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Abstract

In recent yearsnachine learning techniques have been rapidly developed and widely
applied to many industrial and academic fieldreover,as an important part of the
machine learning techniqgues)sembleéechniquesavedrawnsignificantattention in both
academicesarchesand practical applicationsvhich can make use of multiple single
models to construct a hybrid modelkually,compared to each individual modabetter
performancecan beachievedby applying ensemblenethods In this thesis, a avel
ensemble method is proposedinmprove the performance fdiinary classificationThe
proposed method can ndinearly combine the base models &gaptivelyselecing the
most suitableone for eachdata instanceThe new approach has been validatedvom
datased, andthe experiments results show aip to 18.5%mprovement onF1 score
compared tahe best individual model. In addition, the proposed method outperfamns

other commonly used ensemble meth@geraging and Stackingh improving R score
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Chapter 1: Introduction

This chapter will firstly go througkhe motivation and objectives of the proposed
research question, followed by an overall introductibthist hesi s contri buti

the thesis organization is described.

1.1 Motivations and Objectives

In supervised machine learning, ensemble learning is the technique that miaketo
use of multiple single models tmnstructa hybrid modeto achieve a better performance
than thatof each single integrated modépitz, 1999. Figure 1.1 indicates aegeral
workflow for solving classification problems by applying ensemble methods. Firstly, raw
datausually needs to be prgrocessed for initializing a training dataset, during which
processes such as feature extraction and normalization could be invSkeahdly,
training sets for each individual single model are derived from the initialized dataset.
Thirdly, single models are trained from different training datasets or by different algorithms.
Parameter tuning and validation for each individual modelirrcluded in this phase as
well. Finally, all the single models are combined to construct the ensemble, then the final
model could be further validated and tested.

There exists a number of ensemble learning techniques proven to be successful in
practice. Based on our understanding, most of the techniques could be generally
categorized into two types according to their different concerns:

Type |. Technigues that focus on deriving new training sets from the initial training
set to train diverse single models, whisithe phase marked as red in Figure[Qfitz,

1999



Type Il. Techniques that focus on finding ways to blend the individual models,
which is the phase marked as blue in Figure[Cdnuto, 200p In this thesiswe will
mainly focus on the discussion of Typadthniques for improving predictive performance

in binary classification problems.

Pre-processing

Raw Data

deriving subsets
for training

Initilized Training Data

r--—---—-—""fT~—~>"7T=—«~f"f"F*"+ "'[~-~--~—f"™"™F«""F7"™"F"F™"F~"'FT~"~Ff"7FFfYT"™f"7/""™>"Y""™" T~ T~ 1
| single models |
| training |
| Subset 1 Subset2 | @ eeeee Subset N-1 Subset N |
| |
t t
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| |
| Single Model 1 Single Model2 | ------ Single Model N-1 Single Model N |
| |
| |
L — - ———_—_-. e ——— e —_ e e —— -
[ Combination including validation and testing J
Final Model . .
combining single models
to construct ensemble

Figure 1.1 General Ensemble LearningVorkflow

For a particular dataset, due to the various principles and implementations of the
applied machine learning algorithms, deagnodels trained by different algorithms may
have diverse abilities in recognizing the pattern of a given training saf@e=fore in

order to achieve the complementation across individual models by applying ensemble



methods, it is important to selettosehighly-diverse single models, and to blend them
properly with an efficiat utilization of the diversityKuncheva, 2009a

Most of popularType Il ensemble techniques assign weights to all trained single
models and then linearly combine th¢@anuto,2005. Thus, for all unknown instances,
the contribution of each individual model to the final prediction is fixed, which may result
in a limitation of performance enhancement. Therefore, dynamically adjustofezdch
single model 6s fereatnirtstancds wduld der helpfid, rwhicth irequires
methods of noitinear blendind Canuto, 200k

In other words, as the existiiype llensemble methods takes all the outputs of the
combined single models into account, the weaknesses of the single areddso kept in
the hybrid modellf an ensemble method can adaptively select the most suitable single
model to predict for each instance, then the weaknesses of the single models are avoided.
In addition, it is not necessary to combine all the singleaisoth order to maximizé¢he
complementation effeconly those single models with higst pairwiseliversiiesshould
beselectedo construct the ensemble madel

Based orall the motivatios described above, thabjectives of this thesisis tofind
an easemble method that can 1) determine base models for combination according to their
pairwise diversities; 2) recognize the suitable base model for each data instance; 3) each
unknown instance is predicted only by the identified suitable base model. sdltathe
overall performancef the predictionsby the ensemble model can ingproved bynon
linealy combiring the basemodels In order to perform the adaptive selection of base
models for each unknown instance, a meteel model should be trained fratrerelabeled

training setwhich can indicate the suitable base model of each training sample.



1.2 Thesis Contributions

The process of achieving the goal described above has led to the following
contributions:

1) A novel ensemble method for solvib@ary classification problemis proposed.
the core idea othe proposed ensemble methiscto train a metdevel model that an
dynamicallychoose a more suitabbaseclassifier for each unknown instance

2) Thetraining datas relabeled by a new metthoand then the relabeled training
datais used to train the medavel model;

3) The pairwise diversitie®f single classifiersare measured bywo methods,
according to which théaseclassifiers forcombinationare selected, and all the applied
methodsof measuremerdgrecompared;

4) Multiple machine learning algorithnaseappliedto train a group of different base
models and acomprehensive framework including all the methods mentioned aveve
designed and implemented,;

5) The proposed ensemble mathis validated ontwo datases (Repeat Buyer
Prediction [JCAI, 2013 and Census Income PredictiidsCl, 1994), and the experiments
results indicate thataup to 18.5% improvement @erformances achieved compared to

those oftwo otherType Ilensemble method#veraging and Stacking).

1.3 Thesis Organization

This thesis consists of 5 chapters including ititroductory chapterChapter 2
introduced equired background informatiprwhich includesa bast description of
classification problemshidata science, the general workflow for problem solvamglthe
knowledge of severalommontypes of supervised machine learning algorithitgen a

4



number ofpopularensemble methodsis well as the concept of feature engineesirey
introduced. It contiues by covering thiols utilized in thigesearch, plus a discussion on
related works.

Chapter 3 describes the design and implementation of the framework that applies the
proposed ensemble method. The contents of this chapter are organized as tloswobrkfl
this framework. Firstly, data pfgrocessing is introduced including feature extraction and
normalization. Secondly, single classifiers trained by different algorithms are discussed
and compared respectively. At last, a detailed description ofdpeged ensemble method
is presented.

The experiments design and results are presented in Chapter 4, which also includes
the evaluations of performances and the associated analysis. The comparieen of
proposed ensemble method and two others are discassesl|.

Chapter 5 is @orclusion that summarizes the main accomplishments othbss
along with the limitations of the proposed ensemble method and the potential directions

for future works.



Chapter 2: Background and State of the Art

This chapteintroduces thdackgroundor this proposedensemble methqgavhich
includes the problem types in machine learning, general process of building machine
learning system, basic concepts of feature engineering, metrics for evaluating classifiers
andthe review of multiple machine learning algorithms. In addition, several important
tools are introduced as well as a bdescriptiorof theexperiments environmentsinally,

related works, especialthe approaches regarding to ensemble techniguesevewed.

2.1 BackgroundReview

2.1.1 Overview of Problem Types itMachine Learning

Supervised learning and unsupervised learning are two typical types of machine
learning Othertypes,such as sersupervised learning and reinforcement learnarg
usuallyevolved from those two typedarber, 201P For supervised learning, its main
target is to train a model from the training data with labels so that the model could make
predictions for unknown datdoreover unsupervised learning techniques are applied to
allow us to reveal and explain the unknown patterns of the unlabeledTtatanain
difference betweethese two types of learning technigsi¢hatin supervised learning, the
correct output of the givemainingdataset is already known, having the idea that there is
a relationship between the input and the outignsupervised learng) on the other hand,
focuses orapproacing problemswith little or no idea what theesults shoulde

In supervised learningnost problems could fall into two areas, classification and
regressionMost parts of these two types of tasks aralaimexcept for the outputsf the

trained modelsThe outputs of classification tasks are discrete, which are the categorical



class labed, whereas those of regression are continutbushis thesis the proposed
ensemble method fsr solving classification problems.
2.1.2 Classification
2.1.2.1Workflow

Figure 2.1 shows th@rocessto build a machine learning system for solving
classifi@tion problems, during which training and predicting are two fundamental stages.
Training is the process of using existing data to train a model, followed by predicting,
which is the application of trained model for unknown datas research focweson the

training stagein whichthree phasesre involved preprocessing, learning and evaluation.

Pre-processing i Learning i Evaluation

= ) [ f

v | v

| |
|
i
|
i
|
i .
Training 4% .g;‘g F’ Learning Model 47/ Hgijn;g F’ Evaluating Model
|
i
| i
| |

v

i
|
|
|
'
|
|

| | |

i i i i

---------- R Pre-processin e Final -l
P 9 Model

o New Processed Predicted

Figure 2.1 Workflow for Building a Machine Learning System

Raw data rarely comeés a required fornor scaleln some cases, the way raw data
organized is notapable for presenting any meaningful informatidiherefore, pre-
processing, which includessampling, dimensionality reductionfransformation,
normalization and feature engineerirgusually anecessargnd importanprocesdgor the

subsequertraining phaseAt the end of prgrocessing, raw data is cut into the shape that



fits the learning algorithm and the processed data is then spliinotpart: train dataset
and test dataset.

In the learning phase, tlierived train data and associalablels are fed toultiple
machine learning algorithnfer model training, during which techniques such as feature
selection, parameter tuning and creafidation might be utilized tomprove the model

During the final evaluation phase, one or moreasl& metricgor specific problems
are selected for evaluating moddlse trained model is then applied to make predictions
for test data. Afterwards selected metrics are calculated based on the predictions and the
associated labels of test dafanally, the model with best performance is chosen as the
final model for predicting stage.
2.1.2.2Typesof Classification

Classificationproblemscan be categorized into two typascording to the number
of classes to be identifiedvhich are binary classificath and multiclass classification
[Har-Peled, 200R The former identifies instances as onghaftwo pre-defined classes,
whereas the latter classifies instances into one of the more than two classes. Numerous
classification methods and related techniqu&ge been tailored to binary classification,
which alsolays a foundation for solving multiclass classification probleimghis thesis

for simplicity we mainly focus ominary classification



2.1.2.3Binary Classifier Trainingnd Predicting
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A}
AN A User ID| Gend i Actual Class inimi Predi
[ e e Amachine leaming | (TS 10 ==
ARG a| B 1w S Bt for sumet S — 7
! . I cdassification ! Hieg B
L3 643 | Female | 28 1.68 | (a process) 1 Negative
@ (2 [ 453 [ Male [24] 182 | W Positive
= -
@ 5 3 Female| 35 1.59
2z | | @ E Negative
g =11 1
- @ g ,|1996] 45 | Male [37] 176 . Negative
? oS ) [997] &4 [ Male [25] 17 . Positive
2 z | [3%8] 57 | male [52] 188 . - error [ Positive
o § | [1599] 436 [Female| 16| 156 . Positive
= -
S [ |2000] 763 [Female] 73| 183
£ N ) [0l Trense[n] 1o N / -
(] N ] —_—_ — - — - — - - — — — —
') 1 [2001] 2175 | wale [ 8 1.22
= 1 i [2002] 352 [Female| 18| 171
g 2 Evaluate
® <= | i[2003] 512 | male [61] 175 [DPesimmer) =009/ @00 Je_ _ _"_ _ _ _
=l g | o
bt
@ S [ 1 [298] s8 remaie[38] 165
= S| 1 [29o] 821 | Male [23] 1:1
v Vv e T
N —Y————r
] ! 1 326 |Female| 16 168 " Unknown
5 [[2 ] 765 [ male [32] 185 | unknown
] I3 34 | Male |72 175 |" Unknown
o ' 4 | 574 [Female[sa] 165 | Unknown
Z | f

Figure 2.2 An Example for Binary Classifier Training and Predicting

Figure 2.2 describeke training and predictingetailof single binary classifier. Fits
of all, a dataset consists of a group of instarfttesrows in the tabldéhat are presented as
featurevectors plus corresponding labels. A feature vector setaof individual and
measurablattributes that describe the instance. The attributes are also commonly known
as features, predictgmnd explanatory or independent variabtespecially in statigs. In
addition the values of features could be of various tygpgsh as nominal (e.g. male and
female) and ordinal values (e.g. large, medium and small), both of which could be
considered as categorical values. The slight difference is that ordines\aluld be sorted
whereas no order is implied in nominal values. The features could be also-irakgst

(e.g. the number of users who purchased a certain item) evalead (e.g. height and



weight).Furthermoreeach instancén the given datases labeled as one of actual classes
or targets.The krown dataset could be split into train data and test data according to a
certain propdion.

Essentially a classifier is @erivedfunctionthatmays instances to targetsf which
all parameters a@eterminedA machine learning algorithm is a process that estimates the
parameters of the function by learning the train data, so that the classifier could fit the train
data.ln other words, a classifier is the output of an algorithm that is executiéa drain
dataincluding theactual classesThe feature vector of each instance in frggrdata can
be plugged into the classifier and then a group of predicted class dabelstained All
the parameters of the classifier are settled by the algesp®uified method so that the
sum of errors in the predictionsompared to the actual classssiinimized,therefore
this is the meaning of dAfito. I n geoheral,
mode| which may requireliversemethods to larnits parameters.

During the process ofesting, all feature vectors in test data are plugged into the
trained classifier to obtain the predictions and then one or multiple metrics are selected to
evaluate the performance of the classifier on this given dataset, based on the predictions
and thecorresponding actual class labél®hen utilizing the classifier, the unknown
instances come witlut labels, but with the same form of the feature vectors as those in the
train and test datahus the outcomes of the classifier are the predictions famtk@own
instances
2.1.3 Feature Engineering

Feature engineering generallythe process of manually designing a group of new

featureghat couldbetter matchthe machine learning algorithms amelscribethe specific

1C



problems and is not a formally defed term[BouchardCoté, 2009. As mentioned
previously, the quality of thpreliminarily collected data is usually not good enough to be
learned directly.Specifically, ot only the normalization of the data is required, but
sometimes extrieaturesarealsoneededo achieve &etter performancsjncethe original
features in raw data might be either redundardestribing the properties of instancess
short ofmeaningfulexpression.

In order toredu@ the relevance between the initial featyeslto extractevenmore
informative feature®n the basis ofthe initial features, it is significant to understahe
design principle ofmore proper features, whictsually requires domain knowledge of the
certainproblems. In mangf thesecasesfeature @gineeringcould even be considered as
essential for solvinguchproblems.The initial featuresare normally the most intuitive
expression of the instances and easy to be collected, while the engineered features are
usually obtained bgombining two or mee primaryfeatures oexpressinghosefeatures
from different perspective

In spite of the performance improvementhere are other elements should be
considered amonfgature engineering-or instanceextra workloads are always brought
into the systenand it could be very expensiugboth time and spacespecially when the
size (number of features and instances) of data is relatively largddition, the number
of new featuregould be much larger than that of the original ones, which requires more
space to store the data and more memory for computation. These problems are worth being

carefullyconsidered in practice.
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2.14 Metrics for Binary Classifiers
2.14.1 Typesof Binary Classifiers

A binary classification model, or a binary classifier could be regarded as a function
that mapsnstances to positive or negative class ldbgpaydin, 201(. According to the
types of outcomes, classifiers could be recognized as a distassédier or probabilistic
classifier.A discrete classifier directly generates a predicted class label for an instance
whereas a probabilisticlassifier assigngach instanca score to indicatés degreeof
confidence of belonging tone clasgFriedman, 2009. Moreover, for the probabilistic
classifiers, the assignestore could either benaabsolute probability, or could be any
uncalibratedreal value thata higher value still represents a higher probability. In other
words, probabilistic classifiensank instances according to their probabilities of being a
member of class in ascending or descending oAfesrwards, compared to the absolute
predictions by discrete classifiers, a relative threshold is assigned to probabilistic classifiers
to determime the predicted classes of instances. The instances with a score higher than the
threshold is considered as positive, while those with a score lower than the threshold is
classified as negative.
2.14.2 Confusion Matrix

Confusion Matrix isgenerally usedor presenting and intpreting the performance
of aclassifieron a certain datasdt is an3n matrix (h represents the number of classes)
constructed from the Cartesian product of actual clemsésredicted class¢Kohavi,
1999 . Each entry of thenatrix indicates the number of instancegath ordered pair of
the Cartesian produdtor binary classificatiom equals t®, therefore represents ttveo

classe®f Pasitive andNegative As shown in Figure 2.2, the table in solid lines represents

12



the confusion matri¥or binary classifiers. Additionally9 common rates calculated from

related entrieare presented in dash lines. Some important terms in Figlaes2explained

in detail as followindKohavi, 199§:

1
il

Total: the total number of instanc#sat have been classified by the classifier;
True Positive (TP):itenumber of instances that have been correctly classified as
Positive by the classifier

False Positive (FP}he number of instances that have bieeorrectly classified

as Positive byhe classifier;

True Negative (TN)the number of instances that have been correctly classified
asNegativeby the classifier;

False Negative (FN}he number of instances that have been incorrectly classified
as Negative by the classifier;

True Positive Rte (TPR)also called Sensitivity or Recall, the proportion of real
positive instances that are correctly identified;

True Negative Rate (TNR): also called Specificity, the proportioraifnegative
instances that are correctly identified;

False Positie Rate (FPR): also called Fallit, the proportion of real negative
instances that are incorrectly identified, can be calculated franS{iecificity)

as well;

False Negative Rate (FNR): also called Miss Rate, the proportion of real positive
instances thaare incorrectly identified;

Positive Predictive Value (PPV): also called Precision, the proportioredicted

positive instances that are correctly identified;

13



1 Accuracy: The proportion of all instances that@eaectly identified.

Predicted Classes

Positive

True Positive Rate (TPR), False Negative Rate
Sensitivity, Recall= i  (FNR), Miss Rate =
TP/(TP+FN) i FN/(TP+FN)

...........................................................................

True Positive (TP)

Positive

! True Negative Rate
False Positive Rate (FPR), : .

False Positive (FP) (TNR), Specificity =
Fall-out = FP/(FP+TN
all-out = FP/(FP+TN) TN/(FP+TN)
| Positive Predictive Value L
: (PPV), Precision = i False Omission Rate
! - FOR) = FN/(FN+TN
TP/(TP+FP) (FOR) = FN/( )
---------------------------------------------------------------------------- Accuracy = (TP+TN)/(TP+TN+FP+FN)

False Discovery Rate ENegative Predictive Valueé
(FDR) = FP/(TP+FP) (NPV) = TN/(FN+TN)

.......................................................................................................................................................

Figure 2.3 Confusion Matrix for Binary Classification [Kohavi, 1999

Among these terminologies listed above, Precision (PPVRaxdll (TPR) are two
universal metrics describing the performance of a classifier on a certain dataset. Further
complexmetrics can be 8b calculated on the basis of the confusion metrics, thus to
evaluate a classifier from different aspects. However, it is worth mentioning that the
accuracy may not be an adequate measure for performance because it is very sensitive to
class distribution bthe given datasdt~awcett, 2006 When it comes to an imbalance
dataset, for example, if 99% of the instances are negative and onlyg Aésitive, a
classifier could even achieve a high accuracy of 99% by simply identifying all instances as
negative, which is meaningless in practice. Intiésis Area Under the receiver operating

characteristic Curve (AUC) and: Scoreare selectedhs tle metrics to evaluatéhe
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performanceof models A more detailed descriptioaboutAUC and R scorewill be
introduced in the next feaubsections
2.14.3 Receiver Operating Characteristic (RC&pace

Basically, areceiver operating characteristic, or RQurve is a plot that visualizes
the performance of a binary classifigris drawnin a 2 1 squarearea called ROC space,
of which xaxis and yaxis aredefined ag-alse Positive Be FPR) andTrue Positive Rate
(TPR) respectivelyf Fawcett, 2006 Therefore, he plots in ROC space could describe the
tradeoff between the benefit (TPR) and the cost (FPR) of a clasdtigure 24 explairs
ROC spacavith several significant pointdReceiver operating characteristic, 2Q1IB)e
lower left point (0,0) represents alassificationthat only generates negative outcomes,
while the upper right point (1, 1) represeatslassiication with only positive outcomes.
The (0, 1) point represents a perfect classification when all actual positives are correctly
predicted without any error. The points on the diagdinal represents the classifications
that randomly guess one class with a certain probability. The points above the diagonal line
represents the clasgifitionswith better performance compared to randguoess In
practice, the area under the diagonal line is always considered as empty because a
performance better than random guess could be achieved by simply reversing the predicted

classes whenever the classification is plotted under the diagonal line.
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Figure 24 ROC Space and Four Plots of Prediction ExamplefROC, 2014

2.14.4ROC Curve

For each discrete classifier on a given dataset, there is only one corresponding
confusion matrix which areplotted as a single point in ROC spd€awcett, 2006 On
the other hand, probabilistic classifiers could yield different confusion matazes
threshold varies, so that multiple points are plotted in ROC space, which traces the ROC

curves as shown in Figure 2[ROC, 2014.
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Figure 2.5 Examples of ROC Curve$n ROC Space[ROC, 2014

2.145AUC

Simplyto say, dhreshold represents th&ictnes®f a probabilistic classifier making
a positive prediction. Normally a higher threshold could result in a lower FPR but at the
same timesacrificethe TPR because atrict classifier rarelgenerates errors in predicting
a positive class whereas only a small proportion of actual positive instances could be
recognizedConsequently, thegints plotted fromhigher thresholslare relatively close to
the (0, 0) point inROC spaceOn the contray, lower threshold could lead to both

increased FPR and TPR, from which the points platedlose to the (1, 1) poim ROC

space.
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If more actual positive instances could be assigned relatively higher scores by the
probabilistic classifier, then a higher TRRh a lower FPReould be achievedven when
a relatively higher threshold is ssb that thepoints plotted from higher thresiids are
close to the (0, 1) poinh ROC spaceThe ROC curve, in this case, is pulled up to the
perfect classification point, which leads to a larger area under the ROC curve (AUC).
Therefore, a larger AUC indicatéisat a better performance is achiewsdthis classifier.
In other words, AUGepresents the probability thatclassifierassigns a higher score to a
randomly selected positive instartb@an a negative orjf&awcett, 2005 In this thesis, the
mainreasons of selecting AUC #ze evaluation me&ic are 1) AUC is a popular metrics
for evaluating modgberformancen binary classification2) It is insensitive to imbalanced
class distribution3) The twodataset usedin thisthesishaveimbalarced class problem to
different extents.
2.1.4.6 kScore

In analysis of binary classificatioR; score[Cohen, 200Bis also a commonly used
metricto evaluate the performance of a classifieisdore igdefined as the harmonic mean
of precision and recall:

Ni Q& Qil "@EED & &
Ni Qu¥O & Quwwa a

0 ¢

The best value of Fscore is 1 and the worst is By scoreconveysthe balance
betweenprecision and recallFor example, an {Fscore of 0.45 is calculated from
precision of 0.9 and a recall of 0.3, while anotheséore of 0.53 obtained with both
precision and recall being 0.5herefore,for a certain classifiera tradeoff betweenits
precision and recai$ beneficialfor achieving a higlr F1 score Moreover, theeasonable

tradeoff can be accomplished tuningthe thresholdwhich is highly correlated witthe

18



class distribution of the given datadeor example, a threshold of 0.5 may be appropriate
for the dataset with balanced class, while a higher threshold could be better if the proportion
of positive insances is very smalhccording to the definitions,rpcisioncan denotehe
degree of confidence for a classifier to predict an instangesitsve, while recall indicates
the ability of aclassifier to identify the positive instarsc&or a certain clagger, a higher
threshold usually leads to a higher precision but a lower recall, while a lower threshold
results in a lower precision but a higher recalother words, both aggressiya lower
threshold)andcorservative(a higher thresholdjttitude n predicting positive harm tHe
score

In this thesis, the fscore isalsoselected as the performance evaluation medsc
the R score isconsiderednoresuitablethan AUC when suffering from imbalanced class
problemin [Davis, 200§. In additonAUC i s a ficurveo metoric to
averageperformance of a classifier, while the$c o r e i smetdcthatpoald bet o
more meaningfuin practice in some cases.
2.15 Machine learning Algorithms for Classification
2.15.1 Overview

In generalmostmachine learninglgorithms especially forsolving classification
problems, can be categorized as Figu@ ilow [Brownlee, 201B On the basis of
Brownl eeds met hod o falgoritheng &at can ibe atiized for, t ho:
classificaton are particularly selected tmtroduce Plus, a category of Factorization
Modelingthatis widely applied in recommender systermsidded which was mentioned

in [Brownlee, 201Bbut not presented in the figure
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All these listed algorithms have their own characteristics that fit diffexeetific
classification problesin diverse fields. For examplé&gistic regression is commonly
used for prototype validation for its efficiency in achieving an acceptablerpenice
[Schutt, 201BR In addition,FactorizationMachine(FM) is moresuitable forecommender
systens, of which the collected data for training is usually under high sparsity;lsirtths
its unique character dearring this type of datan linear time[Rendle, 201D Each
potentialalgorithm for a certaipractical problenshouldbecarefullyconsidered from both
aspects otlesign and imlgmentation because in marsituationsthe design concepts of
a particular algorithmmay satisfy the requirementsut the implementationof the
algorithm may not.

In this thesis thesefactorsare aikeninto accountvhen selecting algorithms fohe
givendataset 1) The algorithm should have the ability of learning a probabilistic classifier,
asAUC and Fk score areselected athemetrics for evaluation. 2) The algorithm should be
capable to learn sparse data sith@given dataset is under high sparsityS8)cethemain
concern of thighesisis the method oEnsemble, it is better for the selectedalipms to
be simple so that the parameter tuning for models could be easier. This is the main reason
why those complex algorithmsuch asdeep learningre not selectedt) The algoritm
should achieve a propéralance beveenthe performance of the sirggimodel and its
training time consumption as well as its resource requirement.

Those algorithms that contributesttee proposed approadls markedas red, and
both the designs and implementationstlodm will be discussedn detail during next
several pagraphsFor more explicitly explaining the underlying mathematisd e is

usedto denotefeature vectors, regulas with subscriptQo refer to thééh featureof an
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regular0 with subscriptQo standor the weight ofw, wfor actual classes of the instances,
wfor predicted classes, for the probabity of an instance to be positivend0 for the loss

function ofa model
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1 g - . 45
& Regularization — Decision Tree |(2

Figure 2.6 Main Categoriesof Machine Learning Algorithms for Classification [Brownlee, 2013

In this thesis, despite the algorithms that are introduced in detail in the following
sections, other algorithms such Spport Vector Machiree(SVM) [Cortes 1995 and
Factorization Machines are also considered when selecting algorithms for each given
dataset. SVM is not selected as the single model mainly bedautsis not a probabilistic
classifier; 2)the selected datasets in this thesis aghliisparseand it is very time
consuming folSVM to learn fronsparse dataespecially when the size of datasets is large.

On the other hand, for the given datasets in this thesis, too much feature engineering is
harmful to the performanaaf Factorizaton Machines, thygshe features for training the

FM model are different from those for other single mod&tshe proposed method in this
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thesis cannot properly deal with the single models that are trained from different features,
FM is not selected asdtsingle model, either.
2.1.52 Logistic Regression

Logistic regressioman learn a model which is a function mappamginstance to a
predicted classThe function is a linear combination of every feature witrestimated
weight that indicates the cortitition ofthis feature to the target variable. The output of
the function is aealvalue between 0 and 1 that indicaties probability ® this instance
being one of the binary class@he instance could then be classified as positive if its
predicted pobability is larger than the pietermined thresholdBarber, 201P

Logistic regressin can be regarded ageneralizatiorof linear regressigrwhich is
calledGeneralized Linear Model (GLM) in statistiche GLM s capablefor accepting
the dependent variables that have other distributions rather than normal distribfations
ordinary linear regression, such as Bernoulli distribution for logistic regresisios
accomplished by mapping the linear regression model to the response variakgé #hro
link function and a quantizer.

For logistic regressiorihe standard logistic function is applied as the link function,
which is defined as followinfSchutt, 201B

5o P
p Q

whereorepresents the ordinary linear regression model that cdorimellated as
following:
0O < e ]
where] denote a unobservable biafom the actual value. Therefore, the final

logistic regression model can be formulated as following:
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by which"Ow is interpreted as the probability of tfifl instance being positive.
Furthermore, He logistic function is also known &se inverselogit function, which is
often referredtasi gmoi d function because of its
2.7.A logistic function (inversdogit function) can transform any real values into the range
between 0 and,while a logit function does the reverse. Base on the information above,
the followingequation is obtained

K
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In other words, logistic regression can find a hyperplan®e | 1 as the
decision boundarthat slices the train data into two parts: the pahisve the hyperplane

denote the instances with higher probabilities of being positive thanf theihg negative,

and the points under the hyperplane are considered as the instances more likely to be

negative. Additionally, the points on the hyperplane represents the instancesegutid
probabilitiesof being positiveand negative noted thatthe hyperplane ipreciselythe
guantizementioned before. In summary, logistic regresssanprobabilistic classifiem
terms of designBecawse of its simplicity (lineamode) andexpressive interpretality,
logistic regression is usualBelectedas the classifier with baseline performanicethis
thesis logistic regressioms performeddy applyingan implementation provided by Scikit

learn[Scikit, 201§, whichcan takesparse datas input
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Figure 2.7 The Logistic Function[LogisticFuction, 2016]

2.1.53 Ensemble Learning Algorithms
2.1.53.1 Overview

In classification, based on the train data, a model learned by a certain algorithm
generatea hypothesighatis usedfor predictionsln terms oftrain data, residual is defined
as the aviation of approximation given by the hypothesis from the actual value, \lkile t
error with respect to test data and unknown diatalefined asthe gap between the
predictions and the actual valuegjich consiss of bias, variance and noiferiedman,
1997]. The biasappears whethe model underfits the tramg data, thust indicatesthe
amount of data that is not properly leatlower bias leads to a lesesidualandthen
contributes less to the erradn the other hand, the varianoesultsfrom the model
overfitting the train datatherefore, the variance indicates tngantity of noise that is
incidentally modeled. The variance is not reflected in the residuairbttie error.If a
model is tocsensitive to theoise in train datathen it is usually not wetieneralized for

test data andnknown dataThe bias and variance are generated by the model and could
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be changed as the model varies, while the noise is the natural part of the ssorthlasisit
cannot be measured eiiminated

In general, it is very hard to minimize bias and variance simultanetesige there
is a tradeoff between these two sources of errdypically, the bias decreases as the
complexity of the model increas€s.g. more featureswhile the variancencreases
accordingly However, the variance could decreaséhe size of train daitacreases (more
samples) As a result, the expected prediction ergoes dowrfirst and thenup as the
complexitygrows. The tradeff is graphically illustrated in Figte 2.8[FortmannRoe,
2017. In order to improvehe performance of a classifier, ensemble metlanesisedo
reduceeither or both of théwo sources of errdoy combining multiplesimple, or even
A w e aaéseé classifierdn this thesis several populaensemble learning algorithms are
selected as the base classifiershieproposedensemble modebnd the core concepts of
each of thenare described in the following sections

Although ensemble learning can help to enhance the performance, in practice, the
application of ensemble methods leads to the increased computation during both training
and predicting phases, as well as the increased storage fomoadeéparameters. Alsa

complex ensemble modedayeven loss more comprehensibility and interpretability.
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Figure 2.8 The Tradeoff between Bias and Variancg Fortmann-Roe, 2012

2.1.53.2 Bootstrap Aggregation (Bagging)

Bagging was firstly proposed hBreiman, 1998 The core concemif Bagging is to
train multiple base classifiers from differemgw training sets that are randomly sampled
from theoriginal train data with replacemernthento makethe final prediction for each
instance by averaging the scores (forra@bpbilistic classifier) or majority voting (for a
discrete classifier)Vith this sampling method, the new sampled,setsch are known as
the bootstrap samples in statisticeuld have the same size with that of the original set
but only a fraction of a new set are unique samples and the rest are duliuatesethod
can improve performance because it artificially creates diversities among the base
classifiers, which is verigelpful when construabg an ensemble, and reducesiance by
averagingbut does not help much with reducing biagpractice, Bagging is more helpful

regarding tounstable algorithms, which are relativelgore sensitive to the noise
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(overfitting) so that the variance of a badassifier is higheaccadingly. Decision tree is
usually selected as the base mddelbagging but theoretically, any type of algoritlsm
could be applied to train the base classifiers.

In thisthesis Random Forestprovided by Scikidlearnis applied which is a popular
implementation of Bagging and uses decision tree as the base model. In spite of the
randomly sampled training sets, Random Farafto integrates the idea of randomly
selecting featureshen splitting in each single tree in ordefudher increase the divetg.
2.1.53.3 Boosting

Boosting isa family of ensemble learning algorithms that combimeset of weak
learners to constructralativelystrong one. A weak learnbereis defined as a classifier
that maks predictions with a slightly better performartb@an random guessiowever, in
practice, it is not necessary ®rerybase model to be weak. Compared to Bagging method,
Boosting algorithméntended tamprove the performance mainly by reducing bias.

Adaptive Boosting (AdaBoosgnd Gradient BoostingVlachine(GBM) are twoof
the mospopular Boosting algorithmmaoposed byFreund, 199Fandby [Friedman, 200[L
respectively Thesharedcore conceptof themare: 1) all base classifiers anerementally
trained on different training sets a forward tagewise manner2) In each stage, a new
base models trainedto overrome the shortcomings of thast one which is always
achievedby highlighting theerrors madéy the last base model fguiding the new one
to focus more on those misclassificaBp®) The final hypothesis generated by the
ensemble model is derived from the sum of hypothesis of each base Moeldiey
divergencebetween AdaBoost and GBM is thakdaBoost highlights the errors by

adjusting the weights of training samples: increasewthights of the misclassified ones
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and decrease the weights of the correctly identified,@seshown in Figure 2[$chapire,
2013, while GBM highlights the errors by calculating the residuals of the existing base

models which is exactly the negatigradient descent of the loss function.

Data 1 Hypothesis 1
+ - + -
+ + + + - Weight
- — xo4z &”
Stage 1 - -
+ -_— -_—
l Fnal Enaemble Model
Data 2 \L Hypothesis 2
+ o -
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X092

Stage 3

Figure 2.9 The AdaBoost Algorithm: an lllustration [Schapire, 2012

In classification, each model trained from a certain algorithm has its own formula to
present the calculation of the approximation to the proibabit discrete class, which is
defined aso "Qc . Therefore, doss function(or cost function) ¢fiQw of the model

is defined as a function thguantizes the cost for the deviation of predictions from the

actual valus, such as squared l08sciQ® - @ "Qw [Friedman, 200P Given a
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train data, ifits loss function isconvex and differentable, then a optimization algorithm
can be applied to find a set of the paraméef@rfQw , so the loss function is minimized
on that given data.The convexity of the loss functiooould guarantee that the found
minimum is the global oneThis processf optimizationis to accomplishparameter
estimation and different seleidn of loss functions could lead to different estimations of
the parameters

As shown in Figure 2.10, gradient descent, also known as steepest desdgpe is a
of optimization algorithm that searesthe global minimum of a function by taking steps
to slidedown to the minimum alontipe negative direction of gradient of the fttion (the
steepest direction) at each current point. Therefore, for a differentiable loss function of
variables, the gradient at the current point is the vectérpairtial derivatives of the loss
function at tle point. Furthermore, the steps areemlas proportional to the gradient, and
in order to avoid missing the minimum poiatrelatively smaller step is preferradthe
algorithm approaches the minimum poifib. achieve ita parameter called learning rie
involved in which is a real valubetween 0 and 1. Then the length of each step is
determined byts previousone multiplied by tk ratio representing the shrinkage of steps,
in this waythe speed of sliding down is controlled. Empiricallypwaer learning rate can
help to obtain an appximation closer to the minimum, whiaksuallyimplies a better
performance, but also leads to an increased number of iterations (steps). Thiéf timde
worth being carefully considered when tuning the model parameters for a higher efficiency

of time ard space utilization in practice.
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Figure 2.10 A 2D Example ofOptimization of Loss Function Using Gradient DescenfSebastian,
2014
Based on the descriptions above, in general, an ensemble model trained by a certain

boosting algorithm can be formulatesl fallows[Friedman, 200Jt

O w | Qw |

where T denotes the number of base models, sc@hat represents the final
ensemble model, ari@® w represents the hypothesis generated byithbase classifier,
plus, is the weight assigned to tbéh base classifier and is a constant determined in
the first stagéor initializing the model. For gradient boosting, each additive base model is
trained to fit the residual of the existing ensemble model, so thah#ierfodel becomes
more accurate by taking the hypothesis generated by this newly added base classifier into
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account. As the residu@ precisely the negative gradient, in other words, the gradient
boosting algorithm is actually a process to minimizddbks function of the final ensemble
model without prior knowledge to the final loss function, which is achieved by only
minimizing the loss function of the existing ensemble medetnevera new base model

is addedThereforewith the accumulation of thease mode|ghe loss of the implied final
functiondeclinesgradually.In other wordswith a training set cwho , & convex and
differentiable loss functiob «fiO® and the number of iterations (base classifiéyghe
underlying mathemats of this process can be defined as follgwgedman, 200jt

1. Initialize the model with a constant:

0 | Wi Q& Qd wh

2. Foro po &:
1) Calculate the residuals as the negative gradient:

T 0whO0

®w O w i
TO

2) Fit a new base mod#&D @& with the new training set wh

Mo OF "QQHI AQ w

3) Determine the multiplier of the newly added base model w d,

Oi QG N KRO & | Q®

4) Update the existing ensemble model:
Mw O w | Qw
3. Output the final ensemble model as follows:
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O w | Qw |

Additionally, in particular, AdaBoost can be alsgasled as casef the GBM with
a differently defined loss function.

As explained above, the bias of the model is reduced by incrementally training the
base models to learn the errors of theidptessor ensemble moddtowever, the concept
of correcting the errors made by the predecessor model bmayverfitting-prone,
especially for the relatively noisy data. Accordingbeveral regularization techniques are
introduced into the model for constraining the learning procedure, so that the final
ensemble model is prevented from overfitting the training set. Consequentistiridp
methods can reduce the bias of model with keeping variance under control.

In this thesis an implementation of AdaBoost provided by Seikdrn and a
implementation of GBM called Extreme Gradient Boostingl@os) is applied which is
optimizedto be highlyefficient, flexible, portable and scalable.gloost was initially
released as an open source projediGhen, 201f Bothof the selected implementations
of AdaBoost and GBMre probabilistic classifiers and able to deal witlarse data
2.15.3.4 Stacked Generalization

Stacked Generalization, which is also known as Stacking, was firstly proposed by
[Wolpert, 1992. It is ahigh levelensemble method that introduces a rniet&l model to
combine a group of base models, which are usually oérse typesFigure 2.11
demonstrates the process of Stacking, during which all base models are trained from the
training set and tested on the testing set, then the meta takdsthe outputs of all base
models for testing dat@s new feature vectoasd thecorrespondingctual classes values

in testing data as targets, so that the meta model can learn a combination of all base models
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to reduce theverallerror. Theoretically, the metkevel model could be learnt by any type

of supervised machine leang algorithms, but logistic regression is usually selected to be
the metdevel learner because of its simplicity and efficiency, therefore, all the base
models are linearly combinelth addition,non-linear algorithmsan alsde appliedas the
meta malel, thus Stacking can also be regarded as a more complex version of cross
validation, which carproducea more generalized ensemble model to improve the final
performance Overall, Stacking is a type of more generalized and flexithod of
ensemblewhich could be easily applietbhgethemwith other ensemble methodsftother

enhance theotal performance.
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Figure 2.11 The Process of Stacking

Sinceboth Stacked Generalation andhis proposed method could be considered as
Type llensemble techniqueshich is defined previously in Chaptertthey are compared
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in terms of combinatiomethodin thisthesis For Stacking, &h oflinearand norlinear
modelsis selectedis the meta mod& combine a group of base models thattlaesame
as those inhis proposed method.
2.16 Tools andEnvironments
2.1.61 Python

The language used in thisesisfor data operatiomndsystem implementation was
Python, which is a higlevel, generapurpose, interpreted and dynamic programming
language. Python mell-knownfor its illustrious code readability andxpressivenessn
addition, various programming paradigms are supported in python, including-object
oriented and functional programming styles. Furthermore, Python interpreter is a free,
crossplatform and pensource software, whicfeatures dynamic typing and automatic
memory management. Tlkernelphilosophyof Python, which is widely known as The
Zen of PythorjPython, 2016, plus itsopensource featuréhasattracedlots of outstanding
developergorming a powerful community to make continuous contribution to the Python
ecosystem. Therefore, lots efffectivethird-party tools have been developed and can be
easily integrated into Python as extensjavisich allows Pythoto be utilizedundermany
circunmstancesuch as web development and data science.
2.1.62 Anaconda

Anaconda isan open sourcelistributionof Python which pack numerougopular
Pythonbasedtools for data sciace covering data processinggta analysismachine
learning, data visualizatiomnd scientificcomputing[Continuum, 201 Beingan open

data science platformith considerable number of users from divdrslkels particularly in
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education and researcAnacondahelps accelerate the development dta science
ecosystem powered by Python.
2.1.63 Data SciencéRelated Python Libraries

Multiple populardata scienceelated Python libraries are utilized irthis thesis
Firstly, for datapre-processingPandasyhich is an open sourcdibrary providing high
performanceand easyto-use data structusdor Python [Pandas201§, is used Various
interfaces in charge of interacting with othsmmon data storage system, such as
databaseor file systens, are also supportewith Pandasrapid accessing tdata and
intuitive data operation could be easily achiev@dcondlyScikit-learnis appliedduring
model training and evaluat phases, whiclis also @ open source library providing
comprehensivéools for machine learningndalready widely applieth various fieldsIn
spite ofdiversebuilt-in implementations of various maalei learing algorithms, itis also
compatiblewith other standalonalgorithms

Pandas and Scikiearn are botbuilt onNumPy [NumPy, 201§, SciR/ [SciPy, 201§
and Matplotlib [Matplotlib, 2014, which are threefundamental librariedor scientific
computing with Python. NuRy providesa high performance powerful, andmultiple
dimensionarray objectand manyommonfunctionsthat execute computations with those
arrays. ScPy provides a large number of tools for scientific computing, wiédte the
advantages of NuRy. Matplotlib isalsoawell-known Python library fovisualizing data
in 2D plots, which can yieldigh qualityfigures in various formats.
2.1.64 Experiment€Environments

All the developments and experiments are conducted on a custbrmiEnpute

engine from Google Cloud Platfor(fboogle cloud computindjosting services & APIs,
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2016, which is operated bybuntu 16.04 LTSwith 6 caes(2.3GHz)virtualized from

Haswell processsy32 GB memoryand 128 GB SSD

2.2 Related Work

Ensemble methods such as Bagging, Boosting and Stacking which combine the
decisions of multiple hypotheses are some of the strongest existing ensemble methods,
therefore provide reliable foundation fathis proposed ensemble methd&mong them,

[Ham, 200% applied Random Forests to classification of hyperspectral data on the basis of
a binary hierarchical multlassifier system[Berstra 2009 presented an algorithm for
musical style and artist prediction from an audio waveform by utiliAid@Boostfor the
selection and aggregation of audio features. Gradient Boosting Machine (GBM) was
applied in[Atkinson, 2012 for incorporating diverse mea®ments of bone density and
geometryso asto improvethe accuracy ofracture predictioncompared to standard
measuremenMoreover,Stacked generalization is a universal method of applying a high
level model to integrate lower level models for bettexdprtive accuracy. It is usually
achieved by utilizing different classifiers and combining the outg@korbani, 200]L
examined the generalization behavior by comparing single level learning models to
multiple level learning models (stacked generalizatiethod) on a multilayer neural
network. Result shows that the stacked generalization scheme could improve classification
performance and accuracy compared to the single level mobelmethod is also
demonstrated t hr o[Wwgng, 200Gin ghicls theasfagkingoapprdach
performed successfully in predicting membrane protein types based on-aseundoacid

composition.
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Further asemble methods are designfed the purpose ofmproving predictive
accuracy and robustness by blending the predistod multiple models in a more rational
way. There are several schemes proposed for the customized selection of classifiers, thus
to find the best base classifier for each individual instance on the basis of local accuracy.
For example[Tysmba) 200§ proposed the method of Dynamic Integration, in which
weighted voting were applied by giving higher weight to a classifier if its training data
were in the same region as the testing exani@iacintqg 200q introduced an approach
to group classifiers by tivesimilarities and to retain one representative classifier per cluster.
The core notion of this type of methods is to enhance the overall performance by choosing
and/or assigning more weight to those classifiers that perform best in instances that are
similar to the one that is being classified. On the other hand, static ensemble methodologies
are gradually developingBhatnagar2014 proposed a linear ensemble algorithm that
takes into account both the accuracy of individual classifiers and the diversity among
classifiers, which are also vital factorghere importanceshould be attacked when
designing ensemble metrod

Moreover, sincdhe dataset applied in this research was ftbenRepeat Buyers
Prediction CompetitionJCAI-15, 201%. Approaches based on this certain repeated buyer
dataset were reviewed as references forttigsisas well.In this twostage competition
with different amount of data provided, the w¢tku, 2015 won the first place in Stage
1, with the progress in both phases of feature engineering and model training. Various
techniques for extracting a large number of features were applied in feature engineering,
while a blending algorithm was proposed to further boost the prediction performance in

the training phase. The wofKe, 201% won the first place in Stage 2, in which a fstep
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solution was introduced including 1) characteristics analysis and strasigyn 0?) feature
extraction and selection, 3) data training, 4) hybrid ensemble on both models and features.
Both of the award winerssuggested that feature engineeringhis key elemento this

work. and the ensemble method applied in these two agm@saerform better than any

of the individual classifier. Furthermore, only linear ensemble metivede utilized in

their works, so the resslbf these works can be considered as a reasonable quantitative

comparison tahis proposed no#linear method.

38



Chapter 3: System Design and Implementation

This chapter describes the system design and implementation of the proposed
ensemble technique. The chapter starts with an overview of a problem of existing ensemble
methods and a proposed solution. Section 3@udses the design of the system, which is
followed by system implementation as presented in Section 3.3. In addition, in the
following sectionspositive(1) andnegative(0) are used to denote the telassesn binary
classification.In binary classificdon, a classifiergenerates a value between 0 and 1for
each certain instance thafpresents thprobability of thisinstancebeing classified as the

positiveclass.

3.1 Overview

To solve classification problems, a classifier is learnt by a certain thligwrso that
a hypothesis can be proposed based on the classifier that best fits the given training set. For
a certain dataset, a single classifier may
be clearly identified, especially when the datasetighdimensional or noitinear. For
example, in Zdimensional space, as shown in Figure 3.1, some points (circled in red)
cannot be correctly classified. Those points are poiifisiri Figure 3.1 (a) based on the
yellow classifier (as shown in a yellown¢), and point 1 and point§ @ using the blue
classifier (as depicted with a blue line), and so on. A plus sign in Figure 3.1 indicates an
instance belonging to the positive class, wheeeasnus represents the negative class.

By applying the ensemble technique, multiple models can be integrated to reduce
those blind areas as indicated in the lower three diagramsriguye 3.1(d), (e), and (f).
Each data instance in the blind areas is then classified by the capable bateFmod

example, with the combination of H1 and H2 as depicted in Figure 3.1 (d), point 6 can be
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identified by H1 generated by classifier 1, not circled in red, as shown in (a), whereas point

2 can be identified by H2 from classifier 2, not circled in esdshown in (b

Hypothesis 1 Hypothesis 3
+ + +
I 4
8. + - ’ :\Z'
+ b
B -i-ls N - -
(a} ) {c)

Figure 3.1 An Example of Base Model Selection According to Pairwise Diversity

Furthermore, the ensemble models consisting of variously selected single classifiers
have different recognized areas. As shaw(), (e) and (f) of Figure.3, two more diverse
single models can be integrated into an ensemble with a larger recognized area. In this
example, the pairwise diversity is defined in terms of the number of points that are
identified as different classes by two single classifiers. paiats (2 and 6) are distinctly
classified by H1 and H2, respectively; hence, the pairwise diversity for H1 and H2 is 2.

Similarly, six points (1, 3, 4, 7, 8 and 9) for H2 and H3, and eight points (1, 2, 3,4, 6, 7, 8,
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9) for H1 and H3, respectively, adifferentiated. Therefore, H1 and H2 are relatively
similar, while H3 is more different.

Accordingly, compared to the combination of H1 and H2 (with four unrecognized
points), the combination of H2 and H3 has two less unrecognized points, and the
combinaion of H1 and H3 has only one unrecognized point. As a result, classifiers 1 and
3 are considered the proper group for constructing the ensemble model. In summary, higher
diversities among base models can improve the ability of the ensemble model ngatisf
more types of data instances.

With the ensemble model consisting of classifiers 1 and 3, for each unknown data
instance, if it is a positive one close to points 8 and 9 (or a negative one close to points 6
and 7), then classifier 1 should be used &kenthe prediction. The reason for the model
selection policy is that those known instances (points 6, 7, 8, 9), which are homogeneous
asthis unknown instance, can be correctly classified by classifier 1. Similarly, if it is a
positive one close to poingand 4 (or a negative one close to points 1 and 2), classifier 3

should be used.

Hypothesis 1,2 & 3 Averaged Hypothesis
+ + =
P + + ;I
Simply average all — + -
three hypotheses N " _ +
7 n — ¥
-i-' — -

Figure 3.2 An Example of Constructing Ensemble Model by Averaging
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In addition, the problem in this example may not be properly solved with the existing
ensemble techniquesuch as averaging and stacking. As illustrated in Figure 3.2, the
ensemble model is built by simply averaging all the hypotheses of the three classifiers, but
there are still five unrecognized points for the final hypothesis.

To solving binaryclassification problems, in this thesis, a novel ensemble method is
proposed and implemented. In the proposed ensemble method;laveétaodel is learnt,
which recognizes the capable base classifier for each data instance. In addition to the meta
model, from all trained single classifiers, only those with high pairwise diversities are
selected as base models. Finally, the constructed ensemble model is able to support
adaptive selection of the proper base model for each data instance.

To accomplish all ta points mentioned above, two keyblems demand prompt
solutions:

1) The pairwise diversity needs to be defined for megsent.

2) A training set needs teedesigred for learning the meta model.

As explained in Section 2.1.4.1, a probabilistic classghierforms the classification
by ranking the instances according to their predicted probabilities of being positive.
Therefore, for the first problem, the pairwise diversity is defined as the difference between
the ranks of instances provided by each tlassifiers.

For the second problem, in order to map each data instance to its appropriate base
model, the meta model should be trained from the same feature vectors that have been used
to train the single model. Additionally, each data instance in tirerigaset needs to be
relabeled to indicate its proper base model. A base model is considered proper for a data

instance, if it can generate the most certain prediction. By ranking all the instances
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according to their predicted probabilities, the certaoftya prediction is defined as the
relative position of a certain instance in thdered queue. For example, a prediction for a
data instance is considered more certain if a positive instance is ranked at a lower position
(or a negative instance at a hgglposition) in an ascent sortinbhen, this data instance
should be relabeled as the base ehochich gives this prediction.

Overall, the pairwise diversity is measured on a group of instances for base model
selection, while the certainty is on the badis single instance for relabeling the training

set.

3.2 System Design

This section will firstly go through the overall system architecturetlaadata flow,
which isfollowed by a detailed introduction of the designthree vital system modules:

Pre-processoy Base Model SelectpandRelabeler
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3.2.1 System Architecture and Data Flow

System

Relabeler

N

Relabeled
Training
Set

Ensemble Model

- - } Meta Model

N 2

Meta Model Learner =

Raw Data

Pre-processor

Training Set
with
Original Labels

N

Single Model Learner

Single Models

s

Testing Set

4

Prodictions

> Base Model Selector -

- - - ,u' Base Model "

Figure 3.3 System Architecture and Data Flow

Based on the concept described in Sec8dn a system is designed to build the

proposed ensemble model. The system consists of seven moBuéasrocessor,

Relabeler, Base Model Selector, Single Model Learner, Meta Model Learner, Meta Model

and Base Modelswhich are organized as shown in Figurd8. Each module is briefly

described as follows.

1 ThePre-processots responsible for data transformation, data normalization and

feature engineering, as well as splitting the known data into a training set and a

testing set.
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The Single Model Learneleams single classifiers from the training set with the
original labels for data instances.

The Base Model Selectdakes both the testing set and the outputs oSthgle
Model Learneras inputs, to determine tH&ase Modeldor constructing the
ensemble.

TheRelabelerreceives the training set with original labels for data instances, and
then relabels the training set with the outputs ofBase Model Selectoilhe
relabeling of each instance is performed according to the behavidasef
Modelson the oiginal training set.

TheMeta Model Learneuses the relabeled training set to train the meta model.
The Meta Modeltakes the feature vector of each unknown instance to predict its
most suitable base model, and then passes the feature vector to tieel Balee

Modelfor the final prediction, which is the output of the system.

Differing from other modules in the system, tleta ModelandBase Modeére not

only considered as parts of the system, but also the outputs of other modules. Also, they

are theones forming the final ensemble model, which is then used for predicting. As the

specific problem varies, each module of the system can be modifiegptd@the practical

requirements, especially for th&re-processoy which heavily depends on the pleto-

related domain knowledge.

In addition to the systerarchitecture, the data flow as indicated in Figure 3.3 also

demonstrates the workflow of the system. There are two types of input to the system:

known raw data and unknown raw data, and both of thesd to be prgrocessed before

further operations. The known raw data is a group of instances that has been already

45



collected, so that the size of the data is fixed. The unknown data are those without labels
and will be used for prediction. Meanwhile, theknown data usually enter the system
randomlysothat the data size ot fixed.

The next suksections discusBre-processor, Base Model Selectand Relabeler
modules in more detail, since they have covered most of the design and implementation of
the poposed method. Other modules are similar to the one described in Section 2.1.5.
3.2.2 Preprocessor

The task of the Pre-processormodule mainly contains four parts: transformation,
normalization, feature engineering and splitting. Firstly, transformeti@general process
to restructure the raw features in another format. The purposes of transformations are
highly diverse. In this thesis, the mdoctussare data type conversion, text parsing and
feature vectorization. For example, the log of usensitiglly in strings which cannot be
directly computed. Therefore, the text has to be parsed into meaningful and computable
realvalued features. In general, transformation is conducted to make the features capable
of describing the instances more propenhd informatively, as well as more compatible
with the applied machine learning algorithms.

Secondly, normalization is usually known as the process of scaling the values of
feature vectors into a unified range. The main goal is to standardize diffaremces of
features. Normalization mostly contributes to the performance of those algorithms that are
based on Euclidean metric space, such-aselns and fkearest neighbord-ikunaga,

1975. But normalization has little benefit for deics treebasedalgorithms [Friedl, 1997
Although normalization is not always required by any algorithm, it seldom brings adversely

effects to the overall performance. In addition to performance improvement, normalization
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is also used for speeding up the learning poéasthe algorithms using gradient deseent
based loss function solvgigarma, 2009. Accordingy, in thisthesis, normalizations were
applied for logistic regression to speed up the learning process.

Thirdly, for many practical problems, feature enginggior feature extraction is a
vital process Feature engineering is sometimes even more important than the algorithm
selection, because the original features in the raw data are not adequate for characterizing
the instances. Feature engineering often méanartificial creation of new features by the
computation ofwo or more existing features, based on the background knowledge of the
specific problem. In this thesis, feature engineering istderworkload of preprocessor,
in which many new featuresere created through the computation on multiple original
features in the raw data, so that the interactions between multiple featwlesbe
representetdased orthe understading of this specific problem.

Finally, the splitting task is to dividéne processed data into training set and testing
setaccoding to a certain ratio determined Bge-processor
3.2.3 Base Model Selector

The Base Model Selectois the module thatleterminesthe base models for
constructing the final ensemble model. Initiabarious single models learnt by different
machine learning algorithms are tested on the testing set obtained frEne{h@cessor
Each single model generates a group of probabilities for data instances in the testing set.
Then the performance of easimgle model is evaluated. However, the main foclBase
Model Selectors the behaviors of the single models, rather than pesfiormancs. In
ot her word, It i's acceptable if the singl

performancecan be inproved by combining these single models as long as the behaviors
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of the single models are diverse. Therefore, the main gddheé¢ Model Selectas to
measure the pairwise diversities between each two single models based on their predictions
for the teshg set.

The probabilities generated by single models usually cannot be used directly for
calculating the pairwise diversities, as the probabilities generated by the single models have
different distributions. For example, the probabilities generated bpdaist are all around
0.5 on theRepeat BuyePredictiondataset, whereas the ones from Logistic Regression are
up to 0.9. Therefore, the probabilities generated by different single models need to be

normalized into identical scale bassen their correspating ranks.

Table 3.1 Example of Normalizing Probabilities Based on Ranks

Instance| Ir_proba| Ir_rank | Ir_normalized| ab_proba ab_rank| ab_normalizeg
0 0.245 |2 0.4 0.501 3 0.6

1 0.781 |4 0.8 0.534 4 0.8

2 0.344 |3 0.6 0.496 2 0.4

3 0.106 |1 0.2 0.558 5 1

4 0.983 |5 1 0.472 1 0.2

Table 3.1 shows an example of the normalization. The probabilities generated by
Logistic Regression (Ir_proba) and AdaBoost (ab_proba) are not in unified scale, so the
difference between the probabilities cannot represerditlegsity between the behaviors
of two classifiers. To normalize the probabilities itibe same scale, firstly each testing
instance is assigned two ranks (Ir_rank, ab_rank) corresponding to its positions in the
ascent order ofachgroup of predicted ptmbilities. Secondly, both groups of ranks are
divided by the number afatainstances to obtain two groups of normalized probabilities
(Ir_normalized and ab_normalizedjhe rank will be used to calculate the pairwise

diversity.
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With the normalized probdllties, a global threshold can be set to determine the

predicted classes by each single classifiers. For example, if 0.7 is set as the global threshold,

then instances 1 and 4 are identified as positive class by Logistic Regression, while

instances 1 and are classified as positive by AdaBoost. At last, the pairwise diversities

are calculated from the ranks, and the algorithm of determining the single models based on

diversities is described as follows:

Algorithm 1: Base Model Selection

1.

no

o O1

Given a testing s€¥ i SQ phc8 & and a group of trained single classifiérs
®Q phc8 & , wheret andd denote the number of samples in testing set and the
number of trained single classifiers, respectively;

For each classifiet in 6:

Use® to make predictions for eadh in "Yto obtain a set of probabilities
N "Q phg8 ¢ ,wheref represents the probability bf being positive generated
by G
Sort alli according to theiry in ascending order, and then obtai set of ranks
Y 1 Q phg8¢& ,wherel denotes the rank of in all ordered test samples
given byo;

. End For

. Calculate the roemeansquare deviation (RMSD) of each two as the metric of

L . . B
pairwise diversityo E—

. Choose theéQsingle classifiersd with highest RMSDs as the base models for

constructing the ensemble.

In addition to RMSD described in the above algorithm, another metric called Zero

One Loss (ZOL) Domingos, 199Jis also calculated to represent the pairwise diversity.

In binary classification, the two classes are usually named as positive and negative. Simply,

1 and O are used to represent positive and negative, respectively. Thus, ZOL is defined as

the number ofnstances with different predicted classes (sum @f)J1RMSD is used to

indicate the difference between the ranks, whereas ZOL denotes the difference between the
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predicted classes. An example for calculating the two types of pairwise diversity is

presated in Table 3.2 as follows:

Table 3.2 Example of Calculating Two Types of Pairwise Diversity

Instance| Ir_rank | Ir_normalized| Ir_pred| ab_rank| ab_normalizeg ab_pred
0 2 0.4 0 3 0.6 0
1 4 0.8 1 4 0.8 1
2 3 0.6 0 2 0.4 0
3 1 0.2 0 5 1 1
4 5 1 1 1 0.2 0

0: negative; 1: positive

Similar to the example shown in Table 3agsuming thathe global threshold is set
to 0.7, so that the predicted classes by each single classifier is are shown as the two columns
Ir_pred and ab_pred in Table 3.2. BasedAlgorithm 1, from the data in Table 3.2, The

RMSD of Logistic Regression and AdaBoost is calculatedhasfollowing equation:

¢® pTheZOLiscalculatedagt 1T P pS

ST TS 9T pS P TS ¢, which meanghat the two classifiers have ddfent
predictions on 2 data instances.

In summary, ZOL describes the diversity in terms of the predicted class, whereas
RMSD measures the diversity in terms of the raelu{valentto the normalized
probability), which represents the confidence of the iptieth. Some insignificant
diff erences are taken into account by RMSD. For example, although the ranks (Ir_rank and
ab_rank) of instance O in Table 3.2 are different (2 and 3 respectively), both classifiers
identify this instance as negative. Therefore,LZ@epictsthe explicit diversity, while
RMSD also consider the implied diversity and the measurement is relatively more fine
grained. Finally, all base models are determined by the method described aboBasethe

Model Selector
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3.2.4 Relabeler

Thefunction ofRelabeleris to design a new training set for training the meve!
model. The aim is tadertify the proper base model for a given instance. A training set
consists of two parts: feature vectors and labels. The former descrildsmtheteristics
of data instances, while the latter indicates the class @iioss in a certain class space.

For example, feature vectors consisting of age, gender, height, weight and income
could describe persons. They can be mapped to a class sgageiofct hd6 and Apoot
certain classifier, a n dctivedl saon dt of parsati veero I
classifier. The same group of feature vectors could be used for solving different
classification problems as the labels vary. Therefarerde to obtain such a meta model,
the feature vectors of the training set for single models need to be mapped to another class
space with base models being the labels. In other words, a new training set is derived from
relabeling the consistent feature vestarith labels of different base models, so that the
meta model learnt from this training set could assign a proper base classifier for each
unknown instance.

The new label for each instance in the training set is determined by comparing the
predictions ofbase models for this instance. Similar to base model selector, the rank of
each instance is used for comparison rather than directly probabilities comparison. This is
also because the AUC score is selected as the evaluation metric. Therefore, based on the
previous explanation of AUC (see Section 2.1.4.5), a base classifier is considered to be
more suitable for a certain instance if it could assign a higher rank to the instance in
descending order than other base models when the instance is positivewer eaaftk

when negative). Accordingly, the algorithm of relabeling is designed as follows:
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Algorithm 2: Relabeling Training Set for Meta Model

1.

N

Given atrainingset’Y i $Q phc 8 ¢ obtained from prerocessor and a group
of base classifie @ 'Q phc8 & determined by base model selector;
For each base classifi€r in 6:

Use® to make predictions for eac¢hin "Yto obtain a set of probabiliti€s

N Q phc8 ¢ , wherery represents the probability 6f being positive

generatedby w;
Sort alli according to thein in ascent order, and then obtain a set of ranks
Y 1 Q phc8¢& , wherei denotes the rank éf in all ordered samples
given byo;

End For

For each training samplie in Y
If i is postive:
relabeli as which generates the largést;
End If
If i is negative:
relabeli as which generates the smallést
End If
End For
Return the relabeled training set.

The training set derived from the algorithm abawdicates the proper base model

for each instance, and then it is further used for training-tee& model, so that the meta

model can be used to predict the appropriate base models for unknown instances. An

example of relabeling according to AlgorithnisZoresented in Table 3.3.

Table 3.3 Example of Relabeling

Instance| Ir_rank | ab_rank| original_label| new label
0 2 3 Positive AdaBoost
1 4 2 Positive Logistic Regressiol
2 3 4 Negative Logistic Regressiol
3 1 5 Positive AdaBoost
4 5 1 Negative AdaBoost
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In Table 3.3, the original label of instance 1 is positive, and Logistic Regression can
assign it dnigherrankthan that of Ababoost, i.e., 4 >i@ the ascent order, which represents
that Logistic Regression has more confidence to predict instaas@dsitive. Therefore,
instance 1 is relabeled as ALogistic Regr es:s
proper for this instanceOn the contrary, for instance 4 in Table 3.3, its original label
demonstrates that it belongs to the negatigescIAdaBoost can assign ibaverrankthan
that of the Logistics Regressianthe ascent orderg., 1 < 5. Thameans that AdaBoost
is more confident to predict instance 4 as negative. Thus, instance 4 is relabeled as
AAdaBoost o t o oostdimorapraper torithastinstadeal® summary, the
ranks assigned to each instance by the single classifiers imply the probabilities of this
instance to be positive class. Hence, a higher probability indicates a higher confidence of
the classifier forts prediction. For a certain instance, the more confident classifier is

considered the more proper one.
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Chapter 4. Experiments and Evaluation

This chapter will firstly go through the datasets utilized to validate the proposed
ensemble methodvhich isfollowed by a brief introduction of the system implementation

process. The experiments design is then discussed, as Wellasalysis of the results.

4.1 Overview of Datasets

Two binary classification datasets were selected to validate the proposetblense
method The first dataset ithe Repeat Buyer Prediction datasdttainedfrom a machine
learning competition, which was held by International Joint Conference on Artificial
Intelligence (IJCAI) and Alibaba Group in 2015 [IJCAI, 2015]. The ottetesset Census
Income Prediction, wasbtainedfrom University of California, Irvine (UCI) machine
learning repository [UCI. 1996]. More detailed information of these datasets are
introduced below.

4.1.1 Repeat Buyer Prediction (RBP)IJCAI, 2015]

This ddaset is provided by Tmall, which is the largest busitesonsumer (B2C)
onlineshoppingwebsite of China under Alibaba Grodpmall is a platform for merchants
to sell their branded goods to customers, therefore, it works as a coordinator between
merchants and customers. The activities between merchants and customers including each
transaction and all types of user behaviors are recorded for data mining and building
predictive system through machine learning techniques, which could help merchants for
sdving practical problemscsas to improve their business.

Merchants usually providearious promotion sales on particular dates (such as
Boxing Day, Black Friday in western countries and Double 11 in ChHim@yomotetheir

brand, aaquire new customers,nd strengthencustomer loyalty. Since many of new
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customers are scalled onetime deal hunters, the promotions are considered rarely
producelong-term effects on businesses. The return on investment (ROI) of merchants can
be enhanced if the potential loyal customers for each merchant could be targeted (DataSet,
2015). Overall, the question of the competition IJCAI, as well as extended tedbasch,

is to identify the potential loyal customers for each merchant based on the given dataset by
building a predictive system which is capable to recognize whether a customer would be a

repeat buyer of a merchant or not.

Table 4.1 The Definitions ofData Fields in User Behavior Logs in RBP

Data Field | Data Type | Definition

user_id integer A unique id for the shopper

merchant_id integer A unique id for the merchant

item_id integer A unique id for the item

brand_id float A unique id for the brand dhe item

cat_id integer A unique id for the category of the item

time_stamp | integer Date the action took place (format: mmdd)
Type of the action, which is enumerated as the set {0,

action_type | integer 2, 3}, where 0O represents click, 1 is for adecart, 2
denotes purchase and 3 is for @addavorite

The dataset consists the behavior log of anonymized users accumulated during the 6
mont hs before and on the ADouble 110 day,
repeat buyer of a merchamt not. As we did not take part in the competition, the dataset
we have is only a subset of the complete sitthat the competitors used. The dataset is
1.92 GB in total and stored as three corsaparated values (CSV) files: user behavior
logs, user priile information and training and testing. The definitions of data fields in each

file are described as shown in Table 4.1, 4.2 and 4.3, respectively.
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Table 4.2 The Definitions of Data Fields in User Profile Information in RBP

Data Field | Data Type | Definition

user_id integer A unique id for the shopper

Gender of the shopper: 0 for female, 1 for male, 2 anc
NULL for unknown

Age range of the shopper: 1 for less than 18, 2 for [18
age_range | float 24], 3 for [25, 29], 4 for [30, 34], 5 for [389]; 6 for [40,
49], 7 and 8 for more than 49, 0 and NULL for unknow

gender float

Table 4.3 The Definitions of Data Fields in Training and Testing Data in RBP

Data Field | Data Type | Definition
user_id integer A unique id for the shopper
merchant_id integer A uniqueid for the merchant
A binary label {0, 1} indicating whether a shopper is a
label integer repeat buyer of a merchant, where 1 represents reped
buyer and O is for nerepeat buyer

As the tables shown above, some data types in the raw data are ngtiappfor
this researchsuch as gender, age range, and brand_id, which are supposed to be integer
Hence data transformation is performedthre pre-processing phase.

4.1.2 Census Income Prediction (CIP)

This data was extracted from the census burdatabasefor census income
prediction. It is popular used in research area for validating and evaluating binary
classification algorithms and methods, as it does not require feature engineering and it is
relatively convenient to use. There are 6 continwdtributes and 8 categorical attributes
in the raw data. The labels indicate whether an anonymous person makes an income over
$50K/yr. Table 4.4 lists the definitions of each data field. Note that the fields in data type
of string are all categorical, thefore they need to be transformed to proper formats during

pre-processing for further operations.
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Table 4.4 The Definitions of Data Fields in CIP

Data field Data type | Definition
age integer The age of an anonymous person
workclass string The work clas®f an anonymous person
fiwgt integer Independent estimates of the civilian Aaatitutional

population of the US
education string The highest degree of an anonymous person

. : Number of years an anonymous person is under

education_num | integer .

education
marital_status | string The marital status of an anonymous person
occupation string The occupatiof an anonymous person
relationship string The role of an anonymous person in a family
race string The race of an anonymous person
sex string The gender ohn anonymous person
capital_gain integer The capital gain of an anonymous person
capital_loss integer The capital loss of an anonymous person
hours_per_weel integer The working hours of an anonymous person per we
Native_country | string The nativecountry of an anonymous person

. Indicates whether an anonymous person makes ove

Labels string

$50K /yr

4.2 System Implementation

4.2.1 Preprocessing

In this thesis preprocessing is mainly performed by Pandas, and the task could be
generally summarizeals two parts: data transformation and feature engineering.
4.2.1.1 Transformation

Two datasets have been used. They require different data transformation operations.
The following highlights the transformation for each dataset.
4.2.1.1.1RBP Dataset

FortheRBP dataset, firstly, the data stored in three septaes need to be merged,
so that further operations can be conducted on the merged data. To avoid producing

redundantows, the three tables are merged by inner join, during which the user iehavio
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|l ogs table and the user profile informatdi

with the training and testing data table
the data types of some data fields need to be converted to more prepeFor example,
brand_id is originally in float type, then it is converted to integer which is more proper to
represent ID fields. Thirdly, the time_stamp is parsed into the data type of datetime64,
which is defined in NumPy tmdicatedate and time. Afast, the rows containing missing
values araliscarekd directly (1.41%). The final merged data is in the shape as shown in

Table 4.5.

Table 4.5An Example of the Merged Data in RBP

The first column of the table is the indexes of rows, which is only an indi€aton
the table it can be observed that many duplicated rows in the merged data (for example
rows0, 2 and 3), and they are the real logs of the repeated actikitibis datasetaround
37.1% of the whole datastancesre duplicated and they are representing actual repeated
user behaviors. Therefore, these dmstancescan be further processddr feature
engineeringe.g., the number of times a user has browsed ttieylar merchant. Those
data instances, though duplicatskdould not be deleeSome data statistics from various
perspectives are presented in Table Fakle4.7, Table4.8, Table4.9 andTable4.10,

respectively.
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