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ABSTRACT

The Confederation Bridge is one of the longest continuous bridges in the world built
over seawater. Its construction represents a major engineering achievement in the
design of long-span bridges. Since its completion in 1997, a comprehensive remote
monitoring system installed in the bridge has been collecting data on the static and
dynamic responses of the bridge. In this paper, a brief introduction of the dynamic
monitoring system is presented. The system identification methods and modal
analysis procedures in frequency domain and time domain employed in the analysis
of the field monitoring data to extract the vibrational modal properties of the bridge
are presented. Comparison of the frequency and time domain system identification
methods shows that the Stochastic Subspace method in time domain is an effective
tool for identification of the dynamic properties of full-scale bridges using the
structural response data under ambient conditions. The system identification results
obtained from the monitoring data can be used to calibrate and improve the FEM
model of the bridge. System identification results show that the measured field data
include noise and components of local vibration modes of the cross-section of the
bridge. all of which tend to obscure the modal behavior of the bridge. Detailed noise
reduction and data analysis of the field response data can lead to useful information

on the modal properties of the structure.
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Chapter 1

Introduction

1.1 Introduction

In recent years, the practice of structural engineering in Canada and other industrialized
countries has gradually changed from building new structures to maintaining and
upgrading existing ones. Because of the increasing number of aging infrastructures, this
trend will continue and become even more important in Canada in the near future.
Evaluation of the performance and assessment of the condition of the deteriorated or
deficient structures is an integral part of the overall structural rehabilitation and upgrade
scheme. In Canada, there is the need to detect in as early stage as possible structural
damage or deterioration in the performance of structures such as buildings and bridges
caused by the effect of corrosion resulting trom the use of de-icing salt in winter. and in
transportation infrastructures due to the increasing traffic volume and higher truck loads
allowed on the highways. The primary means to detect structural damage are by periodic

visual inspection, core sampling or other non-destructive techniques. such as acoustic or
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magnetic. The conventional methods are often unreliable and can only detected the
problem after the deterioration process is well underway and significant amount of
damage has aiready occurred. In recent years, the detection of structural damage by
means of vibration tests has been explored as an alternative to the conventional
techniques. In the new approach, the deterioration process on structural damage is
detected through changes in the structural properties, such as reduction in stiffness
leading to changes in the modal vibration behaviour. Because the methodology relied on
identification of changes in the vibration properties of the evaluated structures, accurate
determination of the dynamic modal properties of the structure is therefore essential for
the successful application of the technique as the basis for damage detection and
structural evaluation. Although the general use of the dynamic vibration properties for
structural evaluation is a relative new application in structural dynamics. the importance
of having accurate information of the dynamic vibration properties of structures has been
recognized for a long time. The design of large structures. such as long-span bridges.
suspension bridges, and other complex structures. is often governed by the dynamic
responses and vibration behaviour of the structures. The design must satisfy not only the
criteria of structural integrity under extreme and critical loading conditions. but also
maintaining high performance throughout the service life span of the structures.
Therefore, even before reaching the stage of damage detection. a thorough and precise
understanding of the structural dynamic properties of the structures under the field and

operating conditions is essential.



Generally, structural evaluation includes building analytical models of the evaluated
system, which is commonly by the finite element method. The purpose of the analytical
models is to predict the dynamic behaviour of the structure under study. It is known
from experience that a finite element model without refinement, such as calibration by
dynamic test results, is generally not accurate enough to reflect the true behaviour of the
structure under the field operating conditions, and thus is not suitable for use directly in
structural evaluation. Because assumptions are often made in the finite element model
that may not truly reflect the actual structural conditions, experimental dynamic
investigation of the structure is one methodology that can be applied to refine and verify
the analytical models. System identification which also referred to as “modal testing™ or
“experimental modal analysis™ is the process of identifying the modal properties of a
structural system from measured response signals of the structure. The identified
properties include the damping properties, the natural vibration frequencies. the vibration
mode shapes and the stiffness etc. The response signals used in the system identification
process are generaily obtained from laboratory or field tests of actual full size structures.
Using the experimental modal analysis results, the parameters of the structural model of
the analyzed structure can be adjusted with reference to the identified modal properties
prior to its use for predicting the responses of the structure to other loading conditions
and more complex excitations. The system identification process using the structural
monitoring data as the response signals for the determination of the actual dynamic

properties of the structural system is illustrated in Fig. 1.1.



The modal analysis data of a structure while it is relatively new and in good condition
can be used to establish a reference baseline for the continuing monitoring and evaluation
of the structure for its performance. When there is a change in the structural property
detected by the system identification process from the monitoring data, further
investigation can be implemented to determine if there is any damage to the structure.

Many researchers have carried out studies of performing dynamic tests in order to
determine the dynamic modal parameters of bridges (Ventura, et al, 1995; Wilson, et al,
1989; Paultre, et al, 1995; Abdel Wahab, et al. 1998; Beolchini, et al, 1997; Loh et al,
1998; Salawu. et al. 1995: Douglas, et al, 1982). Recent advances in system
identification techniques can determine accurate by the natural vibration frequencies. and
obtain good estimates of the vibration mode shapes and damping ratios of the structures.
The majority of the excitation method employed in the modal testing of structures in the
references stated above is by single- or multiple-input excitations, which generally relies
on the use of a shaker or an instrumented impact hammer. For the tests, the actuators and
their corresponding locations are selected to excite the structural modes of interest. while
the sensors and the measurement locations are chosen to best capture the modes. In
conventional modal analysis techniques, the exciting force is measured and known. For
testing of large size bridges or bridges with heavy traffic. it is impractical to apply
controlled excitation forces of required magnitude to induce significant or distinguishable
responses by the structures. Therefore, tests using ambient excitations. such as those
from wind, random traffic and sea currents, are carried out on large bridges and offshore

structures as substitutes for the controlled vibration tests in the system identification



analysis. Comparatively, ambient vibration tests are easier to implement and form the
basis for application in long term monitoring. Since the excitations are generally not
known a priori or known in such details as the controlled vibration tests, the disadvantage
of this approach is that more complex data processing and numerical techniques and
algorithms are required for successful extraction of the dynamic modal properties
information from the data in the system identification process. In some previous works
on ambient vibration tests (Paultre, et al, 2000), the environmental loads that excite the
structures as the source of the ambient-vibration responses of the structures are assumed
to have white-noise characteristics.

When applied in the field of control theory in mechanical and aerospace engineering, the
objective of the system identification procedures in the processing of the measured
response signals is to construct a model of the mechanical or aerospace system for
control design. In recent years, the techniques of control theories have been adapted for
structural dynamic analysis of civil engineering structures such as buildings and bridges.
In control application, the control synthesis and design tools require the construction of
parametric system models, such as a state-space representation or a stochastic difference
equation of the control system. When the identified system is a linear model in the state
space representation, the eigenvalues and eigenvectors as determined from the
eigensolution of the model completely characterize the dynamic characteristics and
behaviour of the system. A detailed discussion of state-space model is presented in

Chapter 2.



In civil engineering applications, one of the objectives of modal testing is to evaluate the
performance of the structures and to detect any structural defects or deterioration
processes in progress. The results of the experimental modal analysis of the evaluated
system in the system identification are used to develop damage detection models of the
structure. By comparing the system identification results with the baseline structural
properties obtained while the structure is in good condition, a significant change in the
mechanical properties of the structure and the location of the change may be identified.
A continuous field monitoring system, such as the one implemented on the Confederation
Bridge, together with advanced condition evaluation algorithms based on system
identification techniques can provide bridge engineers a powerful and efficient tool to
detect changes or deterioration in the condition of the structure so that immediate
measures can be taken to correct the problems so as to ensure continuous high
performance of the structure.

The increasing number of bridge failures in recent years has resulted in the interest and
need of monitoring and testing of deficient structures on a routine basis. Theoretically,
the damage of a structure can be detected and located by studying the changes in its
dynamic characteristics before and after the significant event that caused the damage or
by comparing the characteristic properties with the baseline values recorded when the
structure was in good condition. There are still many gaps and obstacles in research
which need to be overcome before accurate and robust algorithms to extract modal
properties of the structure under actual operating environmental conditions for condition

assessment of civil engineering structures. In the field. monitoring data are often



contaminated by noises. Furthermore, the problem is compounded due to the
randomness nature of the ambient excitations and measurement errors in the sensors.
The noise problems of ambient vibration tests and long-term structural monitoring are
much more difficult to control under the operating conditions in the field of civil
engineering structures than in typical aerospace or mechanical applications of modal
testing measurements under controlled laboratory environment.

Many experimental studies have been conducted on the subject of damage detection
(Salane, et al, 1990: Chang, et al, 1993; Alampalli, et al, 1997; Salawu, 1997: Filiatrault,
et al. 1993). A common approach in damage detection is to identify structural damage
based on differences in the dynamic properties of the structures, such as natural vibration
frequency, damping, vibration mode shape and stiffness of the structure before and after
a damage event, for example an earthquake. Results from some experimental studies
show that the change in mode shape is a better indicator of the deterioration of the
structural condition compared with those criteria based on frequency. damping and
stiffness (Salane, et al, 1990). Among the studies on mode shape changes, the strain
mode shapes (SMS) have been proven to be more sensitive to local damage than
displacement mode shapes (DMS) (Chang, et al. 1993). The change of strain mode shape
is obtained by the change of measured strain at different locations of the structure. i.c.
SMS, after the structural damage. Previous studies have shown that it is generally very
difficult to precisely identify the locations of damage in a real structure. even though
changes in modal frequencies and mode shapes can give general assessment information

about the possible existence of damage (Alampalli, et al, 1997).



The difficulties in damage detection together with other challenges in the numerical
algorithms imply that further development and modification are necessary for the system
identification techniques presently used in mechanical and aerospace applications for
condition assessment of structures in civil engineering applications. Because under
ambient excitations the monitoring response data may contain contributions from
multiple vibration modes, this may affect the accuracy of the dynamic modal properties
extracted for the individual modes by the system identification process. It is generally
difficult to predict the accuracy of the system matrices or modal parameters identified
from the test or monitoring data, because it depends on many factors. such as the
characteristics of the data, the selection of the identification algorithm. etc. System
identification errors may occur due to non-linearity behaviour of the system which more
or less exits in all structural systems. Since there are many uncertainties in modal testing
of complex structures, it is usually impossible or impractical to fully characterize the
structure under study without error.

Although there are still many areas which require research in the relatively new field of
damage detection and condition assessment of structures, many research works have
been carried out and will continue to provide information and insight into the
development of more accurate, reliable. robust and easily implementable methods for

experimental modal analysis.



1.2 Objectives and Outline of Thesis

In light of the recent advances and new research findings in experimental modal analysis,
the objectives of the thesis are to develop a methodology for the processing the
monitoring data obtained from the Confederation Bridge, to extract the dynamic
structural properties of the bridge in the field, and to compare the field system
identification results with those from finite element models (FEM). The research works
from the basis for future research on condition assessment and damage detection of the
bridge.

Different system identification techniques are available for experimental modal analysis
of structural systems after several decades of research and practice. It is beyond the
scope of this thesis to give in-depth evaluations or comparisons of all the different
methods. A brief overview of the common system identification techniques is presented
in a later chapter of the thesis.

This thesis is divided into five chapters. Chapter | presents a brief introduction on the
present status of system identification. Chapter 2 gives a more detailed explanation on
the common modal analysis methods used in recent applications. The methods in
frequency domain are discussed in the first part of Chapter 2. The stochastic subspace
method, a modal analysis method in time domain adopted to analyze the response
monitoring data from the Confederation Bridge, is discussed in the second part of
Chapter 2. Following the discussion on the modal analysis methods. the case study of the

Confederation Bridge is presented in Chapters 3 and 4. wherein the results of modal
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analysis of the ambient traffic induced vibration test data are presented, respectively.

Finally, a summary and conclusions are presented in Chapter 5.
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Chapter 2

Experimental Modal Analysis
Methods

2.1 Introduction of Modal Testing

Experimental testing can provide accurate information on the behaviour and structural
properties of complex structures. In experimental modal testing, the dynamic
responses and sometimes also the vibration forces of the structure are measured when
the structure is subjected usually to a known source of excitation. To carry out the
experimental modal analysis using the measured test data accurate measurements of
the vibration data and advanced numerical techniques for data processing and data
analysis are necessary.

The development of modal testing methodologies has been evolving since the 1940s
from the dynamic analysis of aircraft structures with the development of “*Resonance
Testing” procedures, which later formed the basis for the determination of structural

natural frequencies and damping levels (Ewins, 1984). There is available extensive
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literature on the subject of many different approaches for modal testing and data
analysis (Juang, et al, 1988). A brief introduction of the common modal analysis
methods is presented herein. However, it is beyond the scope of this thesis to give
complete details of all the developments specifically developed for special
applications in the field. The focus of the discussion here on the experimental modal
analysis methods is to give an overview of the system identification techniques
suitable for future applications in structural evaluation and damage detection..

At the early stage of the development, the time consuming modal testing experiments
were conducted using analog laboratory equipment. The data were analyzed by hand
calculations. Later on because of significant improvements in electronics and
computer technologies, digital modal testing and analysis techniques were developed
which replaced the analog approach as the standard in the 1970"s.

For conventional modal tests, the trend on the source of excitation employed for
modal testing gradually shifts from single-input to multiple-input with the increases
and improvements in measurement and computation capacities. In the single input
method, the frequency response of the system is measured, and then the vibration
mode shapes and other modal parameters can be extracted from the frequency
response data. With the development of digital Fourier analysis techniques. the single
input method, compared with other methods, is very easy to implement and requires
less computation effort than the multiple-input technique. The shortcoming of the
single-input method is that it becomes inadequate and inaccurate when the modes of a

structure are close to each other (Vold, et al, 1983) or the exciter was installed on the
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node of certain mode. Closely spaced modes can be better identified from the
response data recorded with multiple-input excitations by the multiple reference
modal identification algorithms.

Since around 1980 the multiple-input random excitation method has become popular
for experimental modal analysis. One of the commonly adopted modal testing
procedures in the 1980’s is the multiple-input sine dwell method, which extracts each
mode by measuring the responses at selected points on the test structure. The
damping property is determined by measuring the decay rates of the responses atter
the excitation is removed. It is estimated that about half of the laboratory modal tests
in North America were conducted using the multiple-input excitation techniques in
the 1990’s, while about 30% of the tests were carried out using single-input random
excitation because of its simple and fast advantages (Juang, et. al, 1988).
Theoretically, a single exciter at one location is able to provide all the necessary
information to determine the dynamic properties of a structure. However. when the
exciter is placed near the node of an important structural mode during the test. the
particular structural mode may not be sufficiently excited and thus becomes difficult
to identify from the data. Therefore, multiple exciter locations are often more reliable
to extract information of all the important vibration modes.

Forced vibration responses and free vibration responses are two successive
measurement stages in a vibration test. Data analysis of the dynamic response data
from the two stages yields different types of resuits on the behaviour and properties of

the test structure. The Frequency Response Function (FRF) is obtained from the
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analysis of the forced vibration responses, whereas the natural vibration frequencies
and damping factors are usually determined from the free vibration part of the test
data.

In recent years, modal tests of bridges and buildings have been carried out using
ambient conditions such as wind and random traffic loads, as the sources of
excitation. This type of modal testing technique has attracted significant interest and
research efforts in recent years because of increasing interest on performance
monitoring and assessment of critical or deficient structures in civil engineering. The
sources of the ambient excitation forces in modal testing of buildings and bridge
structures may be from wind, sea currents, heavy traffic etc. Due to the large mass in
a large size structure, the application of artificial controlled vibration excitation is
difficult and impractical because of high cost and technical difficulties. The use of
controlled external forced excitations is thus not suitable for experimental modal
analysis applications in long-term monitoring of usually complex and large size
structures. The continuous monitoring of the responses and behavior of the
Confederation Bridge is an example of this type of modal testing application. The
ambient vibration responses of the bridge are mainly caused by strong wind, water
waves. ice impact, heavy traffic, and earthquakes. Modal analysis of the vibration
responses from ambient conditions has practical significance for long-term

monitoring and condition assessment of structures.
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2.2 Experimental Modal Analysis Methods

Experimental modal analysis procedures can be generally divided into two categories:
frequency and time domain methods. The basic principle of the frequency domain
system identification approach is to extract the dynamic properties of the structure by
nonparametric spectral analysis. The distribution of power over the frequency band
of a finite number of records of data sequences are determined by calculating of the
data using Fast Fourier Transform (FFT) algorithms and Power Spectral Density
(PSD). On the other hand, in time-domain system identification methods, it is
assumed that the response signals satisfy a selected model. The procedures in the
time domain methods are to determine the parameters of the approximate system
model. When the assumed model is a close approximation to the reality. the
parametric time-domain approach generally can give more accurate estimates than the
nonparametric frequency-domain identification procedures (Stoica, et al, 1997).

In the early 1980s, experimental modal testing techniques have been developed for
multi-degree-of-freedom (MDOF) in both time and frequency domains. The response
data at different locations caused by multiple exciters are processed simultaneously.
The modal parameters can then be estimated and the vibration mode shapes are
computed. In general, methods based on the MDOF time-domain approach are the
most commonly adopted techniques for modal parameter identification applications

since the early 1990’s.






