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Abstract 

Autonomous mobile robots are one of the new and innovative ways to improve operation in 

industries such as warehouses, logistic companies, agricultural businesses, healthcare institutions, 

and a lot more. They are known for their operational improvement, safety, efficiency, and speed, 

automating several functionalities so they can be performed with little or no human intervention. 

 These advantages can only be realized, however, if the degree of autonomy suffices for the task 

at hand. Whilst many degrees of autonomy exist (e.g., functional autonomy), in this thesis we are 

primarily concerned with an aspect of non-functional autonomy: energy. One of the important 

features of an autonomous robot system is the capability to charge autonomously with little to no 

human intervention.  

This thesis examines the energy distribution problem on multi-robot warehouse systems. We 

model warehouse systems where robots charge autonomously, pausing their workload when 

needed, to charge at a station. Depending on specific execution, it is possible that robots fully 

deplete their energy before arriving at a charging station, decreasing total work achieved, and 

becoming an obstacle on the warehouse floor. We then introduce the concept of energy sharing, 

where robots are capable of charging one another, essentially becoming mobile charging stations. 

In this context, the problem of energy distribution becomes a problem of multi-agent collaboration. 

We analyze the impact of our solution on a multi-agent simulation, showing that energy sharing 

for autonomous mobile robots in warehouse systems reduces the total number of depleted robots 

and contributes to increasing the amount of work performed. 
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Chapter  1: Introduction  

1.1 Overview 

Autonomous mobile robots (AMRs) are being widely implemented to replace manually operated 

vehicles in warehouse systems to fulfill large shipping demands, extend warehouse operating 

hours, and mitigate safety concerns, towards true ñlights-outò warehouse operation. Light-out 

warehouses, refer to warehouses that run on machines with no human workers present.  In the best-

case scenario, a fully automated warehouse achieves more work than a manual one, with far less 

implications on human safety. 

In order to achieve a fully automated mobile robot system, robots must complete all tasks and 

activities without any human intervention (i.e., functional autonomy), including docking and 

charging (non-functional autonomy) [1]. Autonomous charging brings with it the promise of 

extended runtime, enhanced system performance [2], and true safe operation. 

1.2 Problem Statement 

One of the main problems with autonomous robots is the ability to stay ñaliveò (operational, i.e., 

with sufficient energy to carry out its tasks) without the need for human assistance. Several works 

in the literature ignore the fact that the robotôs battery is limited, meaning that the robot could run 

out of energy while performing a task [3].  

Running out of energy while operating in an environment is a critical problem. Researchers have 

identified it as the Autonomous Recharging Problem (ARP) [3] [2].  ARP can be divided into two 

categories: when does the robot charge? And how does the robot charge? In this thesis we will be 

focusing on the first category.  

A very important concept is for the robot to decide when to charge. When is the proper time for 

the robot to go to a charging station and ensure it will not run out of energy? The most popular 
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solution is the threshold approach, where a threshold limit is defined by the system designer after 

proper estimation. When the battery level reaches this limit, it will stop any current task and go to 

a charging station [3].  

The effectiveness of such systems is dependent on the selected threshold and can hence lead to 

recharge failure, particularly when the charging station is far from the work area. Choosing 

appropriate thresholds can be difficult under dynamic and uncertain conditions, leading to 

inefficient solutions.  

Another type of the threshold-based approach gives the robot the option to recharge when the robot 

has just enough battery life to reach a charging station [4]. This approach is more robust than other 

approaches but poses a problem if the estimation is done poorly, resulting in under-utilized robots 

that charge too often. 

1.3 Objectives 

The objectives of this thesis are the focus on analyzing collaboration algorithms for AMRs that 

may charge at the same charging station at different intervals of time, investigating how sharing 

resources (charging stations) impact on the overall performance, and whether robots can 

collaborate to share power with one another, such that the overall performance increases.  

1.4 Contribution  

We have contributed an idea to solve the problem of complete energy depletion for autonomous 

mobile robots in a warehouse environment:  this thesis introduces our concept of energy sharing, 

where robots can collaboratively ensure that each one has sufficient energy. Specifically, this thesis 

presents the following contributions: 

Å We have built an AMR simulation environment that models robots operating in a smart 

warehouse. Robots perform tasks (moving between assigned workstations) and must periodically 
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move to a charging station when their battery falls below a threshold. Charging stations are shared 

resources between robots (the number of charging stations is less than the number of robots). 

Å We evaluated how the ratio between the number of robots and the number of charging stations 

affects total system performance, tracking the number of completed tasks, time robots were idle 

(waiting for a charging station to become available), and robots that died (battery reached zero). 

Å We implemented different power sharing algorithms to assess their contribution to overall 

performance and suggested guidelines for AMR developers to optimize their solutions. 

1.5 Structure 

The remainder of this thesis is organized as follows: Chapter 2 describes related work in the field 

of autonomous vehicles, to place our contribution in perspective. Chapter 3 outlines the conceptual 

architecture of the work. Chapter 4 presents our simulation environment, and the implemented 

behaviors (i.e., collaborative algorithms) for different test cases. Chapter 5 presents our simulation 

results and discusses those results in context. Finally, Chapter 6 concludes this thesis, and 

highlights future work. 
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Chapter  2: Literature Review  

2.1 Warehouse Robots 

In 1948 and 1949, William Grey Walter, an American neurophysiologist constructed the 

first electronic autonomous robots. These robots were described as ñtortoisesò because of 

their shape and slow rate movement [5]. They used the light detecting behavior for 

navigation, they would move in the direction of the weak light and back away from the 

bright light. When the battery of the robots indicated it was low, the tortoise perceived the 

strong light source as weak, because the charging stations had a strong light over them. So, 

the robot would move toward the charging station and after it was recharged, the light 

source was perceived as strong, and the robot would back away [6], [7].  

Alongside, Barrett Electronics in 1950 exhibited their deserved model of an Automated 

Guided Vehicle (AGV) in a warehouse environment, which was just a pull truck vehicle 

which followed a wire in the floor as an alternative of a rail [8] [9], these robots were 

considered the first generation of automated vehicles. One disadvantage is that they will 

come to a complete stop when there are any obstacles in their way, including humans, and 

resume when the path is free. 

The second-generation AGVs are equipped with more advanced localization technology 

so that both the destination and path can be flexible. A common and practical approach is 

laser localization, where the robot is equipped with a laser transmitter and receiver, the area 

the robots operate in are fitted with reflective tape [8]. A laser beam is transmitted from 

the vehicle and reflected off the tape. The reflected beam is then picked up by the vehicleôs 

receiver. The on-board computer calculates the beams angle and distance from the point of 

reflection. The positions of the reflectors are preloaded into the AGVs memory, and it uses 
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an algorithm to determine its position [13], [14], [15]. Thus, an AGV localizes itself based 

on the reflection of laser beams. This approach requires careful floor design and 

alternations ensure lines of sight between the AGV and multiple reflectors, however, 

installation time and path flexibility are still factors of concern [10].  

Nowadays, AGVs are being challenged by the more sophisticated, flexible, and cost-

effective technology, this is the third-generation material handling robots, which are 

referred to as autonomous mobile robots. An AMR localizes itself with self-contained 

technologies, such as cameras [11] and LiDAR [12], so that any infrastructure in the 

environment can be utilized as a landmark.  

Figure (1) shows a simple diagram comparing between AGVs and AMRs. When the AGV 

starts at point ñAò and needs to go to point ñCò it will come to a complete stop at point 

ñBò, wait for the obstacle (the orange circle) to clear the way, then it can continue the track 

to its destination. The AMR will simply take the same route from A to B without stopping, 

it will maneuver around the obstacle and continue its way to the target point. 

 

Figure 1: Simple navigation example between the automated guided vehicles and autonomous 

mobile robots. 
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2.2 Warehouse Scenario 

Warehouses have improved over the years; they have been transformed from traditional to 

smart warehouses. In traditional warehouses, long conveyors belt moves around the 

warehouse [17]. Workers place the items that are ordered on the conveyors to move around 

and reach the sortation area. Then, they are moved to picking and shipment. In this type of 

warehouse, there are many issues such as: inflexibility, costly, not expandable, and require 

manual resorting, which leads to more manual movement [18].  

Smart warehouses are automated warehouses that consist of multi agent systems (MAS), 

where each agent is an autonomous mobile robot, either with distributed or centralized 

intelligence. They are used to increase speed, productivity, and reliability of the distribution 

centers. Currently there are many warehouse robots including: Amazon robotics, 

previously known as KIVA systems, Knapp Open Shuttle (2012), Locus Robotics System, 

Swisslog CarryPick, GreyOrange Butler, Fetch Robotics Freight (and Fetch), Scallog 

System, Hitachi Racrew [19].  

The KIVA system is one example to look at for a better image of the warehouse scenarios. 

This system was first purchased by Amazon in 2012 [20]. In [17], [18] the authors describe 

the techniques used in the system. The workers stay in one location where the items are 

moved around. It relies on Multi -Agent Systems (MAS) and Artificial Intelligence (AI) 

[21]. The robots in this system are self-interested, they do not depend on one another, 

however they have a common goal, to fulfill the customerôs order in a complete and 

efficient manner, they are self-organized, and self-adaptive. The KIVA systemôs main 

components are the mobile robots (referred to as the drive unit), inventories, shelves 

(known as pods), and the software [18]. 
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The drive unit (DU) agents are the autonomous mobile robots. As mentioned in [17] and 

[18], the main job for these robots is pick up the pods from the storage areas, these pods 

contain the inventories. The DUôs are small enough to get under the pods and with the 

lifting mechanism, it allows them to lift pods off the ground [18]. All current drive units 

use multiple cameras to read barcodes, find their own position and navigate in the 

warehouse [16]. They carry the pods to the picking station where the workers can identify 

the items. This is done by a blinking laser light to the barcodes on the items. The next step 

for the worker will be to transfer the items to the shipping carton, while the robot will be 

requested to go back to the storage station either, to stay there until there is another task to 

be done, or there will be a task all ready for the robot to complete [17], [22]. For the safety 

of the workers in presence of the robot, Brian Heater, stated in [19] that Amazon has created 

the Robotic Tech Vest. This vest sends a signal to the robotics system to mark the area 

around the worker as an obstacle to the drive units.  

The main responsibilities for the DUôs are path planning and obstacle detection. It also 

maintains the priority list of high-level goals and accomplishes them efficiently [23].  

2.3 Mul ti -Agent Warehouses 

Multi -agent systems are a group of agents deployed with specific architecture, 

coordination, and messaging protocols [24]. In [25], a MAS is defined as a system that 

comprises two or more agents, which cooperate with each other while achieving local 

goals. The major advantages of using multi-agent technologies include: [26] 

(1) individuals consider the application-specific nature and environment 

(2) local interactions between individuals can be modeled and investigated 

(3) difficulties in modeling and computation are organized as sublayers and/or components. 
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There are two models for the warehouses that use these systems: Multiple Agent Path 

Finding (MAPF) and Target Assignment and Path Finding (TAPF). In MAPF the agents 

find a collision free path from their start point to the desired target. MAPF algorithms are 

based on one simplistic assumption that limits their applicability. This assumption is to 

ignore the shape of agents and consider them as point agents, which occupy exactly one 

point at any time [27]. To combine two aspects of assigning a task and path finding the 

TAPF model is used. The TAPFôs goal is to first assign agents to targets and then plan 

collision free paths for the agents to their targets in a way such that the completion time is 

minimized. A limitation of both models is the assumption that the number of agents is equal 

to the number of targets, which is invalid in some applications. 

 In [28], the authors have proposed an approach were the number of agents and targets are 

not equal. They address this limitation by generalizing TAPF to allow for (1) unequal 

number of agents and tasks; (2) tasks to have deadlines by which they must be completed; 

(3) ordering of groups of tasks to be completed; and (4) tasks that are composed of a 

sequence of checkpoints that must be visited in a specific order.  

Navigation in the warehouse with multiple agents and obstacles is used by adding path 

planning algorithms, these algorithms are known to be NP-hard [29],[30],[31]. Their main 

objective is to find a collision free path, this is not in the scope of this thesis.  

2.4 Energy Consumption  

Mobile robots are operated by batteries, reducing energy consumption is one of the main 

goals to achieve in designing a smart warehouse. Many recent publications have adopted 

different methods when it comes to the calculation of energy consumption. Authors have 

attempted to achieve this through modifications in trajectory planning, control, or 
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mechanical design. The robot itself can clearly understand the energy required for its 

motion and the specific energy consumption of each part; hence, the energy consumption 

can be reduced according to different situations and the existing energy support can be 

estimated [32]. Therefore, only knowing the working environment of the robot and the 

accurate power consumption model we can accurately predict the power consumption of 

the robot [33].  

There are many techniques that help reduce power consumption. Angelina et al. [34] state 

a system designed to use visible light communication (VLC) for mobile robot navigation 

because VLC only utilize lights as the transmitter. The method used is sending the data 

containing navigation coordinates which is modulated on the lighting system, then data 

will be received by the photodetector and processed as mobile robotôs navigation. This 

design is to utilize illuminance of visible light which are coming from warehouseôs lighting 

system for navigation of mobile robot purpose. 

Hou et al.  [32] have proposed a method that involves dividing the energy consumed by 

the robot into three parts: the sensor system, control system, and motion system. This model 

is referred to as the energy modelling method. This model does not consider the path of the 

robot and was only used in a horizontal road. Therefore, it was very simple and there was 

no need for any complicated parameters. In [35], [36] energy optimization was investigated 

by hardware replacements. Using low power hardware that can reduce the overall electrical 

energy consumption of the robot. 

In real-world scenarios, the robotôs battery may discharge completely. This is a critical case 

because if the robotôs battery is completely discharged while the robot is in operation, it 

will stop anywhere. The downtime over which the robot will be in one place occupying 
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that location can cause a delay, or an extension to the paths for different robots.  In such 

scenarios, the robot must be moved manually from the area [37]. Any worker interfering 

in the robotôs environment need to take extra precautions, such as wearing safety gear and 

following all the guidelines to be able to enter the area the robots are working in and carry 

the robot to the charging station to get charged.   

2.5  Docking and Charging 

During the activation of the robots and their capability of continuously completing tasks, 

the energy of the robots depletes, and at some point, the robots need to recharge. In every 

kind of environment the robots work, weather it was indoor or outdoor, the existence of a 

charging station is necessary. Researchers have focused on the two main categories 

mentioned previously: How does the robot go to the station? When should the robot go to 

the charging station?  

2.5.1 How to charge? 

How to recharge focuses on proposing hardware modifications and building energy 

stations. 

Oh et al. [38] used the laser sensors of an indoor mobile robot and proposed a procedure to 

align the robot with a simple charging station. They use a reflective tape for the robot to 

find a beacon that guides it to the station over long range. For short range, a grid with a 

unique pattern is used to detect and align the robot with the connector of the station. 

Another approach in how to recharge is from Cassinis et al [1], the authors inspired by 

ancient navigation and lighthouses, use the light range to guide the proper alignment of the 

robot with the energy station. When the robot detects the light vertically in line, it is on the 

range line. If it detects on the left, it is on the right of the range line. And if it detects on 
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the right, it is on the left of the range line. With the aid of markers and robot laser sensors, 

an algorithm aligns the robot with the energy station on a low-cost system. This behavior 

takes action when a low battery is detected, aborting the current task, and starting the 

algorithm. But the authors didnôt show how they detected that the battery is at a low level, 

and when the robot should go to the station.  

The authors in [39] use IR receiver sensor in the front of the robot and IR transmitter 

sensors near the docking station. The robot scans the transmitted IR signal from the sensor 

transmitter only when it needs to charge its battery. If detected, it will take the path of the 

charging station. Once the robot approaches the charging station with the required 

orientation, it connects to the supply terminals for charging. The data related to battery 

charging voltage is transmitted by micro-controller. Once the battery is fully charged the 

robot moves back to continue its original task.  

2.5.2 When to charge? 

In terms of deciding when to recharge, currently, the popular solution is threshold-based 

where the threshold is either a fixed distance traveled or a fixed time of operation ([40], 

[41], [42]). Since these approaches do not simultaneously account for robot or charging 

stations locations, and task loads, several scenarios result in robots failing to reach a 

docking station before their batteries are drained.  

It is mentioned in [43] that the robot will begin the recharge behavior when the battery 

reaches a fixed minimum threshold value, pre-determined by the user. The authors in [44] 

uses historical data to estimate the cost of each task. Using the semantic trajectory of the 

robot, they stored data from the tasks executions and estimate the cost of each task with 

the average energy consumption. Before executing a task, they checked if there is enough 
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energy to execute it and still have the energy level above a fixed threshold value for going 

to an energy source. This approach could fail if the task spends more energy than previous 

executions. 

de Lucca Siqueira et al. [3] have expanded from the threshold approach and proposed a 

fuzzy set that checks the energy level. They have defined four terms for the energy level:  

full term means that the battery is at full or almost full level. Operational term means that 

the robot can execute any task without recharging. The caution term indicates that the robot 

should be careful and must decide if it will finish the task or abort it and go to a charging 

station. The decision is made based on the distance of the robot to the target and the 

charging station. Finally, the critical term means that the energy is at the critical level and 

the robot must recharge at all costs. With their experiment they have considered checking 

the energy level, the distance from the task, and the distance from the charging stations, 

with a set of rules to decide if a robot should abort the task to recharge or finish it first. 

This experiment results in a more flexible, smarter approach and optimizes the energy 

consumption that avoids wasting to much energy on tasks that would be aborted. 

2.6 Other methods of charging 

In [45] the authors propose a solution for recharging an autonomous mobile robot with 

power so that it can perform tasks with little or no human intervention. This paper added a 

wireless self-charging module, a power bank, and a digital compass to the main hardware 

architecture. The robot recharges itself, explores, creates a map of its surroundings, 

calculates optimal paths between targets and navigates between them, autonomously. The 

power bank replaced the rechargeable battery it charges using USB cables it connects to 

the control board and to the wireless self-charging module. In this case the power bank 
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provides the power to the robot, the disadvantage is the power remaining is unknown and 

should be calculated by the operating time and the charging time.  

Recently, researchers at Skolkovo Institute of Science and Technology in Russia have 

developed MobileCharger [46]. This system gives the robots the ability to continue their 

missions. The idea is captured from the "mobile power bank". They have explained that 

the robot and the MobileCharger run as one, until the robot is efficiently charged then the 

MobileCharger detaches and moves on to another robot indicating their need of power. 

The following are different strategies of charging concepts that keep the robot powered up 

and operational. They are chosen depending on the situation of the robot and the design of 

the environment [47]: 

A.  Opportunity charging 

Depending on the battery chemistry, some batteries are able to recharge 

opportunistically. Being able to opportunity charge the battery means that a robot 

with a few minutes to spare between delivery tasks can get on to an open charger and 

grab a few electrons.  

B. Deep charging 

When the robots are operating for a long period of time, deep charging will require 

them to get offline for an extended period to fully charge, this is called deep charging.  

C. Inter shift battery replacement  

In different facilities robots are required to work endlessly round the clock, with little 

to no time to charge, the inter-shift battery replacement strategy will help in this case. 

Where the battery will be replaced in the beginning or the end of the working shift 

manually by a worker.  
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2.7 Modeling and Simulation tools 

Real experiments using AMRs are quite expensive, therefore the system should be 

analyzed before deployment. Simulation tools give the opportunity to operate any type of 

vehicle, without the need of hardware. It influences on avoiding hazard situations and 

preserving costly equipment being damaged [48]. Simulation is an important issue in 

robotics research because it is essential for evaluating and predicting the behavior of a 

robot. It gives researchers the ability to make quantitative evaluations of the experiments, 

with many trials, with the option of changing parameters.  

There are a variety of modeling methods and software tools used for mobile robots, each 

have different levels. These methods may not involve major cost, but the realism of the 

experimental results depend on the accuracy of the modelling method which is adopted in 

the simulation [49].   

2.7.1  Discrete Event System Specification (DEVS) 

DEVS is a mathematical formalism to model and simulate discrete event dynamic systems 

introduced by Bernard P. Zeigler. [50][51]. DEVS manages the complexity of the system 

using a modular structure. The system is decomposed using two types of models: (1) atomic 

models, which defines the behavior of the system, and (2) coupled models, that describes 

the hierarchical structure. One of the advantages of the hierarchical and modular structure 

of DEVS is that it allows reusing models and reduces development and testing times [52].  

The same model can be implemented using different DEVS simulators, sometimes known 

as concrete simulators [53], such as:  CD++ [54], JDEVS [55], DEVSJava [56] and 

PyDEV[57]. These simulators are implemented using different programming languages. 
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For example, JDEVS and DEVSJava are implemented in JAVA [58] [59], CD++ is coded 

in C++ [60], PyDEV in Python [61], etc.é  

2.7.2 Other Simulation Tools  

There are several different simulators used in robotic experiments, the choice of the 

adequate simulator depends on both the purposes and the different features offered. Some 

simulators are: 

A.  Microsoft AirSim 

This simulator is developed by Microsoft for the machine learning development. It 

uses Unreal Engine 4 to render the simulation more photo realistic. There exist APIs 

for both Python and C++. AirSim has implemented monocular and depth cameras, 

whereas, other sensors, like lidars, are not developed. The great visuals can be a 

downside because it demands powerful graphics processing units (GPUs) to run 

[62].  

B. Gazebo 

Gazebo simulator is the main simulator of robotic systems in the Robotic Operating 

System (ROS). It makes it possible to rapidly test algorithms, design robots, 

perform regression testing, and train AI systems, using realistic scenarios. Gazebo 

offers the ability to simulate populations of robots accurately and efficiently in 

complex indoor and outdoor environments [63].  It is used in many research studies 

in the autonomous mobile robot field [64], [65], [66].  

C. Agent-based Models (ABMs) 
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ABMs seek to create electronic laboratories, to allow experimentation with 

simulated complex systems. There are several platforms for scientific agent-based 

models including: Netlogo and Mason.  

- NetLogo is a multi-agent programming language and modeling environment for 

simulating natural and social phenomena. It is particularly well suited for 

modeling complex systems evolving over time. Modelers can give instructions 

to hundreds or thousands of independent ñagentsò all operating concurrently 

[67].  

- MASON is a fast discrete-event multiagent simulation library core in Java, 

designed to be the foundation for large custom-purpose Java simulations, and 

also to provide more than enough functionality for many lightweight simulation 

needs. MASON contains both a model library and an optional suite of 

visualization tools in 2D and 3D [68].  

Katsumi et al. [69] have designed a simulator to achieve realistic simulation of robot 

functions, interaction between the robot and its environment at the sensor level and the 

synchronization between the program of the behavior algorithm and robot's simulated 

functions, so that experiments can be augmented by the simulation. The Autonomous 

Mobile Robot Simulatorôs (AMROS) main purpose is to provide a programming 

environment with great variety of simulations for users who are engaged in developing 

behavior programs.  

We have discovered the different concepts and research studies that have been introduced 

in the autonomous mobile robotsô field. Furthermore, in the next chapter we will introduce 

our unique idea of robots sharing charging stations sequentially and joining to share their 
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energy between one another. To focus on this specific concept, we will be using C language 

to implement the idea. 
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Chapter  3: Conceptual Architecture 

3.1 Warehouse Operations 

Our approaches are applied to a class of robotic warehouse scenarios. Specifically, we 

focus on scenarios where warehouses can be modeled within 2 dimensions (i.e., planar 

warehouses). 3-dimensional ones exist, but autonomous robot behavior inside warehouses 

of such a class exhibits more degrees of freedom, and additional restrictions than 2-

dimensional ones: these are beyond the scope of this thesis. 

We model warehouses as rectangular structures, such that a specific warehouse can be 

specified by a pair of length and width values: each position inside a warehouse is uniquely 

specified by a (x, y) coordinate pair, such that π  ὼ  ύὭὨὸὬ and π  ώ 

 ὰὩὲὫὸὬ. Realistically, warehouses can be of any non-rectangular shape [77], but this model 

is general enough to evaluate our proposed approach and simplifies simulation. 

In our model, warehouses are populated by three relevant entities: autonomous robots, 

workstations, and charging stations. Each autonomous robot performs a single task: 

roundtrips between two workstations. This suffices to model several real-world examples 

of autonomous warehouses, including moving parts/components from place to place for 

distribution, actuating on particular devices located on specific locations, picking up 

consumables for use in another location, etc. [2][70]. More complex task scenarios (e.g., 

moving across patterns consisting of more than 2 workstations) can be considered, but we 

do not believe they would significantly influence the results of our approach: thus, we limit 

our model to roundtrips between two workstations. Workstations can be placed anywhere 

in a warehouse. We assume robots always move in a straight line towards their intended 

destination. 
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Charging stations, like workstations, can be placed anywhere in a warehouse. In order to 

recharge, the robot attaches itself to the charging station in between tasks.  

We assume every entity is placed on an integer (x, y) pair, such that we can model 

warehouses and relevant entities as a grid world (Fig. 2); this assumption probably limits 

our model in terms of representing some real-world scenarios (particularly, regarding the 

more analog side of robot interaction with the physical world), but it should not influence 

the proposed approach.  

 

Figure 2: Simple example of a 2-D warehouse environment, identifying where each element is at 

a specific (x, y) location 
 

3.2 Energy and Charging Model 

Each robot in our scenario is powered by an internal battery, with a maximum energy 

capacity, E.  A realistic depiction of battery usage (energy depletion) would be a function 

of its internal processing (e.g., required number of computations per second), and its 

external activities (e.g., motion, interaction with the environment). Even subjected to a 

constant drain, battery energy tends to decay non-linearly [71][72], following the inverse 

pattern than charging at a constant supply, as depicted in Fig. 3.  



 28 

We simplify this usage, modeling energy depletion as a linear function of time, where the 

decrease per time unit can be considered the average energy depletion in a realistic setting, 

without loss of generality. Energy increase, when charging, is also linear: as long as the 

total time required to charge a battery is reasonable, its specific rate is not significant for 

our purposes, insofar as the proposed approach is concerned. 

 

Figure 3: Simple plot of the traditional charging and discharging behavior of a battery 

When a robotôs internal energy level is below a given critical threshold, it pauses its 

workload, and begins moving towards a charging station. Upon arrival, if the charging 

station is free (i.e., no other robot is currently charging there), the robot ñdocksò and begins 

charging. When energy is back to maximum capacity, the robot resumes its workload, 

moving back to one of its assigned workstations. 

We consider two different scenarios for the selection of charging station once a robot 

requires charging. In the first one, each robot ñknowsò a specific station it is assigned to: 

once it requires charging, it starts moving towards that station, regardless of where it is. 

This allows us to model scenarios where robots are heterogeneous [73], i.e., they require 

specific charging stations, compatible with their specifications.  
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In the second scenario, robots are aware of the location of all charging stations in the 

warehouse, and of their own location, of course. Once a robot requires charging, it 

determines which charging station is nearest to its current location and moves towards it 

for charging. This allows us to model scenarios where robots are homogeneous [74], or at 

least inter-compatible regarding charging.  

Combinations of these two scenarios are of course possible, but we do not consider in this 

thesis: studying how the proportion of homogeneous and heterogeneous robots affects our 

metrics of interest is reserved for future work. 

3.3 Problem Statement 

We are concerned with the problem of complete energy depletion: i.e., situations when a 

robotôs battery is completely out of energy. These situations may happen when a robot 

decides to charge (i.e., its energy level has reached the threshold) but it does not have 

sufficient energy left to reach a charging station. 

This situation can arise whenever there is no a priori energy expenditure planning, e.g., a 

robot is moving towards a position (on the way to a workstation), such that its energy 

threshold will be reached, but the remaining energy will not suffice to reach the charging 

station it intends to use.  

This leads to robots remaining ñdeadò on the warehouse floor, with implications on 

achieved workload: not only is the particular dead robot no longer performing its task, its 

inactivity can further impede other robots (e.g., if they must perform longer routes to avert 

the dead robot). 

This problem requires some form of recovery system: e.g., manual intervention to either 

move the robot to a charging station or charge it locally, both of which have safety 
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implications, i.e., stopping all operation may be required to safely allow a human worker 

onto the warehouse floor, further decreasing the total amount of work performed, with 

logistical and financial implications. 

3.4 Energy Sharing Model 

There are two potential types of approaches to the dead robot problem: pre-emptive and 

reactive. Pre-emptive approaches include techniques such as a priori estimation of required 

energy, such that the problem of dead robots is eliminated in the first place: i.e., either 

dynamically adjusting energy thresholds that lead to charging, or dynamically adjusting 

which workstations robots work on, to prevent any such situation to ever occurring [75] 

[76].  

In this thesis, we do not concern ourselves with pre-emptive approaches: they are outside 

the scope, and orthogonal to our approach (i.e., both pre-emptive and reactive approaches 

should probably be used to further increase guarantees of successful operation). Instead, 

we look at a reactive approach, providing alternative (automated) charging options to 

address the dead robot problem. 

Thus, the main contribution of this thesis is a proposed power sharing algorithm, that 

allows robots to share their energy with one another. We aim to assess its contribution to 

overall performance and suggest guidelines for AMR developers to optimize their 

solutions. 

3.4.1 Proposed Approach 

Our proposed approach assumes that robots can not only be charged at a charging station, 

but are also capable of charging one another: i.e., two robots can connect with one another, 

anywhere within the warehouse floor, and transfer energy from oneôs battery to anotherôs: 
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i.e., such that if one robot has energy level E1 and another has energy level E2, at the end 

of the transaction both will have energy level (E1+E2)/2.  

This implies two assumptions: (1) robots can communicate with one another, notifying that 

they are in need of charge, and robots are capable of cooperatively deciding whether or 

not, or which one, will provide charge. (2) interrupting a robotôs workload to provide 

charge has no negative effect on the system as a whole, apart from delaying that particular 

robotôs workload completion. 

Thus, we propose a modified model, where whenever a robot is in need of charge and/or 

dead, nearby robots, up to a radius of R, can meet the in-need robot and share their charge 

(assuming their energy levels are high enough, such that (E1+E2)/2 is above the energy 

sharing threshold), as demonstrated in Fig. 4.  

 

Figure 4: 2-D Warehouse where two robots meet, and one gives energy to another in need. 
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The following chapter describes the simulation model that we use to implement the 

considered scenario, comparing cases with and without the proposed energy sharing 

approach. 
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Chapter  4: Simulation 

Our model uses agent-based simulation in a 2-dimensional grid environment with fixed 

time-advance steps, or "ticks". In every tick, agentsô, which we refer to as robots, states are 

updated, and they take an action. The robots are functional with the aid of the power supply, 

their battery. We have assigned an energy level threshold limit for all the robots in the 

environment, referred to as the charging threshold, selected through iterative testing until 

the selected value resulted in a small, non-zero percentage of dead robots. Initially, the 

robots start off with a random energy level above this threshold. Each robot is assigned 

three points of interest: two workstations and a charging station.  

As long as it has enough energy, each robot will continuously commute between its two 

workstations: each round trip is counted as an achieved task. If the energy level reaches the 

charging threshold, the task is paused, and the robot will head to the charging station.  

Further in this chapter we will look at the different case studies, and depending on the case, 

the robot will either charge at an assigned station, or the nearest one. 

 If a robot's battery is completely depleted of energy the robot will become ñdeadò. To help 

the robots that have reached their threshold limit, and the robots that are dead, the 

collaboration approach is introduced. A robot that has enough energy will share it to help 

the depleted or dead robot complete the tasks and reach a charging station.  

The overall simulation strategy is depicted in Algorithm 1. Notice that there is no 

centralized intelligence: robotsô states, energy levels, and positions are updated internally, 

through each robotôs own internal behavior (described below), as a function of its state and 

the environment around it.  
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 Algorithm 1 Core evaluation loop 

1 for Roboti in Robots[] do 

2 Roboti (state) ă working 
3 Roboti ă Workstation1x,y,Workstation2x,y 
4 Roboti (position)  ă positionx,y 
5 Roboti ă energy 
6 if fixed charging stations then 

7 Roboti ă Stationx,y 
8 end if 

9 end for 

10 while ticks < max_simulation_time do 

11 for Roboti in Robots[] do 

12 Roboti (state) ă state ̀
13 Roboti (position) ă position  ̀
14 Roboti (energy) ă energy ̀

15 

16 

end for 

end while 

 

In the algorithm it is mentioned that the states are updated at each tick. If the robot is in a 

óworkingô state, it will be going either to workstation1 or workstation2, depending on 

where it actually is, updating the position and keeping in mind the movement of the robot 

is linear. While the robot is moving the energy level will also be updated.  

To elevate the behavior of the robots in various scenarios, we have implemented different 

case studies modeled by state machines. These cases are:   
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Å Case 1: Robots charge at a pre-defined, assigned charging station; no collaboration 

between robots. Figure 5 shows the state machine of this case. At each tick, the robot will 

be moving to the next state referring to the energy level. The energy level will be updated, 

it will decrease in the movement from state to state and increase when the robot is at a 

charging station.  

 

Figure 5: Robot charges at assigned charging station 
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Å Case 2: Robots charge at the nearest charging station; no collaboration between robots 

(Fig. 6). This state machine differs from the previous case, as the robots charge at the 

nearest charging station, they do not have a fixed location to navigate to when they require 

charging. The energy level will have the same behaviour as the previous case. 

 

Figure 6: Robot charges at nearest charging station 
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Å Case 3(A): Robots charge at a pre-defined, assigned charging station; robots can share 

energy with other robots that are either going to charge or dead. In Figure 7, the state 

machine models this case. The addition to the previous cases is the ñGiving Chargeò states. 

The energy level is updated as follows: (1) The general case when robot is moving, the 

energy decreases, (2) when the robot is charging the energy level increases, and (3) when 

a robot can provide energy: the energy level is depleted for the robot providing the energy 

and increased for the robot that is getting the energy.  

 

 
Figure 7:Robot charges at assigned charging station and shares energy with robots in need and 

dead robots  
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Å Case 3(B): Robots charge at the nearest charging station; robots can share energy with 

other robots that are either going to charge or dead (Fig. 8). This case is similar to the 

previous case only having the robots navigate to a charging station close by instead of 

having a fixed location to go to. 

 
Figure 8: Robot charges at nearest charging station and shares energy with robots in need and 

dead robots 
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Å Case 4(A): Robots charge at a pre-defined, assigned charging station; robots can share 

energy with other robots, only if they are dead. Figure 9 demonstrates this particular case. 

At each tick the state, position and energy are updated. When a robot that is working 

between two workstations comes across a dead robot and has enough energy to share, it 

will provide it with the energy needed, that will drain some of its energy to give to the dead 

robot.     

 

Figure 9:Robots charge at assigned charging station and share energy with only dead robots.  
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Å Case 4(B): Robots charge at the nearest charging station; robots can share energy with 

other robots, only if they are dead (Fig. 10). The robots will be actively changing states 

depending on tasks given and the energy level, it either decreases when consuming energy 

or increases when gaining energy. 

 

Figure 10: Robots charge at nearest charging station and share energy with only dead robots.  














































































