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Abstract

Apache Storm is a popular distributstieam processing systamhich has been widely
adopted byhekey players in the industry including YAHOO and Twitter. An application
running inStorm is called a topology that is charactedzy a Directed Acyclic Graph.
Isolation Schedulerthe default schedulefor a multitenantStorm platform running
multiple topologiesassigns resources to topologies based on static resource configuration
informationand does not provide any meangrioritize topologies based on their business
significance. One of the problems with this scheduigthat performancelegiadation
even complete starvation of topologies is possinle resource constrained clusiro
priority based resource scheduling stregegreproposed in thishesisto overcome these
problens. A performance analysis based mrototygng andmeasurements conducted

to demonstrate the effectiveness of the proposed techniywesnprehensive analysis of

the results leading to key insights into systeghaviorand performance is presented.
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Chapter 1: Introduction

1.1 Background

With the rise of social media, 10T, wireless sensor networks and intelligent devices such
as smart phones, we are experiencing a huge growth in the amount of data generated every
single day. IBM reports that, we create 2.5 quiotil bytes of data every day].
Extracting meaningful information from this degats has become a key point of interest

for both industry and academia. Business organizations are employing big datssprg
platforms to identify new business opportunities and analyze customer behavior which
results in higher profit. As an example, in the report presentgt],i®AS notes that, top
organizations are ugj various big data analytics strategies which results in immediate
rewards such as reduction of operational cost for an enterprise, faster and better decision
making capabilities and more customer focused product and service ideas. Another
significant im@ct ofbig data can be seen in thedithcare industry. With a dathiven
decision making approachig data analytics in healthcare is being heavily used to predict
epidemics, cure disease, improve quality of life and even avoid preventable[@8kaths

The term big data can be characterized by three aspects: Volume, Velocity and[¥hriety
where volume refers to a large volume of data, variety refdesdely heterogeneous data

and velocity refers to very low latency processheguirements for data. Textract
meaningful information from big data, a big data processing platform needs to address one
or more of these 3 aspects.

Existing research effts on batch processing have successfully addressed the volume and
variety aspects of big data processing. Frameworks like Hadpamd Spar6] have

emerged which are widely used now a days to process high volume data with varying
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structures. More recently, a new class of big data processing platform has gained significant
attention. On such a platforndata generated from external sources areirmoodsly
pushed to the processing platform with a goal to extract meaningful information in near
real time. This class ofidpdata processing known as distributediamprocessing which
addresses theelocity aspectof big data processing. ApachdoBn [7] is a popular
distributed stream processingplatform which has been adopted by key players in the
industry such as Yahoo, Twitter and Spofiy.

1.2 Problem Description and Motivation

Although Storm provides a platform for streaming data analytics, effective resource
management techniques are required to effectively utilize the resources supported by the
underlyingStormstrean processing systensolation Schedulerthe popular scheduling
algorithm used currently witBtorm cannothandle a situation when theo®n cluster is
resource constrained. In such a cluster, the available number of resources are not sufficient
to satidy the desired resource requirements of 8@m applications submitted to the
cluster.A more detailed discussion on this case is present8egtion 25.1.1 A cluster

may become resource constrained after the submission of new applications or may be
explicitly engineered to contain a lower number of resources to achieve high resource
utilization. Moreover|solation Scheduledoes not support application priority. In this
thesis, two novel resource managemgchniques are proposed fopacheStorm to
address these issues. The proposed techniques can efffdtdivele resource constrained
Storm clusters. The schedulers use priority based scheduling and provide an effective
sharing of the available limited number of resources by the applicatidrighevel

description of the proposed solution is provided next.
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1.3 Proposed Solution

Stream processing applications running 8torm clusters are called topologies.
Developers package logics for stream processing applicationpa@sdi®s and submit

them toStorm clusters to run. Storm follows a master slave architecture where the master
node is calledNimbus and worker nodes arealled Supervisors. Submittedton
topologies argun on the supervisor nodes. AoBn cluster can comprise a number of
superviso nodeswhere multiple rm topologies are ruf8]. To reduce resource
contention among multipl&torm topologies, t8rm currently providetsolation Scheduler

[9] which allowsdeveloperdo specify dedicated number of sugeor nodes for their
submittedtopologies. The scheduler then schedules the topologies by dedicating the
supervisor nodes to topologies per their desired requirtsm@Although the scheduler
prevents resource contention among topologies, as indicated in the previous section, it falls
short when the cluster does not have enough supervisor nodes to satisfy the desired number
of supervisornode requirements for all thepologies. In such situationgsolation
Scheduleffails to schedule all the submitt&tiorm topologies which results in partial or
complete starvation of some of the topologies that are submitted to the cluster.

This thesis proposes two schedulers fesource constrainegtorm clusters where the
clusters do not have enough supervisor nodes to satisfy desired number of supervisor node
requirements for the submittedto®n topologies. Both the schedulers use priority
indications of the topologies and bds® the priority indications, proportionally allocates
limited resources to the topologies and thus prevents starvation of the topologies. The first
scheduler is called Static Priority Scheduler (SPS). The scheduler uses application level

priority indicaions of the topologies and prioritizes resource assignment for topologies
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with higher priority when the cluster is resource constrained. The priority indications are
provided by the developers when submitting the topologies to the cluster and these priorit
indications are static and cannot be changed at runtime. SPS can avoid starvation of the
submitted topologies provided a minimum number of supervisor nodes are present in the
cluster.

The secondcheduler is called Dynamic Priority Scheduler (DPS). 3¢teeduler utilizes
dynamic priority indications that are determined by the topologies at runtime based on
some predefined trigger conditions. The scheduler schedules topologies based on these
dynamic priority indications where a topology with higher ptiorreceives more
resources. Using this scheduler may result in temporary starvation of the lower priority
topologies. The starving topologies cease to starve in time if they also regain their original
priority. Both the schedulers are discussed brieflySaction 3.2.1 and Section 3.2.2
respectively.

To evaluate the performance of the proposed schedulers, prototype systems are developed
to implement the techniques and associated algorithms. The design and implementation of
these systems are described itade in Section 3.4, Section 4.1.1 and Section 4.1.2.

1.4 Scope of the Thesis

A distributed stream processing system is a part of a stream processing platform comprised
of a number of data producers, data ingestion layer and the distributed stream processing
system. This thesis exclusively focuses on devising effective resource management
techniques for a resource constrained distributed stream processing system and resource
management for the otheomponentof the stream processing platform is beyond the

smpe of the thesis. Additionallgcheduling omlistributed stream processing systems with
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a fixed number of resourcésconsideredn this thesis andautoscaling of resourcef®r
changing the number of resources dynamidadlged on system loaslconsidered to lie
outsidethe thesis scope

1.5 Contributions of the Thesis

The main contributions of this thesis are presented next

9 Static Priority Scheduler (SPSA novel starvation free scheduler that uses static
priority indicationsof the topologies to scheduldéoBm topologies in resource
constrainedstorm clusters running multiple topologies.

1 Dynamic Priority Scheduler (DPSA novel scheduler that schedules tigges in
resource constraineddm clusters by utilizing dynamic iprity indications that
are provided by the topologies at runtime.

1 Prototype systems are built for the two proposed schedulers and insights into the
impact of the various system and workload parameters on system behavior and
performance are presented.

The proposed resource management techniques are to be deployed by an entity that is
responsible for proving the stream processing services to the users.

A paper[10] based on the initial research resulés been published in an international
conferenceR. Chakraborty and S. Majumdar, "A priority based resource scheduling
technique for multitenanStorm clusters,” International Symposium on Performance
Evaluation of Computer and Telecommunication Syst8RECTS)2016. pp. 6.

1.6 Thesis Outline

The rest of the thesis is organized as follows. Chapter 2 provides background information

on distributed stream processing system and discusses related work. Chapter 3 describes
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the priority based scheduling techniques in detail. Chapter 4 describes the design and
implementation of the prototype systems including the topologies used in the various
experimentsPerformance evaluation of the proposed priority based schedulersdmased
prototyping and measurement is also included in this chdatstly, Chapter 5 concludes

the thesis and discusses possible directions for future research.
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Chapter 2: Background and Related Work

This chapter starts by outlining the components of a distributeghstprocessing platform
in Section 2.1. Then, characterization and classifications of distributed stream processing
systems are presented in Section 2.2 and 2.3. Next, in Section 2.4 the internals of a
distributed stream processing system are discussled aontext of Apache Storm. Finally,
the chapter is concluded by outlining existing work focused on various resource
management techniques for distributed stream processing syst8ection 2.5.
2.1 Components of a Distributed Stream Processing Platform
Figure 1 illustrates a high level architecture of a distributed stream processing platform
based 0r{11,12,1314]. Such a platform is composed of multiple layers of abstractions
working in concert. An overview of each of the layers is presented.
1 Data ProducersData Producer or simply the producer layer is the entry point of
data streams to thdistributed streamnocessingplatform and can support various
data sources including web and social media, mobile and handheld devices,
wireless sensor networks etc. The data sources in the producer layer push data to
an intermediate ingestion layer whedata is temporarily stored before the
distributed stream processing system starts processing them.
1 Ingestion Layer Ingestion layer typically consists of message brokers such as
Apache Kafkg15]. Data pubed by the varioudatasources in the producer layer
is stored temporarily by the ingestion lay®rstributed stream processing system
processes these data by pulling them from the ingestion layer.
1 Stream Processing Enginé distributed stream processgirsystemlike Apache

Storm consumes data from the ingestion layer and processes these data.
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Figure 1: Distributed Stream Processing Ritform

Usually,a distributed stream processing platform is a part of a complete big data processing

platform such as lambda architect{t&] and works in conjunction with a batch layer such

as Hadoop5] to accommodate a much broader set of queries over the ingested data.

As this research is only concerned with distributed stream processing, further details on

the complete big data processing egstam are not discussed.

2.2 Key Rrequirements of a Distributed Stream Processing System

This section outlines the key requirements for a distributed stream processing system based

on the study found ifil6]. The distinguishing features ofdistributed stream processing

systemin comparison to traditional data processing systems are captured in the following

key attributes:

1 High data movement: To ensure low processing latency, a distributed stream

processingystem must assure high data movement by processing data in memory
and by reducing blocking operations (e.g. storage operation) and passive processing

on data.
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T

Instantaneous process and response model for high volume daiéhere should

be ahighly-optimized processing model for distributed stream processing systems
which can minimize overhead and maximize the useful utilization of the resources
such as CPU, memory. These systems should keep up with high data load and
process data in a short period.

Ability to integrate stored and processed dataDistributed stream processing
systems should provide means to dispatch processed data to outside storage facilities
so that application designers can combine live data and historical data to infer
business criticatvents starting from a past time frame to the current time frame.

Data partitioning and scalability: Distributed stream processing systems should
anticipate a large amount of continuous data flow and provide means to process these
data with low latency. Tachieve this, distributed stream processing systems must
support multithreading to take advantage of the modern multi core processors and
facilitate the partitioning of the continuous data among multipbees for
processing. The ability to use multipleaatnines and processors to procadsgh

volume of data in parallel is a key distinctive feature of the different stream
processing systems. This feature ensures incremental scalability of the stream
processing applications.

Predictable and repeatable proessing: Distributed stream processing systems
should provide a deterministic and repeatable processing guarantee. That means
when supplied with the same input, the processing should result in the same output
every time when not influenced by other factdrsis attribute is essential for fault

tolerance and recovery from failure.
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1 Handling of stream imperfection: In batch style processing, data are always
present before processing as sih@rethenprocessmodel is followed. But in case
of stream processingdata might be out of sequence or even be delayed. A
distributed stream processing system should handle these types of stream
imperfections by introducing strategies such as time outs, storing of data and delayed
processing.

1 Stream based query languageThe traditional query language for relational
database will not suffice for stream based processing. So, it is expected that a
distributed stream processing system should provide means for a stream based query
framework with built in stream oriented prinwéis and operators.

1 Processing guarantee with high availability and fault tolerance support:
Distributed stream processing systems must provide high availability and fault
tolerance supports to avoid disruption and preserve integrity of the stream
procesing applications. There are various schemes available for distributed systems
to achieve the desired fault tolerance and high availability which can be used in the
distributed stream processing systems as [#€&]l. Distributed stream processing
systems employ a combination of these strategies to provide processing guarantee.
For an example: Apache Storm uses a centralized coordination system called
ApacheZookeepel18] to offer automatic failover by launching new instances of
the failed stream processing applications on another machine available to the cluster

[19].

21



2.3 Stream Processing SystemSlassifications

Based on the extensive summary presenteg@0h Stream Processing systems can be
subdivided into three main categori€entralized DistributedandMassively Parallel A

short overview of these categories is presented in the following subsections.

2.3.1 Centralized Stream Processing Systems

Early systems proposed like AURORR1], STREAM [22] fall into the category of
centralizedstream pocessing systems. AURORA was designed as a single site stream
processing system by researchers in Brown University and MIT. Stream processing jobs in
AURORA has a Directed Acyclic GragjpAG) like structure where the nodes of the graph
represent operators which represent the processing elements and the edges that represent
the movement of the stream elements among the operators. A stream is viewed as an
unbounded sequence of data elemeamtled tuples. Tuples arrive at the input queues of
stream operators and a scheduler selects which opet@tam at a given point in time.

Each operator functionality is specified in the AURORA query model. After the processing

is done the output isagain moved to the input queue of the next operator in the processing
graph. This process keeps on repeating until the output is presented to the sink or end users.
Another stream processing system in this category is Stanford Stream Data Manager
(STREAM)[22]. Both AURORA and STREAM have the same single host machine based
architecture and a DAG based stream processing model. Like AURORA, STREAM also
has a query model which decides the functionaliti¢se@bperators on the DAG structured
stream processing jobs. While both systems have the provision to provide latency
requirements for the stream processing jobs, they run on a single host machine and are not

scalable to cater to growing processing dematugsto added data sources and jobs.
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2.3.2 Distributed Stream Processing Systems

Distributed stream processing systems like AURORA/Me(iR3gand Borealig24] are

of the second category. Unlike the centralized stream processing systems discussed earlier,
these systems support a distributed processing modetaghabecomprisel of multiple
machines. The AURORA/Medusa system was built by the researchefl¥.if i\ system

is an extension to the AURORA stream processing system which is discussed in the
previous section. While the AURORA stream processing system runs on a single host
machine, an AURORA/Medusa system is comprised of multiple of AURORA nodes tha
collaborate through an overlay network. Each AURORA node in AURORA/Medusa uses
the AURORA query model where the DAG structured jobs are used to process streams.
The Medusa system makes it possible for the multiple independent AURORA nodes to be
organizedas a loosely coupled federation under the control of one or more independent
participants. Each participant is a user with financial and administrative access and holds
ownership over a set of AURORA nodes, stream processing jobs and data producers
feedirg streams of data to the jobs.

Another system in this category, Borealis also employs the generic DAG based stream
processing model and has a distributed architecture comprised of Borealis servers running
on different Aisit eso. mdnh thesneelves iaridehsis canatake ¢ o mr
coordinated actions. Unlike modern distribusgdtems like Storrfi/] or Spark Streaming

[6], there is no master node or centralized control node for the Borealis sites. Each of the
processing nodes in a Borealis system has an independent admin module which decides if
the query should run on the local server or on a participating remote seagér. E

Processing node executes a single query processor, which runs the actual query fragments.
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Processing nodes have a neighborhood optimizer that uses the periodically collected local
and remote site statistics to balance the load among the processiag node

2.3.3 Massively Parallel Distributed Stream Processing Systems

In the third categorythere aremassively prallel distributed stream processing systems
like Stormand Spark Streaming. Unlike systems in the previous two categories, these
massively parallelsystems are optimized to run on a cluster with a master slave
architecture. These clusters can comprise hundreds or even thousands of machines and thus
these frameworks have the capability to attain impressive performance goals. For example,
Apache Storms benchmarked to process a million records per sdadn@ihese systems
provide the developerswith flexibility to write fairly complex stream processing
applications with the generic DAG based stuue and provides high availability and fault
tolerance support.

2.4 Internals of a Distributed Stream Processing System: Apache Storm

Storm providesleveloperswith Application Program Interfad@Pl) to write distributed
stream processing applications which runs @tcamcluster. It is to be noted th&form

is chosen as a representative distributed stream processing system while discussing the core
concepts because of two reasons: Firstigiuding a plethora of systems available in the
literature would make the discussion lengthy. Secondly and most importantly, this thesis
is specifically focused on resource management techniques for Apache Storm which is a
representative of modern day ptgrustream processing systems. In the following two
sections, overview of the system architecture and the stream processing nisbehrof

are discussed.
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2.4.1 Storm Architecture

Storm adopts to a master slave based cluster architecture. Bigilustratesa Storm

cluster with N supervisor node. There are essentially two types of nod8sameluster:

1 NimbusNode: A single machine running a daemon caNadbus Nimbusacts as

the master node for &tormcluster. Developers subrttormjob to Nimbusand
Nimbusdistributes the tasks of the job to the worker nodes with the help of the
schedulerNimbusalso monitors the cluster state and in case of supervisor node
failure, it tries to restart the supervisor node or move the processing tasks to other

supenrvsor nodes.

=

Supervisor Node: There can be multiple supervisor nodesStorancluster with
each running a daemon called supervisor. Each supervisor node hosts a predefined
number of worker processes. The actual processing of the compon&itsrof

topolagiestakes place in the worker processes.

=
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Figure 2: A Storm Cluster

Apart from theNimbusand supervisor nodeStormclusters usépache DHokeepe[18]

for synchronization and cluster state management. Multiple nodes, each running the
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Zookeeper daemon f or ms amNimbBusamdsepawisoendbdea nd p
with replicated synchronization and state management service with eventual consistency.
2.4.2 Storm Stream Processing Model

A stream inStormis modeled as an unbounded sequence of data structures called tuples.

A tuple is essentially a named list of values of data of types including string, integer, float

etc. Jobs processing these streams aredctpologies in th&tormjargon. A topology is

comprised of components of two types:

1. Spouts Spouts connect to the external data sources. External data sources include
various types of message brokers such as KafkaAatieMQ [11]. A spout
captures theapplication logic to connect to these message brokers and pushes
streams to the downstream processing components.

2. Bolts Bolts are the processing components 8t@mtopology. Application logic
for processing of streams is captured in bolts and bas#tearser defined logic,
bolts perform various operations such as filter, aggregate on the tuples of the
stream.

To run a topology on a clust&@tormemploys three main abstractions. They are:

1 A Worker Processwhich executes a subset of a topology. Esagpervisorhas a
predefined number of slots favorker processeand each slot is dava Virtual
Machine (VM) [25] process where one or more executors of one or more
componentsgpoutgbolts) are executed.

1 An Executoris a thread of execution spawned bWarker Procesand runs within
the JVM process of thavorker. Executors run one or more tasks of a specific

component. If there are more than one task of a specific component to be aan insi
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an executoy the executor runs thesequentially Executors are the basic unit of
parallelism inStormjargon.
1 A Taskis a running instance of &torm component $poutBolt). The actual
processing is done by the tasks and they run within their paretutexs. By default,
the number of tasks and number of executors for a given component (spout/ bolt) are
the same. One reason for developers require more tasks than executors for a
component is to take advantage of tB&rm runtime scaling utility called
fir eb a[2§.rJsirg debalanceStormallows the system to increase the number
of executors and worker processes for a topology but the number of tasks remains the
same. Thusdeveloperscan objectivelyadd more tasks than executors if they
anticipate to scale out during runtime. However, the number of tasks can never be
less than the number of executors.
Developers need to decide on the number of worker processes the application will need to
run. It isalso the responsibility of the developers to decide the number of concurrently
running executors by setting fAparallelism
Apar al | aslthe sumbehof aoricurrent executors for each topology component that
would run inside the worker processes of the supervisor nodes.
Storm topologies form a directed acyclic graph (DAG) like structure by conn&gimgts
andBoltsby various stream groupings. Developers are providedStamAPIs to write
application logic for spouts and bolts. The nodes in the graph represent components such
as spouts, bolts and edges represent stream propagation among the components. Stream
groupings decide the communication pattern among the componen&tafatopology

by deciding how the stream is partitioned among downstream components.
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Storm provides$ stream groupings. They are:

1. Shuffle GroupingTuples are randomldistributed among the bolt executor such
that each bolt executor receives an equal number of tuples.

2. Local or Shuffle Groupinglf the target bolt executor resides on the same worker
process, then tuples will be forwarded to that bolt. Otherwise thensemaf
Shuffle Groupingvill apply. In other words, this grouping strategy tries to ensure
locality to reduce network communication whenever possible.

3. Fields Grouping Streams are partitioned by thee-specifiedfields and tuples with
the same valuefehe field will always go to the same bolt executor. For an example,

i f a stream i s -npaametoi tfiioenledd, btyu pal efisu sceorn s
name will always go to the same bolt executor whereas tuples having different user
name will go to diférent bolt executors.

4. Partial Key GroupingThis is like theFields Groupingout tries to balance the load
of tuples between two downstream bolt executors to achieve better resource
utilization.

5. All Grouping: Tuples are replicated and emitted to all tdrget bolts executors.

6. Global Grouping: This grouping strategy sends all the tuples to a single bolt
executor.

7. None Grouping If this grouping policy is selected, thé&torm will apply the
default strategy which is thehuffle GroupingApplication devebpersselect this
grouping if they are oblivious of the grouping of the tuples.

8. Direct Grouping:The producer of the tuple decides which bolt executor receives

the tuple based on some predefined logic.

28



Figure 3 illustrates &tormtopology with onespoutand threebolts connected byshuffle

Grouping.
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Figure 3: A Storm Topology

2.5 Scheduling in Distributed Stream Processing Systems

To process streams of data, stream processing jobs representing continuous queries are run
over the data streams. Distributed stream processing systems abstract these queries with a
Directed Acyclic Graph (DAG) structure. Vertices on this DAG model reptesperators

which captures the actual processing logic for the query fragments such as joins, filters and
aggregations. The edges on the DAG model represent flow of data among operators.
Different distributed stream processing systems have differentniem#o design this

DAG structured jobs. As an example, recall from previous section that Apache Storm
allowsdeveloperdo design the stream processing jobs called topologies by implementing
logics for operators using two abstractions called spouts aiftd. bfhese operator
abstractions are collectively known as components. Each of the operators in the DAG
model performs some operations on the incoming data and forwards the resulted
transformed data to downstream operators or end systems such as dadiakedar Ul

[27]. This DAG abstraction is then mapped to the software components of the distributed

stream processing systems. Depending on the design principles of specific distributed
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stream processinsystems, the operators of the deployed DAG model can be replicated
throughout several worker servers to ensure scalable and parallel execution of the stream
processing jobs. Recall from Section 2.4.2 tB&bymprovidesdevelopergo specify the
number of concurrent threads for each component (spouts or bolts) of a topology by setting
the fAparallelism hinto parameter. These
executors are run on the worker processes of the supervisorindde<xluster.

Scheduling in the distributed stream processing systems refers to the process of mapping
the operator instances of the DAG structured stream processing jobs to the worker servers
[28]. Each of the worker servers has a limited resource capacity (CPU cores, memory etc.).
Developers decide the resource requirement for their stream processing jobs based on the
nature of the job (e.g. compute or memory intensive) and number of operatocessian

is the responsibility of the schedulers to make sure that, all the operator instances of all the
stream processing jobs are mapped to the available worker servers while respecting their
individual resource demands. Failing to do so may resuleifafowing scenarios:

1. Starvation of the stream processing jobs where one or more stream processing jobs
never get any resource and fails to process any data.

2. Partial scheduling of the stream processing jobs where some of the operator
instances of a streaprocessing job get mapped to the worker servers whereas
some operator instances do not. This situation can hamper the performance and
functional correctness of the affected stream processing jobs.

In this section, state of the art scheduling techniquekea context of distributed stream
processing systems are briefly discussed. In Section 2.5.1, scheduling techniques for

Apache Storm are discussed. In Section 2.5.2, scheduling techniques for distributed stream
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processing systems other than Apache Stmeroutlined. Finally, some works which are
not directly related to scheduling in distributed stream processing systems but have
motivated this thesis are briefly discussed in Section 2.5.3.
2.5.1 Scheduling Techniquedor Storm
Scheduling in Apache Storm refers to the process of mapping executorStofna
topology to the worker processes hosted by supervisor nf@®&0]. As previously
discussed, executors are the concurrently running threads of the topology components and
worker processes are Java Processes hosted by the supervisor no8é&srmmcéuster.
Developers determine the appropriate number of executors foogbgy components
and the required number of worker processes to run these executors. This information is
provided by the developers at design time by setting appropriate configuration parameters.
Upon submitting a topology to the clustBlimbusinvokes the scheduler. The scheduler
captures the executors for the topology components and notes the desired number of worker
processes for the topology. Next, the scheduler identifies the free worker processes hosted
by the supervisor nodes and distributes éRkecutors to the desired number of worker
processes.
Available literature orStormbased scheduling techniques can be broadly classified in to
two categories:
1 Offline SchedulingThis type of schedulers is used to formulate an initial schedule.

They are mvoked once for ever§tormtopology submitted to th8tormcluster.

This type of schedulers does not adapt to the changes in the system environment

which means once &torm topology is scheduled after the submission, a new

schedule is never computed foatStormtopology.
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1 Online SchedulingThese schedulers are always live/active. This type of schedulers
monitors the quality of the current schedule by periodically assessing the collected
system/application level statistics and tries to formulate a ndwedste if
necessary. Thus, it is possible for a submiéarmtopology to be rescheduled
when using an online scheduler.

2.5.1.1 Offline Schedulers for Storm

Apache Storm provides two out of the box schedulers. They are t=alation Scheduler
andDefault Scleduler. Both schedulers axfline schedulers so they cannot adapt to the
changes in the cluster environment and they are invoked once per topology submission.
Default Scheduler uses a simple round robin mechanism and produces a schedule where
each workeprocess hosts approximately an equal number of executor of the components
of a submitted topology. The scheduling isva-stageprocess where in the first stage, the
scheduler notes the desired number of worker processes by the topology and captures all
the executors of the topology components. The scheduler then partitions the executors into
multiple sets. The number of sets is equal to the desired number of worker processes and
each set holds approximately an equal number of executors. In the seagadtise
scheduler identifies the desired number of free worker processes from the available
supervisor nodes and allocates each set of the executors to one of the worker processes.
The allocation is done in a round robin fashion where each supervisocowoubutes
approximately an equal number of worker processes. Although this scheduler ensures
fairness by making sure the number of executors mapped to each worker process remains
approximately equal and each supervisor node contributes approximatiyeouoer of

worker processes, it is possible for multiple topologies to be scheduled in the worker
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processes of the same supervisor node which results in resource contention among the
topologies. This results in performance degradation of the topolddnes, this scheduler
is not suitable for a multitena®torm cluster where &torm cluster is shared by many
Stormtopologies.
To solve the multitenancy proble@tormintroducedsolation Schedulewhich solves the
multitenancy problem by providing dedicated supervisor nodes for each topology running
in the cluster. Developers indicate the desired number of supervisor nodes for the
topologies in thé&tormconfiguration file. After a topology is subtted to the cluster, the
scheduler reads the configuration file and allocates the desired number of supervisor nodes
to the topology. The desired number of worker processes are selected from these dedicated
supervisor nodes and the executor to workerggemapping follows the same round robin
strategy as th®efault Scheduleles senti ally, the supervisor
no two topologies are run on the same supervisor node and thus resource contention among
topologies are eliminated.
Both Isolation Scheduleand Default Schedulecan result in partial scheduling or even
complete starvation of the topologies in a resource constr&itoechcluster. A resource
constrainedtormcluster does not have enough supervisor nodes to satisfy thesragnir
of all the topologies. Following are few scenarios where uBottion Scheduleor
Default Schedulewill result in partial scheduling or complete starvation of term
topologies:

1 Topologies are submitted to tlstormcluster separately at éfrent points in time

and the cluster allocates resources to the topologies in a First in First out (FIFO) order.

If topologies that are already submitted have consumed all the supervisor nodes on
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the cluster and there are not enough supervisor nodeseoregburce pool, it is
possible for newly submitted topologies to starve or remain partially scheduled until
more resources are added to cluster.

1 Itis possible for supervisor nodes to become unavailable at runtime due to machine
failure/network failure.Even in the presence of high availability features, it takes
some time to make new supervisor nodes available to the cluster. In this interim
period, topologies running on those supervisor nodes can suffer from partial
scheduling or even complete starvatio

1 Lastly, aStormcluster can face resource constraint due to scaling out of the topologies
that require adding new resources to the respective topologies. Storm provides a
feature called rebalang¢@6] through which it is possible for runtime scaling out of
the topologies. In the research presentd@1h it is shown that it takes a significant
amount of time (on the order of 6 minutes) for making sapervisor nodes available
to the cluster. AStorm cluster may become resource constrained asdakedout
topology may suffer from performance degradation duringpéisd

In all these resource constrained systems, the full functionality of all the submitted
topologies cannot be supported at the same time. As a fssldtion Schedulerannot be

used insuchresourceconstrained systesn

Other than the default scheduleasfew offline schedulers are available in the literature.
They are discussed next.

In the offline scheduler proposed[28], authors modeled the executor placement problem
in the context of Apache &m as an Integer Linear Programming problem while

considering heterogeneity of compute and network resources. The authors grapose
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generic framework to include various user indicated quality of service metrics to be
optimized while allocating resourcés the executors in &torm application. A few
observations can be made in the contexf28. First, this solution does not provide
satisfactory performance when the number of executors in a topahabthe size of the
cluster are large. Secondly, the scheduler is an offline scheduler, and unlike an online
scheduler, it is oblivious to run time changes both at the system and the application levels.
The offline scheduler presented[B0] places executors of$tormtopology on the same

node based on their stream grouping. This approach ensures lower network
communication. The scheduler is run wheBtarmtopology is submitted to the cluster.

One aspct of the scheduler is that it does not consider system load as a factor which the
authors themselves identify as a drawback.

A similar technique is proposed [B80] where the offline scheduler analgzthe DAG
structure of theStorm topology and tries to formulate a schedule where the heavily
communicating executors are placed on the same node and thus minimizes network
latency.

A resource aware offline scheduler for Apache Storm is propogé&d]inThis scheduler
considers both demands and availability of resources in terms of CPU, memory and
network bandwidth in &tormcluster. To achieve this, the users are provided with APIs to
indicate CPU, memory and network bandwidth requirementsSiban topology when
submitting the topology to the cluster. Similarly, each worker node in the cluster has its
resource capacity staally configured in a configuration file. The statistics about resource
availability and resource consumption are collected and stored periodically in the

GlobalStatemodule and the resource aware scheduler utilizes these statistics while
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allocating resaorces to a submitte@torm topology. The scheduling process has two
sequential steps. The first step obtains a partial order of the executors to be scheduled using
the popular Breadth First Search (BRSgorithm. Use ofBFS ensures that adjacent
executorsare placed in close sequence so that heavily communicating executors can be
mapped to the worker processes of the same supervisor node and thus network
communication latency is reduced. The next step focuses on selecting a supervisor node to
host executa such that the selected node has the most available resources to fulfill
recourse requirement of the executor. While the scheduler investigates the feasibility of
running multiple Storm topologies, it does not consider a resource constreitedn

cluster Thus, partial scheduling and starvation of topologies remain a possibility when the
cluster is resource constrained.

2.5.1.2 Online Schedulers for Storm

In the research presented[88], the authors argue that in the case in which the system is
experiencing lighter workload, significant performance improvement in terms of average
tuple processing latency can be achieved by using fewer supervisor nodes as the inter
supervisor node commugition latency is more expensive than the inter worker process
communication latency for lighter workloads. This technique falls short, however, when
the system is experiencing higher traffic and the nodes become heavily overloaded. Based
on these observatis, a periodically running online scheduler is proposed. The proposed
scheduler tries to formulate a schedule where the executors are mapped to the worker
processes fewer supervisor nodes at the same time makes sure, no supervisor node has
exceeded its AP capacity. The capacity is predefined for every supervisor node. CPU load

due to tuple arrival or traffic across executors is collected periodically by daemons which
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are deployed throughout the supervisor nodes in the cluster. Using this information, the
scheduler can determine if a participating worker node is approaching its CPU capacity.

A prediction based scheduling framework for Apache Storm is propogéd]in There

are essentially two aspects of the proposed framework: a prediction component which
models and predicts average tuple processing latency, and a scheduler which assigns
executors to worker nodes based on the prediction model. Authors model auptage
processing latency as the summation of average tuple processing latency at each executor
and average tuple transfer latency between the executors which includes both queuing
delay and network communication latency. A popular supervised learninglaigoalled

Support Vector Regression is used for the prediction of average tuple processing latency.
The prediction is used as a guideline to take intelligent decision while mapping executors
to the worker processes of the supervisor nodes. To facilitatéearning, statistics on
average tuple processing latency and tuple transfer latency are collected by daemons
implanted across supervisor nodes which in turn send these statistics to a centralized
location. Based on this collected data, a prediction @hasl built. Finally, a greedy
scheduling algorithm tries to find a feasible schedule using the prediction model with a
goal of reducing average tuple processing latency.

A graph partition based scheduler for Apache Storm is presenf8H]irThe goal of this
research is to minimize network load due to data movement among the nod&®ima
cluster while making sure there is no load imbalance in the nodes in terms of compute
capacity. A weighted graplballed communication graph of an application DAG is
constructed where the weights on the nodes represent the compute capacity requirements

of the tasks and weights on the edges represent the accumulated total number of all the
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tuples that are sent from ertask to the other. Based on the periodically collected

application performance statistics from the cluster, this communication graph is optimized

with an objective to minimize network communication cost due to inter node

communication while keeping thedd imbalance in terms of computational load under a

certain given limit.

While the above proposed offline and online schedulers aim at maximizing a given

performance metric such as average tuple processing latency by formulating intelligent

executor to wiker process mapping, none of them considers a resource constrained

environment where the available number of resources are not adequate to satisfy the

resource requirements of the all the submitted topologies. Moreover, resource contention

due to multiplerunning topologies is also not considered. The proposed priority based

schedulers in this thesis aim at formulating a schedule addressing all these issues by

utilizing application level priority in a static and dynamic manner.

2.5.2 Scheduling Techniques for Oher Distributed Stream Processing Systems

Scheduling techniques for other distributed stream processing systems available in the

literature can be broadly categorized in two ways

9 Static Operator Placement based scheduling: Upon submission of a DAGrsttuct
stream processing job, an initial one time operator to worker mapping is formulated
by this type of schedulers. This type of schedulers does not adapt to run time
changes and thus stream processing jobs are never rescheduled.
1 Dynamic Operator Redistution based Scheduling: This type of schedulers

utilizes periodically collected performance and system statistics to assess the

guality of the current schedule and if required, can formulate a new schedule by
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voiding the current one. It is to be notedtththere is an overhead associated with
the dynamic redistribution of the operators.
The available researches provide varied opinion while evaluating both the techniques.
Some are in favor of using dynamic operator redistribution based techniquedaeiting
term benefits while the others find the overhead to be a significant factor impacting the
performance and advocate static operator placement based scheduling.

2.5.2.1 Static Operator PlacementBased $heduling

In the research presented &), worker nodes hosting the operators of a stream processing
job in a Borealis stream processing system experience loads which can be formulated as
linear functions of system input stream rates. Authors argue thatmdyraperator
redistribution in the presence of short term load variation is associated with significant
overhead making it completely infeasible for and for some distributed stream processing
systems. To overcome this problem, authors propose a statiat@pelistribution
algorithm, which aims to formulate a schedule such that operator to worker node mappings
are 'resilient' to unpredictable load variations. The algorithm is a coherent combination of
two heuristics where the first heuristic aims at balag¢he load of each input stream for

all the worker nodes while the second heuristic tries to avoid bottlenecks by looking at the
effects of different input streams on each of the nodes and thus identifying overloaded
nodes which can be a bottleneck. Thgogathm presented also consider communication
costs and knowledge of specific workload characteristics such as a predefined lower bound
on the input stream rate.

In [37], authors proposed static operator placement based scheduler for System S

developed by IBM. This system uses admission control which means a submitted job can
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be rejected if the scheduler deems necessary which is rarely seen in any other distributed
stream processing systeirhe periodically running scheduling process is decomposed into
four sequential steps where each step is a mathematical optimization problem. The first
step decides the jobs to be admitted, parallelism of the operators in the job and the CPU
capacity consaints for each job. In the next step, the worker nodes for the admitted jobs
are selected. The third step updates the processing capacity constraints with respect to the
selected worker nodes in the second step. The fourth and final step decidesét®iallo

of the job operators to the worker nodes.

Finally, the static priority based scheduler proposed2n for the Quasit stream
processing systef38] is probably the closest research effort to the static priority scheduler
proposed in this thesis. Like the static priority scheduler, the framework utilizes user
determined static priority indications for scheduling jobs submitted to the system.
Although, it is important to note that, while the static priority scheduler proposed in this
thesis allows priority indication for a jof27] uses priority indications for operators for a
specific job. Thigriority indications are expressed using "priority schemas" of two types:

1) Absolute prioritywhere an operator is assigned a priority indication in such a way that,

a higher priority operator is sure to get resources even at the expense of starvation of
lower priority operator. 2Proportional prioritywhere operators are assigned with weights
depending on their significance. Allocated resources are proportionally shared among these
operators using a proportional share algorithm. This approach isolikeproposed
scheduler. The key differences between the schedulers proposed in this thesis and the
scheduler described if27] are summarized. Firstly, the scheduler[2Y] uses static

priority indications on operator level while our proposed static priority scheduler uses
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priority indications on job level. Secondly, unlike our proposed schedulers, there is no
provision of specifying minimum resourcequirement for a job if27]. The significance

of minimum resource requirement will be detailed in Chapter 3. Thirdly, in addition to the
static priority scheduler, a dynamic priority scheduler is ingattd in this thesis whereas
research presented[ia7] only uses static priority indications for scheduling.

2.5.2.2 Dynamic Operator Redistribution Based Scheduling

In the research presented[B8], authors propose a scheduler based on load distribution
for the BorealisStream Processing system. The objective of the greedy algorithm presented
in this paper is to reduce load variation acrosgkesonodes of a Borealis cluster. Authors
considered a nelinear load model where the input stream rates are unpredictable and have
transient variations. Authors show that for such a system, average variance and average
correlation of the measured loadr@ss the worker nodes are inversely related and
minimizing the later helps maximizing the former and vice versa. The proposed scheduler
tries to formulate a schedule following this objective which translates to better load
distribution across worker nodaad improved performance of the stream processing jobs.
System load is measured as CPU utilization and load across worker nodes are collected
periodically as time series data. Correlation of average load between any two worker nodes
or operators can be calated by calculating a correlation coefficient (a real number
between-1 and +1) of their respective time series data. This concept of correlation
facilitates the scheduling in two ways: Firstly, if the load correlation between two operators
is small, tken they are placed on the same worker node which results in less variance of
load and secondly, to reduce frequent operator migration and thus overlpaadywese

load redistribution algorithms periodically run with an objective to maximize average
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noce load correlation between two adjacent worker node pairs.

A simulation based researching the context of Bor¢a#lsis proposed if40]. Authors
proposed a scheduling technique which focuses on minimizing network communication
cost in a simulated distributed stream processing environment by utilizing the knowledge
of the underlying network. The scheduler decides placement of operator drase/o
heuristic approaches. In the first approach, the pair wisewdser node communication
latency is considered and a cost model is constructed. Using the second heuristic, the
operator placement utilizes the cost model developed using thadusstic. It is to be

noted that this approach does not consider operator processing cost as well as queuing
delay. Also unlike researches|[i89 [36] [41] load due to continuous flow of streams in

the system and required load balancing is not taken into account.

On the other hand, if#1], authos presented another simulation based research which is
not tied to any specific distributed stream processing Platform. Authors strongly emphasize
on the importance of run time dynamic operatediggribution even if it incurs a shert

term overhead. Authie used 3 heuristic based approaches where the first heuristic is used
to balance the load across worker nodes. The second heuristic aims at limiting the number
of worker nodes for the distribution of the operators of a query and finally, the third
heuristc tries to minimize the total communication cost by employing a-fliataaware

qguery migration strategy which tries to ensure locality by keeping frequently
communicating operators on the same node whenever possible. It is to be noted that,
contrary to he research presented earlier in this section, the authors did not introduce any
new load balancing strategy and used the existing well known receiver initiated load

balancing strategy described[#]. Load distribution is done at the query fragment level
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(which contains the subset of operators) whereas the research pres¢@&chnm[36]

are concerned with operator level load migration.

2.5.3 Other Related Research

Although not directly related talistribute stream processingthe following works
motivated this thesis and require discussion.

Proportional share based resource schedulingigdlyodiscussed in operating system
literature [43]. The idea of using priority based proportional share scheduling for
distributed data processing platforms is used frequently outside the stream ipgocess
architecture. For an example, a priority based proportional share scheduler is proposed in
[44] for Hadoop. Users who are willing to pay a higher price gains higher priority and a
higher capacity inerms of higher number of map and reduce slots. The pricing policy is
determined by the overall resource demand in the Hadoop cluster. Resources are
proportionally shared among the users based on the capacity they are allocated.

As pointed out, while alhie schedulers discussed in this chapter try to maximize/minimize

a certain performance metric (e.g. average tuple processing latency) none of them
addresses the problem of scheduling multitermtopologies in a resource constrained
Stormcluster. To thdest of our knowledge, no other work has addressed this issue so far.
In the next chapterGhapter 3) the priority based schedulers proposed in this thesis are
discussed where it is shown that by introducing priority based scheduling, it is possible to
overcome the partial scheduling and starvation problem of the topologies for a resource

constrainedstormcluster running multipl&tormtopologies.
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Chapter 3: Priority Based Scheduling Techniques

This chapter discusses tlwo-proposedpriority basedschedulers for pacheStorm
Section 3.1 provides a short overview of the two priority based schedulers. Section 3.2
describes the algorithm and other internal details for the Static Priority Scheduler (SPS).
The second scheduler called Dynamic Priorithi&luler (DPS) is discussed in Section 3.3.
Finally, Section 3.4liscusseshe implementation details for the proposed schedulers.

3.1 Priority Based Scheduling

Two priority based scheduling techniques are proposed in this thesis for multitenant
resource coririnedStormclusters. The first scheduler is called Static Priority Scheduler
(SPS) and it uses static priority of the topologies based on their business significance as
indicated by the respectivéopology developers Apart from priority indications,
developersalso need to indicate a minimum number of supervisor node requirements for
the topologies which SPS uses to prevent starvation of the topologies. SPS is agnostic to
the run time priority changes.

The second scheduler is called Dynamic Prioritye8icter (DPS). Rather than using user
indicated static priority, DPS uses topology indicated runtime priority indications and
formulates the schedule in amline fashion. To use DPSjevelopersneed to write
application logic for the topologies to send opity indications based on some
predetermined trigger conditions.

Storm allows implementation of custom schedulers throughSitbeduler[51] Java
Interface where a single method calkmheduleneeds to be implemented. The scheduler

is packaged as .gar file and placed in the library folder of tidimbusnode. TheStorm

configuration file is also updated to instruct thenbusto use the custom scheduler. It is
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also to be noted thaimbusinvokes scheduler periodically with a default period of 10
secomls. Further discussion for each of the schedulers is provided next.

3.2 Static Priority Scheduler (SPS)

SPS utilizesstatic priority indication to schedule topologies in a resource constrained
Storm cluster. This priority indications are providéy application developerbefore
submitting the topology to th&tormcluster and cannot be altered at runtime. The SPS
architecture has two components. The first one is the SPS scheduler itself andribe seco
one is the Priority Manager (PM). Before submitting topologagplication developers
need to provide PM with the priority indications and minimum supervisor node
requirement of the topologies which PM stores in a database. SPS is placetiombine
node andNimbus is instructed to use SPS through appropriately settingStioem

configuration parameters. Figuellustratesthe SPS architecture.
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SPS schedules the topologies in a resource constr&ioech cluster by proportionally
sharing available supervisor nodes among topologies based on their priority indications. A
lower numeric priority value indicates highgriority. It is possible for multiple topologies

to be assigned the same priority level. Topologies in a higher level get more resources than
the topologies in a lower priority level.

In order to schedule topologies in a resource constr&tedclusier, SPS needs to know

four important parameters for every submitted topolddney are:

1. Desired Number of Supervisor Nodess discussed in Chapter 2, the default
Isolation Schedulerequires the developers to provide the number of desired
supervisor node®r every submittetbpologyin theStormconfiguration file. SPS
provides the developers with the same provision and uses this information while
scheduling topologies.

2. Desired Number of Worker Processés line with thelsolation Schedulerthis
information is also provided by the developers at the topology submission time and
SPS uses this information when scheduling topologies.

3. Minimum Number of Supervisor Nod&$is parameter is introduced for SPS and
captures the minimum number of supervisor nodssdad for a topology to run.
Developers provide this information in t&¢ormconfiguration file and SPS uses
it while scheduling topologies.

4. Priority: As noted earlier, developers need to spettifypriority of each of the
submitted topologies. It is up the developers to decide the priority of a topology

which depends on the business significance of the topology. As an example, a
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Storm topology used for climate monitoring in a data center can have a higher

priority than a topology used for data arclhiva
SPS can prevent starvation of the topologies if the cluster can satisfy the minimum
supervisor node requirement of all the topologies. It is to be noted that the notion of
minimum number of supervisor nodes is different from the desired number of isoperv
nodes. Developers decide on the desired number of supervisor nodes needed by analyzing
the nature of the topology, the number of executors for each component and the hardware
specification of the participating supervisor nodes in the cluster. Asaanpds, consider
a topology with 4 components (spout/bolt) with each component having 4 executors.
Additionally, consider each of the supervisor nodes in the clisteave duacore CPU
and two worker processes. To ensure the 4 executors of the topolaggments can run
in parallel, it is natural to select 4 supervisor nodes as the desired number of supervisor
nodes for the topology. Doing so ensures that one worker process in each supervisor node
hosts one executor of each component and executorstarempeting for resources (e.g.
CPU). On the other hand, for the same topology, a minimum of 2 supervisor nodes will be
needed for the executors of the topologies to run. This is because, for this example, each
supervisor node has 2 CPU cores and thus rRevgrocesses each. The topology has 4
components and 4 executors for each component. In ordeske surghat4 executors
canrun atleast 4 CPU cores need to be allocated to the topology. Thus 2 supervisor nodes
are selected as the minimum number of supervisor nodes for the topology.
The complete SPS algorithm is presented in Table 2. Notations used to formulate the

algorithm are desibed in Talke 1.
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Table 1: Notations for the SPSand the DPSAlgorithm

Symbol Meaning

PR=aph c¢ch o08Pbo Set of distinct priority levels; p is the total
number of priority levels available. A lower
numeric value indicates higherpriority

i EEph ¢8b(Q Total number of topologies in § priority
level.

TR={tpjo j EEph ¢ 88BN E| Setof all the topologies in thetj priority

level; tp; is the ih topology of the jh priority
level. There areB | topologies submitted
to the cluster

SD=PAj EEph ¢8

8PN EEp

Set of desired number of supervisor nodes
for the it topology in the fh priority level

C Total number of supervisor nodes available
to the cluster

Wij EEph ¢88PN EEph ¢ Total numberof worker slot desired by the
ith topology of the jh priority level

CA={ca}j EEph ¢88PNn EEp|Set of already allocated number o

supervisor nodes for each topologygs; is
the number of supervisor nodes already
allocated to the ih topology ofthe jth priority
level. A newly submitted topology has ¢
default value 0.

CN={cn}j EEph ¢ 8

8PN EEp

Set of newly computed number of
supervisor nodes for each topologygn; is
the number of supervisor nodes computed
to be allocated to the th topology of the j
priority level

EEph ¢88pn EE

Set of minimum number of supervisor node
requirement of the topologies; smyj is the
minimum number of supervisor node
required by the ihtopology of the jhpriority
level

Ei(=1,c 88PN EEph ¢888I

Set of executors for thetitopology of the jh
priority level

ST Total number of supervisor node desired by
the topologies submitted

SR EEph ¢88b(Q Total number of supervisor node required
all the topologies in thé"jpriority level

PFK A number representing the maximum of {

supervisornodes that can be allotted to t
topologies of the'] priority level
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Table 2: The SPS Algorithm
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The SPS algorithm presented in Table 2 starts by querying the cluster for the total number
of available supervisor nod€sby invoking Stormlibrary functions [line 1]. If the cluster
hasonly the minimum number of supervisor nodes to satisfy the cumulative minimum
supervisor node requirements of the topologies [line 2], SPS allocates each topology with
their minimum number of supervispoderequirements and adds the number of supervisor
nodes to be allocated to the set of newly computed number of supervisoOhofdeses

5,6].

If the total number of supervisor nodes in the cluster is more than the minimum number of
supervisor node requirdxy all the topologies, SPS schedules topologies by proportionally
allocating the available supervisor nodes.atoomplish thatthe total number of desired
supervisor nodes required by all the topolog@dss calculated by adding the individual
supervier node requirements of the topologies [line 10]. It is possible for the cluster to
have more supervisor nodes than In such a situation, the extra nodes should not be
considered. Thus, the minimum of @eandSTvalues is chosen [Line 11] to discasdra
supervisor nodes.

As discussed earlier, multiple topologies can have the same priority level. Priority levels
are captured in sé®R and are sorted in ascending order where a lower numeric value
indicates a higher priority. For th@ priority level in PR the total number of supervisor
nodes required by the topologies with the given priority level is calculat&®Pidkine

13]. Next using the equation lime 14,the maximum number of supervisor notfest can

be allocated to the topologies in tipigority level is calculated as RFinally, using the
equation in line 17, the number of supervisor nodes to be allocated to each of the topologies

in the priority level is computed asj@ndadded to the set of newly computed number of

5C



supervisor noesCN. The computean; value is subtracted from the number of supervisor
nodes allocated to the topologies of the priority level so thatlibeatedsupervisor nodes

can be discarded from the subsequent calculations [Lind'8]steps contained byés

13 to 21 are repeated for every priority levePR and when the number of supervisor
nodes to be allocated for each of the submitted topologies is calculated and adbtled to
theResourceAllocatofunction is called withtCN as an input parameter.

It is to be noted that, SPS computes proportional share of the supervisor nodes in two steps.
First, the proportional share of supervisor nodes is calculated for the individual priority
levels considering the collective desired number of supervisor nodés abpgologies
belonging to each of these priority levels (Line 14). This is necessary to prevent starvation
of the topologies with the lower priorities as it ensures that topologies in a higher priority
level is notallocated withall the available supersor nodes by starving the lower priority
topologies. As SPS does not allow dynamic priority change, starvation of these topologies
can continue indefinitely. In the second step, the computed number of supervisor nodes for
a priority level are proportionglldistributed among the topologies with the given priority
level based on their individual desired number of supervisor nodes (Line 17). As it is
possible for topologies with the same priority level to have varying number of desired
supervisor nodes, this strategy ensures that individual topolgefipsoportional share of
supervisor nodes with respect to other topologies belongihgsame priority levelBoth
SPSand DPS use theResourceAllocatofunction to allocate the computesupervisor
nodes to the topologies. TiResourceAllocatofunction is presented in Tableahd is

discussed next.
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Table 3: The ResourceAllocator Algorithm
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de allocate & by flushing currently occupying worker processes
end if
else
remove (¢ from CNandtp;from TR
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end for
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for Q3@ing N 6 0
Using the round robin strategy (similar to thelsolation Schedule), select W, worker
processes fromé& supervisor nodes
Using the round robin strategy (similar to thelsolation Schedule), assign executors
from E; to the selectedW; worker processe
end for

end for
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TheResourceAllocatoalgorithmstarts by deallocating resources from the topolatjats

are consumingumbers of supervisor nodes that are not equal teeipeectivecomputed
valuesof supervisor noded here can be two scenarios where deallocation of resources is
required while using SPS:

1. SPSis invoked every time a new topology is submitted to the cluster. Based on the
priority indication of the newly submitted topology, already scheduled topologies
may need to give up resources as the previously computed schedules become invalid
with the addion of a new topology. As a result, topologies consuming more
supervisor nodes need to free up the extra supervisor nodes and need to be
rescheduled according to the newly computed value of supervisor nodes to be
allocated.

2. As noted earlieNimbusperiodically invokes the scheduler with a default period of
10 seconds. With passing time, it is possible for some topologies to be killed by the
user or new supervisor nodes to be added to the cluster pool. In situations like these,
the previously competl schedule also becomes invalid as the free supervisor nodes
are left unused. The existing topologies can utilize these free supervisor nodes for
additional performance gairso, a new schedule will be computed by SPS and
topologies consuming less resasdhan the computed values will be rescheduled.

In line with the above discussioiResourceAllocatorcompares the number of
supervisor nodes already allocated with the computed number of supervisor nodes to
be allocated for each of the topologies [Linef4Table 3. If the numbers are not
equal, a new supervisor node allocation will be required for the topology and its

current allocation is removed [Lined Table 3. On the other hand, if both the
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numbers are equal for a topology, then a new allocasiamot required and the
topology with its computed number of supervisor nodes to be allocated value are not
considered in the further scheduling steps [Linef §able 3. This step isrequired
for preventing unnecessary deallocation of topology resourbessteps are repeated
for every priority level ilPR[Lines 3 to 8of Table 3.
Finally, topologies are allocatede computed number of supervisor nodes and executors
of the topologies are mapped to their desired number of worker processes. Fbr the i
topology in the | priority level, the desired number of worker processgsaW¥ selected
from the computed grsupervisor nodes [Line 1ef Table 3. This is done in a round robin
fashion similar to the default scheduler (presented in Section 2.5rhjlarg, the
executors of the topology are also mapped to the selected worker processes following the
round robin strategy [Line 1&f Table 3.
3.3 Dynamic Priority Scheduler (DPS)
Dynamic Priority Scheduler (DPS) uses dynamic priority indication from ¢gped at
runtime to formulate schedules in an online fashion. Unlike &pdication developers
do not determine priority indications of the topologies, instead all of the submitted
topologies are assigned with the same initial priority values. Topologggsassumea
higher or lower priority at runtime based on some trigger conditions such as an increase in
tuple arrival rate. The DPS architecture is illustrateBigure 5
Similar to SPS, the DPS architecture has two components: the DPS schedulez and th
Priority Manager (PM)As noted earlier, while using SP&veloperspecify the priority
levels of the submitted topologies in PM whereas in DPS, all the topologies are assigned a

default priority value by the PM when submitted to the cluster. At rentEntopology may
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indicate a change of priority based on some predefined trigger cosditdimen PM
receives the indication, it changes the priority of that topolbgyelopersieed to define

the required logics for the trigger conditions and implenfentdgics that will be included

in the Storm topologies. As the logic for the trigger conditions are highly specific to
business use cases and the system environments, the responsibility is |efpfuitation
developergo provide the appropriate trigger logics. When a trigger condition occurs, a
topology sends thérigger Onindication and PM updates the priority of the topology. DPS
and then generates a new schedule. Apart from this, PM also assumes two important
respansibilities which are activation and deactivation of topologies that are explained after

the presentation of tH8PS algorithm.
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The DPS algorithm is described in Table 4. The notations aisedlready discussed in
Tablel.
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Table 4: The DPS Algorithm
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DPS starts by querying the cluster for total numbewaflable supervisor nodes [Lirig.

Next, the total number of supervisor nodes required by all the topol®giescalculated

in [Line 2]. Next,the minimum of theC and ST values is chosen [Line 3] and stored in
variable X to discard the extra supervisor nodes that may be present in the cluster. Next,
DPS lterates through the priority levels of the topologies. For topologies ifi phierjity

level of PR, total number osupervisor nodes required by the topologies is calculated as
SPj[Line 5]. Next, minimum oK andSPjis selected and stored in variaBléo make sure

the available supervisor nodes to be allocated to the topologies in the priority levels are not
more tha the desiredS/value [Line 6]. Using the equation in Line 8, proportional
allocation ofP supervisor nodeis computed for each of the topologies with the priority
level and added tset of newly computed number of supervisor nddNsThe steps are

repeated for all the priority levels and finaRResourceAllocator function is called wi@N
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as input parameter. THeesourceAllocator algorithm @esentedn Table 3 andilready
discussed in Section 3.1.1 while discussing SPS.

It is to be noted that, uke SPS, DPS does not compute the proportional share of
supervisor nodes for the priority levels. Instead all the available supervisor nodes are
directly allocated to the topologies in a priority level [Line 6] and only topologies in the
same priority levieshares the supervisor nodes proportionally [Line 8]. Thus, it is possible
for lower priority topologies to starve in the presence of higher priority topologies. The
starving topologies may cease to starve in time if they also assume a higher priedty bas
on some trigger conditions or topologies running currently at a higher priority assume
lower priority due to the occurrence of trigger off signals.

It is established from the above discussion that using the DPS involves runtime
rescheduling of topologs. Whenever topology priorities are changed, some topologies
may need to give up supervisor nodes and some topologies may get awarded with more
supervisor nodes. This nullifies the previously computed schedules for the topologies and
deallocation of supgrsor nodes from some topologies are required. Run time rescheduling
of topologies can give rise to a number of problems including:

1 Tuple Loss If a running topology is immediately rescheduled without deactivating
and waiting for existing tuples to be pessed first, then the existing tuples already
present in the system will be lost which may hamper the functional correctness of
the Stormapplication[33] .

1 Unexpected Termination and Duplication ofExecutors A supervisor daemon
checks Zookeeper for new executor to worker process assignments every 10

secondsAs a result, if a topology is rescheduled, it is possible that the some of the
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previous worker processes the topology was occupying arectiileavhile the
some of the new worker processes from b schedule have not started. In such
a situation,if a newly rescheduled topology is immediately activated without
waiting for some time for the worker processes to properly shut down/start, then
there can be unpredictable outcome for the topologies including tuple loss,
duplicate executors, unexpected worker process termination or even complete
supervisor node terminatiga5,33]
Because of the issues mentioned above, ensuring a smooth run time rescheduling thus
incurs rescheduling overhed83,30] . These problems are wddhown and reported by
other researches such[&8] where the authors introduced two strategies to prevent tuple
loss and unexpected worker process terminations. Firstly, authors irgdoalgtatic dely
of 30 seconds whileescheduling a topology which gives the worker processes ample time
to properly shut down/start. Secondly, authors introduced intermediate message dispatcher
daemons for the worker processes where tuples from one worker processhier &
transported through the dispatcher daeridinile the approaches introduced &3] ensure
a smooth run time reschedulifgy the single topology used in the reseatbley do not
address rescleling multiple Storm topologies. Additionally, introducing daemon
message dispatchers for every single worker processes may also limit the performance and
scalability of theStorm system as a typicabtorm cluster canbe comprise of many
supervisor nodewhere each supervisor node can host a number of worker prodesses.
this thesis, a novel approach is introducedrtortime rescheduling of topologies in a
multitenantStormcluster Using an UML Activity Diagranj46] presented ifrigure 6 the

rescheduling approacds described
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Figure 6: Activity Diagram for Runtime Rescheduling of ar opology

From Figure 6, it can be seen that after the submission of a topology to the cluster, DPS
reads the initial priority indication from the PM and schedules the topology accordingly
(see Section 3.2.2 fahe DPS algorithm). At runthe, topologies communicate with PM

with an indication of the onset of trigger condition. Upon receiving the trigger indication
from a topology, PM deactivates the topology using $t@m Representational State

Transfer (REST) APJ47] . Deactivating a topology ensures that the spout executors of the

topology remain inactive and do not pull any new tuples from Kaflext, PM waits for

the topologies to finish processing the existing tuples in thersy3topologies inform PM

after they have finished processing existing tuplesadtmmplishthis, topologies use two

Stormut i | i titeées kc M8idpr db Nivtbesc h i [@9). Tick tuples are signals
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that are generated from within the topologies with a preconfigusepiéncy. And the
Nimbusclientmakes it is possible for topologies to know if they are in a deactivated state.
Combining theséwo utilities, whenever a topology identifies itself in an inactive state and
there are no tuples left to process, it waits for a predefined number of tick tuples and decides
that it has finished processing the existing tuples and signals PM. PM retei\sgrtal

and understands that it is safe to change the priority of the topology. PM then changes the
priority of the topology and waits for the scheduler to perform the rescheduling. When DPS
finishes rescheduling the topology, PM activates the topokryy,the topology can start
processing tuples with the new resource allocation.

3.4 Implementation

Prototypes for the two schedulers were implemefade8torm version 0.9.(50]. Both the

SPS and DPS schalthg algorithms discussedh Section 3.2 and Section 3.3 are
implemented in JAVAL6 [25] . Storm allows thencorporation othe custom schedulers
through itslISchedule{51] plugin. The plugin is a Java interface where a single method
calledscheduleneeds to be implemented by the developers.Nihbbusdaemon invokes
thisschedulenethod when it needs to run the scheddlbe custom scheduler is packaged

as a standardar packageand placed on the library folder of thembusnode.Nimbus

then needs to be instructed to use the custom scheduler through appropriate configuration
parameters in thdlimbus configuration file. Some&torm APIs that are heavily used to
implement the scheding steps are listed ifb1]. Using these APIs, various operations
such as allocating executors to worker processes, computing total number of supervisor
nodes present in the cluster, freeing upkeoslots are implemented.

The PM module is also developed using JAVAMASQL [52] database is used in the
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backend to store priorities of the topologies. The database is accessed using the Java
Database Connectivity (JDB{§3] API. The communication between various topologies
and the PM module is done througlkseage passing using the Kaffk& message broker.

Chapter 4 discusses implementation details specific to Kafka in more details.
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Chapter 4: Performance Evaluation of the Scheduling Techniques

The performance of the proposed schedulers is evaluated by conducting a number of
experiments based on two popular use cases of distributed stream processing systems. This
chapter describes the use cases and experiments that have been conducted te study th
performance of the proposed priority based schedulers. Implementation details are
provided for theStormtopologies and data producers used in the two use cases. Workload
and system parameters are outlined and performance metrics that are used t tvaluat
proposed schedulers are identified. The results of the experiments are then presented and
insights into system behavior and performance resulting from the performance analyses are
summarized.

4.1 Use Casel: Systems Subjected to the Arrival of Batch Data

The first use case considers a stream processing platform where several producers are
sending data in small batches to the data ingestion layer. Each batch has a fixed number of
tuples and after sending a batch of tuples, producers wait for a predefesdrhount of

time before sending the next batch. MultiSkermtopologies are then used to process the
tuples from the ingestion layer.

Some popular use cases similar to this scenario is the gseasirs / Internet of Things

(I0T) devices for businascritical data analytics in the field bkalthcargd54], urban
developmen[55], automotive industr{56], aviation[57] and many moreéAs an example,
consider a sensor based real time climate monitoring application for a data center where
various types of sensors are used to harvest real fimate information including:
temperature, aiflow, relative humidity etc. for better energy management and protection

of valuable devices, specifically the servers. A use case of such an application is presented
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in [58] where Intel partnered with Baido deploy a reatime sensor based data center
monitoring application which resulted in up to 30% lower power consumption and better
operational management in Baidu data centers. A similarcagph can be seen |59
where HP wuses fAsmart on demand <coolingo
operational costs by up to 40%.

The Sensor/loT devices are usually power and resource condtdamiees and use short
range low rate network communication protocols like ZigBee, MQTT, and Bluetooth etc.
for data transfei60]. Devices send measurement data to centralized "loT Gateways" which
can communicate over the internet to the outside world. Referring to the data center climate
monitoring exampleservers in a data center are mounted on racks where each rack
accommodates mumber of serverand a data center can have thousands of such servers
mounted on several rack®1,62]. A number of sensors are placed on each rack on different
measuringpoints[63]. These sensors send their measurement data to "Gatd&4gs] .

A typical loT gateway has the responsibility tolead these collected device data to the
data analytics platform.

Use Casdl used in the experimental analysis considers a similar application involving
sensors where measurement data are collected fopfenomenaMultiple producer
applications modelling gateways that push batches of synthetically gendasdech the
phenomenon being modelle@.g. sensor readinggo the data ingestion layer are
consideredFour Stormtopologies are used to process these iegedata. The details of

the data producers aglormtopologies are discussed in the next sections.

4.1.1 Data Producers

For the experiments that are run for Use Clgs@ producer applications push batches of
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synthetically generated readings for the respeginenomena to the ingestion layer of the
distributed stream processing platform. The internals of the stream processing platform are
discussed in Section 2.1 of this thegipache Kafkg15] used in thengestion layers a

popular distributed publish/subscribe based messaging systdka can be run as a

cluster on one or more machines where each machine hosts an independent Kafka message
broker. Kafka has four important key concepts. They are:

1 Topic: Streams of incoming data are categorized into topicaessages defined
as a payload of bytes andogpic is a category or feed name to which messages are
published.

1 Partitions: A topic is divided in to multiple parts. Each of these parts is called a
patition and the partitions are distributed throughout the broker nodes in the Kafka
cluster. Partitions are the unit of parallelism of a Kafka topic.

1 Producers: Producers publish data to topics. If a topic has multiple partitions, then
multiple brokers camublish data to that topic in parallel, essdnding datdo a
separate partition (see Figufe

1 Consumers: Consumers subscribe to topics and reads the published messages.
Depending on the number of partitions of a topic, multiple consumers can read data
from the same topic in parallel. Figure 7 illustrates a Kafka topic T With
partitions. N producers are publishing data on the topic &h@donsumers are

reading data from the topic in parallel.

64



Consumerl
Producerl L._._._.__._._l.._.__ > Partition «
Producer?2 = TTeeol| TopicT > Consumer2
---- > Partition -7
ProducerN -.-.o._._.___ . _ = Partition ) ConsumerN

Figure 7: Kafka Architecture

It is to be noted that, Kafka is not a permanent storage solution for the ingested data. A
configurable retention period is used for each topic and after the retention period is over,
data is flushed out from the system.

To send data into partitions oft@pic, Kafka provides developers with the producer API
[66]. Producers publish streams of messages to topicStmchtopologies are used as
consumers to process the ingested messages. For each tyysamf s separate Kafka

topic is created with multiple partitionsor each topic, a producer application is created
using Jav@rogramming languagg25] that pushes messages to the respective Kafka topics
using the producer API. The producer applications are cBlleducerlandProducer2

For sending messages to multiple partitions of a topic in parallel, Java threads are used by
each producer applicatio

Based on the type of the data readings, producers send batches of data to two different
Kafka topics where one of the Kafka topiGspiclis for synthetic data readings for the

first phenomea and the otheKafka topic Topic2is for synthetic data reaws for the

second phenomen (see Table 5). Each of the topic has a partition count of 8 which means

in each topic, 8 producers can push data in par8é&sded on the format and structure of
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real world IOT device data collected and examined fi@", a generic message format is
considered where each message a producer sends to the ingestion layer is structured as a
Comma Separated Value (csv) line with 4 fields. The format is

U <date-time:(String>,<source(String>,<readingValue:(Numbej>,<other:(String>

The first field <datgime> contains the time stamp of the reading, the second field contains

the originating source (gateway ID), the third field contains the reading value specific to
the respective pm®menaand the fourth field contains other information which serves as
metadata such as: device id, serial number.

Various workload parameters that are used to control the content of the messages, the
number of messages in each batch and the time difiet@tween two subsequent batches

sent by the producer applications are discussed in Section 4.1.3.

Table 5: Overview of the Data Producers

Parameter Value | Description

Types of data readings 2 Two types ofreadingsare consideredeachfor one
specific phenomena

Number of Producers for ea¢ 8 8 data producersmnodeled as gateways that py

type of readings synthetically generated messageXtika in small
batches are considered

Number of Kafka topics 2 One of theKafka topics: Topiclis for data reading
for the first phenomena and the other ohepic2is
for the data readings for the second phenomena,

Number of partitions for eac| 8 8 producers can transmit batcheglafa toa topic in

topic parallel

4.1.2 Storm Topologies

4 Stormtopologies are used to process the ingested batches of tuple&df&an The
purpose of using thé Stormtopologies is twofold. Two of th8tormtopologies are used

to infer "Complex Events". A complex event is a simultaneous occurrence of two or more
independent raw events where each raw event signifies an onset of certain situations that
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are analyzed over streams of dgi8] and has been the subject of attenfienresearch
on stream processing systems. In this use case, the two raw events are described as
following:

1 Raw Event 1: A certain proportion of the tuples representing measureradings

of the first phenomenon in a batch has crossed a predefined threshold.
1 Raw Event 2: A certain proportion of the tuples representing measurement readings
of the second phenomenon in a batch has crossed a predefined threshold.

The first topology nanedEventTP1s used to detect Raw Evehtwhich processes tuples
from the Kafka topidopicl The second topology namEdentTP2s used to detect Raw
Event 2 by processing tuples from Kafka topmpic2 Processing time for each tuple is
characterized bg parameter called service time which is discussed in Section 4.1.5.
Simultaneous occurrence of Raw Event 1 and Raw Event 2 signifies the occurrence of the
complex event. Timely detection of a complex event is of interest to the users of the stream
proaessing application. Consider the data center climate control application example for
instance. A complex event in such an application can mean that both temperature and
humidity levelsare outof an operational range and alarms can be generated for external
automated climate control systems which tzke corrective actions suchiasreasing the
airflow or decreasing the air cooler temperature to compensate for the degrading humidity
and tempgature.
The other two topologies are used to persist the ingested data to a storage device (e.g. hard
drive/ black storage such as "Amazon 389)). As discussed, Kafka is not a permanent
storage solutin and it holds the ingested data for a configurable amount of limited time.

Thus, data needs to be shipped from Kafka to a permanent storage facility such that further
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analysis can be performed on these data (e.g. historical analysis by the batchiglata ana
system). Storm topologies are heavily used for dathiaal and transportation in agb
data analytics framework and a very detailed example cafouloed in the Twitter
technology blog70Q].

Stormtopologies are developed using tB®rmlibrary. Both topologieskEventTPland

EventTP2have the same structure as illustrated in Figure

Kafka Parse Bolt Event Detector Event
—> —> >

Spout Bolt Dispatcher

EventTP1 Structure

Kafka Parse Bolt Event Detector Event
—> — —*

Spout Bolt Dispatcher

EventTP2 Structure

Figure 8: Topology Structure for EventTP1 and EventTP2
As shown in Figure 8, botkventTPland EventTP2have four components. The first
component in each topology is a spout which reads data from a Kafka TopicXfor
EventTPlandTopic2for EventTP2 and pushes tuples to the downstream bolts for further
processing. Storm provides support for reading dlmm Kafka by a spout library called
"KafkaSpout"[71]. The next component is a bolt called "Parse Bolt" which parses the
comma separatedlue(csv) structured tuples in multiple fields and forwatds<source>
and <readingralue> field of each tuple to downstream "Event Detector Bolt". Next, the
"Event Detector Bolt" in each topology identifies the occurrence of the raw e¥Raus (
Event 1 foilEventTPJland Raw Event 2 fdEventTP2on a batch by processing the contents

of <readingvalue> field for each tuple. Note that, for both the topologies, a raw event is
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detected if 80% tuplesrea batch has crossed a predefined threshold. The event detection
result is then passed to the ndmtvnstream bolt called the "Event Dispatcher Bolt" which
writes the event detection decisions to a Kafka topic. End systems such as a web based
User Interface (Ul)/Alarm system reads from the Kafka topic to signal the detection of the
raw events. Simultalo@s occurrence of both the raw events signifies onset of a complex
event.

The remaining two topologies that are used for data archival are éatthovalTP1and
ArchivalTP2 ArchivalTP1 is used for archiving ingested data fromopicl and
ArchivalTP2is used for archiving ingested data frmpic2.The topologies have a similar
structure with 3 componentseg Figure 9). The first component is the Kafka spout like the
ones used ikventTPlandEventTP2 The next component is a bolt called "Archival Bolt"
which appends a new time stamp to each ingested tuple, adds an archival tag (e.g. a storage
device identifier) and forwards the tuple to next bolt. Finally, the last bolt on the processing
chain "Batch Dispatcher Bolt" which batches up the tuple for preefbatch length and

dispatches them to disk for archival.

i BatchDispatcher
Kafka Spout Archival Bolt - p

Bolt
ArchivalTP1 Structure

3 Batc DISpatC e
Kafka SpOUt Arcl al Bolt
Vi

Bolt

ArchivalTP2 Structure

Figure 9: Topology Structure for ArchivalTP1 and ArchivalTP2
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Table6 lists the resources that need to be provisioned for the 4 topologieEEBuitTP1

and EventTP2are allotted 8 supervisor nodes. Recall that, 8 producers send batches of
tuples in parallel tahe Kafka Thus, each component (spout/bolt) BfentTPland
EventTPZare assigned 8 concurrent executseg (Tables Column 5) where one batch is
processed on the worker process of one supervisor node. The rest of the topologies
(ArchivalTP1andArchivalTP2) are assigned 4 supervisor nodes each because they have 4
concurrent threads per topology component. The number of supervisor nodes and the
worker processes for a given topology are kept equal following the resource provisioning

best practices providday Storm[72].

Table 6: Topology Resource Provisioning

Topology Desired Number | Desired Number | Number of Number of

of Supervisor of Worker Topology Executors/

Nodes Processes Components | concurrent threads
per topology
component

EventTP1 |8 8 4 8
Event TP2 |8 8 4 8
ArchivalTP1| 4 4 3 4
ArchivalTP2| 4 4 3 4

4.1.3 System Configuration

To run the experiment§torm Zookeeper andafka clusters are set up on an Amazon
EC2 cloud infrastructurfr3]. Storm andafkaboth useZookeeper for state management
and cluster synchronization. In total 32 nodes, running on the Amazon EC2 cloud

infrastructure are used. Amazon provides different types of EC2 nodes depending on the
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CPU and memory capacity. Among the different types of E&ti2s available,@c4.large
type EC2 nodes are used for 8@rmcluster 3 m4.large type EC2 nodes are used for the
Zookeeper cluster and the8l.large type EC2 nodes are used forthéka cluster. Table

7 captures the detailed system configuratiorttierindividual clusters.

Table 7: System Configuration for the Clusters

Cluster Type Configuration Parameter | Value
Storm cluster Number of nodes in th| 26
cluster
Type of EC2 instance c4d.large
Number of CPU 2
cores/instance
CPU clock frequency 2.8 GHz
RAM 3.75 GB
Zookeeper cluster Number of nodes in th| 3
cluster
Type of EC2 instance m4.large
Number of CPU 2
cores/instance
CPU clock frequency 2.8 GHz
RAM 8 GB
Kafka cluster Number of nodes in th| 3
cluster
Typeof EC2 instance m4.large
Number of CPU 2
cores/instance
CPU clock frequency 2.8 GHz
RAM 8 GB

Among the 26 nodes dedicated &tormclusters, 1 node is used for running Mienbus

1 node is used for running the User Interféidd), and 24 nodes are used for running the
supervisor nodes where each supervisor node hosts 2 worker processes. The producer
applications are run on a local machine equipped with 16 GB of RAMwahdel Core

i7 processor with a clock speed of 2.4 GHz ragron Windows7 operating system. The

local machine communicates with the clusters set up on the cloud through internet provided
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by Carleton University with a download speed of 97 Mbps and upload speed of 98.21
Mbps.

Please note that, the average tup@dfer time between the local machine and the Kafka
cluster that is set up on the Amazon EC2 cloud, is in the order of few milliseconds. This is
significantly smaller in comparison to the average tuple processing latency, that is in the
order of hundredsfamilliseconds.

4.1.4 Performance Metrics

Performance of the schedulers is evaluated using 2 performance metrics:

(1) Average complex event inference latency) (A complex event is the simultaneous
occurrence of Raw Event 1 (DetectedHwentTP) and Raw Event 2 (Detected by
EventTP2. Detection of both Raw Event 1 and Raw Event 2 contributes to the
inference of the occurrence of a complex evdiite complex event inference
latencyis the estimate from thraw event detection latencitgtaremeasurd first.
Detection latency foRaw Event 1 is measured by taking two timestamps using
System.currentTimeMillis() from Java Librarypne afterProducerlhas sent a
batch of tuples to Kafka and another after the topologgntTP Ifinishes detecting

the raw event by processing this batch of tuples from Kafka. These two timestamps

are taken by a separate application cal

after it receives the respective messages from Producer Ea@mdTP1l The
detection lateng comput ed by nPerf o i s t he
timestamps (in second$-orRaw Event 2detection latency is measured in a similar
way after receivig similar messagefrom Produce and EventTP2 A complex

event inference latency isstimatedas the maximum of these two raw event
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detection latencies. Average complex event inference latency is thus computed by
taking average of all the computed complex event inference latencies.

(2) Average tuple processing latencyr)TAverage tuple processing latency is the
average time in seconds a tuple takes to be processed $tothetopologies. To
compute T, batch processg latencies are computéar topologies To compute
batch procssing latency oEventTP1 two timestampsre taken using System.
currentTimeMillis() from Java Librarygne after thdroducerifinishes sending a
batch and onafter EventTPfinishes processing the batcrhese two timestamps
are taken byhefi P e applicationafter it receives the respectireessages from the
producer and the topologyh e f P e r f Otheatakeslthigiffesende between
the two timestamp® computehe batch processing laten®y dividing the batch
processing latencby the number of tuples in thhatch, tuple processing latency
for that batchs computed. Average tuple processing lateforyEventTP1lis then
computed by computing tuple processing latency for every batch in the experiment
and taking the average of all the computed tuple procetsiagcies.Similarly,
average tuple processing latency trentTP2, ArchivalTPandArchivalTP2are
computedb y A Rrea d$indilar wayafter receiving similar messagydrom
corresponding producers and the topologies.

The average tuple processing latency for the higher priority topologies is computed
as the average of the mean tuple processing laten&véntTPland EventTP2
Similarly, the average tuple processing latency for the lower priority topologies is
computeds the average of the mean tuple processing latengydbivalTPland

ArchivalTP2
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4.1.5 Workload Parameters

This section describes the various workload parameters used in the experiments.

T

Batch Gap (B): The Batch gap, is the time difference in seconds é&tvsuccessive
batches of tuples sent by the producers. After sending a batch of tuples, a producer
walits for the time specified by the batch gap before sending the next batch of tuples.
If an event is to be inferred from a batch, it must be done witkitirtie frame of the
Bg before the next batch of tuples arrives.
Batch Length (B): Batch length is the number of tuples present in each batch sent by
the producers.
Total Number of Batches (@ Total number of batches is the total number of batches
that ae sent by the producers in each experiment.
Event Factor (B): Event factor is the ratio of the number of batches that will generate
raw events for the two topologieBWentTPland EventTP2 to the total number of
batches in the experiment«{BIt is a eal number between 0 and 1. This parameter
essentially indicates the proportion of batches that will cause the trigger to be in the
ON state. As an example, ifrfBas a value of 80 and-lBas the value of 0.2 then for
16 consecutive batches, raw eventd & detected and the trigger will be in the on
state for the two topologies detecting raw events.
Priority Levels (PR): Two distinct priority levels are used for the experiments, they
are:

o Priority Level, PR = 1: Denotes topologies with higher priorities

o Priority Level, PR = 2: Denotes topologies with lower priorities

While using SPStwo of the topologiesEventTPland EventTP2are assigned
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higher priority (PR=1) and topologiégchivalTPlandArchivalTP2are assigned
lower priority (PR=2).

1 Service Tine (Sigh and Sw): Service time is the amount of CPU time in seconds
each tuple takes to complete its processing 8toamtopology. In line with the
researches if89,41,31], fixed values of service times are used in the experiments.
Specific values oservice timeused in the synthetic workload that is used in the
different experiments are generated with the help ofethod that computes the
factorial of a large number. The method is called iteratively with the number of
iterations chosen in such a way that a desired valsereiice timas achieved. Two
different service times are used for the topologies depenodititgir priority levels.
Tuples processed by a topology with higher priority (Priority Level, PR = 1) has a
service time Hgh whereas tuples processed by a topology with lower priority
(Priority Level, PR = 2) has a service time @f,.SNote that the daes of Sow used
in an experiment is set to half the value a§S

Each experiment is repeated 3 times and average results are colmieethat fixed

values of workload parameters (e.g. service time, batch length, batch gap) are used in each
experiment, thus close values for a given metric are achieved in each of the three
repetitions.

4.1.6 Performance Evaluation of the Priority Based Schedulers

The experiments to evaluate the performance of the proposed priority based schedulers are
run for two scenarios. In the first scenario, a resource constrained Storm cluster is
considered. The proposed priority based schedulers are intended to be usesbiree

constrained Storm cluster where the available cluster resources are not sufficient to fulfill
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the desired resource requirements of the submitted topologies but are sufficient to meet
their minimum resource requirements. Recall from Section 2.thatlin such situations,

the default Isolation Scheduler cannot be used because of the partial scheduling or even
complete starvation of the topologies that are submitted to the cluster. Thus, the Isolation
Scheduler is not considered during evaluatibaystem performance in this scenario and

only the performances of SPS and DPS are evaluated. In the second scenario, the cluster
has adequate number of supervisor nodes to fulfill the desired supervisor node
requirements of all the topologies and perfanoea of the proposed priority based
schedulers are evaluated against the default Isolation Scheduler.

4.1.7 Performance Evaluation for a Resource Constrained Storm Cluster

The proposed priority based schedulers are intended to be used in a resource constrained
Storm cluster where the cluster does not have adequate number of supervisor nodes to
satisfy desired number of supervisor node requirements for all the topolagiested

earlier in such a cluster, Isolation Scheduler fails to schedule all the topoluiabus,

is not considered any further. The two proposed schedulers use priority indication from the
topologies to proportionally allocate the available limited resources to the topologies. SPS
uses static priority indication of the topologies whichmmrided by thelevelopersn the

topology submission time while DPS uses runtime dynamic priority indication of the
topologies which are generated by the topologies at runtime based on some predefined
trigger conditions.

Recall from Table 6 that a totaumber of 24 supervisor nodes are desired by the 4
topologies used in the experiment. For the resource constrained case, the available number

of supervisor nodes in the cluster is reduced to 16. For such a cluster, resource provisioning
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of the topologies sing SPS is captured in Table 8.

Table 8: Topology Resource Provisioning using SPS

Topology Name | Priority Level Desired Number| Minimum Number of
(PR) of Supervisor Number of Supervisor
Nodes Supervisor Nodes Allocated
Nodes
EventP1 1 8 4 6
EventTP2 1 8 4 6
ArchivalTP1 2 4 2 2
ArchivalTP2 2 4 2 2

SPS allocates topologies with available supervisor nodes in the resource constrained cluster
using the algorithm described in Section 3.2. Developers provide the priority indication
and minimum number of supervisor node requirements for each topology at topology
submission time (see Column 2 and 4 of Table 8). The priority indisatifdthe topologies
aredetermined by the developers based on the business significances of thgiespblar

the minimum number of supervisor node selection, the system configuration of the cluster
needs to be taken into consideration. As described is Table 7, each supervisor node in the
cluster has 2 CPU cores and thus each supervisor node hostse? prartesses each.
Recall from Table 6 that botBventTPland EventTP2have 8 executors per component

and 8 worker processes. Thus, at least 4 supervisor nodes are needed for these topologies
to run. Similarly, 2 supervisor nodes are needed at minimunth®rlow priority
ArchivalTPlandArchivalTP2(Column 2 and 4 of Table 8). The resource provisioning for

the topologies remains unchanged throughout the experiment while using BRBess

not allow run time priority change of the topologies.

On the othehand, DPS reacts to the reported trigger indications from the topologies and
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reschedules the topologies acaongly. Recall from Section 3.8at topologies report the
trigger indications based on predefined logic. For the experiments in this use case,
EventTPland EventTP2report the trigger condition when a predefined percentage of
tuples in a batch crosses threshold. Table 9 captures the supervisor nodes allocated to the
topologies when using DPS. Initial priority levels of the topologies can be feman
Column 2 and it can be seen that all topologies are assigned the same initial priority level.
In such a situation, using the DPSaithm described in Section 3.8he available 16
supervisor nodes are proportionally shared among the 4 topologesdqlkann 4 of Table

9). When a trigger ON indication is reported lByentTPlandEventTP2at runtime, they

are assigned a higher priority level (Columra8fl all the available supervisnodes are
allocated to them €& column 5). The lower priority tologies e.g.ArchivalTP1and
ArchivalTP2are temporarily starved (0 supervisor nodes are allocated) until the higher
priority topologies finish inferring complex events and send trigger OFF indication.

Table 9: Topology Resource Proisioning using DPS

Topology Initial Priority Priority Number of Number of
Level (PR) Level (PR) Supervisor Supervisor

when Trigger | Allocated (Event | Allocated (Event
ON Trigger OFF) Trigger ON)

EventTP1 2 1 5 8

EventTP2 2 1 5 8

ArchivalTP1 2 2 3 0

ArchivalTP2 2 2 3 0

A summary of the parameters used in the experiments is presented in Talblee10.
parameters are divided infocategories: workload and systelthe experiments are run
following a factor at a time method where one of the parameters is changed while others

are held at their default values (indicated in bold at Table 10).
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Table 10: Summary of Parameters Used in the Experimets

Parameter Type Parameter Value

Workload Batch Gap (B) {40,60,80} seconds
Batch Length (B) {60,80,100} tuples
Total Number of Batches | 80
(B7)
Event Factor (B {0.2,0.50.8}

Service Time for Higher | {0.1,0.20.3} seconds
Priority Topologies (&gn)

Service Time for Lower | (Snigh/2)
Priority Topologies (&w)

System Total Number of 4
Topologies
Total Number of 16

Supervisor Nodes Presen
in the Cluster
Total Number of 24

Supervisor Nodes Desireg

by the Topologies

Number of Kafka Topics | 2

Number of Parallel 8

Producers in Each Topic

4.1.7.1 Effect of Batch Gap Bc)

As discussed before, Batch Gaps(Bhdicates the time difference in seconds between two
successive batchésat aresent by a producer. Complex evenéed to be inferred within

this time frame so that a decision on the occurrence of events in the current batch is
available before the next batch of tuples arrive on the system. Following three outcomes

are possible from processing a batch of tuples byojh@ogies inferring events:
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1. Trigger OFF: Trigger condition is not satisfied for the topologies that are detecting
raw eventgEventTPlandEventTP2. Thus, no trigger ON indication is sent by the
topologies and their priority is also not changed by tig$e Table 9 Column 4).

2. Trigger ON: Trigger condition is satisfied BEyentTPlandEventTP2and a trigger
on indication is reported to PM. PM changes the priority of the topologies to a
higher priority level (from priority level 2 to priority level 1) éfEventTPland
EventTP2the topologies with higher priority get alie available supervisor nodes
(see table 9, Column 5).

3. Event Occurred: Raw event is inferred. The raw events and the composition of
complex event are discussed on Section 4.1.2

Figure 10captures the effect ofd8on complex event inference latency. For any value

of Bg, SPS results in a highee Than that of DPS. Being an offline scheduler, SPS cannot
react to run time trigger indications sent by the topologies. Thus, both evenhmfegh

priority topologies are allocated 6 resources statically whereas DPS can react to the priority
indications of the topologies and allocates 8 supervisor nodes to each of the high priority
topologies. Thus, high priority topologies are allocatedensupervisor nodes when DPS

is used and that results in a 38% lowertffan that of SPS. It can be also seen that,
increasing the value ofdhas no effect on theevalues obtained by any of the schedulers.
This is because, while the number of tuples in a batch and the service time for each tuple
remains the same, the event inference latency is not impacted by a higher valuichB

only provides a longer time wilow for topologies to infer complex events.
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Figure 10: Effect of Bc on Te

For every value of B averagduple processing latency{)for higher priority topologies

is higher fo SPS compared to that of DP®€sFigure 11). Again, DPS allocates more
supervisor nodes to topologies whilgigger condition is satisfiedése Column 5 of Table

9). Thus, for thedefault o value of 0.5 and total number of batches)(Bf 80, trigger
condition will remain satisfied for the topologies detecting raw evdewentTPland
EventTP2 for 40 batches and these topologies will get 8 supervisor nodes each. For the
remaining40 batches, DPS will allocate 5 supervisor nodes to the 2 topologies. On the
other hand, SPS will keep the initial allocation of 6 supervisor nodes to the higher priority
topologies throughout the experiment. Thus, for any givevallie, DPS results inlawer

Tt value for topologies with higher priority compared to that of SPS (see Figure 11).
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Conversely, Figure 12 shows that for every value §fTg for lower priority topologies is
significantly higher for DPS than that for SPS. With DPS, when higher priority topologies
are inferring complex eventiwer priority topologies are temporarily starved as all the
available supervisor nodes are allocated to the higher priority topologies. Thysydarée

of 0.5 and total number of batchesrBf 80, lower priority topologies will starve for 40
batchesas all of the available supervisor nodes in the cluster are allocated to the higher
priority topologies EventTPlandEventTP2 while lower priority topologiesArchivalTP1
andArchivalTP2 starve (se Column 5 of Table 9). Note that this starvation igptaary

and lower priority topologies are allocated supervisor nodes again when the higher priority
topologies report a trigger off indication after successfully inferring all the complex events
in those 40 batches. Also, increasing thevlues increasethe starvation time of the
lower priority topologies while using DPS. For an example, whensB40 seconds,
topologies starve for 40*40 = 1600 seconds whereas when @& seconds, topologies
starve for 40*60=2400 seconds before getting back the supenades to start processing

the tuples that are waiting in Kafka to be processed. As discussed in Section 4.1.1, each of
the ingested tuples in Kafka has a sequential id caffsétand Kafka stores these tuples
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for a preconfigured retention period. Tépgies keep track of the offsets of the tuples that
are pulled from Kafka and periodically stores the information on Zooké@pjer Thus,

when the starving lower priority topologies get back their super nodes, they can start
processing the leftover tuples by looking at the last offset information stored in Zookeeper.
The default retention period in Kafka is 168 hours or 7 figdlsvhichis more than enough

for the lower priority topologies to resume operation and complete processing of the
leftover tuples. On the other hand, as SPS is obliviouart time priority indication and
topologies are never rescheduled thus lower priority tgpesoare never starved. Thus,

increasingc values has no effect onr When using SPS.
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80 0.223631 38.45055

Figure 12 Effect of Bc on Tt (Lower Priority Topologies)
4.1.7.2 Effect of Service Time (Sigh and Sow)
From Figure 13, it can be seen thatificreases with the increase iRg® Service time
signifies the amount of CPU time in seconds each tuple takes to be processed. Thus, a
higher value of fgn signifies a higher CPU time for each tuple. To infer complex events,

all the tuples in the batch needs to be processed. For any given valyg ot fr SPS is
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higher than that of DPS. This is because of the allocation of mpex\ssor nodes to
topologies inferring complex events by DPS than that of SPS (see Table 8 and Table 9).
Another observation that can made from Figure 13 is that for higher valuagnptte
difference in Evalues between SPS and DPS is higher. F@xample, from Figure 13,

when Sigi=0.1, Te resulted using SPS is 21% higher than that of DPS whereas when
Shigh=0.3, Teresulted usin@PS is 39% higher than that of DPS. To explain this, recall that
Storm is a pull based system. The number of tuplesStoan pull into the system from

Kafka per topology is dictated by two parameters: {&)chSizeBytesand (2)
maxSpoutPendinfi71,72]. The first parameter defines how many tuples are pulled at a
time from Kafka and the second parameter defines the maxmorber of tuples that can

be present in the system per topology at a given time. If the system already has tuples equal
to the number set bypaxSpoutPendingarameter, no tuples are pulled from Kafka until

the existing tuples are processed. Thus, in Stat@mny given timethe maximum number

of tuples that can be present in the system per topology is fixed. Thus, while the number of
supervisor nodes allocated to the topologies and the number of tuples that are pulled in the
system per topology remain sana@ increase inngn signifies more contention for CPU
resources. Thus, in lower values @fy$ difference in E values achieved using SPS and
DPS is lower and vice versseg Figure 13).

Same discussion applies for the effect p§ndn average tupl processing latencyyTor

higher priority topologies presented in Figure 14.
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Figure 13; Effect of Shgh on Te
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Figure 14: Effect of Siigh on Tt (Higher Priority Topologies)
From Figure 15, for lowepriority topologies, T values increase with the increase igw S
for both SPS and DPS for the reasons discussed earlier. Recall from Section 4thah that
Sow= (Shigh/2). Values of T resulted using DPS are much higher than that of SPS for any
values of Sw because of the starvation of lower priority topologies that occurs using DPS.
The reasoning behind the starvation of the lower priority topologies and thus a significantly

higher T values while using DPS is already discussed in Section 4.1.7.1.
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Figure 15: Effect of Sow on Tt (Lower Priority Topologies)
4.1.7.3 Effect of Batch Length (B.)
From Figure 16, one can see that as value_ai@eases, dvalue also increases for both
SPS and DPS. A higher value af€ignifies more number of tuples in a batch. As discussed
on Section 4.1.2, occurrence of the complex events is determined by processing all the
tuples in a batch. Thus, a higher value oftanslates to a higher=value for both SPS
and DPS. Also, it can be observed from Figure 16 that for any value 0% Beaulted
using SPS is approximately 50 % higher than that of DPS. This is because, DPS allocates
a higher number of supervisor nodes to the topologlakewhey are inferring complex

events than that of SPSésTable 8 and Table 9).
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Figure 16: Effect of BL on Te

From Figure 17, for any value of BSPS results in a higher Average tupftecessing
latency (Tr) than that of DPS for higher priority topologies. Recall from Table 8 and 9 that
DPS allocates more supervisor nodes to the topologies detecting dves$TEland
EventTP2 when a trigger condition is in ON state. Thus, fervialue of 0.5 and total
number of batches B of 80, lower priority topologies will starve for 40 batches as all of
the available supervisor nodes in the cluster are allocated to the higher priority topologies
(EventTPlandEventTP2. For the remaining 40 bzhes, DPS will allocate 5 supervisor
nodes to the 2 topologies inferring complex events. On the other hand, SPS will keep the
initial allocation of 6 supervisor nodes to the higher priority topologies throughout the
experimentgee Table 8). Thus, DPS téts in lower F (~ 13%) values for topologies with
higher priority. Also, recall from Section 4.1.7.2 that,any given timethe maximum
number of tuples that can be present in the system per topology is fixed. ¥dossThot

change with a change in_Bor any of the schedulers
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Figure 17: Effect of BL on Tt (Higher Priority Topologies)
Conversely, as seen on Figure 18, for lower priority topologies, DPS results in much higher

values of TT for any BL. The reasoning behind this is already discussed on Section 4.1.7.1.
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0 o o o
50 60 70 80 90 100
B (number of tuples in a batch
BL (humber of tuplesin | Tt SPS (seconds) Tt 17 DPS (seconds)
a batch)
60 0.213334 29.93538
80 0.21962 30.05407
100 0.22712 30.48642

Figure 18 Effect of BL on Tt (Lower Priority Topologies)
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4.1.7.4 Effect of Event Factor ()

From Figure 19, it can be seen thatvalues obtained using DPS are approximately 35%
higher than that of SPS for any. Encreasing Eincreases the number of complex events
to be inferred by the topologies. Recall tH2PS allocates the event detecting topologies
with 8 supervisor nodes h their trigger indication is in ON state and does not change
the schedule until all the complex events are sutdgsmferred (e Table 9)When B

is 0.2, topologies are allocated 8 supervisor nodes for 16 consecutive batchesp is8hen E
0.5, topolmies are allocated 8 supervisor nodes for 40 consecutive batches andswhen E
is 0.8, topologies are allocated 8 supervisor nodes for consecutive 64 batches out of
Br=80 batchesWhereas, SPS allocates the event inferring topologies with 6 resources

and newer changes the scheduledsTable 8).
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w 25
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Q
2 1 SPS
i DPS
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0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
E
Ep Te1 SPS (seconds) Te 1 DPS (seconds)
0.2 26.34626 19.38702
0.5 26.47061 19.33002
0.8 25.92391 19.26717

Figure 19: Effect of Ep on Te
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Similar observations can be made from Figz@eon the effect of ion T+ obtained by

higher priority topologies.

0.37
0.35
0.33
0.31
0.29 SPS
F 0.27 DPS
0.25
0.23
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

=3
Ep T+ 1 SPS (seconds) Tt1 DPS (seconds)
0.2 0.327086 0.317942
0.5 0.328057 0.280137
0.8 0.333045 0.260422

1 (seconds)

Figure 20: Effect of Ep on Tt (Higher Priority Topologies)

From Figure 21, one can see that a higher value @@dtlts in higher Afor lower priority
topologies while using DPS. A highep #alue translates to a longer starvation time while
using DPS. Given the default batch gapi860 seconds and total number of batches B

is 80, when Eis 0.2, lower priority topologies starve for 16*60 = 960 seconds before they
regain 3 supervisor nodes each and resumes processing tuples (Table 9). Similarly, when
Eris 0.5, lower priority toplogies starve for 40*60=2400 seconds. This is reflected on
Figure 21. T values for SPS remains uninfluenced lpyak SPS keeps the initial supervisor
node allocation throughout the experiment and lower priority topologies never starve

(Table 8).
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Figure 21: Effect of Ep on Tt (Lower Priority Topologies)

4.1.7.5 Additional Experiments on a Smaller System

In order toinvestigate the effect of the number of resources on performance, the
experiments for the resource constrained case presented in Section 4.1.7 are repeated on a
smaller system comprising 8 supervisor nodes. The smaller cluster was set up using
machinesaval abl e i n Carl eton Universityés Real
4 topologies used in the experiments are already described in Section 4.1.2. The
performance metrics and the workload parameters for the experiments are the same as those
describedn Section 4.1.4 and Section 4.1.5 respectively. The VMware [86] virtualization
hypervisor is used to set up the nodes (Virtual Machines). The nodes are connected through
a private local area network using a 100 Mbps Ethernet connection. Once again, the
experiments are run following a factor at a time method where one of the parameters is
changed while others are held at their default values.

All the experiments investigating the impacts @f BL, Sigh, Sow and E show that the

relative performances the scheduling policies do not change with a change in the number

of nodes. The performance trends for SPS and DPS are similar to the ones observed in the
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corresponding experiments performed on the Amazon EC2 cluster comprising 16
supervisor nodes describ&ection 4.1.7.

4.1.8 Performance Evaluation for a Resource Unconstrained Storm Cluster

A resource unconstrained Storm cluster has the adequate number of supervisor nodes to
satisfy requirements for all the topologies. For such a cluster, SPS, DPS andnsolatio
Scheduler are expected to perform comparably with one another3as #ile schedulers
provision the topologies with their desired number of supervisor nodes. To validate this,
performance of SPS and DPS are compared with that of the Isolation Schadale
resource unconstrained Storm cluster comprising 24 supervisor nodes. 4 Storm topologies
that were discussed in Section 4.1.2 are used. Total number of supervisor node desired by
the topologies can be calculated from Table 6 which is 24. The clis®rhas 24
supervisor nodes available. Other than the total number of supervisor nodes present in the
cluster, all other parameters and their values are kept same as Table 10. Similar to the
experiments in Section 4.1.7, a factor at a time method dstasan the experiments where

one of the parameters is changed while others are held at their default values (indicated in
bold at Table 10).

4.1.8.1 Effect of Batch Gap (Bs)

Batch Gap refers to the amount of time producers wait between sending of subsequent
batdes of tuples to Kafka. Topologies inferring complex events need to identify individual
raw events within the time durationcBo that before the next batch of tuples arrive, a
decision for the presence of complex event on the current batch is made. A resource
unconstrained Storm cluster has adequate number of supervisor nodes to satisfy the desired

number of supervisor node regements of all the topologies, so SPS, DPS and Isolation
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Scheduler produce the same resource allocation for the topologies where each topology
gets their desired number of supervisor nodesTable 6). Thus, average complex event
inference latency (@ values also remain similar as seen on Figure 22. For any value of
Bg, Teachieved by all 3 schedulers remain same (~18 seconds). It is to be noted that, while
SPS and Isolation Scheduler results in very similar valueg,ofalues of E are slightly
higherfor DPS. This is because of the temporary deactivation overhead of topologies while
using DPS that is discussed briefly Section 3.2.2. It can be also seen that, increasing the
value of Bs has no effect on theglvalues obtained by any of the 3 schedul&tss is
because, while the number of tuples in a batch and the service time for each tuple remains
the same, the event inference latency is not impacted by a higher valgevhicBonly

provides a longer time window for topologies to infer complex &sven
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40 18.64072 18.99564 19.87266

60 18.7413 19.22793 20.2056

80 18.7739 19.19507 20.16501

Figure 22: Effect of Bc on Tk
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Similar observations can be made for #iverage tuple processing latency)(for higher

priority topologies (as seen on Figure 23) as well as for the lower priority topologies (see

Figure 24). Note that,+lis the average tuple processing latency whieefers to average

complex event inferaze latency. A complex event is inferred by processing all the tuples

in a batch. Thus, as expecteddsignificantly higher thanT SPS and Isolation Scheduler

results in very similar Tvalues whereas because of the additional overhead resulting from

the temporary deactivation of topologies, DPS results in slightly higher valugs@hgde

again, increasing Bvalues also have no effect on thev@llues as a higher value o§B

% 0.245 S / %
2 E = -
g 023 E = % = / .
b3 = = E Il Isolation
H\Hz% Em
0.2 = = ,,..-"‘,' = S v, DPS
40 60 80
Bg(seconds
Bg (sec) Tr. Isolation(sec) Tt- SPS (sec] Tt- DPS (sec)
40 0.16335 0.163779 0.1678441
60 0.161568 0.16497 0.1710583
80 0.1645127 0.1644863 | 0.1707059
Figure 23: Effect of Bc on Tt (Higher Priority Topologies)
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40 0.236887 0.238913 0.248231
60 0.237425 0.242956 0.247315
80 0.237834 0.233661 0.252401

Figure 24: Effect of Bc on Tt (Lower Priority Topologies)
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4.1.8.2 Effect of Service Time (Bighand Sow)

Service time indicates the amount of CPU time each tagés to be processed on a Storm

topology. As shown in Figure 25, asighincreases, d also increases as each tuple in a

batch takes longer time to be processed. Also, in line with the previous experiments, for

any given value of i, Te values for SP&nd Isolation Scheduler resutt & very small

difference (~ 5% whereas # values obtained usg DPS are slightly higher (~8%han

that of the Isolation Scheduler. This is due to the overhead associated with the deactivation

of topologies discussed eiarl

30
=25 — %
2 20 — =
§ 15 E % E % 11 Isolation
L PINITEY =7 =7 o
=& 127 187 =
E = =
O = = / = / ‘
0.1 0.2 0.3
Sign (SECONdS)
Shigh (sec) | Te- Isolation(sec) | Te- SPS (sec) Te- DPS (sec)
0.1 12.78481208 13.27097 13.53744
0.2 18.94129545 19.22866 20.2056
0.3 26.51244 26.76899 27.03589

Figure 25; Effect of Shgh on Te

As discussed in Section 4.1hgher priority topologies have service timggSwhile the

lower priority topologies have a service timesS (Shigh/2). Figure 26 depicts the effect

of Shigh on average tuple processing latency) (@ higher priority topologies. Asngn

increasestuples spend longer time on the system and tuple processing latency also

increases. In line with the previous experiments, for any valugef SPS and Isolation

Scheduler results in similarrValues while DPS results in a slightly highertian that

of Isolation Scheduler because of the topology deactivation overhead discussed earlier. A
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similar set of observations are obtained for the variationr with Sow and the relative

performance of the three schedulers for lower priority topologies (saseF@).
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Figure 26: Effect of Swgh on Tt (Higher Priority Topologies)
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Figure 27: Effect of Sow on Tt (Lower Priority Topologies)
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4.1.8.3 Effect of Batch Length BL)

Figure 28 shows thale increases as Bncreases. A higher value of. Bignifies more

number of tuples in a batch. As discussed on Section 4.1.2, occurrence of the complex
events is determined by processing all the tuples in a batch. Thus, a higher value of B
translates to &igher Te value. As discussed in the previous experiments, for a resource

unconstrained Storm cluster, Isolation Scheduler, SPS and DPS all result in a schedule

where each topology gets their desired number of supervisor nodes. As a easllied

obtaned using all 3 schedulers are similar. While for a given 8PS and Isolation

Scheduler results inevalues with a small difference (~5%) for DPS is slightly higher

(~8%) than that of Isolation Scheduler. This is because of the added overhead due t

deactivation of topologies discussed earlier.
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Figure 28 Effect of BL on Te
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For any of the three schedulers, an increaseciha® no effect on the average tuple
processing latencyrTfor higher and lower priority topologies as seen on Figure 29 and

Figure 30 respectively. The reasoning behind this is already discussed on Section 4.1.7.3.
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Figure 29: Effect of BL on Tt (Higher Priority Topologies)
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Figure 30: Effect of BL on Tt (Lower Priority Topologies)
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4.1.8.4 Effect of Event Factor ()

Event Factor determines the proportion of batches that contains events and give rise to a
complex event. Thus, increasingiBcreases the number of complex events to be inferred

by the topologies. Figure 31 shows, changesHdvdiues has no effect onglaverage
complex event inference latency This is because, in a resource unconstrained Storm
cluster, topologies are always provisioned with their desired number of supervisor nodes
which does not change over time. In line with the previous experihmestdts, Evalues
obtained using all 3 schedulers are similar with a smaller difference (F6¥@given b,

a slightly highern(~8%) Te is achieved by DP$ comparison to the other 2 schedulers

because of the deactivation overheatbpblogies discussed earlieeésFigure 31).
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Ep Te- Isolation(sec) | Te- SPS (sec) | Te- DPS (sec)
0.2 18.64072 18.99564 19.87266
0.5 18.7413 19.22793 20.2056
0.8 18.7739 19.19507 20.16501

Figure 31: Effect of Ep on Tk
Average tuple processing latencydlso remains unaffected by tor both higher priority
topologies (Figure 32) and lower priority topologies (Figure 33). Once again, for a given
Ep, Tt obtained using DPS is slightly higher than that of Isolation Sckedtiereas &

obtained with SPS is closer to Isolation Scheduler that achieved with DPS.
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4.2 Use Case2: Systems Subjected to the Arrival of Continuous Data

For the second use case, a stream processing platform where data producers are
continuously sending data at variakd¢es is considered. An example of such applications

is continuous mining of social network data such as, analysis of twitter streams for trend
analysis and sentiment analylsi$,76]. Usually, social networking platforms expose APIs

to tap on their stream data and continuously push the streams to a data analytics platform.

Figure 33: Effect of Er on Tt (Lower Priority Topologies)

10C




For example: Twitter allows developers to access the continuous twitter streams of
different topics of inteest (e.g. music, politics etc.) through a Twitter Firehose [XAL

Using this API, developers collect live twitter feeds and continuously push the data to a
data analytics platform for analysis. A goodmple of such a system has been described
in[7§].

For Use Case 2 that corresponds to stream processing platforms subjected to the arrival of
continuous streams of data, several producers are continuassiyng synthetic data to

the ingestion layer and are then processed by two Storm topologies. Specific
implementation details of the producers and the developed Storm topologies are discussed
in the next sections.

4.2.1 Data Producers

Data producers considered lise Case 2 are sending data streams of two types to two
different Kafka topics. The two types of streams are characterized by two different subject
of interests. As an example, one subject of interest can be twitter feeds about politics and
the other came twitter feeds related to music.

Like the producers that are used in Use Case 1, the producer applications for Use Case 2
are also developed using the Java programming lang@8pgerhe producer applications
continuously generate synthetic data relate2ldobject of interests that pushed to 2 Kafka
topics at a given rate using the Kafka producer B). The first topic is calle@iFeedD

which has 16 partiton§ he ot her tFeedd cwhisclt ah & Bodéadhp ar t i t
topic, a producer application is created using Jaegramming languagthat pushes
messages to the respective Kafka topics using the producer API.cbue@r applications

are called’roducerlandProducer2 For sending messages to multiple partitions of a topic
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in parallel, Java threads are used by each producer application.
Based on the dataset available from Stanford Social Network Datas¢®9kite generic
structure is developed with 4 fields. The format is

0 <datetime:(String)>,<source:(String)>,<Content:(String)>,<other:(String)>
The first field contains the timestamp for, the second field contains the name of the user,
the third field contains the content of the message (e.g. tweets) and the fourth field contains
the platform specific metdata information, for example the langeagf the message,
time-zone offset etc. Such a format of data with four fields can be used in the context of
various streaming data scenaridbse workload parameters used to control various aspects
of the producer applications that push data to Kafkaliareissed on Section 4.2.3.
4.2.2 Storm Topologies
While continuous processing of tuples can correspond to a number operations such as
monitoring, analytics, ads targeting, data synchronizaff), sentimentand trend
analysis of twitter feedgr5,76], the topologies in Use Case 2 are not tied to any specific
computation. Insteaprocessing time for each tuple is characterized jpgrameter called
service time which is discussed in Section 4.2.5.
Two Storm topologies are used to process the continuously ingested tuples from Kafka.
The first Storm topology callediP1is used to process streams of tuples from the Kafka
topic Feedl The second topology, calléidP2is used to process streams of tuples from

Kafka topicFeed2 Figure 34 illustrates the structure of the topologies.
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Figure 34: Topology Structure for TP1 and TP2
The topologies have similar structure. As seen on Figure 34, the first component in these
topologies is a Kafka Spout whicubscribes to a Kafka topic and emits the tuples to
downstream bolts. The next component is the "Parse Bolt" which parses the csv structured
tuples and forwards the contents of the <Content> field to downstream "Process Bolt". The
Process bolt processeschauple for a time characterized by the service time parameter
(discussed in Section 4.2.5) and forwards tipdet to the "Dispatcher Bolt"€g Figure 34)
which writes the result to a Kafka topic for the end systems (e.g. external Ul) to realize.
Table 11 lists the resource provisioned for the 2 topologdi€dlis allocated 16 supervisor
nodes as it &is 16 executors per componergg<Lolumn 5) to process tuples from 16
producers sending tuples in parallel. SimilafliP2is assigned 8 supervisor nodesdngse
it has 8 concurrent threads per topology component to process tuples from 8 producers.
The number of supervisor nodes and the worker processes for a given topology are kept at

equal following the resource provisioning best practices provided by $1@m
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Table 11. Topology Resource Provisioning

Topology Desired Number Desired Number of Number of
of Supervisor Number of Topology Executors/
Nodes Worker Components concurrent
Processes threads per
topology
component
TP1 16 16 4 16
TP2 8 8 4 8

4.2.3 System Configuration
The system configuration for Use Case 2 is same as used in Use Gas&4dtion 4.1.3)
where 32 nodes running on an Amazon EC2 cloud are used for setting up Storm, Zookeeper
and Kafka clusters. Refer to Table 7 for an overview of the system configuration for the
clusters that are used in the experiments for Use Case 2.
4.2.4 Performance Metrics
Performance of the schedulers is evaluated using two performance metrics that are
described.
91 Average tuple processing latencyr)TAverage tuple processing latency is the
average time in seconds a tuple takes to be processed by thedtologies. To
compute T of TP1, two timestamps are taken using SystemnrentTimeMillis()
from Java Library,one after thé’roducerlstarts sending a tuples at the beginning
of the experiment and one after thE1 finishes processing all the tuplestimat
experimentThese two timestamps are taken by ¢
that is run on the local machine after it receives the respective messages from the
producer and the topology.hTe #fA Per f o application ther

betweenthe two timestamps and divides the result by the total number of tuples
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used in the experiment to get the average tuple processing latem&iféwerage
tuple processing latency f@iP2is computed following the similar approach.

1 Scheduling Overhead (O): Scheduling overhead is the amount of time in seconds it
takes for a topology to be rescheduled at runtime when DPS is used. To measure
the scheduling overhead, one time stamp is generated when a topology sends a
trigger indicationand another time stamp is generated when the topology is
successfully rescheduled by DPS and has started processing with the new resource
allocation. The difference between theseo timestamps is the scheduling
overhead. Recall from Section 3t&at runtime rescheduling of a topology by DPS
is a threestage process where in the first stage, a topology sends a trigger indication
and PM immediately deactivates the topology and waits till the topology finishes
existing tuples. In the second stage, the lkagpp signals PM that it has finished
processing the existing tuples and PM changes the priority of the topology. Finally,
in the third stage, when DPS successfully reschedules the topology using the
algaithm described in Section 3.and the PM activatethe topology and the
topology starts processing tuples with the new resource allocation. All the three
stages contribute to the scheduling overhead.

Note that, resource management is performed by SPS in an offline fashion and SPS
is invoked only during syem initialization. Since SPS does not incur any
scheduling overhead at runtime, O for SPS is zero.

4.2.5 Workload Parameters

For the experiments that are run in Use Case 2, it is assumed that producers are sending

data to Kafka f ol | BW2nmgan OmGH midelna/p@ibdfobdatano d e |
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arrival with a low rate is followed by a period of data arrivals with a high rate. It is assumed
that, among the two Kafka topics, 16 producers that are sending data to the Kafka topic
Feedlare characterized by this On/Off model. The mean arrival ratbdéauples sent to

the Kafka topideedlcan be expressed by the following equation:

A

ISd || B NG RO SO 0
Where
1 _ is the high rate for the tuplarrival to topic Feedl using the previously
described On/Offnodel.
1 _ isthe low rate for the tuple arrival for topic Feed1.
1 riis the proportion of tuples with rate  and g is the proportion of tuples

with rate_

Note thatiri+r> =1.

In all the experiments is considered to be half of  Thus,_ —— _Fixed

rates are used for and _  such that inter arrival times for the tuples remain fixed.
In addition to the workload parametansed in Equation 1, the following parameters are
used in the experiments:
1 Service Time(Snigh and Sw): The parameter service time is already discussed in
Section 4.1.5.
1 Tuple Arrival Rate for Topic Feed2 ( dUnlike Feedl, tuple arrival for topkeed?2
does not follow the On/Off model. Instead 8 producers send tuples at a fixed rate
to the topid-eed2.

1 Total Number of Tuples Generated by Each Produce): (8l the total number of
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tuples sent by a producer in an experiment.
Each experiment isepeated 3 times and average results are computed. Note that fixed
values of workload parameters (e.g. service time, tuple arrival rate) are used in each
experiment, thus close values for a given performance metric are achieved in each of the
three repetibns.
4.2.6 Performance Evaluation of the Priority Based Schedulers
The experiments to evaluate the performance of the proposed priority based schedulers
are run for a resource constrained Storm cluster where the available cluster resources are
not sufficient tofulfill the desired resource requirements of the submitted topologies but
are sufficient to meet their minimum resource requirements. Note that, using the default
Isolation Scheduler results in partial scheduling or even complete starvation of the
topologes depending on the resource deficit in such situations. Thus, the Isolation
Scheduler is not considered during evaluation of system performance in this scenario and
only the performances of SPS and DPS are evaluated.
4.2.7 Performance Evaluation for a Resource&Constrained Storm Cluster
Recall from Table 11 that a total number of 24 supervisor nodes are desired by the 2
topologies used in the experiment. For the resource constrained case, the available number
of supervisor nodes in the cluster is reduced to 20ilks resource constrained cluster,
SPS uses static priority indication of the topologies which are provided by the developers
in the topology submission time while DPS uses runtime dynamic priority indication of the
topologies which are generated by tbeologies at runtime based on some predefined
trigger conditions.

Table 12 captures the resource provisioning of the two topologies using the SPS algorithm.



TP1that processes tuples from Kafka topmedlis assigned a higher priority whileP2

that praecesses tuples from Kafka togteed2is assigned a lower prioritgde Column 2).
Column 5 of Table 12 shows th&P1 has a higher number of concurrent executors per
topology components (e.g. 16) compared to thdiRif(e.g. 8). Thus, a higher number of
supervisor nodes is assignedT®1 compared tolrP2 (see Column 5 of Table 12). The
supervisor nodes are allocated to the topologies using the SPS algorithm discussed in
Section 3.2. The rationale behind selecting the minimum and desired number of superviso

nodes are similar to that presented in Section 4.1.7.

Table 12 Topology Resource Provisioning using SPS

Topology Priority Level | Desired Minimum Number of

Name (PR) Number of Number of Supervisor
Supervisor Supervisor Nodes
Nodes Nodes Allocated

TP1 1 16 8 13

TP2 2 8 4 7

For DPS, tuple arrival rates at the Kafka topics are used to determine the runtime trigger
indications. Kafka allows to query tuple arrival rate at a certain topic using its jmxtrans
API [83]. Using this API, topologies can determine the tuple arrival rate at a given topic
from which, they are consuming tuples and can notify the PM if the rate remains above a
certain predefined threshold for a predefined amaintime (e.g. 3 seconds for the
experiments in this use case). The logic for this is implemepoyedh Counter Bolt
component @e Section 4.2.2) diPlandTP2

As discussed in Section 4.2.4, producers that send tupleseul follows the On/Off

modé where a portion of tuples are sent with a high rate and portion of tuples are sent with

a low rate. TopologyTP1 processes tuples from the Kafka togteedl and upon
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experiencing a higher rate of tuple arrival, it sends a trigger indication to PM stoctat
assume a higher priority valueP2 processes tuples from togteed2which experiences

a fixed rate of tuple arrivals pushed by the producers.

Table 13 presents the resource provisioning data for the topologies when DPS is used.
Topologies are aggned the same priority level by Pvhen submitted to the clusteeés
Column 2 of Table 13). At runtime topologies send trigger indications based on the arrival
rate of tuples on the Kafka topics. Based on the trigger indications, topology priorities are
changed by the PM (Column 3). The supervisor nodes that are allocated to the topologies

are calculated using the DPSalighm described in Section 3.3

Table 13: Topology Resource Provisioning using DPS

Topology Initial Priority | Priority Number of Number of
Level (PR) Level (PR) | Supervisor Supervisor
when Nodes Allocated Nodes Allocateo

Trigger ON | (Event Trigger | (Event Trigger

OFF) ON)
TP1 2 1 13 16
TP2 2 1 7 4

A summary of the parameters used in the experiments is captured on Tableel4.
parameters are divided into two categories: workload and system paranidters.
experiments are run following a factor at a time method where one of the parameters is

changedvhile others are held at their default values (indicated in bold at Table 14).
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Table 14: Summary of Parameters Used in the Experiments

Parameter Type

Parameter

Value

Workload High Arrival Rate for topic| (40,53.33 80) tuples/sec
Feedl( )
Proportion of tuples with | {0.2,0.50.8}
high rate for topic Feed1l
(ra)
Tuple Arrival rate for 10tuples/sec
Kafka topic Feed2 ()
Service Time for Higher | 0.4seconds
Priority Topology (Sigh)
Service Time for Lower | (Shigh/2)
Priority Topology (Sw)
Total Number of tuples 5000
generated by each produg
(N7)

System Total Number of 2
Topologies
Total Number of 20
Supervisor Nodes in the
Cluster
Total Number of 24
Supervisor Nodes Desired
by the Topologies
Number of Kafka Topics | 2
Number of Producers for | 16
topic Feedl
Number of Producers for | 8

topic Feed2
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4.2.7.1 Effect of High Arrival Rate for Topic Feedl (Y |;§;§;|):|

From Figure 35, it can be seen that as increases, average tuple processing latency

(T+) for higher priority topology also increases for both SPS and DPS. An increase in
signifies more tuples per second being pulled by the topology. While the servicagime S

remaining fixed, an increase in the number of tuples increases resource contention among

the executors of the high priority topolo@yl For any value of , Trachieved by

DPS is lower than that of SPS. This is because, DPS allocates the higher priority topology
with more resources than SPSedsTable 12 and Table 13) when topologies are
experiencing high rate of tuple arrival. With the proportion of tuwidshigh rate for topic

Feed1l (1) and Proportion of tuples with low rate for topic FeedRr@maining equal (e.qg.

0.5), TP1will process half of the total number tuples with a higher number of supervisor

nodes while using DPS in comparison to the @asehich SPS is used.

140
100
g
£ 60 —e— SPS
a --%=--DPS
20
=20 30 40 50 60 70 80 90
| ,Mah (reg/sec)
_ Tt - SPS (sec) Tr - DPS (sec)
(tuples/sec)
40 21.77677 17.23875
53.33333 46.79928 39.26057
80 137.9003 134.5635

Figure 35: Effect of | 19" on Tt (Higher Priority Topology)
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From Figure 36, it can be seen that SPS does not incur any scheduling overhead as expected
while scheduling overhead for DPS increases as increasesRecall from Section 4.2.5

that the scheduling overhead includes the existing tuple processing time by the topology
after deactivation and the new resource allocation time by DB$asing_ increases

number of tuples in the system and thus the existing tuple processing time after topology

deactivation fofTP1also increases and so does the scheduling overhete®ighest O

is observed when  is80 (tuples/sec) and the lowest valoeO is observed whe

is 40 (tuples/sec).

80
e X
60 =TT
geo T —e— SPS
& 40 mmmmmmm === ”*
O 30 -=%=-DSP
20
10
0 © = o
25 35 55 75 85
| ,"igh (tuples/sec)
(tuples/sec) O - SPS (sec) O - DPS (sec)
40 0 39.66
53.33333 0 4451
80 0 72.402

Figure 36: Effect of | 19" on O
Figure 37 captures the effect of  on the performance of the lower priority topology
TP2that processes tuples from Kafka topic Feed2. Note_thiahe arrival rate fof P2is
fixed and does not change with time. It is observed thafiprflower priority topology
achieved using SPSisuch lower than that achieved using DPS. This can be understood
by referring to Table 12 and 13 where it can be seen that while DPS awards a topology in
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a trigger ON state with more supervisor nodes (16 compared to 13 when using SPS), lower
priority topolagies are assigned a lower number of supervisor nodes (4 compared to 7 when

using SPS). The lower number of supervisor nodes leads to a higher valu®oOEPS.

Another important observation from Figure 37 is thau3ing DPSncreases as

increases. This is because of increase in the scheduling overhead reported in Figure 36. It
is important to understand that, when DPS allocates higher priority topology with a higher
number of supervisor nodes, it also reschedules lower priority topologiessigds them

a lower number of supervisor nodes. Thus, the rescheduling overhead affects both the

higher and the lower priority topologies.

1.2
1 ____9(
508 =TT
206, emm- ="
K o4 il —e— SPS
0.2 ot ® d ==x%=-DPS
0
20 30 40 50 60 70 80 90
| ,high (tuples/sec)
_ Tt - SPS (sec) Tr - DPS (sec)
(tuples/sec)
40 0.294 0.511127
53.33333 0.2972 0.657629
80 0.2934 1.054771

Figure 37: Effect of | 1"9" on T+ (Lower Priority Topology)
4.2.7.2 Effect of Proportion of Tuples with High Arrival Rate for Topic Feed1 (ri):
Figure 38 illustrates the effect afan average tuple processing latengyor higher
priority topology. From Figure 38, it can be seatfor both SPS and DPS increasea@as r
increases. This is because, a higher valuesagnifies a higher proportion of tuples with

a high arrival rate and that increases resource contentimm. FHgure 38, it is also seen
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that DPS performs better than SPS and the performance difference increaseshigh r
is because, using DPS for a higher value,0fiP1 processes more tuples with higher
number of supervisor nodes leading to a loweinTtomparison to SPS for which the

number of supervisor nodes allocated Ril remains fixed.

135
115
95
g 75
F 55 —e—SPS
35 --%=--DPS
15
-5
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
r
r Tt - SPS (sec) Tr - DPS (sec)
0.2 7.904 10.099
0.5 46.79928 39.26057
0.8 118.958 94.127

Figure 38: Effect of r1 on Tt (Higher Priority Topology)
The overhead incurred using DPS seems insensitivedee Figure 39)The rationale

behind such a behavior is presented. Increasisigmifies the change in the proportion

of tuples with rate_ . Recall that a igger condition is reported by the topologiy 1

if it experiences tuple arrival rates has crossed a threshold for 3 consecutive seconds.
Thus, the number of tuples that can be accumulated in the system in these 3 seconds does
not change withirand theexisting tuple processing time after topology deactivation for
TP1does not change as well. Thus, scheduling overhead O remains insensitive to r

Also, it can be seen from Figure 39 that SPS does not incur any scheduling overhead

which expected as SPS dasot perform run time rescheduling of topologies.
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50 -
40 B----—co—cemmcmmeee W------—memmemmeeee
o 30
2
S 20
10
0 { L 4 @
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
r
—e— SPS --m--DPS
r O-SPS (sec) O - DPS (sec)
0.2 0 44.13
0.5 0 44.51
0.8 0 44.88

Figure 39: Effect of r1on O
Increasing rdoes not have any effect omdchieved by the lowagriority topology using
DPS as seen on Figure 40. This is because, scheduling overhead incurred using DPS is
unaffected byarwhich is already discussed for Figure 40. It can be also seenrthat T
achieved using DPS is higher than that of SPS. This ixtagas SPS does not have any

rescheduling overhead.

0.8
.06 ¥om=mmos==mooTTT S X
[&]
(]
&9 04
iy C e 0 —&— SPS
0.2
-=%=--DPS
0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
£)
r T+ - SPS (sec) Tt - DPS (sec)
0.2 0.2966 0.624
0.5 0.2972 0.657629
0.8 0.2942 0.636

Figure 40: Effect of r1 on Tt (Lower Priority Topology)
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Chapter 5: Conclusions

This chapter provides a summary of the thesis and presents concluding remarks.
Directions for future research are also included.

5.1 Summary and Conclusions

This thesis addresses resource management techniques for resource constrained Storm
clusters where the avable cluster resources are not sufficient to satisfy desired resource
requirements for the submitted Storm topologies. The default scheduler provided by Storm,
called Isolation Scheduler results in partial scheduling or even complete starvation of
topologes when used for such resource constrained Storm clusters. To alleviate this
problem two schedulers are proposed to schedule Storm topologies for such resource
constrained clusters. The first scheduler called Static Priority Scheduler (SPS) uses static
priority for the topologies. SPS schedules topologies by proportionally allocatingdeali

limited resources where topologies with higher priority receives a higher proportion of
resources. The priority indications are provided by deseloperswhen submitting
topologies to the cluster and cannot be changed at runtime. Given a minimurer rafm
resources are present in the cluster, SPS can prevent starvation of the topologies. The
second scheduler is called Dynamic Priority Scheduler (DPS) and it uses dynamic priority
indications from the topologies. The priority indications are deternbyetie topologies

at runtime based on some predefined trigger conditions. DPS schedules topologies based
on these dynamic priority indications where topologies with higher priority receives a
higher proportion of resources. Although DPS gives rise t@laehiperformance for the

higher priority topologies, it can lead to a deterioration of performance for the lower
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priority topologies that may face a temporary starvation during the time when the trigger
condition remains active.

To evaluate the perforamce of the proposed schedulers, prototype systems were
developed using Java programming language. Experimental results demonstrate the
effectiveness of each of these scheduling algorithms. The two Storm schedulers were
developed using the Stort8chedulef51] Plugin. Topologies and producer applications
were developed using the Storm and Kafka APIs respectively. The experiments were run
considering two use cases: Use Case 1 and Use Case 2. A summary of key observations
and concluding remarks are preserftadhe two use cases.

5.1.1 UseCasel

The first use case considers batch arrival of data where data producers are sending data in
small batches in fixed time intervals. Four Storm topologies are used in this use case.
Clusters are configured on Amazon EC2 udoinfrastructure fee Section 4.1.2).
Experiments are run considering two scenarios. In the first scenario, a resource constrained
cluster is considered. In such a cluster, Isolation Scheduler fails to schedule all the
topologies thusonly the performarne of SPS and DPS are evaluated and compared.
Various system and workload parameters are used for the experiments. For all the
experiments that are conducted in this scenario, performance of higher priority topologies
is better using DPS than using SPS.sThs becauseDPS allocates higher priority
topologies more resources than SPS. Conversely, performance of the lower priority
topologies is much worse using DPS than SPS. This is because of the temporary starvation
of the lower priority topologies that aos when DPS is used. The starving lower priority

topologies cease to starve when topologies currently running at a higher priority level lower



their priority based on trigger conditionkower priority topologies can then process the
backlog of tuples thavere accumulated during the starvation period. The impact of various
workload and system parameters on the performance of the schedulers are summarized
next.

1 Increasing B does not have any effect omr &and T achieved by higher priority
topologies forany of the schedulers. This is becausereasing B provides a
longer time window for the high priority topologies to detect complex events that
does not affect 1 Also, it is observed that,eland T for higher priority topologies
using DPS is lower gopared to that of SPS because DPS allocates higher priority
topologies with more resourcest dchieved by lower priority topologies increase
when Bs is increased using DPS. This is because an increasssigiifies higher
temporary starvation period fower priority topologies.

1 An increase in service time increaseBU time for each tuple. Thusgand &
increases with an increase in service tilieand Trfor higher priority topologies
using DPS are lower compared to that of SPS. It is observetbthagher values
of service time, the difference i @&nd Trvalues between SPS and DPS is higher
This is becauswhile other parameters remain fixed, an increase in service time
signifies more contention for CPU resources. Also, using both SPS &dTpP
achieved by lower priority topologies increases when service time is increased
because of the increase in tuple processing time for the lower priority topologies.

1 Increasing batch lengtiB() increases dfor higher priority topologies for both SPS
and DPS A higher value of Bsignifies more number of tuples in a batblat

needs to be processes to detect events. The observatior trad T for higher
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priority topologies using DPS is lower compared to that of SPS is consistent with
other experimets. For lower priority topologies,rTachieved using DPS is higher
than that of SPS because of the temporary starvation of the lower priority
topologies.
1 Te achieved by higher priority topologies does not change when Event Fagtor (E
is increased. ltine with previous experiments, for a given Ee for higher priority
topologies using DPS is lower compared to that of SPS. Increasingréases the
number of complex events that are to be inferred by the higher priority topologies.
Thus, for higher alues of ke, DPS allocates high priority topologies with more
resources for a higher number of batchesthedlifference in Fvalues between
SPS and DPS becomes high&onversely, ¥ achieved by lower priority
topologies using DPS is much higher thaattbf SPS and an increase ip E
increases T using DPS. This is because lower priority topologies starve
temporarily for a higher duration of time whep\E&lues are higher.
Next, a resource unconstrained cluster is considered for the second scena@ of U
Case 1 to compare the performance of SPS and DPS with the default Isolation
Scheduler. The same workload and system parameters as well as the performance
metrics from the resource constrained case were used while the cluster was provided
with enough sugrvisor nodes to satisfy the desired resource requirement for all the
topologies. The same set of experiments from the resource constrained case were
repeatedor this new resource allocation. For all the experiments, SPS, DPS and

Isolation Scheduler pesfm provide a comparable performance while DPS results in a
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slightly higher E and TF values than Isolation Scheduler because of rescheduling
overhead.
5.1.2 Use Case 2
The second use case considers data producers continuously sending tuples with one set of
dataproducers sending tuples with variable arrivag¢sdbllowing the @/Off model (ge
Section 4.2.4). For Use Case 2, a resource constrained cluster is considered and
performance of SPS and DPS are evaluated. The impact of various workload and system
paraneters on the performance of the schedulers are summarized next.
. With an increase ih1"9" T+ for the higher priority topology is increased for both
SPS and DPS. This is because, while other parameters remain fixed, an increase
in | 1"9" signifies more tuples in the system which increases resource contention
among the executors of the high priority topology. It is also observed that, for the
high priority topology, T achieved using DPS is lower than that of SPS. This is
because DPS allocates the high priority topology with higher number of resources
compared to SPSAIso, SPSdoes not perform run time rescheduling of the
topologies and thysloes not incur any scheduy overhead. Scheduling overhead
(O) for DPS is increased however with an increasé ifi" . When a topology
sends a trigger indication to PM, PM deactivates the topology and before changing
the priority it waits for the topology torfish processing existing tuples that are
accumulated in the system. A highlef"9" increases the number of tuples that are
accumulated in the system and thus the topology takes a longer time to finish

processing these tuples. This irases the scheduling overhead. Because of this,
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Trachieved by lower priority topologies also increases with an increalse"fi
when using DPS.

1 Changing 1 signifies a change in the proportion of tuples with high arrival rate
processedy the higher priority topology. While using DPS, at higher values of
r1, the high priority topology processes a higher proportion of tuples with a higher
number of resources in comparison to that of SBSwhich the number of
supervisor nodes allocatéalthe high priority topology remains fixed. Thus, DPS
performs better than SPS and the performance difference increases rotttine
lower priority topology, DPS results in a higherthan SPS because the number
of resources that gets allocated te lilwer priority topology by DPS is lower than
that of SPS.

5.2 Future Research
This section presents a number of issues that are worthy of further investigation.

1 It has been observed that DPS is associated with scheduling overhead that impacts
system performnce of the topologies, especially on systems that are subject to
continuous arrival of tuples. Investigation of techniques to minimize scheduling
overhead of DPS can form a direction for future research.

9 Storm clusters that are considered in this thesis@amprised of a homogenous set
of machines. The limited resources in the resource constrained Storm clusters are
shared among the topologies with a proportional share based scheduling algorithm.
Proportionally sharing resources in a #Agsmogenous stormluster can result in

over utilization and underutilization of some machines. Extending the scheduling
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techniques presented in this thesis to such-h@mmnogeneous systems warrants
investigation.

Investigation of resource management techniques for the lagfess in a stream
processing platform (e.g. data ingestion layer and data producer layer) can form an
interesting future research direction.

Effects of additional parameters, such as tuple arrival rate for topic Feed2 (
warrants further investigatio Additionally, this thesis used two priority levels for

the experiments. Investigating systems with a higher number of priority levels is

worthy of research.
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