 

topology. As shown in Figure 25, as Shigh increases, TE also increases as each tuple in a 

batch takes longer time to be processed. Also, in line with the previous experiments, for 

any given value of Shigh, TE values for SPS and Isolation Scheduler result in a very small 

difference (~ 5%) whereas TE values obtained using DPS are slightly higher (~8%) than 

that of the Isolation Scheduler. This is due to the overhead associated with the deactivation 

of topologies discussed earlier. 

Figure 25: Effect of Shigh on TE  

As discussed in Section 4.1.4, higher priority topologies have service time Shigh while the 
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similar set of observations are obtained for the variation in TT with Slow and the relative 

performance of the three schedulers for lower priority topologies (see Figure 27). 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Shigh (sec) TT- 

Isolation(sec)  

TT- SPS (sec) TT- DPS (sec) 

0.1 0.160822 0.162545 0.168442 

0.2 0.237425 0.237956 0.247315 

0.3 0.332356 0.335555 0.338676 

Figure 26: Effect of Shigh on TT (Higher Priority Topologies) 

Slow = (Shigh/2)  (sec) TT- Isolation(sec)  TT- SPS (sec) TT- DPS (sec) 

0.05 0.063217 0.06671 0.077558 

0.1 0.161568 0.16497 0.171058 

0.15 0.183697 0.190182 0.200347 

Figure 27: Effect of Slow on TT (Lower Priority Topologies) 
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4.1.8.3 Effect of Batch Length (BL) 

Figure 28 shows that TE increases as BL increases. A higher value of BL signifies more 

number of tuples in a batch. As discussed on Section 4.1.2, occurrence of the complex 

events is determined by processing all the tuples in a batch. Thus, a higher value of BL 

translates to a higher TE value. As discussed in the previous experiments, for a resource 

unconstrained Storm cluster, Isolation Scheduler, SPS and DPS all result in a schedule 

where each topology gets their desired number of supervisor nodes. As a result, TE values 

obtained using all 3 schedulers are similar. While for a given BL, SPS and Isolation 

Scheduler results in TE values with a small difference (~5%), TE for DPS is slightly higher 

(~8%) than that of Isolation Scheduler. This is because of the added overhead due to 

deactivation of topologies discussed earlier. 

 
 

 

 

 

BL (Number of 

tuples) 

TE- Isolation(sec)  TE- SPS (sec) TE- DPS (sec) 

60 13.91389 14.59719 14.88322 

80 18.7413 19.22793 20.2056 

100 23.67219 23.64287 24.82278 

Figure 28: Effect of BL on TE 
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For any of the three schedulers, an increase in BL has no effect on the average tuple 

processing latency TT for higher and lower priority topologies as seen on Figure 29 and 

Figure 30 respectively. The reasoning behind this is already discussed on Section 4.1.7.3. 

 

 Figure 30: Effect of BL on TT (Lower Priority Topologies) 
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60 0.232572 0.236273 0.250316 

80 0.237425 0.239561 0.247315 

100 0.236787 0.237248 0.249318 

Figure 29: Effect of BL on TT (Higher Priority Topologies) 
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4.1.8.4 Effect of Event Factor (EP) 

 Event Factor determines the proportion of batches that contains events and give rise to a 

complex event. Thus, increasing EP increases the number of complex events to be inferred 

by the topologies. Figure 31 shows, changes in EP values has no effect on the average 

complex event inference latency TE. This is because, in a resource unconstrained Storm 

cluster, topologies are always provisioned with their desired number of supervisor nodes 

which does not change over time. In line with the previous experimental results, TE values 

obtained using all 3 schedulers are similar with a smaller difference (~5%). For a given EP, 

a slightly higher (~8%) TE is achieved by DPS in comparison to the other 2 schedulers 

because of the deactivation overhead of topologies discussed earlier (see Figure 31). 

Average tuple processing latency TT also remains unaffected by EP for both higher priority 

topologies (Figure 32) and lower priority topologies (Figure 33). Once again, for a given 

EP, TT obtained using DPS is slightly higher than that of Isolation Scheduler whereas TE 

obtained with SPS is closer to Isolation Scheduler that achieved with DPS. 

  

EP TE- Isolation(sec)  TE- SPS (sec) TE- DPS (sec) 

0.2 18.64072 18.99564 19.87266 

0.5 18.7413 19.22793 20.2056 

0.8 18.7739 19.19507 20.16501 

Figure 31: Effect of EP on TE 
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Figure 33: Effect of EP on TT (Lower Priority Topologies) 

4.2 Use Case-2: Systems Subjected to the Arrival of Continuous Data 

For the second use case, a stream processing platform where data producers are 

continuously sending data at variable rates is considered. An example of such applications 

is continuous mining of social network data such as, analysis of twitter streams for trend 

analysis and sentiment analysis [75,76]. Usually, social networking platforms expose APIs 

to tap on their stream data and continuously push the streams to a data analytics platform. 

EP TT- Isolation(sec)  TT- SPS (sec) TT- DPS (sec) 

0.2 0.236887 0.238913 0.248231 

0.5 0.237425 0.242956 0.247315 

0.8 0.237834 0.233661 0.252401 

Figure 32: Effect of EP on TT (Higher Priority Topologies) 
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For example: Twitter allows developers to access the continuous twitter streams of 

different topics of interest (e.g. music, politics etc.) through a Twitter Firehose API [77]. 

Using this API, developers collect live twitter feeds and continuously push the data to a 

data analytics platform for analysis. A good example of such a system has been described 

in [78]. 

For Use Case 2 that corresponds to stream processing platforms subjected to the arrival of 

continuous streams of data, several producers are continuously pushing synthetic data to 

the ingestion layer and are then processed by two Storm topologies. Specific 

implementation details of the producers and the developed Storm topologies are discussed 

in the next sections. 

4.2.1 Data Producers 

Data producers considered in Use Case 2 are sending data streams of two types to two 

different Kafka topics. The two types of streams are characterized by two different subject 

of interests. As an example, one subject of interest can be twitter feeds about politics and 

the other can be twitter feeds related to music. 

Like the producers that are used in Use Case 1, the producer applications for Use Case 2 

are also developed using the Java programming language [25]. The producer applications 

continuously generate synthetic data related to 2 subject of interests that pushed to 2 Kafka 

topics at a given rate using the Kafka producer API [66]. The first topic is called ñFeed1ò 

which has 16 partitions. The other topic is called ñFeed2ò which has 8 partitions. For each 

topic, a producer application is created using Java programming language that pushes 

messages to the respective Kafka topics using the producer API. The producer applications 

are called Producer1 and Producer2. For sending messages to multiple partitions of a topic 
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in parallel, Java threads are used by each producer application. 

Based on the dataset available from Stanford Social Network Datasets site [79], a generic 

structure is developed with 4 fields. The format is 

o <date-time:(String)>,<source:(String)>,<Content:(String)>,<other:(String)> 

The first field contains the timestamp for, the second field contains the name of the user, 

the third field contains the content of the message (e.g. tweets) and the fourth field contains 

the platform specific meta-data information, for example the language of the message, 

time-zone offset etc. Such a format of data with four fields can be used in the context of 

various streaming data scenarios. The workload parameters used to control various aspects 

of the producer applications that push data to Kafka are discussed on Section 4.2.3.  

4.2.2 Storm Topologies 

While continuous processing of tuples can correspond to a number operations such as 

monitoring, analytics, ads targeting, data synchronization [80], sentiment and trend 

analysis of twitter feeds [75,76], the topologies in Use Case 2 are not tied to any specific 

computation. Instead processing time for each tuple is characterized by a parameter called 

service time which is discussed in Section 4.2.5. 

Two Storm topologies are used to process the continuously ingested tuples from Kafka. 

The first Storm topology called TP1 is used to process streams of tuples from the Kafka 

topic Feed1. The second topology, called TP2 is used to process streams of tuples from 

Kafka topic Feed2. Figure 34 illustrates the structure of the topologies. 
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The topologies have similar structure. As seen on Figure 34, the first component in these 

topologies is a Kafka Spout which subscribes to a Kafka topic and emits the tuples to 

downstream bolts. The next component is the "Parse Bolt" which parses the csv structured 

tuples and forwards the contents of the <Content> field to downstream "Process Bolt". The 

Process bolt processes each tuple for a time characterized by the service time parameter 

(discussed in Section 4.2.5) and forwards the tuple to the "Dispatcher Bolt" (see Figure 34) 

which writes the result to a Kafka topic for the end systems (e.g. external UI) to realize. 

Table 11 lists the resource provisioned for the 2 topologies. TP1 is allocated 16 supervisor 

nodes as it has 16 executors per component (see Column 5) to process tuples from 16 

producers sending tuples in parallel. Similarly, TP2 is assigned 8 supervisor nodes because 

it has 8 concurrent threads per topology component to process tuples from 8 producers. 

The number of supervisor nodes and the worker processes for a given topology are kept at 

equal following the resource provisioning best practices provided by Storm [72]. 

  

Figure 34: Topology Structure for TP1 and TP2 

Kafka Spout Parse Bolt Counter Bolt Dispatcher 

Bolt 

Kafka Spout Parse Bolt Counter Bolt Dispatcher 

Bolt 

TP1 structure  

TP2 structure  
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Table 11: Topology Resource Provisioning 

Topology Desired Number 

of Supervisor 

Nodes 

Desired 

Number of 

Worker 

Processes 

Number of 

Topology 

Components 

Number of 

Executors/ 

concurrent 

threads per 

topology 

component 

TP1 16 16 4 16 

TP2 8 8 4 8 

 

4.2.3 System Configuration 

The system configuration for Use Case 2 is same as used in Use Case 1 (see Section 4.1.3) 

where 32 nodes running on an Amazon EC2 cloud are used for setting up Storm, Zookeeper 

and Kafka clusters. Refer to Table 7 for an overview of the system configuration for the 

clusters that are used in the experiments for Use Case 2.  

4.2.4 Performance Metrics 

Performance of the schedulers is evaluated using two performance metrics that are 

described. 

¶ Average tuple processing latency (TT): Average tuple processing latency is the 

average time in seconds a tuple takes to be processed by the Storm topologies. To 

compute TT of TP1, two timestamps are taken using System. currentTimeMillis() 

from Java Library,  one after the Producer1 starts sending a tuples at the beginning 

of the experiment and one after the TP1 finishes processing all the tuples in that 

experiment. These two timestamps are taken by a separate application called ñPerfò 

that is run on the local machine after it receives the respective messages from the 

producer and the topology. The ñPerfò application then takes the difference 

between the two timestamps and divides the result by the total number of tuples 
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used in the experiment to get the average tuple processing latency for TP1. Average 

tuple processing latency for TP2 is computed following the similar approach. 

¶ Scheduling Overhead (O): Scheduling overhead is the amount of time in seconds it 

takes for a topology to be rescheduled at runtime when DPS is used.  To measure 

the scheduling overhead, one time stamp is generated when a topology sends a 

trigger indication and another time stamp is generated when the topology is 

successfully rescheduled by DPS and has started processing with the new resource 

allocation. The difference between these two timestamps is the scheduling 

overhead. Recall from Section 3.3 that run time rescheduling of a topology by DPS 

is a three -stage process where in the first stage, a topology sends a trigger indication 

and PM immediately deactivates the topology and waits till the topology finishes 

existing tuples. In the second stage, the topology signals PM that it has finished 

processing the existing tuples and PM changes the priority of the topology. Finally, 

in the third stage, when DPS successfully reschedules the topology using the 

algorithm described in Section 3.3, and the PM activates the topology and the 

topology starts processing tuples with the new resource allocation. All the three 

stages contribute to the scheduling overhead. 

Note that, resource management is performed by SPS in an offline fashion and SPS 

is invoked only during system initialization. Since SPS does not incur any 

scheduling overhead at runtime, O for SPS is zero.  

4.2.5 Workload Parameters 

For the experiments that are run in Use Case 2, it is assumed that producers are sending 

data to Kafka following the ñOn/Offò model [81,82]. In an On/Off model, a period of data 
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arrival with a low rate is followed by a period of data arrivals with a high rate. It is assumed 

that, among the two Kafka topics, 16 producers that are sending data to the Kafka topic 

Feed1 are characterized by this On/Off model. The mean arrival rate for the tuples sent to 

the Kafka topic Feed1 can be expressed by the following equation:  

                   ⱦ╜ ⱦ
▐░▌▐

►z  ⱦ■▫◌►z Ⱦ► ►                  (1) 

Where  

¶ ‗ is the high rate for the tuple arrival to topic Feed1 using the previously 

described On/Off model. 

¶  ‗  is the low rate for the tuple arrival for topic Feed1.  

¶ r1 is the proportion of tuples with rate ‗  and r2 is the proportion of tuples 

with rate ‗  

Note that: r1+r2 =1. 

In all the experiments ‗  is considered to be half of ‗  Thus, ‗  . Fixed 

rates are used for ‗ and  ‗  such that inter arrival times for the tuples remain fixed.  

In addition to the workload parameters used in Equation 1, the following parameters are 

used in the experiments: 

¶ Service Time (Shigh and Slow): The parameter service time is already discussed in 

Section 4.1.5. 

¶ Tuple Arrival Rate for Topic Feed2 (‗ ȡ Unlike Feed1, tuple arrival for topic Feed2 

does not follow the On/Off model. Instead 8 producers send tuples at a fixed rate ‗ 

to the topic Feed2.  

¶ Total Number of Tuples Generated by Each Producer (NT): is the total number of 
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tuples sent by a producer in an experiment. 

Each experiment is repeated 3 times and average results are computed. Note that fixed 

values of workload parameters (e.g. service time, tuple arrival rate) are used in each 

experiment, thus close values for a given performance metric are achieved in each of the 

three repetitions. 

4.2.6 Performance Evaluation of the Priority Based Schedulers 

The experiments to evaluate the performance of the proposed priority based schedulers 

are run for a resource constrained Storm cluster where the available cluster resources are 

not sufficient to fulfill the desired resource requirements of the submitted topologies but 

are sufficient to meet their minimum resource requirements. Note that, using the default 

Isolation Scheduler results in partial scheduling or even complete starvation of the 

topologies depending on the resource deficit in such situations. Thus, the Isolation 

Scheduler is not considered during evaluation of system performance in this scenario and 

only the performances of SPS and DPS are evaluated. 

4.2.7 Performance Evaluation for a Resource Constrained Storm Cluster 

Recall from Table 11 that a total number of 24 supervisor nodes are desired by the 2 

topologies used in the experiment. For the resource constrained case, the available number 

of supervisor nodes in the cluster is reduced to 20. For this resource constrained cluster, 

SPS uses static priority indication of the topologies which are provided by the developers 

in the topology submission time while DPS uses runtime dynamic priority indication of the 

topologies which are generated by the topologies at runtime based on some predefined 

trigger conditions. 

Table 12 captures the resource provisioning of the two topologies using the SPS algorithm. 
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TP1 that processes tuples from Kafka topic Feed1 is assigned a higher priority while TP2 

that processes tuples from Kafka topic Feed2 is assigned a lower priority (see Column 2). 

Column 5 of Table 12 shows that TP1 has a higher number of concurrent executors per 

topology components (e.g. 16) compared to that of TP1 (e.g. 8). Thus, a higher number of 

supervisor nodes is assigned to TP1 compared to TP2 (see Column 5 of Table 12). The 

supervisor nodes are allocated to the topologies using the SPS algorithm discussed in 

Section 3.2. The rationale behind selecting the minimum and desired number of supervisor 

nodes are similar to that presented in Section 4.1.7. 

Table 12: Topology Resource Provisioning using SPS 

Topology 

Name 

Priority Level 

(PR) 

Desired 

Number of 

Supervisor 

Nodes 

Minimum 

Number of 

Supervisor 

Nodes 

Number of 

Supervisor 

Nodes 

Allocated 

TP1 1 16 8 13 

TP2 2 8 4 7 

 

For DPS, tuple arrival rates at the Kafka topics are used to determine the runtime trigger 

indications. Kafka allows to query tuple arrival rate at a certain topic using its jmxtrans 

API [83]. Using this API, topologies can determine the tuple arrival rate at a given topic 

from which, they are consuming tuples and can notify the PM if the rate remains above a 

certain predefined threshold for a predefined amount of time (e.g. 3 seconds for the 

experiments in this use case). The logic for this is implemented by in Counter Bolt 

component (see Section 4.2.2) of TP1 and TP2.   

As discussed in Section 4.2.4, producers that send tuples to Feed1 follows the On/Off 

model where a portion of tuples are sent with a high rate and portion of tuples are sent with 

a low rate. Topology TP1 processes tuples from the Kafka topic Feed1 and upon 
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experiencing a higher rate of tuple arrival, it sends a trigger indication to PM so that it can 

assume a higher priority value. TP2 processes tuples from topic Feed2 which experiences 

a fixed rate of tuple arrivals pushed by the producers.  

Table 13 presents the resource provisioning data for the topologies when DPS is used. 

Topologies are assigned the same priority level by PM when submitted to the cluster (see 

Column 2 of Table 13). At runtime topologies send trigger indications based on the arrival 

rate of tuples on the Kafka topics. Based on the trigger indications, topology priorities are 

changed by the PM (Column 3). The supervisor nodes that are allocated to the topologies 

are calculated using the DPS algorithm described in Section 3.3. 

Table 13: Topology Resource Provisioning using DPS 

Topology Initial Priority 

Level (PR) 

 Priority 

Level (PR) 

when 

Trigger ON 

Number of 

Supervisor 

Nodes Allocated 

(Event Trigger 

OFF)  

Number of 

Supervisor 

Nodes Allocated 

(Event Trigger 

ON) 

TP1 2 1 13 16 

TP2 2 1 7 4 

 

A summary of the parameters used in the experiments is captured on Table 14. The 

parameters are divided into two categories: workload and system parameters. The 

experiments are run following a factor at a time method where one of the parameters is 

changed while others are held at their default values (indicated in bold at Table 14). 
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Table 14: Summary of Parameters Used in the Experiments 

Parameter Type Parameter Value 

Workload High Arrival Rate for topic 

Feed1 (‗ ) 

(40, 53.33, 80) tuples/sec 

Proportion of tuples with 

high rate for topic Feed1 

(r1) 

{0.2,0.5,0.8} 

Tuple Arrival rate for 

Kafka topic Feed2 (‗) 

10 tuples/sec 

Service Time for Higher 

Priority Topology (Shigh) 

0.4 seconds 

Service Time for Lower 

Priority Topology (Slow) 

(Shigh/2)  

Total Number of tuples 

generated by each producer 

(NT) 

5000 

System Total Number of 

Topologies 

2 

Total Number of 

Supervisor Nodes in the 

Cluster 

20 

Total Number of 

Supervisor Nodes Desired 

by the Topologies 

24 

Number of Kafka Topics  2 

Number of Producers for 

topic Feed1  

16 

 Number of Producers for 

topic Feed2 

8 
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4.2.7.1 Effect of High Arrival Rate for Topic Feed1 (ⱦ
▐░▌▐

): 

From Figure 35, it can be seen that as ‗  increases, average tuple processing latency 

(TT) for higher priority topology also increases for both SPS and DPS. An increase in ‗  

signifies more tuples per second being pulled by the topology. While the service time Shigh 

remaining fixed, an increase in the number of tuples increases resource contention among 

the executors of the high priority topology TP1. For any value of ‗ , TT achieved by 

DPS is lower than that of SPS. This is because, DPS allocates the higher priority topology 

with more resources than SPS (see Table 12 and Table 13) when topologies are 

experiencing high rate of tuple arrival. With the proportion of tuples with high rate for topic 

Feed1 (r1) and Proportion of tuples with low rate for topic Feed2 (r2) remaining equal (e.g. 

0.5), TP1 will process half of the total number tuples with a higher number of supervisor 

nodes while using DPS in comparison to the case in which SPS is used.  

  

‗  

(tuples/sec) 

TT - SPS (sec) TT - DPS (sec) 

40 21.77677 17.23875 

53.33333 46.79928 39.26057 

80 137.9003 134.5635 
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Figure 35: Effect of l1
high on TT (Higher Priority Topology)    
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From Figure 36, it can be seen that SPS does not incur any scheduling overhead as expected 

while scheduling overhead for DPS increases as ‗   increases. Recall from Section 4.2.5 

that the scheduling overhead includes the existing tuple processing time by the topology 

after deactivation and the new resource allocation time by DPS. Increasing ‗   increases 

number of tuples in the system and thus the existing tuple processing time after topology 

deactivation for TP1 also increases and so does the scheduling overhead O. The highest O 

is observed when ‗  is 80 (tuples/sec) and the lowest value for O is observed when ‗  

is 40 (tuples/sec). 

 

Figure 37 captures the effect of  ‗  on the performance of the lower priority topology 

TP2 that processes tuples from Kafka topic Feed2. Note that, ‗ȟ the arrival rate for TP2 is 

fixed and does not change with time. It is observed that, TT for lower priority topology 

achieved using SPS is much lower than that achieved using DPS. This can be understood 

by referring to Table 12 and 13 where it can be seen that while DPS awards a topology in 

‗ (tuples/sec) O - SPS (sec) O - DPS (sec) 

40 0 39.66 

53.33333 0 44.51 

80 0 72.402 
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Figure 36: Effect of l1
high on O 
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a trigger ON state with more supervisor nodes (16 compared to 13 when using SPS), lower 

priority topologies are assigned a lower number of supervisor nodes (4 compared to 7 when 

using SPS). The lower number of supervisor nodes leads to a higher value of TT for SPS. 

Another important observation from Figure 37 is that TT using DPS increases as ‗  

increases. This is because of increase in the scheduling overhead reported in Figure 36. It 

is important to understand that, when DPS allocates higher priority topology with a higher 

number of supervisor nodes, it also reschedules lower priority topologies and assigns them 

a lower number of supervisor nodes. Thus, the rescheduling overhead affects both the 

higher and the lower priority topologies.  

 

4.2.7.2 Effect of Proportion of Tuples with High Arrival Rate for Topic Feed1 (r1): 

Figure 38 illustrates the effect of r1 on average tuple processing latency TT for higher 

priority topology. From Figure 38, it can be seen TT for both SPS and DPS increase as r1 

increases. This is because, a higher value of r1 signifies a higher proportion of tuples with 

a high arrival rate and that increases resource contention. From Figure 38, it is also seen 

‗  

(tuples/sec) 

TT - SPS (sec) TT - DPS (sec) 

40 0.294 0.511127 

53.33333 0.2972 0.657629 

80 0.2934 1.054771 
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Figure 37: Effect of l1
high on TT (Lower Priority Topology)    
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that DPS performs better than SPS and the performance difference increases with r1. This 

is because, using DPS for a higher value of r1, TP1 processes more tuples with higher 

number of supervisor nodes leading to a lower TT in comparison to SPS for which the 

number of supervisor nodes allocated to TP1 remains fixed. 

 

The overhead incurred using DPS seems insensitive to r1 (see Figure 39). The rationale 

behind such a behavior is presented. Increasing r1 signifies the change in the proportion 

of tuples with rate  ‗ . Recall that a trigger condition is reported by the topology TP1 

if it experiences tuple arrival rates has crossed a threshold for 3 consecutive seconds. 

Thus, the number of tuples that can be accumulated in the system in these 3 seconds does 

not change with r1 and the existing tuple processing time after topology deactivation for 

TP1 does not change as well. Thus, scheduling overhead O remains insensitive to r1. 

Also, it can be seen from Figure 39 that SPS does not incur any scheduling overhead 

which expected as SPS does not perform run time rescheduling of topologies.  

  

r1 

 

TT - SPS (sec) TT - DPS (sec) 

0.2 7.904 10.099 

0.5 46.79928 39.26057 

0.8 118.958 94.127 
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Figure 38: Effect of r 1 on TT (Higher Priority Topology)    
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Increasing r1 does not have any effect on TT achieved by the lower priority topology using 

DPS as seen on Figure 40. This is because, scheduling overhead incurred using DPS is 

unaffected by r1 which is already discussed for Figure 40. It can be also seen that TT 

achieved using DPS is higher than that of SPS. This is expected as SPS does not have any 

rescheduling overhead.  

 

  

r1 O - SPS (sec) O - DPS (sec) 

0.2 0 44.13 

0.5 0 44.51 

0.8 0 44.88 

r1 
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Chapter 5: Conclusions 

This chapter provides a summary of the thesis and presents concluding remarks. 

Directions for future research are also included. 

5.1 Summary and Conclusions 

This thesis addresses resource management techniques for resource constrained Storm 

clusters where the available cluster resources are not sufficient to satisfy desired resource 

requirements for the submitted Storm topologies. The default scheduler provided by Storm, 

called Isolation Scheduler results in partial scheduling or even complete starvation of 

topologies when used for such resource constrained Storm clusters. To alleviate this 

problem, two schedulers are proposed to schedule Storm topologies for such resource 

constrained clusters. The first scheduler called Static Priority Scheduler (SPS) uses static 

priority for the topologies. SPS schedules topologies by proportionally allocating available 

limited resources where topologies with higher priority receives a higher proportion of 

resources. The priority indications are provided by the developers when submitting 

topologies to the cluster and cannot be changed at runtime. Given a minimum number of 

resources are present in the cluster, SPS can prevent starvation of the topologies. The 

second scheduler is called Dynamic Priority Scheduler (DPS) and it uses dynamic priority 

indications from the topologies. The priority indications are determined by the topologies 

at runtime based on some predefined trigger conditions. DPS schedules topologies based 

on these dynamic priority indications where topologies with higher priority receives a 

higher proportion of resources. Although DPS gives rise to a higher performance for the 

higher priority topologies, it can lead to a deterioration of performance for the lower 
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priority topologies that may face a temporary starvation during the time when the trigger 

condition remains active.     

To evaluate the performance of the proposed schedulers, prototype systems were 

developed using Java programming language. Experimental results demonstrate the 

effectiveness of each of these scheduling algorithms. The two Storm schedulers were 

developed using the Storm IScheduler [51] Plugin. Topologies and producer applications 

were developed using the Storm and Kafka APIs respectively. The experiments were run 

considering two use cases: Use Case 1 and Use Case 2. A summary of key observations 

and concluding remarks are presented for the two use cases. 

5.1.1 Use Case 1 

The first use case considers batch arrival of data where data producers are sending data in 

small batches in fixed time intervals. Four Storm topologies are used in this use case. 

Clusters are configured on Amazon EC2 cloud infrastructure (see Section 4.1.2). 

Experiments are run considering two scenarios. In the first scenario, a resource constrained 

cluster is considered. In such a cluster, Isolation Scheduler fails to schedule all the 

topologies thus, only the performance of SPS and DPS are evaluated and compared. 

Various system and workload parameters are used for the experiments. For all the 

experiments that are conducted in this scenario, performance of higher priority topologies 

is better using DPS than using SPS. This is because, DPS allocates higher priority 

topologies more resources than SPS. Conversely, performance of the lower priority 

topologies is much worse using DPS than SPS. This is because of the temporary starvation 

of the lower priority topologies that occurs when DPS is used. The starving lower priority 

topologies cease to starve when topologies currently running at a higher priority level lower 
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their priority based on trigger conditions. Lower priority topologies can then process the 

backlog of tuples that were accumulated during the starvation period. The impact of various 

workload and system parameters on the performance of the schedulers are summarized 

next.  

¶ Increasing BG does not have any effect on TE and TT achieved by higher priority 

topologies for any of the schedulers. This is because, increasing BG provides a 

longer time window for the high priority topologies to detect complex events that 

does not affect TT. Also, it is observed that, TE and TT for higher priority topologies 

using DPS is lower compared to that of SPS because DPS allocates higher priority 

topologies with more resources. TT achieved by lower priority topologies increase 

when BG is increased using DPS. This is because an increase in BG signifies higher 

temporary starvation period for lower priority topologies.  

¶ An increase in service time increases CPU time for each tuple. Thus, TE and TT 

increases with an increase in service time. TE and TT for higher priority topologies 

using DPS are lower compared to that of SPS. It is observed that for higher values 

of service time, the difference in TE and TT values between SPS and DPS is higher. 

This is because while other parameters remain fixed, an increase in service time 

signifies more contention for CPU resources. Also, using both SPS and DPS, TT 

achieved by lower priority topologies increases when service time is increased 

because of the increase in tuple processing time for the lower priority topologies. 

¶ Increasing batch length (BL) increases TE for higher priority topologies for both SPS 

and DPS.  A higher value of BL signifies more number of tuples in a batch that 

needs to be processes to detect events. The observation that TE and TT for higher 



 119 

priority topologies using DPS is lower compared to that of SPS is consistent with 

other experiments. For lower priority topologies, TT achieved using DPS is higher 

than that of SPS because of the temporary starvation of the lower priority 

topologies.  

¶ TE achieved by higher priority topologies does not change when Event Factor (EP) 

is increased. In line with previous experiments, for a given EP, TE for higher priority 

topologies using DPS is lower compared to that of SPS. Increasing EP increases the 

number of complex events that are to be inferred by the higher priority topologies. 

Thus, for higher values of EP, DPS allocates high priority topologies with more 

resources for a higher number of batches and the difference in TT values between 

SPS and DPS becomes higher. Conversely, TT achieved by lower priority 

topologies using DPS is much higher than that of SPS and an increase in EP 

increases TT using DPS. This is because lower priority topologies starve 

temporarily for a higher duration of time when EP values are higher.  

Next, a resource unconstrained cluster is considered for the second scenario of Use 

Case 1 to compare the performance of SPS and DPS with the default Isolation 

Scheduler. The same workload and system parameters as well as the performance 

metrics from the resource constrained case were used while the cluster was provided 

with enough supervisor nodes to satisfy the desired resource requirement for all the 

topologies. The same set of experiments from the resource constrained case were 

repeated for this new resource allocation.  For all the experiments, SPS, DPS and 

Isolation Scheduler perform provide a comparable performance while DPS results in a 



 120 

slightly higher TE and TT values than Isolation Scheduler because of rescheduling 

overhead. 

5.1.2 Use Case 2 

The second use case considers data producers continuously sending tuples with one set of 

data producers sending tuples with variable arrival rates following the On/Off model (see 

Section 4.2.4). For Use Case 2, a resource constrained cluster is considered and 

performance of SPS and DPS are evaluated. The impact of various workload and system 

parameters on the performance of the schedulers are summarized next. 

¶ With an increase in l1
high, TT for the higher priority topology is increased for both 

SPS and DPS. This is because, while other parameters remain fixed, an increase 

in  l1
high

   signifies more tuples in the system which increases resource contention 

among the executors of the high priority topology. It is also observed that, for the 

high priority topology, TT achieved using DPS is lower than that of SPS. This is 

because DPS allocates the high priority topology with higher number of resources 

compared to SPS. Also, SPS does not perform run time rescheduling of the 

topologies and thus, does not incur any scheduling overhead. Scheduling overhead 

(O) for DPS is increased however with an increase in  l1
high . When a topology 

sends a trigger indication to PM, PM deactivates the topology and before changing 

the priority it waits for the topology to finish processing existing tuples that are 

accumulated in the system. A higher  l1
high increases the number of tuples that are 

accumulated in the system and thus the topology takes a longer time to finish 

processing these tuples. This increases the scheduling overhead. Because of this, 
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TT achieved by lower priority topologies also increases with an increase in  l1
high 

when using DPS. 

¶ Changing r1 signifies a change in the proportion of tuples with high arrival rate 

processed by the higher priority topology. While using DPS, at higher values of 

r1, the high priority topology processes a higher proportion of tuples with a higher 

number of resources in comparison to that of SPS, for which the number of 

supervisor nodes allocated to the high priority topology remains fixed. Thus, DPS 

performs better than SPS and the performance difference increases with r1. For the 

lower priority topology, DPS results in a higher TT than SPS because the number 

of resources that gets allocated to the lower priority topology by DPS is lower than 

that of SPS.  

5.2 Future Research 

This section presents a number of issues that are worthy of further investigation. 

¶ It has been observed that DPS is associated with scheduling overhead that impacts 

system performance of the topologies, especially on systems that are subject to 

continuous arrival of tuples. Investigation of techniques to minimize scheduling 

overhead of DPS can form a direction for future research. 

¶ Storm clusters that are considered in this thesis are comprised of a homogenous set 

of machines. The limited resources in the resource constrained Storm clusters are 

shared among the topologies with a proportional share based scheduling algorithm. 

Proportionally sharing resources in a non-homogenous storm cluster can result in 

over utilization and underutilization of some machines. Extending the scheduling 
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techniques presented in this thesis to such non-homogeneous systems warrants 

investigation. 

¶ Investigation of resource management techniques for the other layers in a stream 

processing platform (e.g. data ingestion layer and data producer layer) can form an 

interesting future research direction.  

¶ Effects of additional parameters, such as tuple arrival rate for topic Feed2 (‗  

warrants further investigation. Additionally, this thesis used two priority levels for 

the experiments. Investigating systems with a higher number of priority levels is 

worthy of research. 
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