

An Adaptive and Diversity-Based Ensemble Method for

Binary Classification

by

Xing Fan

A thesis submitted to the Faculty of Graduate and Postdoctoral

Affairs in partial fulfillment of the requirements for the degree of

Master of Applied Science

in

Electrical and Computer Engineering (Data Science)

Carleton University

Ottawa, Ontario

© 2016, Xing Fan

 i

Abstract

In recent years, machine learning techniques have been rapidly developed and widely

applied to many industrial and academic fields. Moreover, as an important part of the

machine learning techniques, ensemble techniques have drawn significant attention in both

academic researches and practical applications, which can make use of multiple single

models to construct a hybrid model. Usually, compared to each individual model, a better

performance can be achieved by applying ensemble methods. In this thesis, a novel

ensemble method is proposed to improve the performance for binary classification. The

proposed method can non-linearly combine the base models by adaptively selecting the

most suitable one for each data instance. The new approach has been validated on two

datasets, and the experiments results show an up to 18.5% improvement on F1 score

compared to the best individual model. In addition, the proposed method outperforms two

other commonly used ensemble methods (Averaging and Stacking) in improving F1 score.

 ii

Acknowledgements

I would like to express my sincere thanks to my thesis supervisor, Professor Lung

and Professor Ajila, for all their guidance and support throughout the completion of this

thesis.

Thanks for the support of my families and friends, the accompaniment of A-meow

and the assistance of Hermit.

 iii

Table of Contents

Abstract ... i

Acknowledgements .. ii

List of Figures .. v

List of Tables .. vii

Chapter 1: Introduction .. 1

1.1 Motivations and Objectives .. 1

1.2 Thesis Contributions ... 4

1.3 Thesis Organization .. 4

Chapter 2: Background and State of the Art .. 6

2.1 Background Review .. 6

2.1.1 Overview of Problem Types in Machine Learning .. 6

2.1.2 Classification .. 7

2.1.3 Feature Engineering ... 10

2.1.4 Metrics for Binary Classifiers .. 12

2.1.5 Machine learning Algorithms for Classification .. 19

2.1.6 Tools and Environments .. 34

2.2 Related Work ... 36

Chapter 3: System Design and Implementation ... 39

3.1 Overview .. 39

3.2 System Design .. 43

3.2.1 System Architecture and Data Flow .. 44

3.2.2 Pre-processor .. 46

3.2.3 Base Model Selector .. 47

3.2.4 Relabeler .. 51

 iv

Chapter 4: Experiments and Evaluation ... 54

4.1 Overview of Datasets ... 54

4.1.1 Repeat Buyer Prediction (RBP) [IJCAI, 2015] .. 54

4.1.2 Census Income Prediction (CIP) .. 56

4.2 System Implementation .. 57

4.2.1 Pre-processing .. 57

4.2.2 Single Model Training ... 65

4.2.3 Ensemble Construction .. 65

4.3 Experiment Design .. 69

4.4 Results and Analysis .. 71

4.4.1 Analysis of Single Models ... 72

4.4.2 Analysis of Ensemble Model ... 83

4.5 Comparison of AUC and F1 Score ... 88

Chapter 5: Conclusion .. 92

5.1 Accomplishments ... 92

5.2 Limitations ... 93

5.3 Future Research Directions .. 94

References .. 95

 v

List of Figures

Figure 1.1 General Ensemble Learning Workflow ... 2

Figure 2.1 Workflow for Building a Machine Learning System .. 7

Figure 2.2 An Example for Binary Classifier Training and Predicting 9

Figure 2.3 Confusion Matrix for Binary Classification [Kohavi, 1998]........................... 14

Figure 2.4 ROC Space and Four Plots of Prediction Examples [ROC, 2016] 16

Figure 2.5 Examples of ROC Curves in ROC Space [ROC, 2016] 17

Figure 2.6 Main Categories of Machine Learning Algorithms for Classification [Brownlee,

2013] ... 21

Figure 2.7 The Logistic Function [LogisticFuction, 2016] ... 24

Figure 2.8 The Trade-off between Bias and Variance [Fortmann-Roe, 2012] 26

Figure 2.9 The AdaBoost Algorithm: an Illustration [Schapire, 2012] 28

Figure 2.10 A 2D Example of Optimization of Loss Function Using Gradient Descent

[Sebastian, 2016]... 30

Figure 2.11 The Process of Stacking .. 33

Figure 3.1 An Example of Base Model Selection According to Pairwise Diversity 40

Figure 3.2 An Example of Constructing Ensemble Model by Averaging 41

Figure 3.3 System Architecture and Data Flow .. 44

Figure 4.1 Working Principle of the Constructed Ensemble Model 68

Figure 4.2 Result of AdaBoost Performance in RBP ... 73

Figure 4.3 Result of AdaBoost Performance in CIP ... 74

Figure 4.4 Result of Logistic Regression Performance in RBP.. 74

Figure 4.5 Result of Logistic Regression Performance in CIP ... 75

 vi

Figure 4.6 Result of Xgboost Performance in RBP .. 75

Figure 4.7 Result of Xgboost Performance in CIP ... 76

Figure 4.8 Result of Random Forest Performance in RBP ... 76

Figure 4.9 Result of Random Forest Performance in CIP .. 77

Figure 4.10 Result of AdaBoost Overhead in RBP .. 78

Figure 4.11 Result of AdaBoost Overhead in CIP .. 78

Figure 4.12 Result of Logistic Regression Overhead in RBP .. 79

Figure 4.13 Result of Logistic Regression Overhead in CIP .. 79

Figure 4.14 Result of Xgboost Overhead in RBP ... 79

Figure 4.15 Result of Xgboost Overhead in CIP .. 80

Figure 4.16 Result of Random Forest Overhead in RBP .. 80

Figure 4.17 Result of Random Forest Overhead in CIP ... 80

Figure 4.18 Comparison of single modelôs best performance on RBP............................. 82

Figure 4.19 Comparison of single modelôs best performance on CIP 82

Figure 4.20 AUC result comparison between different ensemble methods for RBP 84

Figure 4.21 F1 score result comparison between different ensemble method for RBP 85

Figure 4.22 AUC result comparison between different ensemble method for CIP 86

Figure 4.23 F1 score result comparison between different ensemble method for CIP 86

 vii

List of Tables

Table 3.1 Example of Normalizing Probabilities Based on Ranks 48

Table 3.2 Example of Calculating Two Types of Pairwise Diversity 50

Table 3.3 Example of Relabeling.. 52

Table 4.1 The Definitions of Data Fields in User Behavior Logs in RBP 55

Table 4.2 The Definitions of Data Fields in User Profile Information in RBP 56

Table 4.3 The Definitions of Data Fields in Training and Testing Data in RBP 56

Table 4.4 The Definitions of Data Fields in CIP .. 57

Table 4.5 An Example of the Merged Data in RBP ... 58

Table 4.6 Statistics of ID Fields in RBP ... 59

Table 4.7 Statistics of Action Types in RBP .. 59

Table 4.8 Statistics of Age Ranges in RBP... 59

Table 4.9 Statistics of Gender in RBP .. 59

Table 4.10 Statistics of Labels in RBP ... 59

Table 4.11 Examples of CIP raw data [UCI, 1996] .. 61

Table 4.11 Examples of CIP raw data (contôd) ... 61

Table 4.12 Statistic of Labels in CIP .. 61

Table 4.13 The Definitions of Extracted Features in RBP ... 63

Table 4.14 Probabilities and Ranks for Testing Instances .. 66

Table 4.15 Relabeled Training Instances .. 67

Table 4.16 Logistic Regression for RBP .. 69

Table 4.17 Adaboost for RBP ... 70

Table 4.18 Xgboost for RBP ... 70

 viii

Table 4.19 Random Forests for RBP .. 70

Table 4.20 Logistic Regression for CIP .. 70

Table 4.21 Adaboost for CIP .. 70

Table 4.22 Xgboost for CIP .. 70

Table 4.23 Random Forests for CIP ... 71

Table 4.24 Diversity between single models in RBP ... 83

Table 4.25 Diversity between single models in CIP ... 83

Table 4.26 Ensemble Overhead in RBP ... 88

Table 4.27 Ensemble Overhead in CIP ... 88

Table 4.28 Probabilities from Two Classifiers and Labels for 20 Example Instances 89

Table 4.29 Ranked Instances with Real Labels and Predicted Labels 89

Table 4.30 Metrics for the Two Classifiers .. 90

 1

Chapter 1: Introduction

This chapter will firstly go through the motivation and objectives of the proposed

research question, followed by an overall introduction of this thesisô contribution. Finally,

the thesis organization is described.

1.1 Motivations and Objectives

In supervised machine learning, ensemble learning is the technique that aims to make

use of multiple single models to construct a hybrid model to achieve a better performance

than that of each single integrated model [Opitz, 1999]. Figure 1.1 indicates a general

workflow for solving classification problems by applying ensemble methods. Firstly, raw

data usually needs to be pre-processed for initializing a training dataset, during which

processes such as feature extraction and normalization could be involved. Secondly,

training sets for each individual single model are derived from the initialized dataset.

Thirdly, single models are trained from different training datasets or by different algorithms.

Parameter tuning and validation for each individual model are included in this phase as

well. Finally, all the single models are combined to construct the ensemble, then the final

model could be further validated and tested.

There exists a number of ensemble learning techniques proven to be successful in

practice. Based on our understanding, most of the techniques could be generally

categorized into two types according to their different concerns:

Type I. Techniques that focus on deriving new training sets from the initial training

set to train diverse single models, which is the phase marked as red in Figure 1.1 [Opitz,

1999];

 2

Type II. Techniques that focus on finding ways to blend the individual models,

which is the phase marked as blue in Figure 1.1 [Canuto, 2005]. In this thesis we will

mainly focus on the discussion of Type II techniques for improving predictive performance

in binary classification problems.

Figure 1.1 General Ensemble Learning Workflow

For a particular dataset, due to the various principles and implementations of the

applied machine learning algorithms, single models trained by different algorithms may

have diverse abilities in recognizing the pattern of a given training sample. Therefore, in

order to achieve the complementation across individual models by applying ensemble

 3

methods, it is important to select those highly-diverse single models, and to blend them

properly with an efficient utilization of the diversity [Kuncheva, 2005a].

Most of popular Type II ensemble techniques assign weights to all trained single

models and then linearly combine them [Canuto, 2005]. Thus, for all unknown instances,

the contribution of each individual model to the final prediction is fixed, which may result

in a limitation of performance enhancement. Therefore, dynamically adjustments of each

single modelôs contribution for different instances could be helpful, which requires

methods of non-linear blending [Canuto, 2005].

In other words, as the existing Type II ensemble methods takes all the outputs of the

combined single models into account, the weaknesses of the single models are also kept in

the hybrid model. If an ensemble method can adaptively select the most suitable single

model to predict for each instance, then the weaknesses of the single models are avoided.

In addition, it is not necessary to combine all the single models. In order to maximize the

complementation effect, only those single models with highest pairwise diversities should

be selected to construct the ensemble model.

Based on all the motivations described above, the objectives of this thesis is to find

an ensemble method that can 1) determine base models for combination according to their

pairwise diversities; 2) recognize the suitable base model for each data instance; 3) each

unknown instance is predicted only by the identified suitable base model. As a result, the

overall performance of the predictions by the ensemble model can be improved by non-

linearly combining the base models. In order to perform the adaptive selection of base

models for each unknown instance, a meta-level model should be trained from the relabeled

training set, which can indicate the suitable base model of each training sample.

 4

1.2 Thesis Contributions

The process of achieving the goal described above has led to the following

contributions:

1) A novel ensemble method for solving binary classification problems is proposed.

the core idea of the proposed ensemble method is to train a meta-level model that can

dynamically choose a more suitable base classifier for each unknown instance;

2) The training data is relabeled by a new method, and then the relabeled training

data is used to train the meta-level model;

3) The pairwise diversities of single classifiers are measured by two methods,

according to which the base classifiers for combination are selected, and all the applied

methods of measurement are compared;

4) Multiple machine learning algorithms are applied to train a group of different base

models, and a comprehensive framework including all the methods mentioned above are

designed and implemented;

5) The proposed ensemble method is validated on two datasets (Repeat Buyer

Prediction [IJCAI, 2015] and Census Income Prediction [UCI, 1996]), and the experiments

results indicate that an up to 18.5% improvement on performance is achieved compared to

those of two other Type II ensemble methods (Averaging and Stacking).

1.3 Thesis Organization

This thesis consists of 5 chapters including the introductory chapter. Chapter 2

introduced required background information, which includes a basic description of

classification problems in data science, the general workflow for problem solving, and the

knowledge of several common types of supervised machine learning algorithms. Then a

 5

number of popular ensemble methods, as well as the concept of feature engineering are

introduced. It continues by covering the tools utilized in this research, plus a discussion on

related works.

Chapter 3 describes the design and implementation of the framework that applies the

proposed ensemble method. The contents of this chapter are organized as the workflow of

this framework. Firstly, data pre-processing is introduced including feature extraction and

normalization. Secondly, single classifiers trained by different algorithms are discussed

and compared respectively. At last, a detailed description of the proposed ensemble method

is presented.

The experiments design and results are presented in Chapter 4, which also includes

the evaluations of performances and the associated analysis. The comparison of the

proposed ensemble method and two others are discussed as well.

Chapter 5 is a conclusion that summarizes the main accomplishments of this thesis

along with the limitations of the proposed ensemble method and the potential directions

for future works.

 6

Chapter 2: Background and State of the Art

This chapter introduces the background for this proposed ensemble method, which

includes the problem types in machine learning, general process of building machine

learning system, basic concepts of feature engineering, metrics for evaluating classifiers

and the review of multiple machine learning algorithms. In addition, several important

tools are introduced as well as a brief description of the experiments environments. Finally,

related works, especially the approaches regarding to ensemble techniques are reviewed.

2.1 Background Review

2.1.1 Overview of Problem Types in Machine Learning

Supervised learning and unsupervised learning are two typical types of machine

learning. Other types, such as semi-supervised learning and reinforcement learning, are

usually evolved from those two types [Barber, 2012]. For supervised learning, its main

target is to train a model from the training data with labels so that the model could make

predictions for unknown data. Moreover, unsupervised learning techniques are applied to

allow us to reveal and explain the unknown patterns of the unlabeled data. The main

difference between these two types of learning technique is that in supervised learning, the

correct output of the given training dataset is already known, having the idea that there is

a relationship between the input and the output. Unsupervised learning, on the other hand,

focuses on approaching problems with little or no idea what the results should be.

In supervised learning, most problems could fall into two areas, classification and

regression. Most parts of these two types of tasks are similar, except for the outputs of the

trained models. The outputs of classification tasks are discrete, which are the categorical

 7

class labels, whereas those of regression are continuous. In this thesis, the proposed

ensemble method is for solving classification problems.

2.1.2 Classification

2.1.2.1 Workflow

Figure 2.1 shows the process to build a machine learning system for solving

classification problems, during which training and predicting are two fundamental stages.

Training is the process of using existing data to train a model, followed by predicting,

which is the application of trained model for unknown data. This research focuses on the

training stage, in which three phases are involved: pre-processing, learning and evaluation.

Figure 2.1 Workflow for Building a Machine Learning System

Raw data rarely comes in a required form or scale. In some cases, the way raw data

organized is not capable for presenting any meaningful information. Therefore, pre-

processing, which includes sampling, dimensionality reduction, transformation,

normalization and feature engineering, is usually a necessary and important process for the

subsequent training phase. At the end of pre-processing, raw data is cut into the shape that

Test

Data

Pre-processing

Raw

Data

Labels

Train

Data
Learning Model

Trained

Models
Evaluating Model

New

Data
Predicting

Processed

Data

Predicted

Labels

Final

Model

Pre-processing Learning Evaluation

Training

Predicting

 8

fits the learning algorithm and the processed data is then split into two part: train dataset

and test dataset.

In the learning phase, the derived train data and associated labels are fed to multiple

machine learning algorithms for model training, during which techniques such as feature

selection, parameter tuning and cross-validation might be utilized to improve the model.

During the final evaluation phase, one or more suitable metrics for specific problems

are selected for evaluating models, the trained model is then applied to make predictions

for test data. Afterwards selected metrics are calculated based on the predictions and the

associated labels of test data. Finally, the model with best performance is chosen as the

final model for predicting stage.

2.1.2.2 Types of Classification

Classification problems can be categorized into two types according to the number

of classes to be identified, which are binary classification and multiclass classification

[Har-Peled, 2002]. The former identifies instances as one of the two pre-defined classes,

whereas the latter classifies instances into one of the more than two classes. Numerous

classification methods and related techniques have been tailored to binary classification,

which also lays a foundation for solving multiclass classification problems. In this thesis

for simplicity we mainly focus on binary classification.

 9

2.1.2.3 Binary Classifier Training and Predicting

Figure 2.2 An Example for Binary Classifier Training and Predicting

Figure 2.2 describes the training and predicting detail of single binary classifier. First

of all, a dataset consists of a group of instances (the rows in the table) that are presented as

feature vectors plus corresponding labels. A feature vector is a set of individual and

measurable attributes that describe the instance. The attributes are also commonly known

as features, predictors, and explanatory or independent variables, especially in statistics. In

addition, the values of features could be of various types such as nominal (e.g. male and

female) and ordinal values (e.g. large, medium and small), both of which could be

considered as categorical values. The slight difference is that ordinal values could be sorted

whereas no order is implied in nominal values. The features could be also integer-valued

(e.g. the number of users who purchased a certain item) or real-valued (e.g. height and

 10

weight). Furthermore, each instance in the given dataset is labeled as one of actual classes

or targets. The known dataset could be split into train data and test data according to a

certain proportion.

Essentially, a classifier is a derived function that maps instances to targets, of which

all parameters are determined. A machine learning algorithm is a process that estimates the

parameters of the function by learning the train data, so that the classifier could fit the train

data. In other words, a classifier is the output of an algorithm that is executed on the train

data including the actual classes. The feature vector of each instance in training data can

be plugged into the classifier and then a group of predicted class labels are obtained. All

the parameters of the classifier are settled by the algorithm-specified method so that the

sum of errors in the predictions, compared to the actual classes, is minimized, therefore

this is the meaning of ñfitò. In general, each algorithm has its individual formulation of

model, which may require diverse methods to learn its parameters.

During the process of testing, all feature vectors in test data are plugged into the

trained classifier to obtain the predictions and then one or multiple metrics are selected to

evaluate the performance of the classifier on this given dataset, based on the predictions

and the corresponding actual class labels. When utilizing the classifier, the unknown

instances come without labels, but with the same form of the feature vectors as those in the

train and test data, thus the outcomes of the classifier are the predictions for the unknown

instances.

2.1.3 Feature Engineering

Feature engineering is generally the process of manually designing a group of new

features that could better match the machine learning algorithms and describe the specific

 11

problems, and is not a formally defined term [Bouchard-Côté, 2009]. As mentioned

previously, the quality of the preliminarily collected data is usually not good enough to be

learned directly. Specifically, not only the normalization of the data is required, but

sometimes extra features are also needed to achieve a better performance, since the original

features in raw data might be either redundant on describing the properties of instances, or

short of meaningful expression.

In order to reduce the relevance between the initial features, and to extract even more

informative features on the basis of the initial features, it is significant to understand the

design principle of more proper features, which usually requires domain knowledge of the

certain problems. In many of these cases, feature engineering could even be considered as

essential for solving such problems. The initial features are normally the most intuitive

expression of the instances and easy to be collected, while the engineered features are

usually obtained by combining two or more primary features or expressing those features

from different perspective.

In spite of the performance improvement, there are other elements should be

considered among feature engineering. For instance, extra workloads are always brought

into the system and it could be very expensive in both time and space, especially when the

size (number of features and instances) of data is relatively large. In addition, the number

of new features could be much larger than that of the original ones, which requires more

space to store the data and more memory for computation. These problems are worth being

carefully considered in practice.

 12

2.1.4 Metrics for Binary Classifiers

2.1.4.1 Types of Binary Classifiers

A binary classification model, or a binary classifier could be regarded as a function

that maps instances to positive or negative class label [Alpaydin, 2010]. According to the

types of outcomes, classifiers could be recognized as a discrete classifier or probabilistic

classifier. A discrete classifier directly generates a predicted class label for an instance

whereas a probabilistic classifier assigns each instance a score to indicate its degree of

confidence of belonging to one class [Friedman, 2009]. Moreover, for the probabilistic

classifiers, the assigned score could either be an absolute probability, or could be any

uncalibrated real value that a higher value still represents a higher probability. In other

words, probabilistic classifiers rank instances according to their probabilities of being a

member of class in ascending or descending order. Afterwards, compared to the absolute

predictions by discrete classifiers, a relative threshold is assigned to probabilistic classifiers

to determine the predicted classes of instances. The instances with a score higher than the

threshold is considered as positive, while those with a score lower than the threshold is

classified as negative.

2.1.4.2 Confusion Matrix

Confusion Matrix is generally used for presenting and interpreting the performance

of a classifier on a certain dataset. It is a n³n matrix (n represents the number of classes)

constructed from the Cartesian product of actual classes and predicted classes [Kohavi,

1998] . Each entry of the matrix indicates the number of instances in each ordered pair of

the Cartesian product. For binary classification, n equals to 2, therefore represents the two

classes of Positive and Negative. As shown in Figure 2.2, the table in solid lines represents

 13

the confusion matrix for binary classifiers. Additionally, 9 common rates calculated from

related entries are presented in dash lines. Some important terms in Figure 2.3 are explained

in detail as following [Kohavi, 1998]:

¶ Total: the total number of instances that have been classified by the classifier;

¶ True Positive (TP): the number of instances that have been correctly classified as

Positive by the classifier;

¶ False Positive (FP): the number of instances that have been incorrectly classified

as Positive by the classifier;

¶ True Negative (TN): the number of instances that have been correctly classified

as Negative by the classifier;

¶ False Negative (FN): the number of instances that have been incorrectly classified

as Negative by the classifier;

¶ True Positive Rate (TPR): also called Sensitivity or Recall, the proportion of real

positive instances that are correctly identified;

¶ True Negative Rate (TNR): also called Specificity, the proportion of real negative

instances that are correctly identified;

¶ False Positive Rate (FPR): also called Fall-out, the proportion of real negative

instances that are incorrectly identified, can be calculated from (1 ï Specificity)

as well;

¶ False Negative Rate (FNR): also called Miss Rate, the proportion of real positive

instances that are incorrectly identified;

¶ Positive Predictive Value (PPV): also called Precision, the proportion of predicted

positive instances that are correctly identified;

 14

¶ Accuracy: The proportion of all instances that are correctly identified.

Figure 2.3 Confusion Matrix for Binary Classification [Kohavi, 1998]

Among these terminologies listed above, Precision (PPV) and Recall (TPR) are two

universal metrics describing the performance of a classifier on a certain dataset. Further

complex metrics can be also calculated on the basis of the confusion metrics, thus to

evaluate a classifier from different aspects. However, it is worth mentioning that the

accuracy may not be an adequate measure for performance because it is very sensitive to

class distribution of the given dataset [Fawcett, 2006]. When it comes to an imbalance

dataset, for example, if 99% of the instances are negative and only 1% is positive, a

classifier could even achieve a high accuracy of 99% by simply identifying all instances as

negative, which is meaningless in practice. In this thesis, Area Under the receiver operating

characteristic Curve (AUC) and F1 score are selected as the metrics to evaluate the

 15

performance of models. A more detailed description about AUC and F1 score will be

introduced in the next few sub-sections.

2.1.4.3 Receiver Operating Characteristic (ROC) Space

Basically, a receiver operating characteristic, or ROC curve, is a plot that visualizes

the performance of a binary classifier. It is drawn in a 1³1 square area called ROC space,

of which x-axis and y-axis are defined as False Positive Rate (FPR) and True Positive Rate

(TPR) respectively [Fawcett, 2006]. Therefore, the plots in ROC space could describe the

trade-off between the benefit (TPR) and the cost (FPR) of a classifier. Figure 2.4 explains

ROC space with several significant points (Receiver operating characteristic, 2016). The

lower left point (0, 0) represents a classification that only generates negative outcomes,

while the upper right point (1, 1) represents a classification with only positive outcomes.

The (0, 1) point represents a perfect classification when all actual positives are correctly

predicted without any error. The points on the diagonal line represents the classifications

that randomly guess one class with a certain probability. The points above the diagonal line

represents the classifications with better performance compared to random guess. In

practice, the area under the diagonal line is always considered as empty because a

performance better than random guess could be achieved by simply reversing the predicted

classes whenever the classification is plotted under the diagonal line.

 16

Figure 2.4 ROC Space and Four Plots of Prediction Examples [ROC, 2016]

2.1.4.4 ROC Curve

For each discrete classifier on a given dataset, there is only one corresponding

confusion matrix, which are plotted as a single point in ROC space [Fawcett, 2006]. On

the other hand, probabilistic classifiers could yield different confusion matrixes as

threshold varies, so that multiple points are plotted in ROC space, which traces the ROC

curves as shown in Figure 2.5 [ROC, 2016].

 17

Figure 2.5 Examples of ROC Curves in ROC Space [ROC, 2016]

2.1.4.5 AUC

Simply to say, a threshold represents the strictness of a probabilistic classifier making

a positive prediction. Normally a higher threshold could result in a lower FPR but at the

same time sacrifice the TPR, because a strict classifier rarely generates errors in predicting

a positive class whereas only a small proportion of actual positive instances could be

recognized. Consequently, the points plotted from higher thresholds are relatively close to

the (0, 0) point in ROC space. On the contrary, lower thresholds could lead to both

increased FPR and TPR, from which the points plotted are close to the (1, 1) point in ROC

space.

 18

If more actual positive instances could be assigned relatively higher scores by the

probabilistic classifier, then a higher TPR with a lower FPR could be achieved even when

a relatively higher threshold is set, so that the points plotted from higher thresholds are

close to the (0, 1) point in ROC space. The ROC curve, in this case, is pulled up to the

perfect classification point, which leads to a larger area under the ROC curve (AUC).

Therefore, a larger AUC indicates that a better performance is achieved by this classifier.

In other words, AUC represents the probability that a classifier assigns a higher score to a

randomly selected positive instance than a negative one [Fawcett, 2006]. In this thesis, the

main reasons of selecting AUC as the evaluation metric are: 1) AUC is a popular metrics

for evaluating model performance in binary classification; 2) It is insensitive to imbalanced

class distribution; 3) The two datasets used in this thesis have imbalanced class problem to

different extents.

2.1.4.6 F1 Score

In analysis of binary classification, F1 score [Cohen, 2003] is also a commonly used

metric to evaluate the performance of a classifier. F1 score is defined as the harmonic mean

of precision and recall:

Ὂ ς
ὴὶὩὧὭίὭέὲὶὩὧὥὰὰ

ὴὶὩὧὭίὭέὲὶὩὧὥὰὰ

The best value of F1 score is 1 and the worst is 0. F1 score conveys the balance

between precision and recall. For example, an F1 score of 0.45 is calculated from a

precision of 0.9 and a recall of 0.3, while another F1 score of 0.5 is obtained with both

precision and recall being 0.5. Therefore, for a certain classifier, a tradeoff between its

precision and recall is beneficial for achieving a higher F1 score. Moreover, the reasonable

tradeoff can be accomplished by tuning the threshold, which is highly correlated with the

 19

class distribution of the given dataset. For example, a threshold of 0.5 may be appropriate

for the dataset with balanced class, while a higher threshold could be better if the proportion

of positive instances is very small. According to the definitions, precision can denote the

degree of confidence for a classifier to predict an instance as positive, while recall indicates

the ability of a classifier to identify the positive instances. For a certain classifier, a higher

threshold usually leads to a higher precision but a lower recall, while a lower threshold

results in a lower precision but a higher recall. In other words, both aggressive (a lower

threshold) and conservative (a higher threshold) attitude in predicting positive harm the F1

score.

In this thesis, the F1 score is also selected as the performance evaluation metric, as

the F1 score is considered more suitable than AUC when suffering from imbalanced class

problem in [Davis, 2006]. In addition, AUC is a ñcurveò metric to indicate the general or

average performance of a classifier, while the F1 score is a ñpointò metric that could be

more meaningful in practice in some cases.

2.1.5 Machine learning Algorithms for Classification

2.1.5.1 Overview

In general, most machine learning algorithms, especially for solving classification

problems, can be categorized as Figure 2.6 below [Brownlee, 2013]. On the basis of

Brownleeôs method of categorization, those algorithms that can be utilized for

classification are particularly selected to introduce. Plus, a category of Factorization

Modeling that is widely applied in recommender systems is added , which was mentioned

in [Brownlee, 2013] but not presented in the figure.

 20

All these listed algorithms have their own characteristics that fit different specific

classification problems in diverse fields. For example, logistic regression is commonly

used for prototype validation for its efficiency in achieving an acceptable performance

[Schutt, 2013]. In addition, Factorization Machine (FM) is more suitable for recommender

systems, of which the collected data for training is usually under high sparsity, and FM has

its unique character of learning this type of data in linear time [Rendle, 2010]. Each

potential algorithm for a certain practical problem should be carefully considered from both

aspects of design and implementation, because in many situations, the design concepts of

a particular algorithm may satisfy the requirements, but the implementation of the

algorithm may not.

In this thesis, these factors are taken into account when selecting algorithms for the

given datasets: 1) The algorithm should have the ability of learning a probabilistic classifier,

as AUC and F1 score are selected as the metrics for evaluation. 2) The algorithm should be

capable to learn sparse data since the given dataset is under high sparsity. 3) Since the main

concern of this thesis is the method of ensemble, it is better for the selected algorithms to

be simple so that the parameter tuning for models could be easier. This is the main reason

why those complex algorithms such as deep learning are not selected. 4) The algorithm

should achieve a proper balance between the performance of the single model and its

training time consumption as well as its resource requirement.

Those algorithms that contributes to the proposed approach is marked as red, and

both the designs and implementations of them will be discussed in detail during next

several paragraphs. For more explicitly explaining the underlying mathematics, bold ● is

used to denote feature vectors, regular ὼ with subscript Ὥ to refer to the Ὥth feature of an

 21

instance, bold ◌ with superscript Ὕ to represent the transpose of the parameter vector,

regular ύ with subscript Ὥ to stand for the weight of ὼ, ώ for actual classes of the instances,

ώ for predicted classes, ὖ for the probability of an instance to be positive, and ὒ for the loss

function of a model.

Figure 2.6 Main Categories of Machine Learning Algorithms for Classification [Brownlee, 2013]

In this thesis, despite the algorithms that are introduced in detail in the following

sections, other algorithms such as Support Vector Machines (SVM) [Cortes, 1995] and

Factorization Machines are also considered when selecting algorithms for each given

dataset. SVM is not selected as the single model mainly because: 1) it is not a probabilistic

classifier; 2) the selected datasets in this thesis are highly sparse, and it is very time

consuming for SVM to learn from sparse data, especially when the size of datasets is large.

On the other hand, for the given datasets in this thesis, too much feature engineering is

harmful to the performance of Factorization Machines, thus, the features for training the

FM model are different from those for other single models. As the proposed method in this

 22

thesis cannot properly deal with the single models that are trained from different features,

FM is not selected as the single model, either.

2.1.5.2 Logistic Regression

Logistic regression can learn a model which is a function mapping an instance to a

predicted class. The function is a linear combination of every feature with an estimated

weight that indicates the contribution of this feature to the target variable. The output of

the function is a real value between 0 and 1 that indicates the probability of this instance

being one of the binary classes. The instance could then be classified as positive if its

predicted probability is larger than the pre-determined threshold [Barber, 2012].

Logistic regression can be regarded as a generalization of linear regression, which is

called Generalized Linear Model (GLM) in statistics. The GLM is capable for accepting

the dependent variables that have other distributions rather than normal distributions for

ordinary linear regression, such as Bernoulli distribution for logistic regression. It is

accomplished by mapping the linear regression model to the response variable through a

link function and a quantizer.

For logistic regression, the standard logistic function is applied as the link function,

which is defined as following [Schutt, 2013]:

ὖὸ
ρ

ρ Ὡ

where ὸ represents the ordinary linear regression model that can be formulated as

following:

ὸ ◌●

where denote an unobservable bias from the actual value. Therefore, the final

logistic regression model can be formulated as following:

 23

Ὂ● ὖώ ρ
ρ

ρ Ὡ ◌ ●

by which Ὂὼ is interpreted as the probability of the Ὥth instance being positive.

Furthermore, the logistic function is also known as the inverse-logit function, which is

often referred to a sigmoid function because of its ñSò shaped curve as shown in Figure

2.7. A logistic function (inverse-logit function) can transform any real values into the range

between 0 and 1, while a logit function does the reverse. Base on the information above,

the following equation is obtained:

ὸ ὰέὫὭὸὖ ὰὲ
ὖ

ρ ὖ
ὰὲὖ ὰὲρ ὖ ◌●

In other words, logistic regression can find a hyperplane ◌● π as the

decision boundary that slices the train data into two parts: the points above the hyperplane

denote the instances with higher probabilities of being positive than that of being negative,

and the points under the hyperplane are considered as the instances more likely to be

negative. Additionally, the points on the hyperplane represents the instances with equal

probabilities of being positive and negative, noted that the hyperplane is precisely the

quantizer mentioned before. In summary, logistic regression is a probabilistic classifier in

terms of design. Because of its simplicity (linear model) and expressive interpretability,

logistic regression is usually selected as the classifier with baseline performance. In this

thesis, logistic regression is performed by applying an implementation provided by Scikit-

learn [Scikit, 2016], which can take sparse data as input.

 24

Figure 2.7 The Logistic Function [LogisticFuction, 2016]

2.1.5.3 Ensemble Learning Algorithms

2.1.5.3.1 Overview

In classification, based on the train data, a model learned by a certain algorithm

generates a hypothesis that is used for predictions. In terms of train data, residual is defined

as the deviation of approximation given by the hypothesis from the actual value, while the

error with respect to test data and unknown data is defined as the gap between the

predictions and the actual values, which consists of bias, variance and noise [Friedman,

1997]. The bias appears when the model underfits the training data, thus it indicates the

amount of data that is not properly learnt. A lower bias leads to a less residual and then

contributes less to the error. On the other hand, the variance results from the model

overfitting the train data, therefore, the variance indicates the quantity of noise that is

incidentally modeled. The variance is not reflected in the residual but in the error. If a

model is too sensitive to the noise in train data, then it is usually not well generalized for

test data and unknown data. The bias and variance are generated by the model and could

 25

be changed as the model varies, while the noise is the natural part of the samples, so that it

cannot be measured or eliminated.

In general, it is very hard to minimize bias and variance simultaneously, hence, there

is a trade-off between these two sources of error. Typically, the bias decreases as the

complexity of the model increases (e.g. more features), while the variance increases

accordingly. However, the variance could decrease as the size of train data increases (more

samples). As a result, the expected prediction error goes down first and then up as the

complexity grows. The trade-off is graphically illustrated in Figure 2.8 [Fortmann-Roe,

2012]. In order to improve the performance of a classifier, ensemble methods are used to

reduce either or both of the two sources of error by combining multiple simple, or even

ñweakò base classifiers. In this thesis, several popular ensemble learning algorithms are

selected as the base classifiers in the proposed ensemble model, and the core concepts of

each of them are described in the following sections.

Although ensemble learning can help to enhance the performance, in practice, the

application of ensemble methods leads to the increased computation during both training

and predicting phases, as well as the increased storage for more model parameters. Also, a

complex ensemble model may even loss more comprehensibility and interpretability.

 26

Figure 2.8 The Trade-off between Bias and Variance [Fortmann-Roe, 2012]

2.1.5.3.2 Bootstrap Aggregation (Bagging)

Bagging was firstly proposed by [Breiman, 1996]. The core concept of Bagging is to

train multiple base classifiers from different new training sets that are randomly sampled

from the original train data with replacement, then to make the final prediction for each

instance by averaging the scores (for a probabilistic classifier) or majority voting (for a

discrete classifier). With this sampling method, the new sampled sets, which are known as

the bootstrap samples in statistics, could have the same size with that of the original set,

but only a fraction of a new set are unique samples and the rest are duplicates. This method

can improve performance because it artificially creates diversities among the base

classifiers, which is very helpful when constructing an ensemble, and reduces variance by

averaging, but does not help much with reducing bias. In practice, Bagging is more helpful

regarding to unstable algorithms, which are relatively more sensitive to the noise

 27

(overfitting) so that the variance of a base classifier is higher accordingly. Decision tree is

usually selected as the base model for bagging, but theoretically, any type of algorithms

could be applied to train the base classifiers.

In this thesis, Random Forests provided by Scikit-learn is applied, which is a popular

implementation of Bagging and uses decision tree as the base model. In spite of the

randomly sampled training sets, Random Forests also integrates the idea of randomly

selecting features when splitting in each single tree in order to further increase the diversity.

2.1.5.3.3 Boosting

Boosting is a family of ensemble learning algorithms that combines a set of weak

learners to construct a relatively strong one. A weak learner here is defined as a classifier

that makes predictions with a slightly better performance than random guess. However, in

practice, it is not necessary for every base model to be weak. Compared to Bagging method,

Boosting algorithms intended to improve the performance mainly by reducing bias.

Adaptive Boosting (AdaBoost) and Gradient Boosting Machine (GBM) are two of

the most popular Boosting algorithms proposed by [Freund, 1997] and by [Friedman, 2001]

respectively. The shared core concepts of them are: 1) all base classifiers are incrementally

trained on different training sets in a forward stage-wise manner; 2) In each stage, a new

base model is trained to overcome the shortcomings of the last one, which is always

achieved by highlighting the errors made by the last base model for guiding the new one

to focus more on those misclassifications; 3) The final hypothesis generated by the

ensemble model is derived from the sum of hypothesis of each base model. The key

divergence between AdaBoost and GBM is that, AdaBoost highlights the errors by

adjusting the weights of training samples: increase the weights of the misclassified ones

 28

and decrease the weights of the correctly identified ones, as shown in Figure 2.9 [Schapire,

2012], while GBM highlights the errors by calculating the residuals of the existing base

models, which is exactly the negative gradient descent of the loss function.

Figure 2.9 The AdaBoost Algorithm: an Illustration [Schapire, 2012]

In classification, each model trained from a certain algorithm has its own formula to

present the calculation of the approximation to the probability or discrete class, which is

defined as ώ Ὢὼ. Therefore, a loss function (or cost function) ὒώȟὪὼ of the model

is defined as a function that quantizes the cost for the deviation of predictions from the

actual values, such as squared loss ὒώȟὪὼ ώ Ὢὼ [Friedman, 2009]. Given a

 29

train data, if its loss function is convex and differentiable, then a optimization algorithm

can be applied to find a set of the parameters for Ὢὼ, so the loss function is minimized

on that given data. The convexity of the loss function could guarantee that the found

minimum is the global one. This process of optimization is to accomplish parameter

estimation, and different selection of loss functions could lead to different estimations of

the parameters.

As shown in Figure 2.10, gradient descent, also known as steepest descent, is a type

of optimization algorithm that searches the global minimum of a function by taking steps

to slide down to the minimum along the negative direction of gradient of the function (the

steepest direction) at each current point. Therefore, for a differentiable loss function of ὲ

variables, the gradient at the current point is the vector of ὲ partial derivatives of the loss

function at the point. Furthermore, the steps are taken as proportional to the gradient, and

in order to avoid missing the minimum point, a relatively smaller step is preferred as the

algorithm approaches the minimum point. To achieve it, a parameter called learning rate is

involved in, which is a real value between 0 and 1. Then the length of each step is

determined by its previous one multiplied by the ratio representing the shrinkage of steps,

in this way the speed of sliding down is controlled. Empirically, a lower learning rate can

help to obtain an approximation closer to the minimum, which usually implies a better

performance, but also leads to an increased number of iterations (steps). This trade-off is

worth being carefully considered when tuning the model parameters for a higher efficiency

of time and space utilization in practice.

 30

Figure 2.10 A 2D Example of Optimization of Loss Function Using Gradient Descent [Sebastian,

2016]

Based on the descriptions above, in general, an ensemble model trained by a certain

boosting algorithm can be formulated as follows [Friedman, 2001]:

Ὂ ὼ Ὤ ὼ

where T denotes the number of base models, so that Ὂ ὼ represents the final

ensemble model, and Ὤ ὼ represents the hypothesis generated by the ὸth base classifier,

plus, is the weight assigned to the ὸth base classifier and is a constant determined in

the first stage for initializing the model. For gradient boosting, each additive base model is

trained to fit the residual of the existing ensemble model, so that the final model becomes

more accurate by taking the hypothesis generated by this newly added base classifier into

 31

account. As the residual is precisely the negative gradient, in other words, the gradient

boosting algorithm is actually a process to minimize the loss function of the final ensemble

model without prior knowledge to the final loss function, which is achieved by only

minimizing the loss function of the existing ensemble model whenever a new base model

is added. Therefore, with the accumulation of the base models, the loss of the implied final

function declines gradually. In other words, with a training set ὼȟώ , a convex and

differentiable loss function ὒώȟὊὼ and the number of iterations (base classifiers) Ὕ, the

underlying mathematics of this process can be defined as follows [Friedman, 2001]:

1. Initialize the model with a constant:

Ὂ ὥὶὫάὭὲὒώȟ

2. For ὸ ρ ὸέ ὓ:

1) Calculate the residuals as the negative gradient:

ὒώȟὊ ὼ

Ὂ ὼ
ώ Ὂ ὼ ὶ

2) Fit a new base model Ὤ ὼ with the new training set ὼȟὶ :

Ὤ ὼ ὥὶὫάὭὲὒὶȟὬ ὼ

3) Determine the multiplier of the newly added base model Ὤ ὼȡ

 ὥὶὫάὭὲὒώȟὊ ὼ Ὤ ὼ

4) Update the existing ensemble model:

Ὂ ὼ Ὂ ὼ Ὤ ὼ

3. Output the final ensemble model as follows:

 32

Ὂ ὼ Ὤ ὼ

Additionally, in particular, AdaBoost can be also regarded as a case of the GBM with

a differently defined loss function.

As explained above, the bias of the model is reduced by incrementally training the

base models to learn the errors of their predecessor ensemble models. However, the concept

of correcting the errors made by the predecessor model may be overfitting-prone,

especially for the relatively noisy data. Accordingly, several regularization techniques are

introduced into the model for constraining the learning procedure, so that the final

ensemble model is prevented from overfitting the training set. Consequently, Boosting

methods can reduce the bias of model with keeping variance under control.

In this thesis, an implementation of AdaBoost provided by Scikit-learn and an

implementation of GBM called Extreme Gradient Boosting (Xgboost) is applied, which is

optimized to be highly efficient, flexible, portable and scalable. Xgboost was initially

released as an open source project by [Chen, 2016]. Both of the selected implementations

of AdaBoost and GBM are probabilistic classifiers and able to deal with sparse data.

2.1.5.3.4 Stacked Generalization

Stacked Generalization, which is also known as Stacking, was firstly proposed by

[Wolpert, 1992]. It is a high level ensemble method that introduces a meta-level model to

combine a group of base models, which are usually of diverse types. Figure 2.11

demonstrates the process of Stacking, during which all base models are trained from the

training set and tested on the testing set, then the meta model takes the outputs of all base

models for testing data as new feature vectors and the corresponding actual classes values

in testing data as targets, so that the meta model can learn a combination of all base models

 33

to reduce the overall error. Theoretically, the meta-level model could be learnt by any type

of supervised machine learning algorithms, but logistic regression is usually selected to be

the meta-level learner because of its simplicity and efficiency, therefore, all the base

models are linearly combined. In addition, non-linear algorithms can also be applied as the

meta model, thus, Stacking can also be regarded as a more complex version of cross-

validation, which can produce a more generalized ensemble model to improve the final

performance. Overall, Stacking is a type of more generalized and flexible method of

ensemble, which could be easily applied together with other ensemble methods to further

enhance the total performance.

Figure 2.11 The Process of Stacking

Since both Stacked Generalization and this proposed method could be considered as

Type II ensemble techniques, which is defined previously in Chapter 1, they are compared

 34

in terms of combination method in this thesis. For Stacking, each of linear and non-linear

models is selected as the meta model to combine a group of base models that are the same

as those in this proposed method.

2.1.6 Tools and Environments

2.1.6.1 Python

The language used in this thesis for data operation and system implementation was

Python, which is a high-level, general-purpose, interpreted and dynamic programming

language. Python is well-known for its illustrious code readability and expressiveness. In

addition, various programming paradigms are supported in python, including object-

oriented and functional programming styles. Furthermore, Python interpreter is a free,

cross-platform and open-source software, which features dynamic typing and automatic

memory management. The kernel philosophy of Python, which is widely known as The

Zen of Python [Python, 2016], plus its open-source feature, has attracted lots of outstanding

developers forming a powerful community to make continuous contribution to the Python

ecosystem. Therefore, lots of effective third-party tools have been developed and can be

easily integrated into Python as extensions, which allows Python to be utilized under many

circumstances such as web development and data science.

2.1.6.2 Anaconda

Anaconda is an open source distribution of Python, which packs numerous popular

Python-based tools for data science covering data processing, data analysis, machine

learning, data visualization, and scientific computing [Continuum, 2016]. Being an open

data science platform with considerable number of users from diverse fields particularly in

 35

education and research, Anaconda helps accelerate the development of data science

ecosystem powered by Python.

2.1.6.3 Data Science-Related Python Libraries

Multiple popular data science-related Python libraries are utilized in this thesis.

Firstly, for data pre-processing, Pandas, which is an open source library providing high

performance and easy-to-use data structures for Python [Pandas, 2016], is used. Various

interfaces in charge of interacting with other common data storage system, such as

databases or file systems, are also supported. With Pandas, rapid accessing to data and

intuitive data operation could be easily achieved. Secondly, Scikit-learn is applied during

model training and evaluation phases, which is also an open source library providing

comprehensive tools for machine learning, and already widely applied in various fields. In

spite of diverse built-in implementations of various machine learning algorithms, it is also

compatible with other standalone algorithms.

Pandas and Scikit-learn are both built on NumPy [NumPy, 2016], SciPy [SciPy, 2016]

and Matplotlib [Matplotlib, 2016], which are three fundamental libraries for scientific

computing with Python. NumPy provides a high performance, powerful, and multiple

dimension array object, and many common functions that execute computations with those

arrays. SciPy provides a large number of tools for scientific computing, which take the

advantages of NumPy. Matplotlib is also a well-known Python library for visualizing data

in 2D plots, which can yield high quality figures in various formats.

2.1.6.4 Experiments Environments

All the developments and experiments are conducted on a customized compute

engine from Google Cloud Platform (Google cloud computing, hosting services & APIs,

 36

2016), which is operated by Ubuntu 16.04 LTS with 6 cores (2.3GHz) virtualized from

Haswell processors, 32 GB memory and 128 GB SSD.

2.2 Related Work

Ensemble methods such as Bagging, Boosting and Stacking which combine the

decisions of multiple hypotheses are some of the strongest existing ensemble methods,

therefore provide a reliable foundation for this proposed ensemble method. Among them,

[Ham, 2005] applied Random Forests to classification of hyperspectral data on the basis of

a binary hierarchical multi-classifier system. [Berstra, 2006] presented an algorithm for

musical style and artist prediction from an audio waveform by utilizing AdaBoost for the

selection and aggregation of audio features. Gradient Boosting Machine (GBM) was

applied in [Atkinson, 2012] for incorporating diverse measurements of bone density and

geometry so as to improve the accuracy of fracture prediction compared to standard

measurement. Moreover, Stacked generalization is a universal method of applying a high

level model to integrate lower level models for better predictive accuracy. It is usually

achieved by utilizing different classifiers and combining the outputs. [Ghorbani, 2001]

examined the generalization behavior by comparing single level learning models to

multiple level learning models (stacked generalization method) on a multilayer neural

network. Result shows that the stacked generalization scheme could improve classification

performance and accuracy compared to the single level model. The method is also

demonstrated through Wangôs approach [Wang, 2006] in which the stacking approach

performed successfully in predicting membrane protein types based on pseudo-amino acid

composition.

 37

Further ensemble methods are designed for the purpose of improving predictive

accuracy and robustness by blending the predictions of multiple models in a more rational

way. There are several schemes proposed for the customized selection of classifiers, thus

to find the best base classifier for each individual instance on the basis of local accuracy.

For example, [Tysmbal, 2008] proposed the method of Dynamic Integration, in which

weighted voting were applied by giving higher weight to a classifier if its training data

were in the same region as the testing example. [Giacinto, 2000] introduced an approach

to group classifiers by their similarities and to retain one representative classifier per cluster.

The core notion of this type of methods is to enhance the overall performance by choosing

and/or assigning more weight to those classifiers that perform best in instances that are

similar to the one that is being classified. On the other hand, static ensemble methodologies

are gradually developing, [Bhatnagar, 2014] proposed a linear ensemble algorithm that

takes into account both the accuracy of individual classifiers and the diversity among

classifiers, which are also vital factors where importance should be attached when

designing ensemble methods.

Moreover, since the dataset applied in this research was from the Repeat Buyers

Prediction Competition [IJCAI-15, 2015]. Approaches based on this certain repeated buyer

dataset were reviewed as references for this thesis as well. In this two-stage competition

with different amount of data provided, the work [Liu, 2015] won the first place in Stage

1, with the progress in both phases of feature engineering and model training. Various

techniques for extracting a large number of features were applied in feature engineering,

while a blending algorithm was proposed to further boost the prediction performance in

the training phase. The work [He, 2015] won the first place in Stage 2, in which a four-step

 38

solution was introduced including 1) characteristics analysis and strategy design, 2) feature

extraction and selection, 3) data training, 4) hybrid ensemble on both models and features.

Both of the award winners suggested that feature engineering is the key element to this

work. and the ensemble method applied in these two approaches perform better than any

of the individual classifier. Furthermore, only linear ensemble methods were utilized in

their works, so the results of these works can be considered as a reasonable quantitative

comparison to this proposed non-linear method.

 39

Chapter 3: System Design and Implementation

This chapter describes the system design and implementation of the proposed

ensemble technique. The chapter starts with an overview of a problem of existing ensemble

methods and a proposed solution. Section 3.2 discusses the design of the system, which is

followed by system implementation as presented in Section 3.3. In addition, in the

following sections, positive (1) and negative (0) are used to denote the two classes in binary

classification. In binary classification, a classifier generates a value between 0 and 1for

each certain instance that represents the probability of this instance being classified as the

positive class.

3.1 Overview

To solve classification problems, a classifier is learnt by a certain algorithm, so that

a hypothesis can be proposed based on the classifier that best fits the given training set. For

a certain dataset, a single classifier may have its own ñblind areaò, i.e., some points cannot

be clearly identified, especially when the dataset is high-dimensional or non-linear. For

example, in 2-dimensional space, as shown in Figure 3.1, some points (circled in red)

cannot be correctly classified. Those points are points 1ï5 in Figure 3.1 (a) based on the

yellow classifier (as shown in a yellow line), and point 1 and points 3ï6 using the blue

classifier (as depicted with a blue line), and so on. A plus sign in Figure 3.1 indicates an

instance belonging to the positive class, whereas a minus represents the negative class.

By applying the ensemble technique, multiple models can be integrated to reduce

those blind areas as indicated in the lower three diagrams, e.g., Figure 3.1 (d), (e), and (f).

Each data instance in the blind areas is then classified by the capable base model. For

example, with the combination of H1 and H2 as depicted in Figure 3.1 (d), point 6 can be

 40

identified by H1 generated by classifier 1, not circled in red, as shown in (a), whereas point

2 can be identified by H2 from classifier 2, not circled in red, as shown in (b).

Figure 3.1 An Example of Base Model Selection According to Pairwise Diversity

Furthermore, the ensemble models consisting of variously selected single classifiers

have different recognized areas. As shown in (d), (e) and (f) of Figure 3.1, two more diverse

single models can be integrated into an ensemble with a larger recognized area. In this

example, the pairwise diversity is defined in terms of the number of points that are

identified as different classes by two single classifiers. Two points (2 and 6) are distinctly

classified by H1 and H2, respectively; hence, the pairwise diversity for H1 and H2 is 2.

Similarly, six points (1, 3, 4, 7, 8 and 9) for H2 and H3, and eight points (1, 2, 3, 4, 6, 7, 8,

 41

9) for H1 and H3, respectively, are differentiated. Therefore, H1 and H2 are relatively

similar, while H3 is more different.

Accordingly, compared to the combination of H1 and H2 (with four unrecognized

points), the combination of H2 and H3 has two less unrecognized points, and the

combination of H1 and H3 has only one unrecognized point. As a result, classifiers 1 and

3 are considered the proper group for constructing the ensemble model. In summary, higher

diversities among base models can improve the ability of the ensemble model by satisfying

more types of data instances.

With the ensemble model consisting of classifiers 1 and 3, for each unknown data

instance, if it is a positive one close to points 8 and 9 (or a negative one close to points 6

and 7), then classifier 1 should be used to make the prediction. The reason for the model

selection policy is that those known instances (points 6, 7, 8, 9), which are homogeneous

as this unknown instance, can be correctly classified by classifier 1. Similarly, if it is a

positive one close to points 3 and 4 (or a negative one close to points 1 and 2), classifier 3

should be used.

Figure 3.2 An Example of Constructing Ensemble Model by Averaging

 42

In addition, the problem in this example may not be properly solved with the existing

ensemble techniques, such as averaging and stacking. As illustrated in Figure 3.2, the

ensemble model is built by simply averaging all the hypotheses of the three classifiers, but

there are still five unrecognized points for the final hypothesis.

To solving binary classification problems, in this thesis, a novel ensemble method is

proposed and implemented. In the proposed ensemble method, a meta-level model is learnt,

which recognizes the capable base classifier for each data instance. In addition to the meta

model, from all trained single classifiers, only those with high pairwise diversities are

selected as base models. Finally, the constructed ensemble model is able to support

adaptive selection of the proper base model for each data instance.

To accomplish all the points mentioned above, two key problems demand prompt

solutions:

1) The pairwise diversity needs to be defined for measurement.

2) A training set needs to be designed for learning the meta model.

As explained in Section 2.1.4.1, a probabilistic classifier performs the classification

by ranking the instances according to their predicted probabilities of being positive.

Therefore, for the first problem, the pairwise diversity is defined as the difference between

the ranks of instances provided by each two classifiers.

For the second problem, in order to map each data instance to its appropriate base

model, the meta model should be trained from the same feature vectors that have been used

to train the single model. Additionally, each data instance in the training set needs to be

relabeled to indicate its proper base model. A base model is considered proper for a data

instance, if it can generate the most certain prediction. By ranking all the instances

 43

according to their predicted probabilities, the certainty of a prediction is defined as the

relative position of a certain instance in the ordered queue. For example, a prediction for a

data instance is considered more certain if a positive instance is ranked at a lower position

(or a negative instance at a higher position) in an ascent sorting. Then, this data instance

should be relabeled as the base model which gives this prediction.

Overall, the pairwise diversity is measured on a group of instances for base model

selection, while the certainty is on the basis of a single instance for relabeling the training

set.

3.2 System Design

This section will firstly go through the overall system architecture and the data flow,

which is followed by a detailed introduction of the design of three vital system modules:

Pre-processor, Base Model Selector, and Relabeler.

 44

3.2.1 System Architecture and Data Flow

Figure 3.3 System Architecture and Data Flow

Based on the concept described in Section 3.1, a system is designed to build the

proposed ensemble model. The system consists of seven modules: Pre-processor,

Relabeler, Base Model Selector, Single Model Learner, Meta Model Learner, Meta Model

and Base Models, which are organized as shown in Figure 3.3. Each module is briefly

described as follows.

¶ The Pre-processor is responsible for data transformation, data normalization and

feature engineering, as well as splitting the known data into a training set and a

testing set.

 45

¶ The Single Model Learner learns single classifiers from the training set with the

original labels for data instances.

¶ The Base Model Selector takes both the testing set and the outputs of the Single

Model Learner as inputs, to determine the Base Models for constructing the

ensemble.

¶ The Relabeler receives the training set with original labels for data instances, and

then relabels the training set with the outputs of the Base Model Selector. The

relabeling of each instance is performed according to the behaviors of Base

Models on the original training set.

¶ The Meta Model Learner uses the relabeled training set to train the meta model.

¶ The Meta Model takes the feature vector of each unknown instance to predict its

most suitable base model, and then passes the feature vector to the selected Base

Model for the final prediction, which is the output of the system.

Differing from other modules in the system, the Meta Model and Base Model are not

only considered as parts of the system, but also the outputs of other modules. Also, they

are the ones forming the final ensemble model, which is then used for predicting. As the

specific problem varies, each module of the system can be modified to adapt to the practical

requirements, especially for the Pre-processor, which heavily depends on the problem-

related domain knowledge.

In addition to the system architecture, the data flow as indicated in Figure 3.3 also

demonstrates the workflow of the system. There are two types of input to the system:

known raw data and unknown raw data, and both of them need to be pre-processed before

further operations. The known raw data is a group of instances that has been already

 46

collected, so that the size of the data is fixed. The unknown data are those without labels

and will be used for prediction. Meanwhile, the unknown data usually enter the system

randomly so that the data size is not fixed.

The next sub-sections discuss Pre-processor, Base Model Selector and Relabeler

modules in more detail, since they have covered most of the design and implementation of

the proposed method. Other modules are similar to the one described in Section 2.1.5.

3.2.2 Pre-processor

The task of the Pre-processor module mainly contains four parts: transformation,

normalization, feature engineering and splitting. Firstly, transformation is a general process

to restructure the raw features in another format. The purposes of transformations are

highly diverse. In this thesis, the main focuses are data type conversion, text parsing and

feature vectorization. For example, the log of users is initially in strings which cannot be

directly computed. Therefore, the text has to be parsed into meaningful and computable

real-valued features. In general, transformation is conducted to make the features capable

of describing the instances more properly and informatively, as well as more compatible

with the applied machine learning algorithms.

Secondly, normalization is usually known as the process of scaling the values of

feature vectors into a unified range. The main goal is to standardize different variances of

features. Normalization mostly contributes to the performance of those algorithms that are

based on Euclidean metric space, such as k-means and k-nearest neighbors [Fukunaga,

1975]. But normalization has little benefit for decision tree-based algorithms [Friedl, 1997].

Although normalization is not always required by any algorithm, it seldom brings adversely

effects to the overall performance. In addition to performance improvement, normalization

 47

is also used for speeding up the learning process for the algorithms using gradient descent-

based loss function solvers [Varma, 2009]. Accordingly, in this thesis, normalizations were

applied for logistic regression to speed up the learning process.

Thirdly, for many practical problems, feature engineering or feature extraction is a

vital process. Feature engineering is sometimes even more important than the algorithm

selection, because the original features in the raw data are not adequate for characterizing

the instances. Feature engineering often means the artificial creation of new features by the

computation of two or more existing features, based on the background knowledge of the

specific problem. In this thesis, feature engineering is the major workload of pre-processor,

in which many new features were created through the computation on multiple original

features in the raw data, so that the interactions between multiple features could be

represented based on the understanding of this specific problem.

Finally, the splitting task is to divide the processed data into training set and testing

set according to a certain ratio determined by Pre-processor.

3.2.3 Base Model Selector

The Base Model Selector is the module that determines the base models for

constructing the final ensemble model. Initially, various single models learnt by different

machine learning algorithms are tested on the testing set obtained from the Pre-processor.

Each single model generates a group of probabilities for data instances in the testing set.

Then the performance of each single model is evaluated. However, the main focus of Base

Model Selector is the behaviors of the single models, rather than their performances. In

other word, it is acceptable if the single models are relatively ñweakò, but the final

performance can be improved by combining these single models as long as the behaviors

 48

of the single models are diverse. Therefore, the main goal of Base Model Selector is to

measure the pairwise diversities between each two single models based on their predictions

for the testing set.

The probabilities generated by single models usually cannot be used directly for

calculating the pairwise diversities, as the probabilities generated by the single models have

different distributions. For example, the probabilities generated by AdaBoost are all around

0.5 on the Repeat Buyer Prediction dataset, whereas the ones from Logistic Regression are

up to 0.9. Therefore, the probabilities generated by different single models need to be

normalized into identical scale based on their corresponding ranks.

Table 3.1 Example of Normalizing Probabilities Based on Ranks

Instance lr_proba lr_rank lr_normalized ab_proba ab_rank ab_normalized

0 0.245 2 0.4 0.501 3 0.6

1 0.781 4 0.8 0.534 4 0.8

2 0.344 3 0.6 0.496 2 0.4

3 0.106 1 0.2 0.558 5 1

4 0.983 5 1 0.472 1 0.2

Table 3.1 shows an example of the normalization. The probabilities generated by

Logistic Regression (lr_proba) and AdaBoost (ab_proba) are not in unified scale, so the

difference between the probabilities cannot represent the diversity between the behaviors

of two classifiers. To normalize the probabilities into the same scale, firstly each testing

instance is assigned two ranks (lr_rank, ab_rank) corresponding to its positions in the

ascent order of each group of predicted probabilities. Secondly, both groups of ranks are

divided by the number of data instances to obtain two groups of normalized probabilities

(lr_normalized and ab_normalized). The rank will be used to calculate the pairwise

diversity.

 49

With the normalized probabilities, a global threshold can be set to determine the

predicted classes by each single classifiers. For example, if 0.7 is set as the global threshold,

then instances 1 and 4 are identified as positive class by Logistic Regression, while

instances 1 and 3 are classified as positive by AdaBoost. At last, the pairwise diversities

are calculated from the ranks, and the algorithm of determining the single models based on

diversities is described as follows:

Algorithm 1 : Base Model Selection

1. Given a testing set Ὓ ίȿὭ ρȟςȣὲ and a group of trained single classifiers ὅ

ὧὮ ρȟςȣά , where ὲ and ά denote the number of samples in testing set and the

number of trained single classifiers, respectively;

2. For each classifier ὧ in ὅ:

3. Use ὧ to make predictions for each ί in Ὓ to obtain a set of probabilities ὖ

ὴ Ὥ ρȟςȣὲ, where ὴ represents the probability of ί being positive generated

by ὧ;

4. Sort all ί according to their ὴ in ascending order, and then obtain a set of ranks

Ὑ ὶ Ὥ ρȟςȣὲ, where ὶ denotes the rank of ί in all ordered test samples

given by ὧ;

5. End For

6. Calculate the root-mean-square deviation (RMSD) of each two Ὑ as the metric of

pairwise diversity Ὀ
В

;

7. Choose the Ὧ single classifiers ὧ with highest RMSDs as the base models for

constructing the ensemble.

In addition to RMSD described in the above algorithm, another metric called Zero-

One Loss (ZOL) [Domingos, 1997] is also calculated to represent the pairwise diversity.

In binary classification, the two classes are usually named as positive and negative. Simply,

1 and 0 are used to represent positive and negative, respectively. Thus, ZOL is defined as

the number of instances with different predicted classes (sum of (1-0)). RMSD is used to

indicate the difference between the ranks, whereas ZOL denotes the difference between the

 50

predicted classes. An example for calculating the two types of pairwise diversity is

presented in Table 3.2 as follows:

Table 3.2 Example of Calculating Two Types of Pairwise Diversity

Instance lr_rank lr_normalized lr_pred ab_rank ab_normalized ab_pred

0 2 0.4 0 3 0.6 0

1 4 0.8 1 4 0.8 1

2 3 0.6 0 2 0.4 0

3 1 0.2 0 5 1 1

4 5 1 1 1 0.2 0

0: negative; 1: positive

Similar to the example shown in Table 3.1, assuming that the global threshold is set

to 0.7, so that the predicted classes by each single classifier is are shown as the two columns

lr_pred and ab_pred in Table 3.2. Based on Algorithm 1, from the data in Table 3.2, The

RMSD of Logistic Regression and AdaBoost is calculated as the following equation:

ςȢφρ. The ZOL is calculated as ȿπ πȿ ȿρ ρȿ

ȿπ πȿ ȿπ ρȿ ȿρ πȿ ς, which means that the two classifiers have different

predictions on 2 data instances.

In summary, ZOL describes the diversity in terms of the predicted class, whereas

RMSD measures the diversity in terms of the rank (equivalent to the normalized

probability), which represents the confidence of the prediction. Some insignificant

diff erences are taken into account by RMSD. For example, although the ranks (lr_rank and

ab_rank) of instance 0 in Table 3.2 are different (2 and 3 respectively), both classifiers

identify this instance as negative. Therefore, ZOL depicts the explicit diversity, while

RMSD also consider the implied diversity and the measurement is relatively more fine-

grained. Finally, all base models are determined by the method described above in the Base

Model Selector.

 51

3.2.4 Relabeler

The function of Relabeler is to design a new training set for training the meta-level

model. The aim is to identify the proper base model for a given instance. A training set

consists of two parts: feature vectors and labels. The former describes the characteristics

of data instances, while the latter indicates the class of instances in a certain class space.

For example, feature vectors consisting of age, gender, height, weight and income

could describe persons. They can be mapped to a class space of ñrichò and ñpoorò by a

certain classifier, and also to another class space of ñactiveò and ñpassiveò by another

classifier. The same group of feature vectors could be used for solving different

classification problems as the labels vary. Therefore, in order to obtain such a meta model,

the feature vectors of the training set for single models need to be mapped to another class

space with base models being the labels. In other words, a new training set is derived from

relabeling the consistent feature vectors with labels of different base models, so that the

meta model learnt from this training set could assign a proper base classifier for each

unknown instance.

The new label for each instance in the training set is determined by comparing the

predictions of base models for this instance. Similar to base model selector, the rank of

each instance is used for comparison rather than directly probabilities comparison. This is

also because the AUC score is selected as the evaluation metric. Therefore, based on the

previous explanation of AUC (see Section 2.1.4.5), a base classifier is considered to be

more suitable for a certain instance if it could assign a higher rank to the instance in

descending order than other base models when the instance is positive (or a lower rank

when negative). Accordingly, the algorithm of relabeling is designed as follows:

 52

Algorithm 2: Relabeling Training Set for Meta Model

1. Given a training set Ὓ ίȿὭ ρȟςȣὲ obtained from pre-processor and a group

of base classifiers ὄ ὦὮ ρȟςȣά determined by base model selector;

2. For each base classifier ὦ in ὄ:

3. Use ὦ to make predictions for each ί in Ὓ to obtain a set of probabilities ὖ

ὴ Ὥ ρȟςȣὲ , where ὴ represents the probability of ί being positive

generated by ὦ;

4. Sort all ί according to their ὴ in ascent order, and then obtain a set of ranks

Ὑ ὶ Ὥ ρȟςȣὲ, where ὶ denotes the rank of ί in all ordered samples

given by ὦ;

5. End For

6. For each training sample ί in Ὓ:
7. If ί is positive:

8. relabel ί as ὦ which generates the largest ὶ;

9. End If

10. If ί is negative:

11. relabel ί as ὦ which generates the smallest ὶ;

12. End If

13. End For

14. Return the relabeled training set.

The training set derived from the algorithm above indicates the proper base model

for each instance, and then it is further used for training meta-level model, so that the meta

model can be used to predict the appropriate base models for unknown instances. An

example of relabeling according to Algorithm 2 is presented in Table 3.3.

Table 3.3 Example of Relabeling

Instance lr_rank ab_rank original_label new_label

0 2 3 Positive AdaBoost

1 4 2 Positive Logistic Regression

2 3 4 Negative Logistic Regression

3 1 5 Positive AdaBoost

4 5 1 Negative AdaBoost

 53

In Table 3.3, the original label of instance 1 is positive, and Logistic Regression can

assign it a higher rank than that of Ababoost, i.e., 4 > 2, in the ascent order, which represents

that Logistic Regression has more confidence to predict instance 1 as positive. Therefore,

instance 1 is relabeled as ñLogistic Regressionò to indicate that Logistic Regression is more

proper for this instance. On the contrary, for instance 4 in Table 3.3, its original label

demonstrates that it belongs to the negative class. AdaBoost can assign it a lower rank than

that of the Logistics Regression in the ascent order, i.e., 1 < 5. That means that AdaBoost

is more confident to predict instance 4 as negative. Thus, instance 4 is relabeled as

ñAdaBoostò to indicate that AdaBoost is more proper for this instance. In summary, the

ranks assigned to each instance by the single classifiers imply the probabilities of this

instance to be positive class. Hence, a higher probability indicates a higher confidence of

the classifier for its prediction. For a certain instance, the more confident classifier is

considered the more proper one.

 54

Chapter 4: Experiments and Evaluation

This chapter will firstly go through the datasets utilized to validate the proposed

ensemble method, which is followed by a brief introduction of the system implementation

process. The experiments design is then discussed, as well as the analysis of the results.

4.1 Overview of Datasets

Two binary classification datasets were selected to validate the proposed ensemble

method. The first dataset is the Repeat Buyer Prediction dataset, obtained from a machine

learning competition, which was held by International Joint Conference on Artificial

Intelligence (IJCAI) and Alibaba Group in 2015 [IJCAI, 2015]. The other dataset, Census

Income Prediction, was obtained from University of California, Irvine (UCI) machine

learning repository [UCI. 1996]. More detailed information of these two datasets are

introduced below.

4.1.1 Repeat Buyer Prediction (RBP) [IJCAI, 2015]

This dataset is provided by Tmall, which is the largest business-to-consumer (B2C)

online shopping website of China under Alibaba Group. Tmall is a platform for merchants

to sell their branded goods to customers, therefore, it works as a coordinator between

merchants and customers. The activities between merchants and customers including each

transaction and all types of user behaviors are recorded for data mining and building

predictive system through machine learning techniques, which could help merchants for

solving practical problems so as to improve their business.

Merchants usually provide various promotion sales on particular dates (such as

Boxing Day, Black Friday in western countries and Double 11 in China), to promote their

brand, acquire new customers, and strengthen customer loyalty. Since many of new

 55

customers are so-called one-time deal hunters, the promotions are considered rarely

produce long-term effects on businesses. The return on investment (ROI) of merchants can

be enhanced if the potential loyal customers for each merchant could be targeted (DataSet,

2015). Overall, the question of the competition IJCAI, as well as extended to this research,

is to identify the potential loyal customers for each merchant based on the given dataset by

building a predictive system which is capable to recognize whether a customer would be a

repeat buyer of a merchant or not.

Table 4.1 The Definitions of Data Fields in User Behavior Logs in RBP

Data Field Data Type Definition

user_id integer A unique id for the shopper

merchant_id integer A unique id for the merchant

item_id integer A unique id for the item

brand_id float A unique id for the brand of the item

cat_id integer A unique id for the category of the item

time_stamp integer Date the action took place (format: mmdd)

action_type integer

Type of the action, which is enumerated as the set {0, 1,

2, 3}, where 0 represents click, 1 is for add-to-cart, 2

denotes purchase and 3 is for add-to-favorite

The dataset consists the behavior log of anonymized users accumulated during the 6

months before and on the ñDouble 11ò day, with labels indicating whether a customer is a

repeat buyer of a merchant or not. As we did not take part in the competition, the dataset

we have is only a subset of the complete dataset that the competitors used. The dataset is

1.92 GB in total and stored as three comma-separated values (CSV) files: user behavior

logs, user profile information and training and testing. The definitions of data fields in each

file are described as shown in Table 4.1, 4.2 and 4.3, respectively.

 56

Table 4.2 The Definitions of Data Fields in User Profile Information in RBP

Data Field Data Type Definition

user_id integer A unique id for the shopper

gender float
Gender of the shopper: 0 for female, 1 for male, 2 and

NULL for unknown

age_range float

Age range of the shopper: 1 for less than 18, 2 for [18,

24], 3 for [25, 29], 4 for [30, 34], 5 for [35, 39]; 6 for [40,

49], 7 and 8 for more than 49, 0 and NULL for unknown

Table 4.3 The Definitions of Data Fields in Training and Testing Data in RBP

Data Field Data Type Definition

user_id integer A unique id for the shopper

merchant_id integer A unique id for the merchant

label integer

A binary label {0, 1} indicating whether a shopper is a

repeat buyer of a merchant, where 1 represents repeat

buyer and 0 is for non-repeat buyer

As the tables shown above, some data types in the raw data are not appropriate for

this research, such as gender, age range, and brand_id, which are supposed to be integer.

Hence, data transformation is performed in the pre-processing phase.

4.1.2 Census Income Prediction (CIP)

This data was extracted from the census bureau database for census income

prediction. It is popular used in research area for validating and evaluating binary

classification algorithms and methods, as it does not require feature engineering and it is

relatively convenient to use. There are 6 continuous attributes and 8 categorical attributes

in the raw data. The labels indicate whether an anonymous person makes an income over

$50K/yr. Table 4.4 lists the definitions of each data field. Note that the fields in data type

of string are all categorical, therefore they need to be transformed to proper formats during

pre-processing for further operations.

 57

Table 4.4 The Definitions of Data Fields in CIP

Data field Data type Definition

age integer The age of an anonymous person

workclass string The work class of an anonymous person

fnlwgt integer
Independent estimates of the civilian non-institutional

population of the US

education string The highest degree of an anonymous person

education_num integer
Number of years an anonymous person is under

education

marital_status string The marital status of an anonymous person

occupation string The occupation of an anonymous person

relationship string The role of an anonymous person in a family

race string The race of an anonymous person

sex string The gender of an anonymous person

capital_gain integer The capital gain of an anonymous person

capital_loss integer The capital loss of an anonymous person

hours_per_week integer The working hours of an anonymous person per week

Native_country string The native country of an anonymous person

Labels string
Indicates whether an anonymous person makes over

$50K/yr

4.2 System Implementation

4.2.1 Pre-processing

In this thesis, pre-processing is mainly performed by Pandas, and the task could be

generally summarized as two parts: data transformation and feature engineering.

4.2.1.1 Transformation

Two datasets have been used. They require different data transformation operations.

The following highlights the transformation for each dataset.

4.2.1.1.1 RBP Dataset

For the RBP dataset, firstly, the data stored in three separate tables need to be merged,

so that further operations can be conducted on the merged data. To avoid producing

redundant rows, the three tables are merged by inner join, during which the user behavior

 58

logs table and the user profile information table are joined on ñuser_idò, and then joined

with the training and testing data table on pair of ñuser_idò and ñmerchant_idò. Secondly,

the data types of some data fields need to be converted to more proper ones. For example,

brand_id is originally in float type, then it is converted to integer which is more proper to

represent ID fields. Thirdly, the time_stamp is parsed into the data type of datetime64,

which is defined in NumPy to indicate date and time. At last, the rows containing missing

values are discarded directly (1.41%). The final merged data is in the shape as shown in

Table 4.5.

Table 4.5 An Example of the Merged Data in RBP

The first column of the table is the indexes of rows, which is only an indicator. From

the table it can be observed that many duplicated rows in the merged data (for example,

rows 0, 2 and 3), and they are the real logs of the repeated activities. In this dataset, around

37.1% of the whole data instances are duplicated and they are representing actual repeated

user behaviors. Therefore, these data instances can be further processed for feature

engineering, e.g., the number of times a user has browsed the particular merchant. Those

data instances, though duplicated, should not be deleted. Some data statistics from various

perspectives are presented in Table 4.6, Table 4.7, Table 4.8, Table 4.9 and Table 4.10,

respectively.

