INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI
films the text directly from the original or copy submitted. Thus, some
thesis and dissertation copies are in typewriter face, while others may be

from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indicate

the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and
continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in reduced
form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6” x 9” black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly to

order.

UMI

A Bell & Howell Information Company
300 North Zeeb Road, Ann Arbor MI 48106-1346 USA
313/761-4700 800/521-0600

Performance Evaluation of a Database Sever
for a Distributed Application Monitoring
System

By

Xiaodong Qin, M. Sc in ISS

A thesis submitted to
The Faculty of Graduate Studies and Research
In partial fulfillment of
The requirements for the degree of

Master of Science, Information and Systems Science
SCS

Carleton University
Ottawa, Ontario
December 1998

©Copyright

December 1998, Xiaodong Qin

i+l

National Library
of Canada

Acquisitions and
Bibliographic Services

395 Wellington Street
Ottawa ON K1A ON4

Bibliothéque nationale
du Canada

Acquisitions et
services bibliographiques

395, rue Weilington
Ottawa ON K1A ON4

Canada Canada

Your file Votre réfdrence

Our file Notre rélérence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de

reproduction sur papier ou sur format
électronique.

The author retains ownership of the L’auteur conserve la propriété du
copyright in this thesis. Neither the droit d’auteur qui protege cette theése.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimeés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

Canadi

0-612-36946-3

The undersigned recommend to
The Faculty of Graduate Studies and Research

acceptance of the thesis

Performance Evaiuation of a Database Server for a Distributed

Application Monitoring System

Submitted by
Xiaodong Qin
in partial fulfillment of the requirements for the degree of

Master of Science, Information and Systems Science

-r

Chair, ﬁool of Computer ter Science

sy

Thesip Supervisor

Carleton University

January 14, 1999

Abstract

The purpose of the research is to develop and evaluate the performance behavior of a
database server for a distributed application monitoring system. A multithreaded database
daemon is developed for an Application Response Measurement (ARM)-based
performance monitoring system. The daemon accepts performance data from monitoring
agents and writes the data to a performance database management system. Various
database technologies and distributed application monitoring systems are discussed. The
performance evaluation determines the capacity of the developed system in terms of how

many monitoring agents and application processes can be supported.

ii

Acknowledgements

This thesis is the result of many people’s working efforts. First of all, I would like to
thank my supervisor, Professor Jerome Rolia, for providing me such a great opportunity
to make contributions to the cutting-edge ARM-based performance management system
developed at Carleton University. He gave me the valuable research trends and technical
advices with endless kindness and patience. He has always been there whenever I have
questions and problems. Without his exceptional leadership in the research supervision,
this thesis would never have such great results. The thanks also go to my colleague,
Ferass ElRayes, with whom I have been working very closely during the whole research
period. Without his help and other important components of the system he developed, the
performance measurement would never take place. [would also like to thank Xin Sun
and Diwakar Krishnamurthy, who gave me a lot of knowledge and information in

performance evaluation theories.
[also want to mention that the most important person in my life, my husband, always

gave me unconditional support during the whole research. [would have never finished

the thesis without his encouragement and patience.

iii

Table of Contents

Abstract ii
ACKDOWICAZEMERLS ..uc.eeeuivinisicanirsacnnincrensernencsenssssarensssssossaessssssnsasssssnsensasamesenne iii
Table of Contents iv
List of Tables viii
List of Figures - ix
Chapter 1 . 1
Introduction 1
1.1 Introduction to Distributed Application Monitoring Systemsc.....coeeevee........ 1
1.2 Introduction to Distributed Monitoring Using the ARM API.......coeveemennn. 4

1.3 Data Storage and Transfer Problem in Distributed Application Monitoring
SYSLEIMS <.ttt s e e e e e e e eeeeee e s e et eee e e 7
1.4 Conventional Approaches to Transferring and Storing Performance Data........ 8
1.5 Contribution of the TRESIS.....ceeveueeeereeeieteeeeeeeeteeeeeeeeeeee et e e et ere e 11
1.6 Thesis OULLNE ...ceeeereeieeeeeeceeee ettt e e e e 12
Chapter 2 ceseesserensnnsenssantecssntsnatsssanasanne cesssaresatsescararsses 13
Distributed Application Performance Monitoring System Architectures................. 13
2.1 Introduction to Distributed Application Performance Monitoring 13
2.2 Distributed Application Monitoring SYStEMScceveeeeevrureeeemeeeeeeceerseerererens 16
2.2.1 Management of Distributed Applications and Systems (MANDAS)............ 16
2.2.2 Distributed Measurement Systerm (DMS) .. e eeeeeeeemeeeeeeeeeeeee oo 19
2.3 ARM-based Distributed Performance Monitoring Systemeovvevrevrevererennnn. 21
2.3.1 Application Response Measurement (ARM) APIooeeveeeeecommererersrnnnn. 22

iv

2.3.2 ARM-based Distributed Application Monitoring System Architecture for

Carleton University ARM 2.0 PrOtOLYPE ...euveeeeeereceeeeeeeeeeeeemeeeemeeeeeeeeeeeeeeeeeeeen 23
2.3.2.1 Instrumented appliCAtION «....ceeueevemreeeeeeeeeeieceeeee et 25
2.3.2.2 ARM AZENL ettt ee e eee e e e 25
2.3.2.3 Performance Data StOrageceemeeiuemeeeeeeeeeeeeeeeeeee oo eeeeeeeeeeeeoen 25
2.3.2.4 Management APPLCALION ..c.cuevererereuerereeeieeeceeeeseeeeee e eee e eeeeee s s esesanes 25

2.3.3 Steps of Monitoring Distributed Applications Using ARM API................... 26

2.3.4 Comparison of Approaches to Performance Data Transfer and Storage in

ARM-supported Performance Monitoring SyStems «.......eeeeeeveeeereeeeeeeemeereneeeennnn. 26
2.3.4.1 HP OpenView MeasureWare Agent.........c..o.eeeceeeeeeereeeeseeeeesesererrerernns 27
2.3.4.2 Tivoli TME 10 Distributed MOnitoring...........ceeeeeeeeeeeeeeeeeeeeeererernnn. 29
2.3.4.3 BMOC BESH/T .ottt et e e se e 31
2.3.4.4 Carleton University ARM 2.0 Prototype.........coeeeeeeeeoeeeeeeeeeereereennn 31
2.3.4.5 CONCIUSION c..oiimtinrenieeeeeceteee et ee e et e e eeeeeeeeee e eeeeeeseeeeeseseenensens 33

2.3.5 Evaluation 0f ARM 2.0 c.c.uucerieeeeeieeeee e e 34

2.4 SUININATY «.eeovieeeniieereeeeeeieee e tee ettt eseeeeesee e s s e s e e s e ee e e ee e e e 34
Chapter 3ccveeccvensernerecesacreneees .. 36
Performance Database Design .. 36

3.1 Performance Database DESIZI «.oeovveueeevereueeeieceeeeeeeee e ee e eseee oo 36

3.1.1 Relational Databaseceeueeeeoeeeererererceeceeteeee e es e 36

3.1.2 Database SChEMAccveeuieeireeeeeeceeeeeeeeee e, 36

3.2 Database TechnOlOZies. ... coouueueurerereeeeeeeeeeeeeee e 39

3.2.1 Open Database Connectivity (ODBC)......oueeeemeeeeeeeeeeeeeeoeeeeeeeoeoo 39

3.2.2 Java Database Connectivity (JDBC)....ueem oo 42

3.2.3 Performance Measurement of ODBC and JDBCooeveeeeeeeeeeo 45

3.2.4 DB2 CLI, Embedded SQL and Stored ProCedUre....cveeeeeeeeeeeeeeerennn. 47
3.2.4. 1 DB2 CLIL ..ttt e 47
3.2.4.2. Embedded SQL....oomomeeeeeieeeeeeeeeeeeeeee e 48
3.2.4.3 Stored ProCedure.......covveeveemeeeiececececeeeeeeeeee e e 50

Chapter 4 55

Performance Database Daemon Design and Implementation 5§
4.1 Qualitative Evaluation of Performance Database Daemon...........ooveeeeeoooeonnn 55

4.2 Performance Database Daemon Design ISSUES «....veeeeeeeeeeeeeeeeeeeeeeoeoeoo 59
4.2.1 Threading Strate@iesoveuemreeeeeeeeieeeee oo e e eee e e 59

4.2.2 BUffering StrateIesovveueeieeenieeeeeeeeeeeeeeeee e eeeeeee e e eeee e eeen 60

4.2.3 Performance Tuning for INSErtion..........vevuemeeeecmemeeeeeeeeeeeereneeeeeeeeresereenns 61

4.2.4 Database CONMNECIONc.oomeeeeemeeeeeeeeeeeeeeeeeeeeeee e e e e eeeeeees e 66

4.3 Flow Control of the Performance Database Daemon...........oeeeeeeveeeeeeeeemeeenn. 69

4.4 SUIMIMNALY ...ooenieeencteneereteeee et ee e eee e see e e eseesese e see e eseeseeeeseesesee e e s 69
CRAPLEE S o.eeeenceirisncnnecaentnsnnseeesesesessssssssasessassssssnsosasssasssssennsssensessessaseasassssesensmsmeaes 71
Performance Analysis and Scalability of Performance Database Daemon............... 71
5.1 Performance Evaluation ObjectiVesoueueueeeueeoeeeeeeereee e eees e, 71

5.2 Performance Evaluation Experiment DeSignocevueueeemeeeeeeeeeeeeeeeeeeeeseennn 73
5.2.1 Performance MELIICSc.ccrevemereeeeeieeeeeiee e e e eeee e eseee e e oo 73

5.2.2 Performance Measurement Configuration...........oe.oweeeeeeeeeeememeseseeresronnn. 73

5.2.3 EXperiment DESIGNocemieeeeeeeeeeeeeeeeeee e 75

5.3 Performance Measurement Results and Analysisooeveeveeeemeeemeeeeeoeeon 78
5.3.1 AGEregation LeVEl... ... iuivieieieeeeeeee e 78

5.3.2 Agent Reporting Periodeeeecuemeeeeeeeeeeeeeeeeee oo 85

5.3.3 NUMDBET Of CLIENLS c....everrrrcececeeceeeeeeceteetee et ee e ee e 93

5.3.4 Number of ARM AENLS........oomeeemeeeeeeeece e oo e oo, 101

5.4 Predict the Scalability of Performance Database Daemon..........o.ooeooeoovooonnn 108

5.5 SUIMMALY ..ottt e e e 109
CRAPLET 6 cocueereresreeeneecncnanirennccnsasssenesnessessssssssosassns 111
Conclusions.... 111
6.1 SUIMIMALY ...oceoeoeeteceeteete et eeeseee e e s e e e 111

vi

6.3 FULUTE RESEATCHeeeeeeeeeeeee e e 113

References 114

Appendix Aggregation Levels Supported by Carleton University ARM 2.0
Prototype 117

vii

List of Tables

Table 5.1 Performance Evaluation Experiments

viii

...

List of Figures

Figure 1.1 Distributed Application Monitoring System Using ARM API........................ 5
Figure 1.2 IBM Tivoli TME Data Storage and Transfer Architectureoooevveen..... 10
Figure 2.1 MANDAS ATCRItECIULE.......euveeeeeeeceeeeeeeeeeeeeeee e ee et eeeeeeee oo ss e e 18
Figure 2.2 DMS ATCRItECTUIEeiueeeeeeeeeeeeeeceteecee et eesese e eee e e 20
Figure 2.3 Carleton University ARM 2.0 Prototype Architecture.........o.oomeveeeeeerenenennn... 24
Figure 2.4 HP OpenView ARM-supported COMPONENLSeuveeeveeeeeeeerreeerererereenerenns 28
Figure 2.5 Tivoli ARM-supported COMPONERLS..........coeveuemeememeeemeeeeeeeeeesesereeeereeeereeeens 30
Figure 3.1 Performance_data tableoooooueieveeiiomieneeeeeeeeeeeeeeeeee e 38
Figure 3.2 Open DataBase Connectivity (ODBC) COMpPONENtSoeeueereeeeeenreeeennens 41
Figure 3.3 JDBC COMPONENTS ...ovurnreeteiteeteeceeeeeeeeeeeee e eeeeeeeeeeeeee e ee e seens 44
Figure 3.4 Performance Comparison of JDBC and ODBC «..eeueeeeeeeeeeeeeeeeeeeeeeeenn. 46
Figure 3.5 Normal Application Accessing a Database Server.......oowewwemeoeevemeemeemeeeeenn. 51
Figure 3.6 Application Accessing a Database Server using Stored Procedure................. 52
Figure 4.1 The Impact of Block Size on The Response Times of Data Insertion 63
Figure 4.2 The Impact of Table Size on the Response Times of Block Insertion............. 65
Figure 4.3 Memory Leak Problem of IBM DB2 ODBC Driver during Database
CONMECHION 1ottt et e e e ee s esee e e ee s emeeee s 68
Figure 5.1 Performance Measurement CONfIgUIationeoveeeeeeveeeereeeeeresseseereserenerans 75
Figure 5.2 Impact of Aggregation Level on the Performance Data Size..........vooveeen...... 80
Figure 5.3 Impact of Aggregation Level on the Database Daemon CPU Demand........... 81
Figure 5.4 Impact of Aggregation Level on Database Daemon Computing Time........... 82

Figure 5.5 Impact of Aggregation Level on the Database Daemon Resource Utilization 83
Figure 5.6 Impact of Aggregation Level on the Client Cycle Timeoovuvveeevereeeeeenn. 84

Figure 5.7 Impact of Aggregation Level on the ARM Agent and Client Node CPU
UBIZALIONeeeee ettt eeees e eeeeeeses s e e 85
Figure 5. 8 Impact of Agent Reporting Period on the Performance Data Size............... 87
Figure 5.9 Impact of Agent Reporting Period on the Database Daemon CPU Demand .. 88
Figure 5.10 Impact of Agent Reporting Period on the Database Daemon Computing Time

.. 89
Figure 5.11 Impact of Agent Reporting Period on the Database Daemon Resource

UTHZATON. ...ttt e ce s s eeee e s eeeeeeeeseseeen 90
Figure 5.12 Impact of Agent Reporting Period on the Client Cycle Timec.o............... 91
Figure 5.13 Impact of Agent Reporting Period on the ARM Agent and Client Node CPU

UBHZALION .. ettt s s e e ee et et s e eeee s s s e aen 92
Figure 5.14 Impact of Number of Clients on the Performance Data Size......................... 95
Figure 5.15 Impact of Number of Clients on the Database Daemon CPU Demand 96

Figure 5.16 Impact of Number of Clients on the Database Daemon Computing Time ... 97

Figure 5.17 Impact of Number of Clients on the Database Daemon Resource Utilization

.. 98
Figure 5.18 Impact of Number of Clients on the Client Cycle Timeceueeeveeereeemnen.n. 99
Figure 5.19 Impact of Number of Clients on the ARM Agent and Client Node CPU

UHHZALION ...ttt e e e e e e 100
Figure 5.20 Impact of Number of ARM Agents on the Performance Data Size............. 102
Figure 5.21 Impact of Number of ARM Agents on the Database Daemon CPU Demand

.. 103
Figure 5.22 Impact of Number of ARM Agents on the Database Daemon Computing

THINIE e ettt e e s e e s s e rnene 104
Figure 5.23 Impact of Number of ARM Agents on the Database Daemon Resource

UHHZALION. ...ttt st s e e et e e s e s 105
Figure 5.24 Impact of Number of ARM Agents on the Client Cycle Time 106
Figure 5.25 Impact of Number of ARM Agents on the ARM Agent and Client Node CPU

UBHZALOM .o..cceoeeee ettt et case e e e es e e e nens 107

Chapter 1

Introduction

The purpose of the thesis is to design, implement and evaluate a performance database
daemon that accepts performance data from Application Response Measurement (ARM)
agents in the Carleton University ARM 2.0 Prototype. The development of the daemon
and a measurement infrastructure to perform load tests are the main contributions of the

thesis.

This chapter gives a brief introduction to distributed application monitoring architectures

using ARM-based architecture. We also introduce the problem we are trying to address.

1.1 Introduction to Distributed Application Monitoring
Systems

Business applications in the world today are critical elements of practically every
business and organization. Determining whether these applications are satisfying their
performance objectives is an important issue for system management. To be able to
proactively solve performance problems or effectively forecast computing and
networking resource requirements to handle growth or shortfalls, we must understand

how applications consume system and network resources.

Distributed application performance monitoring can be defined as the process of dynamic
collection, interpretation and presentation of information concerning objects or software

processes. It is needed for various purposes such as debugging, testing, program

visualization and animation. It may also be used for general management, system
configuration management, fault management and security management. In general, the
behavior of a system is observed and monitoring information is gathered. This
information is used to make management decisions and perform the appropriate control

actions on the system.

Although many techniques have been created in host-centric environment to address this
issue, these techniques are not satisfactory for most distributed applications. Because of
the rapid migration toward distributed applications, management vendors have begun to

address distributed application performance with new techniques.

There are a number of fundamental problems associated with performance monitoring of

distributed systems:

e There are delays in transferring performance information from the place it is
generated to the place it is used. This means that the performance data may be out of
date.

¢ The monitoring system may itself compete for resources with the system being
observed and modify the system’s behavior.

e Information from heterogeneous systems must be coalesced.

In order to overcome these problems, it is necessary to design a monitoring system in
terms of a set of platform independent services that support the generation, processing,

distribution and presentation of monitoring information.

This thesis focuses on support for application level instrumentation. Transactions for the
performance management system are defined as application specific units of work, a set
of elementary actions that the designer of the application program wants to monitor, for
example, the time it takes to perform a database request. The transactions should be
application units that need to be measured, monitored, and for which corrective actions

can be taken if the performance is determined to be poor.

(73]

There are several ways transaction data have traditionally been collected on centralized

systems:

¢ Transaction Processing Monitors (TP) allow the capturing of some form of
resource consumption data.

* Databases provide facilities to capture transaction activities within the context of
each database access.

® Particular operating system facilities may have a built-in notion of what a
transaction is and will store or report information related to that transaction.

¢ Program developers may embed their own instrumentation within application
code at the request of analysis in order to get transaction specific data.

* Application profilers that gather data on how an application is behaving may exist

for a particular operating environment.

Each of these methods has advantages and shortcomings. The most obvious shortcoming
is that the transaction activity is captured in the context of the software layer measured,
not necessarily relating to the business unit. When applied to the distributed environment,
the biggest problem for all current methods is the lack of ability to track resource
consumption by a transaction when several elements in a network are contributing
towards the completion of the transaction. This means that none of the above methods

provides integrated instrumentation.

In this thesis, we focus on the application instrumentation with Application Response
Measurement Application Programming Interface (ARM API), which is described briefly
in the next section. The application instrumentation refers to the technique that
specialized software components are incorporated into programs to provide mechanism
for measuring performance. An ARM architecture will be discussed in more detail in
Chapter 2. Other distributed performance monitoring systems such as Management of
Distributed Applications and Systems (MANDAS), Distributed Measurement System
(DMS) are introduced in Chapter 2.

1.2Introduction to Distributed Monitoring Using the ARM
API

Application level information is needed to address application related problems. The
application source code can be instrumented. ARM is an API jointly developed by an
industry partnership that aims to monitor the availability and performance of applications
in heterogeneous systems. The ARM API began as separate and independent projects at
IBM Tivoli Systems and Hewlett Packard. Both projects had similar goals, and each had

resulted in implementations that were generally available as products.

The purpose of the ARM API is to enable applications to provide information to measure
transactions from the perspective of an end user. ARM APIs are called to measure
components of response times in distributed applications. These components are portions
of code, such as a CORBA object’s methods, that are defined as tranmsactions. This
information can be used to support service level agreements and analyze response times
across heterogeneous distributed systems. The ARM API allows vendors to create
management-ready applications and end users to measure and control the total

performance of their business critical distributed applications.

Clients Application Database
Server Server

Client L -

Network Network

Client Pi€E——» P

Client L

. Management

LStart Stop Start Stop Start| Stop| Real-time Application
v v v vV v
ARM Library Per Process
¢ Log
ARM Agent Per Node
Client Response Time Data

e Averages

e Statistical
distributions

Transaction Data

e Total number

e Business transaction time

Application Server
¢ Time in critical components of application

code
e Number successful
Database Server Reports
¢ Time spent in key DB transactions e Trends

e Exceptions

Figure 1.1 Distributed Application Monitoring System Using ARM API

Figure 1.1 illustrates a distributed application monitoring system using ARM APL. In this
architecture, the distributed application (client and server) is instrumented by ARM API
calls. ARM agent captures the performance metrics about the client and logs the
performance data in a repository. The performance data is retrieved by the management

application.

Figure .1 illustrates the monitoring of a distributed application system using the ARM
APIL. The ARM API is a simple API that applications can use to pass vital information
about a transaction to an agent. The application calls the API just before a transaction (or
a subtransaction) starts (arm_start) and then again just after it ends (arm_stop). The
ARM library will return the appropriate ids to the ARM API calls and calculate the
metrics as a result of the transactions. These metrics may then be logged, monitored or
cause alarms. The API is supported by an agent that measures and monitors the
transactions, and makes the information available to management applications. The
business transaction time (client response time), time in critical components of
application code (application server response time) and the time spent in key database
transactions (database server response time) are all captured by the ARM API calls. All
the performance data is registered in a storage system. The performance data is retrieved
by management application and then reports or models are generated based on the

retrieved data.

ARM has two versions. ARM 1.0 provides a way to measure each individual transaction
in a distributed application, but not any way to understand how they are related to each
other. In ARM 1.0, the transactions are measured without regard to whether they are
composed of other transactions. In practice, many client/server transactions consist of
nested subtransactions. It is very useful to know that a transaction is slow, but even more

useful to know which subtransactions contribute most to the delays.

Many client/server transactions consist of one transaction visible to the user, and any
number of nested component transactions that are invoked by the visible transaction.
These component transactions are the children of the parent transaction (or the child of
another child component transaction). It is very useful to know how much each
component transaction contributes to the total response time of the visible transaction.
Similarly, a failure in one of the component transactions will often lead to a failure in the

visible transaction, and this information is also very useful.

ARM 2.0 provides a way to correlate data about transactions using a client/server
programming model. Using ARM 2.0 an application can provide the parent/child
information needed to know how transactions and subtransactions relate to each other.
There are two facilities that the application developer can use to provide this information

to measurement agents that implement the ARM 2.0 API [1].

* On the same arm_start , the application can request that the measurement agent
assign and return a correlator for this instance of the transaction (that is a parent
correlator). Note that the agent has the option of not providing the correlator, because
it may not support the capability (ARM Version 1.0 agents do not support

correlators), or because it is operating under a policy to suppress generating them.

e When indicating the start of a child transaction with an arm_start, the application can
provide a correlator obtained from a parent transaction. This allows the measurement

agent to know the parent/child relationship.

1.3Data Storage and Transfer Problem in Distributed
Application Monitoring Systems

Performance monitoring is definitely data-based. Vast amounts of information (especially
in large, complex networks) are collected by the agents and sent to the management
applications. The agents collect performance data. The management applications
maintain historical and statistical data, handle events and reports. All this information,
which explodes in size with network complexity and size augmentation, need not only be
stored efficiently but it must also be enriched with powerful data management features
that allow the realization of demanding, high level management functions like temporal

reasoning, decision-making and planning.

Management applications may manipulate performance data in full detail. A summary, a

historical collection or a statistical analysis of these data can be generated. A database

management system is a commonly accepted solution for this purpose and it is central to
the development of an efficient performance management system for large networks. The
performance database is very important in the distributed monitoring infrastructure. The
performance data collected by the ARM agents running on many node must be
transferred and stored in a cost-effective manner. Examples of ARM-supported
performance monitoring architectures/products using DBMS include HP’s OpenView
MeasureWare [2] and IBM Tivoli’s TME 10 [4].

Although distributed performance monitoring has been an important research topic for
the past few years, little research has been published in the area of performance data
management and in particular the cost of storing and retrieving monitored data.
Furthermore, the appearance of open database technologies such as ODBC and JDBC
enables the development of open systems. The open database technologies support
migration and transparency, but may lose availability or scalability. These technologies

will be discussed in Chapter 3.

1.4 Conventional Approaches to Transferring and
Storing Performance Data

In most commercial performance monitoring systems, the typical approach to transferring
and storing performance data is to let the agent write the performance data in local
repository first with a user-defined frequency. The data then gets transferred to
management sites later on. The major ARM supported performance management
products including HP OpenView MeasureWare agent [2], Tivoli TME 10 agent [4] and
BMC BEST/1 agent [5] use local log files to store the performance data temporarily. We
give a brief introduction to their ARM supported portions in this section. Chapter 2 will

examine them in detail.

HP OpenView is the ARM-supported product which offers users integrated network,
system, application and database management. It provides ARM support as part of its HP

MeasureWare resource and performance management solutions. The ARM API is an

integrated component of the HP OpenView management API set.

The HP MeasureWare Agent collects comprehensive resource and performance
information across the distributed environment. The agent summarizes, timestamps, logs,
and alarms on all the collected data from the application, database, network, and
operating system [2]. However, little information is published about how the log files get
transferred to the database, either by the MeasureWare agents or other intermediate

processes.

With Tivoli TME 10 Distributed Monitoring product, the ARM agents collect detailed
data for real-time problem analysis and write the data in a summarized format to the
sequential file at the end of each interval (typically 10-15 minutes). The Tivoli Reporter
retrieves performance records from the log files, reduces them and writes them into an

SQL database [4]. Figure 1.2 gives the high level view of its architecture.

10

Managed Node

ARM Agent | Log File

Tivoli Reporter

Managed Node

ARM Agent Log File

Performance Database
Node

Performance

Database

Figure 1.2 IBM Tivoli TME Data Storage and Transfer Architecture

Figure 1.2 illustrates the IBM Tivoli TME 10 performance data storage and transfer

architecture. In this architecture, the ARM agent writes the performance data to local log

files first. The log files get transferred to the Tivoli Reporter, which filters the data and

writes the data to the performance database.

11

As we can see from the above introduction about the ARM-supported commercial
management products, the typical way to store and transfer performance data is to let the
agents save the performance data in a local log file first and the log file gets transferred to
the management sites later on. The issue here is how the log files written by agents get
transferred to management sites. Tivoli’s data reporter is responsible for the transmission,
but little information is released about how the HP OpenView MeasureWare agent

transfers the performance data in the log files to management sites.

The advantages of the above approach include reliability, low likelihood of lost data even
if performance database goes down for a while. The disadvantage is the extra memory-

disk overhead on the managed node.

One possible alternative to the data transfer issue is to have each ARM agent transfer its
monitored data to the database directly without writing the data to log files. The
downside of this direct approach is that every ARM agent needs to know the database
location, database access methods. In addition, if the database schema has any changes,
the ARM agent must be changed as well. Another problem with this approach is that the
number of database connections that can be supported by the DBMS is limited. If the
ARM agents interact with the database directly, that means, all the ARM agents have to
open and close database connections when they need to transfer the data. If many ARM
agents are trying to send data to the database at the same time, it is possible that the
number of agents exceeds the number of database connections that can be supported. In
this case, some ARM agents cannot obtain database connections and the collected

performance data will be delayed or even lost.

1.5 Contribution of the Thesis

In this thesis, we propose a performance data transfer and storage strategy which aims to
minimize the disk and network overhead on the managed nodes by reducing logging

activity. A database daemon is introduced on the performance database node that accepts

performance data from agents and submits it to the database. A measurement study is

12

conducted to assess the performance costs of gathering and storing performance data

using ARM based monitoring.

1.6 Thesis Outline

The thesis contains 6 chapters. The second chapter describes distributed application
performance monitoring and the various architectures including Management of
Distributed Applications and Systems (MANDAS), Distributed Measurement System
(DMS) and ARM. We also examine the different approaches to the performance data

transfer and storage problem in the ARM-supported systems in more detail.

The third chapter discusses the performance database design and open database
technologies including Java DataBase Connectivity (JDBC) and Open DataBase
Connectivity (ODBC). The performance of JDBC and ODBC is evaluated. Other
technologies including DB2 Call Level Interface (DB2 CLI), Embedded SQL and stored

procedures are also discussed in that chapter.

Chapter 4 discusses the design and implementation issues about the performance
database daemon and analyses the various factors that affect the system behavior and
performance the most. The advantages and disadvantages of the database daemon are

also examined in this chapter.

Chapter 5 presents the results of performance evaluation of the performance database
daemon. The impact of various factors on the daemon resource utilization (CPU, disk and

network) is discussed.

Conclusion are given in Chapter 6.

13

Chapter 2

Distributed Application Performance Monitoring
System Architectures

This chapter introduces four distributed application performance monitoring
architectures: Application Response Measurement (ARM) [6], Management of
Distributed Applications and Systems (MANDAS) [7], Distributed Measurement System
(DMS) [8] and Carleton University ARM 2.0 Prototype [9]. We then focus on
examination of different approaches to the performance data transfer and storage in major
ARM-supported commercial performance management products including HP
OpenView MeasureWare [2], [BM Tivoli TME 10 [4] and BMC BEST/1 [5].

2.1 Introduction to Distributed Application Performance
Monitoring

The applications that are used to run businesses have changed dramatically over the past
few years. In the early 1980s, business critical applications generally executed on large
computers, and were accessed from dumb terminals. Non-networked applications
executing on personal computers were just beginning to be used. Since then, these two
application models have moved steadily towards each other, fusing together to form

distributed (networked) applications.

These applications provide unprecedented opportunities for organizations to reach more
customers with more useful services. These services are critical for the success in many

business markets. The applications boost productivity and increase the flexibility and

14

responsiveness of the organizations that use them. Because they are so important, these
applications, and the networking and computing systems that they run on, are critical to

the success of these organizations.

Effective application management requires a focus on how an application’s various
components interact with the components of other applications and with resources such

as operating systems, databases, midware applications and Internet-based applications.

Monitoring the performance and the availability of distributed applications has not
proven easy to do, since these applications have more dependencies on systems which
spread over a wide geographical area. They partition functions throughout the network,
and they exploit many different technologies. The distributed applications have the

following characteristics:

¢ One business transaction may spawn several other component transactions, some of
which may execute locally and some remotely. Any measurement agents that exist
only in the network layer or in a host (server) will not see the entire picture.

e The data may be sent through network using various protocols, not just one, making
the task of correlation much more difficuit.

e Client/sever applications can be complex, taking different execution paths and
spawning different subtransactions, depending on the results of previous
subtransactions. Every permutation could take a different form when it goes across

the communication link, making it much harder to reliably correlate network or host

observations.

In spite of the difficulties, the need to monitor distributed applications has never been so

great. Performance monitoring is increasingly being used in mission-critical roles.

15

Approaches to Gathering Performance Measures

Several technical approaches to gathering measures from applications are being used:

e Network probes

Nenwork probes are used between client and server in an attempt to measure application
response time. This approach can only measure client/server times and does not address
client-only applications, 3-tier applications, or client time independent of the network.

This approach lacks flexibility, is complicated to set up and costly to implement.

e Non-intrusive Runtime Instrumentation

Non-intrusive Instrumentation means no source code modifications are needed. This
approach addresses both in-house applications, for which source code is available, as well
as third party applications, for which source code is not available. This allows both in-
house applications and third party applications to be monitored and response performance
metrics gathered for applications that span enterprise environments without modifying

the application.

Typically the runtime environment of an application is instrumented. This approach
usually captures the elapsed time between the activities such as a button click or menu
selection from the user’s perspective or the time for an RPC. However, the runtime
instrumentation cannot capture information about the context of these activities. This

makes it difficult to use the information for the purpose of performance management.

o Application Level Instrumentation

Application Level Instrumentation means the modifications to the application source
code. Instrumenting an application directly permits measures of actual response time
based upon exactly what the end-user sees. This method is the most flexible and provides
most useful management data over other alternatives. Unfortunately it has to modify the

source code and has performance overhead.

2.2 Distributed Application Monitoring Systems

We introduce two distributed application performance monitoring systems: MANDAS
(section 2.2.1) and DMS (section 2.2.2).

2.2.1 Management of Distributed Applications and Systems (MANDAS)

The objective of MANDAS project was to provide tools and techniques to allow the
successful management of distributed applications and systems. An architectural
framework for distributed application and system management was developed. and
populated with components for configuration management, monitoring and control,
performance data gathering and modeling, and storage of management and monitoring
data. The components were integrated with existing standard protocols and components

for system and network management.

The key areas of MANDAS research at Carleton University included the automated
development of predictive performance models for the application systems, the use of
analytic performance evaluation techniques to predict their behavior [10] and methods to
identify the locations of performance problems in the applications and systems [11]. The

key components of the framework are described as follows:

e Distributed application instrumentation package
A package was developed to capture application level performance information about

operational distributed applications and submit it to a performance data storage system
[13].

e Performance data storage system
A distributed computing environment server was created to store performance
information about operational distributed applications. The server supports automated

model building by performing a statistical analysis of measured data that gives

17

confidence intervals for measured data and more importantly deduces some performance

metrics needed for model building that can not be measured directly.

e A model building system

A tool was developed that gathers information about operational applications from the
performance data storage system. The data is used to assign parameters in a Layered
Queuing Model (LOM) [23] file. The model can then be evaluated by the Merhod of
Layers (MOL) [14].

Figure 2.1 illustrates the MANDAS architecture [21]. The Management Tools could be
used to perform various management activities such as configuration, analysis of
performance bottlenecks, report generation, visualization of network or system activity,
simulation, modeling and so on. The heart of the architecture is Management Services
that are composed of four subsystems, namely configuration subsystem, monitoring
subsystem, control subsystem, and management information repository subsystem. The
Management Information Repository Subsystem provides a logically centralized view of
the management information and provides a single interface to access to the data and data
sources. Information repository service may be used by the monitoring service to store
data being collected from management agents. Management Agents exist for carrying out

management activities on behalf of management services and tools.

Management Tools
Configuration management Report generation
Fault Management Modeling & simulation
Performance Management Visualization

Management Services

Monitoring [nterface

Requests/Replies f MomtormgTSubsystem x Requests/Replies

Config Interface Control I[nterface

Requests/Replies

Configuration Control
Subsystem Subsystem

Repository Interface

Management
Information
Repository Subsystem
(Databases,Files)

SNMP,SNMPv2,CMIP or
Proprietary Protocol

Management Agents

Managed Resources

Figure 2.1 MANDAS Architecture

