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Abstract 

In recent years, machine learning techniques have been rapidly developed and widely 

applied to many industrial and academic fields. Moreover, as an important part of the 

machine learning techniques, ensemble techniques have drawn significant attention in both 

academic researches and practical applications, which can make use of multiple single 

models to construct a hybrid model. Usually, compared to each individual model, a better 

performance can be achieved by applying ensemble methods. In this thesis, a novel 

ensemble method is proposed to improve the performance for binary classification. The 

proposed method can non-linearly combine the base models by adaptively selecting the 

most suitable one for each data instance. The new approach has been validated on two 

datasets, and the experiments results show an up to 18.5% improvement on F1 score 

compared to the best individual model. In addition, the proposed method outperforms two 

other commonly used ensemble methods (Averaging and Stacking) in improving F1 score. 
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Chapter 1: Introduction  

This chapter will firstly go through the motivation and objectives of the proposed 

research question, followed by an overall introduction of this thesisô contribution. Finally, 

the thesis organization is described. 

1.1 Motivations and Objectives 

In supervised machine learning, ensemble learning is the technique that aims to make 

use of multiple single models to construct a hybrid model to achieve a better performance 

than that of each single integrated model [Opitz, 1999]. Figure 1.1 indicates a general 

workflow for solving classification problems by applying ensemble methods. Firstly, raw 

data usually needs to be pre-processed for initializing a training dataset, during which 

processes such as feature extraction and normalization could be involved. Secondly, 

training sets for each individual single model are derived from the initialized dataset. 

Thirdly, single models are trained from different training datasets or by different algorithms. 

Parameter tuning and validation for each individual model are included in this phase as 

well. Finally, all the single models are combined to construct the ensemble, then the final 

model could be further validated and tested. 

There exists a number of ensemble learning techniques proven to be successful in 

practice. Based on our understanding, most of the techniques could be generally 

categorized into two types according to their different concerns: 

Type I. Techniques that focus on deriving new training sets from the initial training 

set to train diverse single models, which is the phase marked as red in Figure 1.1 [Opitz, 

1999]; 
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Type II. Techniques that focus on finding ways to blend the individual models, 

which is the phase marked as blue in Figure 1.1 [Canuto, 2005]. In this thesis we will 

mainly focus on the discussion of Type II techniques for improving predictive performance 

in binary classification problems.  

 

Figure 1.1 General Ensemble Learning Workflow  

For a particular dataset, due to the various principles and implementations of the 

applied machine learning algorithms, single models trained by different algorithms may 

have diverse abilities in recognizing the pattern of a given training sample. Therefore, in 

order to achieve the complementation across individual models by applying ensemble 
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methods, it is important to select those highly-diverse single models, and to blend them 

properly with an efficient utilization of the diversity [Kuncheva, 2005a]. 

Most of popular Type II ensemble techniques assign weights to all trained single 

models and then linearly combine them [Canuto, 2005]. Thus, for all unknown instances, 

the contribution of each individual model to the final prediction is fixed, which may result 

in a limitation of performance enhancement. Therefore, dynamically adjustments of each 

single modelôs contribution for different instances could be helpful, which requires 

methods of non-linear blending [Canuto, 2005]. 

In other words, as the existing Type II ensemble methods takes all the outputs of the 

combined single models into account, the weaknesses of the single models are also kept in 

the hybrid model. If an ensemble method can adaptively select the most suitable single 

model to predict for each instance, then the weaknesses of the single models are avoided. 

In addition, it is not necessary to combine all the single models. In order to maximize the 

complementation effect, only those single models with highest pairwise diversities should 

be selected to construct the ensemble model. 

Based on all the motivations described above, the objectives of this thesis is to find 

an ensemble method that can 1) determine base models for combination according to their 

pairwise diversities; 2) recognize the suitable base model for each data instance; 3) each 

unknown instance is predicted only by the identified suitable base model. As a result, the 

overall performance of the predictions by the ensemble model can be improved by non-

linearly combining the base models. In order to perform the adaptive selection of base 

models for each unknown instance, a meta-level model should be trained from the relabeled 

training set, which can indicate the suitable base model of each training sample. 
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1.2 Thesis Contributions 

The process of achieving the goal described above has led to the following 

contributions: 

1) A novel ensemble method for solving binary classification problems is proposed. 

the core idea of the proposed ensemble method is to train a meta-level model that can 

dynamically choose a more suitable base classifier for each unknown instance; 

2) The training data is relabeled by a new method, and then the relabeled training 

data is used to train the meta-level model; 

3) The pairwise diversities of single classifiers are measured by two methods, 

according to which the base classifiers for combination are selected, and all the applied 

methods of measurement are compared; 

4) Multiple machine learning algorithms are applied to train a group of different base 

models, and a comprehensive framework including all the methods mentioned above are 

designed and implemented; 

5) The proposed ensemble method is validated on two datasets (Repeat Buyer 

Prediction [IJCAI, 2015] and Census Income Prediction [UCI, 1996]), and the experiments 

results indicate that an up to 18.5% improvement on performance is achieved compared to 

those of two other Type II ensemble methods (Averaging and Stacking). 

1.3 Thesis Organization 

This thesis consists of 5 chapters including the introductory chapter. Chapter 2 

introduced required background information, which includes a basic description of 

classification problems in data science, the general workflow for problem solving, and the 

knowledge of several common types of supervised machine learning algorithms. Then a 
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number of popular ensemble methods, as well as the concept of feature engineering are 

introduced. It continues by covering the tools utilized in this research, plus a discussion on 

related works. 

Chapter 3 describes the design and implementation of the framework that applies the 

proposed ensemble method. The contents of this chapter are organized as the workflow of 

this framework. Firstly, data pre-processing is introduced including feature extraction and 

normalization. Secondly, single classifiers trained by different algorithms are discussed 

and compared respectively. At last, a detailed description of the proposed ensemble method 

is presented. 

The experiments design and results are presented in Chapter 4, which also includes 

the evaluations of performances and the associated analysis. The comparison of the 

proposed ensemble method and two others are discussed as well. 

Chapter 5 is a conclusion that summarizes the main accomplishments of this thesis 

along with the limitations of the proposed ensemble method and the potential directions 

for future works.  
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Chapter 2: Background and State of the Art 

This chapter introduces the background for this proposed ensemble method, which 

includes the problem types in machine learning, general process of building machine 

learning system, basic concepts of feature engineering, metrics for evaluating classifiers 

and the review of multiple machine learning algorithms. In addition, several important 

tools are introduced as well as a brief description of the experiments environments. Finally, 

related works, especially the approaches regarding to ensemble techniques are reviewed. 

2.1 Background Review 

2.1.1 Overview of Problem Types in Machine Learning 

Supervised learning and unsupervised learning are two typical types of machine 

learning. Other types, such as semi-supervised learning and reinforcement learning, are 

usually evolved from those two types [Barber, 2012]. For supervised learning, its main 

target is to train a model from the training data with labels so that the model could make 

predictions for unknown data. Moreover, unsupervised learning techniques are applied to 

allow us to reveal and explain the unknown patterns of the unlabeled data. The main 

difference between these two types of learning technique is that in supervised learning, the 

correct output of the given training dataset is already known, having the idea that there is 

a relationship between the input and the output. Unsupervised learning, on the other hand, 

focuses on approaching problems with little or no idea what the results should be. 

In supervised learning, most problems could fall into two areas, classification and 

regression. Most parts of these two types of tasks are similar, except for the outputs of the 

trained models. The outputs of classification tasks are discrete, which are the categorical 
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class labels, whereas those of regression are continuous. In this thesis, the proposed 

ensemble method is for solving classification problems. 

2.1.2 Classification 

2.1.2.1 Workflow 

Figure 2.1 shows the process to build a machine learning system for solving 

classification problems, during which training and predicting are two fundamental stages. 

Training is the process of using existing data to train a model, followed by predicting, 

which is the application of trained model for unknown data. This research focuses on the 

training stage, in which three phases are involved: pre-processing, learning and evaluation.  

 

Figure 2.1 Workflow for Building a Machine Learning System 

Raw data rarely comes in a required form or scale. In some cases, the way raw data 

organized is not capable for presenting any meaningful information. Therefore, pre-

processing, which includes sampling, dimensionality reduction, transformation, 

normalization and feature engineering, is usually a necessary and important process for the 

subsequent training phase. At the end of pre-processing, raw data is cut into the shape that 
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fits the learning algorithm and the processed data is then split into two part: train dataset 

and test dataset.  

In the learning phase, the derived train data and associated labels are fed to multiple 

machine learning algorithms for model training, during which techniques such as feature 

selection, parameter tuning and cross-validation might be utilized to improve the model.  

During the final evaluation phase, one or more suitable metrics for specific problems 

are selected for evaluating models, the trained model is then applied to make predictions 

for test data. Afterwards selected metrics are calculated based on the predictions and the 

associated labels of test data. Finally, the model with best performance is chosen as the 

final model for predicting stage. 

2.1.2.2 Types of Classification 

Classification problems can be categorized into two types according to the number 

of classes to be identified, which are binary classification and multiclass classification 

[Har-Peled, 2002]. The former identifies instances as one of the two pre-defined classes, 

whereas the latter classifies instances into one of the more than two classes. Numerous 

classification methods and related techniques have been tailored to binary classification, 

which also lays a foundation for solving multiclass classification problems. In this thesis 

for simplicity we mainly focus on binary classification. 
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2.1.2.3 Binary Classifier Training and Predicting 

 

Figure 2.2 An Example for Binary Classifier Training and Predicting 

Figure 2.2 describes the training and predicting detail of single binary classifier. First 

of all, a dataset consists of a group of instances (the rows in the table) that are presented as 

feature vectors plus corresponding labels. A feature vector is a set of individual and 

measurable attributes that describe the instance. The attributes are also commonly known 

as features, predictors, and explanatory or independent variables, especially in statistics. In 

addition, the values of features could be of various types such as nominal (e.g. male and 

female) and ordinal values (e.g. large, medium and small), both of which could be 

considered as categorical values. The slight difference is that ordinal values could be sorted 

whereas no order is implied in nominal values. The features could be also integer-valued 

(e.g. the number of users who purchased a certain item) or real-valued (e.g. height and 



 10 

weight). Furthermore, each instance in the given dataset is labeled as one of actual classes 

or targets. The known dataset could be split into train data and test data according to a 

certain proportion. 

Essentially, a classifier is a derived function that maps instances to targets, of which 

all parameters are determined. A machine learning algorithm is a process that estimates the 

parameters of the function by learning the train data, so that the classifier could fit the train 

data. In other words, a classifier is the output of an algorithm that is executed on the train 

data including the actual classes. The feature vector of each instance in training data can 

be plugged into the classifier and then a group of predicted class labels are obtained. All 

the parameters of the classifier are settled by the algorithm-specified method so that the 

sum of errors in the predictions, compared to the actual classes, is minimized, therefore 

this is the meaning of ñfitò. In general, each algorithm has its individual formulation of 

model, which may require diverse methods to learn its parameters.  

During the process of testing, all feature vectors in test data are plugged into the 

trained classifier to obtain the predictions and then one or multiple metrics are selected to 

evaluate the performance of the classifier on this given dataset, based on the predictions 

and the corresponding actual class labels. When utilizing the classifier, the unknown 

instances come without labels, but with the same form of the feature vectors as those in the 

train and test data, thus the outcomes of the classifier are the predictions for the unknown 

instances. 

2.1.3 Feature Engineering 

Feature engineering is generally the process of manually designing a group of new 

features that could better match the machine learning algorithms and describe the specific 
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problems, and is not a formally defined term [Bouchard-Côté, 2009]. As mentioned 

previously, the quality of the preliminarily collected data is usually not good enough to be 

learned directly. Specifically, not only the normalization of the data is required, but 

sometimes extra features are also needed to achieve a better performance, since the original 

features in raw data might be either redundant on describing the properties of instances, or 

short of meaningful expression. 

In order to reduce the relevance between the initial features, and to extract even more 

informative features on the basis of the initial features, it is significant to understand the 

design principle of more proper features, which usually requires domain knowledge of the 

certain problems. In many of these cases, feature engineering could even be considered as 

essential for solving such problems. The initial features are normally the most intuitive 

expression of the instances and easy to be collected, while the engineered features are 

usually obtained by combining two or more primary features or expressing those features 

from different perspective. 

In spite of the performance improvement, there are other elements should be 

considered among feature engineering. For instance, extra workloads are always brought 

into the system and it could be very expensive in both time and space, especially when the 

size (number of features and instances) of data is relatively large. In addition, the number 

of new features could be much larger than that of the original ones, which requires more 

space to store the data and more memory for computation. These problems are worth being 

carefully considered in practice. 



 12 

2.1.4 Metrics for Binary Classifiers 

2.1.4.1 Types of Binary Classifiers 

A binary classification model, or a binary classifier could be regarded as a function 

that maps instances to positive or negative class label [Alpaydin, 2010]. According to the 

types of outcomes, classifiers could be recognized as a discrete classifier or probabilistic 

classifier. A discrete classifier directly generates a predicted class label for an instance 

whereas a probabilistic classifier assigns each instance a score to indicate its degree of 

confidence of belonging to one class [Friedman, 2009]. Moreover, for the probabilistic 

classifiers, the assigned score could either be an absolute probability, or could be any 

uncalibrated real value that a higher value still represents a higher probability. In other 

words, probabilistic classifiers rank instances according to their probabilities of being a 

member of class in ascending or descending order. Afterwards, compared to the absolute 

predictions by discrete classifiers, a relative threshold is assigned to probabilistic classifiers 

to determine the predicted classes of instances. The instances with a score higher than the 

threshold is considered as positive, while those with a score lower than the threshold is 

classified as negative. 

2.1.4.2 Confusion Matrix 

Confusion Matrix is generally used for presenting and interpreting the performance 

of a classifier on a certain dataset. It is a n³n matrix (n represents the number of classes) 

constructed from the Cartesian product of actual classes and predicted classes [Kohavi, 

1998] . Each entry of the matrix indicates the number of instances in each ordered pair of 

the Cartesian product. For binary classification, n equals to 2, therefore represents the two 

classes of Positive and Negative. As shown in Figure 2.2, the table in solid lines represents 
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the confusion matrix for binary classifiers. Additionally, 9 common rates calculated from 

related entries are presented in dash lines. Some important terms in Figure 2.3 are explained 

in detail as following [Kohavi, 1998]: 

¶ Total: the total number of instances that have been classified by the classifier; 

¶ True Positive (TP): the number of instances that have been correctly classified as 

Positive by the classifier; 

¶ False Positive (FP): the number of instances that have been incorrectly classified 

as Positive by the classifier; 

¶ True Negative (TN): the number of instances that have been correctly classified 

as Negative by the classifier; 

¶ False Negative (FN): the number of instances that have been incorrectly classified 

as Negative by the classifier; 

¶ True Positive Rate (TPR): also called Sensitivity or Recall, the proportion of real 

positive instances that are correctly identified; 

¶ True Negative Rate (TNR): also called Specificity, the proportion of real negative 

instances that are correctly identified; 

¶ False Positive Rate (FPR): also called Fall-out, the proportion of real negative 

instances that are incorrectly identified, can be calculated from (1 ï Specificity) 

as well; 

¶ False Negative Rate (FNR): also called Miss Rate, the proportion of real positive 

instances that are incorrectly identified; 

¶ Positive Predictive Value (PPV): also called Precision, the proportion of predicted 

positive instances that are correctly identified; 
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¶ Accuracy: The proportion of all instances that are correctly identified. 

 

Figure 2.3 Confusion Matrix for Binary Classification  [Kohavi, 1998] 

Among these terminologies listed above, Precision (PPV) and Recall (TPR) are two 

universal metrics describing the performance of a classifier on a certain dataset. Further 

complex metrics can be also calculated on the basis of the confusion metrics, thus to 

evaluate a classifier from different aspects. However, it is worth mentioning that the 

accuracy may not be an adequate measure for performance because it is very sensitive to 

class distribution of the given dataset [Fawcett, 2006]. When it comes to an imbalance 

dataset, for example, if 99% of the instances are negative and only 1% is positive, a 

classifier could even achieve a high accuracy of 99% by simply identifying all instances as 

negative, which is meaningless in practice. In this thesis, Area Under the receiver operating 

characteristic Curve (AUC) and F1 score are selected as the metrics to evaluate the 
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performance of models. A more detailed description about AUC and F1 score will be 

introduced in the next few sub-sections. 

2.1.4.3 Receiver Operating Characteristic (ROC) Space 

Basically, a receiver operating characteristic, or ROC curve, is a plot that visualizes 

the performance of a binary classifier. It is drawn in a 1³1 square area called ROC space, 

of which x-axis and y-axis are defined as False Positive Rate (FPR) and True Positive Rate 

(TPR) respectively [Fawcett, 2006]. Therefore, the plots in ROC space could describe the 

trade-off between the benefit (TPR) and the cost (FPR) of a classifier. Figure 2.4 explains 

ROC space with several significant points (Receiver operating characteristic, 2016). The 

lower left point (0, 0) represents a classification that only generates negative outcomes, 

while the upper right point (1, 1) represents a classification with only positive outcomes. 

The (0, 1) point represents a perfect classification when all actual positives are correctly 

predicted without any error. The points on the diagonal line represents the classifications 

that randomly guess one class with a certain probability. The points above the diagonal line 

represents the classifications with better performance compared to random guess. In 

practice, the area under the diagonal line is always considered as empty because a 

performance better than random guess could be achieved by simply reversing the predicted 

classes whenever the classification is plotted under the diagonal line. 
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Figure 2.4 ROC Space and Four Plots of Prediction Examples [ROC, 2016] 

2.1.4.4 ROC Curve 

For each discrete classifier on a given dataset, there is only one corresponding 

confusion matrix, which are plotted as a single point in ROC space [Fawcett, 2006]. On 

the other hand, probabilistic classifiers could yield different confusion matrixes as 

threshold varies, so that multiple points are plotted in ROC space, which traces the ROC 

curves as shown in Figure 2.5 [ROC, 2016]. 
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Figure 2.5 Examples of ROC Curves in ROC Space [ROC, 2016] 

2.1.4.5 AUC 

Simply to say, a threshold represents the strictness of a probabilistic classifier making 

a positive prediction. Normally a higher threshold could result in a lower FPR but at the 

same time sacrifice the TPR, because a strict classifier rarely generates errors in predicting 

a positive class whereas only a small proportion of actual positive instances could be 

recognized. Consequently, the points plotted from higher thresholds are relatively close to 

the (0, 0) point in ROC space. On the contrary, lower thresholds could lead to both 

increased FPR and TPR, from which the points plotted are close to the (1, 1) point in ROC 

space.  
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If more actual positive instances could be assigned relatively higher scores by the 

probabilistic classifier, then a higher TPR with a lower FPR could be achieved even when 

a relatively higher threshold is set, so that the points plotted from higher thresholds are 

close to the (0, 1) point in ROC space. The ROC curve, in this case, is pulled up to the 

perfect classification point, which leads to a larger area under the ROC curve (AUC). 

Therefore, a larger AUC indicates that a better performance is achieved by this classifier. 

In other words, AUC represents the probability that a classifier assigns a higher score to a 

randomly selected positive instance than a negative one [Fawcett, 2006]. In this thesis, the 

main reasons of selecting AUC as the evaluation metric are: 1) AUC is a popular metrics 

for evaluating model performance in binary classification; 2) It is insensitive to imbalanced 

class distribution; 3) The two datasets used in this thesis have imbalanced class problem to 

different extents. 

2.1.4.6 F1 Score 

In analysis of binary classification, F1 score [Cohen, 2003] is also a commonly used 

metric to evaluate the performance of a classifier. F1 score is defined as the harmonic mean 

of precision and recall: 

Ὂ ς
ὴὶὩὧὭίὭέὲὶὩὧὥὰὰ

ὴὶὩὧὭίὭέὲὶὩὧὥὰὰ
 

The best value of F1 score is 1 and the worst is 0. F1 score conveys the balance 

between precision and recall. For example, an F1 score of 0.45 is calculated from a 

precision of 0.9 and a recall of 0.3, while another F1 score of 0.5 is obtained with both 

precision and recall being 0.5. Therefore, for a certain classifier, a tradeoff between its 

precision and recall is beneficial for achieving a higher F1 score. Moreover, the reasonable 

tradeoff can be accomplished by tuning the threshold, which is highly correlated with the 



 19 

class distribution of the given dataset. For example, a threshold of 0.5 may be appropriate 

for the dataset with balanced class, while a higher threshold could be better if the proportion 

of positive instances is very small. According to the definitions, precision can denote the 

degree of confidence for a classifier to predict an instance as positive, while recall indicates 

the ability of a classifier to identify the positive instances. For a certain classifier, a higher 

threshold usually leads to a higher precision but a lower recall, while a lower threshold 

results in a lower precision but a higher recall. In other words, both aggressive (a lower 

threshold) and conservative (a higher threshold) attitude in predicting positive harm the F1 

score. 

In this thesis, the F1 score is also selected as the performance evaluation metric, as 

the F1 score is considered more suitable than AUC when suffering from imbalanced class 

problem in [Davis, 2006]. In addition, AUC is a ñcurveò metric to indicate the general or 

average performance of a classifier, while the F1 score is a ñpointò metric that could be 

more meaningful in practice in some cases. 

2.1.5 Machine learning Algorithms for Classification 

2.1.5.1 Overview 

In general, most machine learning algorithms, especially for solving classification 

problems, can be categorized as Figure 2.6 below [Brownlee, 2013]. On the basis of 

Brownleeôs method of categorization, those algorithms that can be utilized for 

classification are particularly selected to introduce. Plus, a category of Factorization 

Modeling that is widely applied in recommender systems is added , which was mentioned 

in [Brownlee, 2013] but not presented in the figure.  
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All these listed algorithms have their own characteristics that fit different specific 

classification problems in diverse fields. For example, logistic regression is commonly 

used for prototype validation for its efficiency in achieving an acceptable performance 

[Schutt, 2013]. In addition, Factorization Machine (FM) is more suitable for recommender 

systems, of which the collected data for training is usually under high sparsity, and FM has 

its unique character of learning this type of data in linear time [Rendle, 2010]. Each 

potential algorithm for a certain practical problem should be carefully considered from both 

aspects of design and implementation, because in many situations, the design concepts of 

a particular algorithm may satisfy the requirements, but the implementation of the 

algorithm may not.  

In this thesis, these factors are taken into account when selecting algorithms for the 

given datasets: 1) The algorithm should have the ability of learning a probabilistic classifier, 

as AUC and F1 score are selected as the metrics for evaluation. 2) The algorithm should be 

capable to learn sparse data since the given dataset is under high sparsity. 3) Since the main 

concern of this thesis is the method of ensemble, it is better for the selected algorithms to 

be simple so that the parameter tuning for models could be easier. This is the main reason 

why those complex algorithms such as deep learning are not selected. 4) The algorithm 

should achieve a proper balance between the performance of the single model and its 

training time consumption as well as its resource requirement. 

Those algorithms that contributes to the proposed approach is marked as red, and 

both the designs and implementations of them will be discussed in detail during next 

several paragraphs. For more explicitly explaining the underlying mathematics, bold ● is 

used to denote feature vectors, regular ὼ with subscript Ὥ to refer to the Ὥth feature of an 
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instance, bold ◌ with superscript Ὕ to represent the transpose of the parameter vector, 

regular ύ with subscript Ὥ to stand for the weight of ὼ, ώ for actual classes of the instances, 

ώ for predicted classes, ὖ for the probability of an instance to be positive, and ὒ for the loss 

function of a model. 

 

Figure 2.6 Main Categories of Machine Learning Algorithms for Classification [Brownlee, 2013] 

In this thesis, despite the algorithms that are introduced in detail in the following 

sections, other algorithms such as Support Vector Machines (SVM) [Cortes, 1995] and 

Factorization Machines are also considered when selecting algorithms for each given 

dataset. SVM is not selected as the single model mainly because: 1) it is not a probabilistic 

classifier; 2) the selected datasets in this thesis are highly sparse, and it is very time 

consuming for SVM to learn from sparse data, especially when the size of datasets is large. 

On the other hand, for the given datasets in this thesis, too much feature engineering is 

harmful to the performance of Factorization Machines, thus, the features for training the 

FM model are different from those for other single models. As the proposed method in this 
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thesis cannot properly deal with the single models that are trained from different features, 

FM is not selected as the single model, either. 

2.1.5.2 Logistic Regression 

Logistic regression can learn a model which is a function mapping an instance to a 

predicted class. The function is a linear combination of every feature with an estimated 

weight that indicates the contribution of this feature to the target variable. The output of 

the function is a real value between 0 and 1 that indicates the probability of this instance 

being one of the binary classes. The instance could then be classified as positive if its 

predicted probability is larger than the pre-determined threshold [Barber, 2012].  

Logistic regression can be regarded as a generalization of linear regression, which is 

called Generalized Linear Model (GLM) in statistics. The GLM is capable for accepting 

the dependent variables that have other distributions rather than normal distributions for 

ordinary linear regression, such as Bernoulli distribution for logistic regression. It is 

accomplished by mapping the linear regression model to the response variable through a 

link function and a quantizer. 

For logistic regression, the standard logistic function is applied as the link function, 

which is defined as following [Schutt, 2013]: 

ὖὸ  
ρ

ρ Ὡ
 

where ὸ represents the ordinary linear regression model that can be formulated as 

following: 

ὸ ◌● ‍ 

where ‍ denote an unobservable bias from the actual value. Therefore, the final 

logistic regression model can be formulated as following: 
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Ὂ● ὖώ ρ
ρ

ρ Ὡ ◌ ●
 

by which Ὂὼ is interpreted as the probability of the Ὥth instance being positive. 

Furthermore, the logistic function is also known as the inverse-logit function, which is 

often referred to a sigmoid function because of its ñSò shaped curve as shown in Figure 

2.7. A logistic function (inverse-logit function) can transform any real values into the range 

between 0 and 1, while a logit function does the reverse. Base on the information above, 

the following equation is obtained: 

ὸ ὰέὫὭὸὖ ὰὲ
ὖ

ρ ὖ
ὰὲὖ ὰὲρ ὖ ◌● ‍ 

In other words, logistic regression can find a hyperplane ◌● ‍ π as the 

decision boundary that slices the train data into two parts: the points above the hyperplane 

denote the instances with higher probabilities of being positive than that of being negative, 

and the points under the hyperplane are considered as the instances more likely to be 

negative. Additionally, the points on the hyperplane represents the instances with equal 

probabilities of being positive and negative, noted that the hyperplane is precisely the 

quantizer mentioned before. In summary, logistic regression is a probabilistic classifier in 

terms of design. Because of its simplicity (linear model) and expressive interpretability, 

logistic regression is usually selected as the classifier with baseline performance. In this 

thesis, logistic regression is performed by applying an implementation provided by Scikit-

learn [Scikit, 2016], which can take sparse data as input. 
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Figure 2.7 The Logistic Function [LogisticFuction, 2016] 

2.1.5.3 Ensemble Learning Algorithms 

2.1.5.3.1 Overview 

In classification, based on the train data, a model learned by a certain algorithm 

generates a hypothesis that is used for predictions. In terms of train data, residual is defined 

as the deviation of approximation given by the hypothesis from the actual value, while the 

error with respect to test data and unknown data is defined as the gap between the 

predictions and the actual values, which consists of bias, variance and noise [Friedman, 

1997]. The bias appears when the model underfits the training data, thus it indicates the 

amount of data that is not properly learnt. A lower bias leads to a less residual and then 

contributes less to the error. On the other hand, the variance results from the model 

overfitting the train data, therefore, the variance indicates the quantity of noise that is 

incidentally modeled. The variance is not reflected in the residual but in the error. If a 

model is too sensitive to the noise in train data, then it is usually not well generalized for 

test data and unknown data. The bias and variance are generated by the model and could 
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be changed as the model varies, while the noise is the natural part of the samples, so that it 

cannot be measured or eliminated. 

In general, it is very hard to minimize bias and variance simultaneously, hence, there 

is a trade-off between these two sources of error. Typically, the bias decreases as the 

complexity of the model increases (e.g. more features), while the variance increases 

accordingly. However, the variance could decrease as the size of train data increases (more 

samples). As a result, the expected prediction error goes down first and then up as the 

complexity grows. The trade-off is graphically illustrated in Figure 2.8 [Fortmann-Roe, 

2012]. In order to improve the performance of a classifier, ensemble methods are used to 

reduce either or both of the two sources of error by combining multiple simple, or even 

ñweakò base classifiers. In this thesis, several popular ensemble learning algorithms are 

selected as the base classifiers in the proposed ensemble model, and the core concepts of 

each of them are described in the following sections. 

Although ensemble learning can help to enhance the performance, in practice, the 

application of ensemble methods leads to the increased computation during both training 

and predicting phases, as well as the increased storage for more model parameters. Also, a 

complex ensemble model may even loss more comprehensibility and interpretability. 
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Figure 2.8 The Trade-off between Bias and Variance [Fortmann-Roe, 2012] 

2.1.5.3.2 Bootstrap Aggregation (Bagging) 

Bagging was firstly proposed by [Breiman, 1996]. The core concept of Bagging is to 

train multiple base classifiers from different new training sets that are randomly sampled 

from the original train data with replacement, then to make the final prediction for each 

instance by averaging the scores (for a probabilistic classifier) or majority voting (for a 

discrete classifier). With this sampling method, the new sampled sets, which are known as 

the bootstrap samples in statistics, could have the same size with that of the original set, 

but only a fraction of a new set are unique samples and the rest are duplicates. This method 

can improve performance because it artificially creates diversities among the base 

classifiers, which is very helpful when constructing an ensemble, and reduces variance by 

averaging, but does not help much with reducing bias. In practice, Bagging is more helpful 

regarding to unstable algorithms, which are relatively more sensitive to the noise 
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(overfitting) so that the variance of a base classifier is higher accordingly. Decision tree is 

usually selected as the base model for bagging, but theoretically, any type of algorithms 

could be applied to train the base classifiers. 

In this thesis, Random Forests provided by Scikit-learn is applied, which is a popular 

implementation of Bagging and uses decision tree as the base model. In spite of the 

randomly sampled training sets, Random Forests also integrates the idea of randomly 

selecting features when splitting in each single tree in order to further increase the diversity. 

2.1.5.3.3 Boosting 

Boosting is a family of ensemble learning algorithms that combines a set of weak 

learners to construct a relatively strong one. A weak learner here is defined as a classifier 

that makes predictions with a slightly better performance than random guess. However, in 

practice, it is not necessary for every base model to be weak. Compared to Bagging method, 

Boosting algorithms intended to improve the performance mainly by reducing bias. 

Adaptive Boosting (AdaBoost) and Gradient Boosting Machine (GBM) are two of 

the most popular Boosting algorithms proposed by [Freund, 1997] and by [Friedman, 2001] 

respectively. The shared core concepts of them are: 1) all base classifiers are incrementally 

trained on different training sets in a forward stage-wise manner; 2) In each stage, a new 

base model is trained to overcome the shortcomings of the last one, which is always 

achieved by highlighting the errors made by the last base model for guiding the new one 

to focus more on those misclassifications; 3) The final hypothesis generated by the 

ensemble model is derived from the sum of hypothesis of each base model. The key 

divergence between AdaBoost and GBM is that, AdaBoost highlights the errors by 

adjusting the weights of training samples: increase the weights of the misclassified ones 
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and decrease the weights of the correctly identified ones, as shown in Figure 2.9 [Schapire, 

2012], while GBM highlights the errors by calculating the residuals of the existing base 

models, which is exactly the negative gradient descent of the loss function.  

 

Figure 2.9 The AdaBoost Algorithm: an Illustration  [Schapire, 2012] 

In classification, each model trained from a certain algorithm has its own formula to 

present the calculation of the approximation to the probability or discrete class, which is 

defined as ώ Ὢὼ. Therefore, a loss function (or cost function) ὒώȟὪὼ  of the model 

is defined as a function that quantizes the cost for the deviation of predictions from the 

actual values, such as squared loss ὒώȟὪὼ ώ Ὢὼ  [Friedman, 2009]. Given a 
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train data, if its loss function is convex and differentiable, then a optimization algorithm 

can be applied to find a set of the parameters for Ὢὼ, so the loss function is minimized 

on that given data. The convexity of the loss function could guarantee that the found 

minimum is the global one. This process of optimization is to accomplish parameter 

estimation, and different selection of loss functions could lead to different estimations of 

the parameters. 

As shown in Figure 2.10, gradient descent, also known as steepest descent, is a type 

of optimization algorithm that searches the global minimum of a function by taking steps 

to slide down to the minimum along the negative direction of gradient of the function (the 

steepest direction) at each current point. Therefore, for a differentiable loss function of ὲ 

variables, the gradient at the current point is the vector of ὲ partial derivatives of the loss 

function at the point. Furthermore, the steps are taken as proportional to the gradient, and 

in order to avoid missing the minimum point, a relatively smaller step is preferred as the 

algorithm approaches the minimum point. To achieve it, a parameter called learning rate is 

involved in, which is a real value between 0 and 1. Then the length of each step is 

determined by its previous one multiplied by the ratio representing the shrinkage of steps, 

in this way the speed of sliding down is controlled. Empirically, a lower learning rate can 

help to obtain an approximation closer to the minimum, which usually implies a better 

performance, but also leads to an increased number of iterations (steps). This trade-off is 

worth being carefully considered when tuning the model parameters for a higher efficiency 

of time and space utilization in practice. 
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Figure 2.10 A 2D Example of Optimization of Loss Function Using Gradient Descent [Sebastian, 

2016] 

Based on the descriptions above, in general, an ensemble model trained by a certain 

boosting algorithm can be formulated as follows [Friedman, 2001]: 

Ὂ ὼ ‌Ὤ ὼ ‌ 

where T denotes the number of base models, so that Ὂ ὼ represents the final 

ensemble model, and Ὤ ὼ represents the hypothesis generated by the ὸth base classifier, 

plus, ‌ is the weight assigned to the ὸth base classifier and ‌ is a constant determined in 

the first stage for initializing the model. For gradient boosting, each additive base model is 

trained to fit the residual of the existing ensemble model, so that the final model becomes 

more accurate by taking the hypothesis generated by this newly added base classifier into 
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account. As the residual is precisely the negative gradient, in other words, the gradient 

boosting algorithm is actually a process to minimize the loss function of the final ensemble 

model without prior knowledge to the final loss function, which is achieved by only 

minimizing the loss function of the existing ensemble model whenever a new base model 

is added. Therefore, with the accumulation of the base models, the loss of the implied final 

function declines gradually. In other words, with a training set ὼȟώ , a convex and 

differentiable loss function ὒώȟὊὼ  and the number of iterations (base classifiers) Ὕ, the 

underlying mathematics of this process can be defined as follows [Friedman, 2001]: 

1. Initialize the model with a constant: 

Ὂ ‌ ὥὶὫάὭὲὒώȟ‌ 

2. For ὸ ρ ὸέ ὓ: 

1) Calculate the residuals as the negative gradient: 

‬ὒώȟὊ ὼ

‬Ὂ ὼ
ώ Ὂ ὼ ὶ 

2) Fit a new base model Ὤ ὼ with the new training set ὼȟὶ : 

Ὤ ὼ ὥὶὫάὭὲὒὶȟὬ ὼ  

3) Determine the multiplier ‌ of the newly added base model Ὤ ὼȡ 

‌ ὥὶὫάὭὲὒώȟὊ ὼ ‌Ὤ ὼ  

4) Update the existing ensemble model: 

Ὂ ὼ Ὂ ὼ ‌ Ὤ ὼ 

3. Output the final ensemble model as follows: 
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Ὂ ὼ ‌Ὤ ὼ ‌ 

Additionally, in particular, AdaBoost can be also regarded as a case of the GBM with 

a differently defined loss function. 

As explained above, the bias of the model is reduced by incrementally training the 

base models to learn the errors of their predecessor ensemble models. However, the concept 

of correcting the errors made by the predecessor model may be overfitting-prone, 

especially for the relatively noisy data. Accordingly, several regularization techniques are 

introduced into the model for constraining the learning procedure, so that the final 

ensemble model is prevented from overfitting the training set. Consequently, Boosting 

methods can reduce the bias of model with keeping variance under control.  

In this thesis, an implementation of AdaBoost provided by Scikit-learn and an 

implementation of GBM called Extreme Gradient Boosting (Xgboost) is applied, which is 

optimized to be highly efficient, flexible, portable and scalable. Xgboost was initially 

released as an open source project by [Chen, 2016]. Both of the selected implementations 

of AdaBoost and GBM are probabilistic classifiers and able to deal with sparse data. 

2.1.5.3.4 Stacked Generalization 

Stacked Generalization, which is also known as Stacking, was firstly proposed by 

[Wolpert, 1992]. It is a high level ensemble method that introduces a meta-level model to 

combine a group of base models, which are usually of diverse types. Figure 2.11 

demonstrates the process of Stacking, during which all base models are trained from the 

training set and tested on the testing set, then the meta model takes the outputs of all base 

models for testing data as new feature vectors and the corresponding actual classes values 

in testing data as targets, so that the meta model can learn a combination of all base models 
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to reduce the overall error. Theoretically, the meta-level model could be learnt by any type 

of supervised machine learning algorithms, but logistic regression is usually selected to be 

the meta-level learner because of its simplicity and efficiency, therefore, all the base 

models are linearly combined. In addition, non-linear algorithms can also be applied as the 

meta model, thus, Stacking can also be regarded as a more complex version of cross-

validation, which can produce a more generalized ensemble model to improve the final 

performance. Overall, Stacking is a type of more generalized and flexible method of 

ensemble, which could be easily applied together with other ensemble methods to further 

enhance the total performance. 

 

Figure 2.11 The Process of Stacking 

Since both Stacked Generalization and this proposed method could be considered as 

Type II ensemble techniques, which is defined previously in Chapter 1, they are compared 
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in terms of combination method in this thesis. For Stacking, each of linear and non-linear 

models is selected as the meta model to combine a group of base models that are the same 

as those in this proposed method. 

2.1.6 Tools and Environments 

2.1.6.1 Python 

The language used in this thesis for data operation and system implementation was 

Python, which is a high-level, general-purpose, interpreted and dynamic programming 

language. Python is well-known for its illustrious code readability and expressiveness. In 

addition, various programming paradigms are supported in python, including object-

oriented and functional programming styles. Furthermore, Python interpreter is a free, 

cross-platform and open-source software, which features dynamic typing and automatic 

memory management. The kernel philosophy of Python, which is widely known as The 

Zen of Python [Python, 2016], plus its open-source feature, has attracted lots of outstanding 

developers forming a powerful community to make continuous contribution to the Python 

ecosystem. Therefore, lots of effective third-party tools have been developed and can be 

easily integrated into Python as extensions, which allows Python to be utilized under many 

circumstances such as web development and data science. 

2.1.6.2 Anaconda 

Anaconda is an open source distribution of Python, which packs numerous popular 

Python-based tools for data science covering data processing, data analysis, machine 

learning, data visualization, and scientific computing [Continuum, 2016]. Being an open 

data science platform with considerable number of users from diverse fields particularly in 
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education and research, Anaconda helps accelerate the development of data science 

ecosystem powered by Python. 

2.1.6.3 Data Science-Related Python Libraries 

Multiple popular data science-related Python libraries are utilized in this thesis. 

Firstly, for data pre-processing, Pandas, which is an open source library providing high 

performance and easy-to-use data structures for Python [Pandas, 2016], is used. Various 

interfaces in charge of interacting with other common data storage system, such as 

databases or file systems, are also supported. With Pandas, rapid accessing to data and 

intuitive data operation could be easily achieved. Secondly, Scikit-learn is applied during 

model training and evaluation phases, which is also an open source library providing 

comprehensive tools for machine learning, and already widely applied in various fields. In 

spite of diverse built-in implementations of various machine learning algorithms, it is also 

compatible with other standalone algorithms. 

Pandas and Scikit-learn are both built on NumPy [NumPy, 2016], SciPy [SciPy, 2016] 

and Matplotlib [Matplotlib, 2016], which are three fundamental libraries for scientific 

computing with Python. NumPy provides a high performance, powerful, and multiple 

dimension array object, and many common functions that execute computations with those 

arrays. SciPy provides a large number of tools for scientific computing, which take the 

advantages of NumPy. Matplotlib is also a well-known Python library for visualizing data 

in 2D plots, which can yield high quality figures in various formats. 

2.1.6.4 Experiments Environments 

All the developments and experiments are conducted on a customized compute 

engine from Google Cloud Platform (Google cloud computing, hosting services & APIs, 



 36 

2016), which is operated by Ubuntu 16.04 LTS with 6 cores (2.3GHz) virtualized from 

Haswell processors, 32 GB memory and 128 GB SSD. 

2.2 Related Work 

Ensemble methods such as Bagging, Boosting and Stacking which combine the 

decisions of multiple hypotheses are some of the strongest existing ensemble methods, 

therefore provide a reliable foundation for this proposed ensemble method. Among them, 

[Ham, 2005] applied Random Forests to classification of hyperspectral data on the basis of 

a binary hierarchical multi-classifier system. [Berstra, 2006] presented an algorithm for 

musical style and artist prediction from an audio waveform by utilizing AdaBoost for the 

selection and aggregation of audio features. Gradient Boosting Machine (GBM) was 

applied in [Atkinson, 2012] for incorporating diverse measurements of bone density and 

geometry so as to improve the accuracy of fracture prediction compared to standard 

measurement. Moreover, Stacked generalization is a universal method of applying a high 

level model to integrate lower level models for better predictive accuracy. It is usually 

achieved by utilizing different classifiers and combining the outputs. [Ghorbani, 2001] 

examined the generalization behavior by comparing single level learning models to 

multiple level learning models (stacked generalization method) on a multilayer neural 

network. Result shows that the stacked generalization scheme could improve classification 

performance and accuracy compared to the single level model. The method is also 

demonstrated through Wangôs approach [Wang, 2006] in which the stacking approach 

performed successfully in predicting membrane protein types based on pseudo-amino acid 

composition.  
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Further ensemble methods are designed for the purpose of improving predictive 

accuracy and robustness by blending the predictions of multiple models in a more rational 

way. There are several schemes proposed for the customized selection of classifiers, thus 

to find the best base classifier for each individual instance on the basis of local accuracy. 

For example, [Tysmbal, 2008] proposed the method of Dynamic Integration, in which 

weighted voting were applied by giving higher weight to a classifier if its training data 

were in the same region as the testing example. [Giacinto, 2000] introduced an approach 

to group classifiers by their similarities and to retain one representative classifier per cluster. 

The core notion of this type of methods is to enhance the overall performance by choosing 

and/or assigning more weight to those classifiers that perform best in instances that are 

similar to the one that is being classified. On the other hand, static ensemble methodologies 

are gradually developing, [Bhatnagar, 2014] proposed a linear ensemble algorithm that 

takes into account both the accuracy of individual classifiers and the diversity among 

classifiers, which are also vital factors where importance should be attached when 

designing ensemble methods. 

Moreover, since the dataset applied in this research was from the Repeat Buyers 

Prediction Competition [IJCAI-15, 2015]. Approaches based on this certain repeated buyer 

dataset were reviewed as references for this thesis as well. In this two-stage competition 

with different amount of data provided, the work [Liu, 2015] won the first place in Stage 

1, with the progress in both phases of feature engineering and model training. Various 

techniques for extracting a large number of features were applied in feature engineering, 

while a blending algorithm was proposed to further boost the prediction performance in 

the training phase. The work [He, 2015] won the first place in Stage 2, in which a four-step 
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solution was introduced including 1) characteristics analysis and strategy design, 2) feature 

extraction and selection, 3) data training, 4) hybrid ensemble on both models and features. 

Both of the award winners suggested that feature engineering is the key element to this 

work. and the ensemble method applied in these two approaches perform better than any 

of the individual classifier. Furthermore, only linear ensemble methods were utilized in 

their works, so the results of these works can be considered as a reasonable quantitative 

comparison to this proposed non-linear method. 
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Chapter 3: System Design and Implementation 

This chapter describes the system design and implementation of the proposed 

ensemble technique. The chapter starts with an overview of a problem of existing ensemble 

methods and a proposed solution. Section 3.2 discusses the design of the system, which is 

followed by system implementation as presented in Section 3.3. In addition, in the 

following sections, positive (1) and negative (0) are used to denote the two classes in binary 

classification. In binary classification, a classifier generates a value between 0 and 1for 

each certain instance that represents the probability of this instance being classified as the 

positive class. 

3.1 Overview 

To solve classification problems, a classifier is learnt by a certain algorithm, so that 

a hypothesis can be proposed based on the classifier that best fits the given training set. For 

a certain dataset, a single classifier may have its own ñblind areaò, i.e., some points cannot 

be clearly identified, especially when the dataset is high-dimensional or non-linear. For 

example, in 2-dimensional space, as shown in Figure 3.1, some points (circled in red) 

cannot be correctly classified. Those points are points 1ï5 in Figure 3.1 (a) based on the 

yellow classifier (as shown in a yellow line), and point 1 and points 3ï6 using the blue 

classifier (as depicted with a blue line), and so on. A plus sign in Figure 3.1 indicates an 

instance belonging to the positive class, whereas a minus represents the negative class. 

By applying the ensemble technique, multiple models can be integrated to reduce 

those blind areas as indicated in the lower three diagrams, e.g., Figure 3.1 (d), (e), and (f). 

Each data instance in the blind areas is then classified by the capable base model. For 

example, with the combination of H1 and H2 as depicted in Figure 3.1 (d), point 6 can be 
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identified by H1 generated by classifier 1, not circled in red, as shown in (a), whereas point 

2 can be identified by H2 from classifier 2, not circled in red, as shown in (b). 

 

Figure 3.1 An Example of Base Model Selection According to Pairwise Diversity 

Furthermore, the ensemble models consisting of variously selected single classifiers 

have different recognized areas. As shown in (d), (e) and (f) of Figure 3.1, two more diverse 

single models can be integrated into an ensemble with a larger recognized area. In this 

example, the pairwise diversity is defined in terms of the number of points that are 

identified as different classes by two single classifiers. Two points (2 and 6) are distinctly 

classified by H1 and H2, respectively; hence, the pairwise diversity for H1 and H2 is 2. 

Similarly, six points (1, 3, 4, 7, 8 and 9) for H2 and H3, and eight points (1, 2, 3, 4, 6, 7, 8, 



 41 

9) for H1 and H3, respectively, are differentiated. Therefore, H1 and H2 are relatively 

similar, while H3 is more different.  

Accordingly, compared to the combination of H1 and H2 (with four unrecognized 

points), the combination of H2 and H3 has two less unrecognized points, and the 

combination of H1 and H3 has only one unrecognized point. As a result, classifiers 1 and 

3 are considered the proper group for constructing the ensemble model. In summary, higher 

diversities among base models can improve the ability of the ensemble model by satisfying 

more types of data instances. 

With the ensemble model consisting of classifiers 1 and 3, for each unknown data 

instance, if it is a positive one close to points 8 and 9 (or a negative one close to points 6 

and 7), then classifier 1 should be used to make the prediction. The reason for the model 

selection policy is that those known instances (points 6, 7, 8, 9), which are homogeneous 

as this unknown instance, can be correctly classified by classifier 1. Similarly, if it is a 

positive one close to points 3 and 4 (or a negative one close to points 1 and 2), classifier 3 

should be used. 

 

Figure 3.2 An Example of Constructing Ensemble Model by Averaging 
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In addition, the problem in this example may not be properly solved with the existing 

ensemble techniques, such as averaging and stacking. As illustrated in Figure 3.2, the 

ensemble model is built by simply averaging all the hypotheses of the three classifiers, but 

there are still five unrecognized points for the final hypothesis. 

To solving binary classification problems, in this thesis, a novel ensemble method is 

proposed and implemented. In the proposed ensemble method, a meta-level model is learnt, 

which recognizes the capable base classifier for each data instance. In addition to the meta 

model, from all trained single classifiers, only those with high pairwise diversities are 

selected as base models. Finally, the constructed ensemble model is able to support 

adaptive selection of the proper base model for each data instance. 

To accomplish all the points mentioned above, two key problems demand prompt 

solutions: 

1) The pairwise diversity needs to be defined for measurement. 

2) A training set needs to be designed for learning the meta model. 

As explained in Section 2.1.4.1, a probabilistic classifier performs the classification 

by ranking the instances according to their predicted probabilities of being positive. 

Therefore, for the first problem, the pairwise diversity is defined as the difference between 

the ranks of instances provided by each two classifiers. 

For the second problem, in order to map each data instance to its appropriate base 

model, the meta model should be trained from the same feature vectors that have been used 

to train the single model. Additionally, each data instance in the training set needs to be 

relabeled to indicate its proper base model. A base model is considered proper for a data 

instance, if it can generate the most certain prediction. By ranking all the instances 
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according to their predicted probabilities, the certainty of a prediction is defined as the 

relative position of a certain instance in the ordered queue. For example, a prediction for a 

data instance is considered more certain if a positive instance is ranked at a lower position 

(or a negative instance at a higher position) in an ascent sorting. Then, this data instance 

should be relabeled as the base model which gives this prediction. 

Overall, the pairwise diversity is measured on a group of instances for base model 

selection, while the certainty is on the basis of a single instance for relabeling the training 

set. 

3.2 System Design 

This section will firstly go through the overall system architecture and the data flow, 

which is followed by a detailed introduction of the design of three vital system modules: 

Pre-processor, Base Model Selector, and Relabeler. 
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3.2.1 System Architecture and Data Flow 

 

Figure 3.3 System Architecture and Data Flow 

Based on the concept described in Section 3.1, a system is designed to build the 

proposed ensemble model. The system consists of seven modules: Pre-processor, 

Relabeler, Base Model Selector, Single Model Learner, Meta Model Learner, Meta Model 

and Base Models, which are organized as shown in Figure 3.3. Each module is briefly 

described as follows. 

¶ The Pre-processor is responsible for data transformation, data normalization and 

feature engineering, as well as splitting the known data into a training set and a 

testing set.  
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¶ The Single Model Learner learns single classifiers from the training set with the 

original labels for data instances. 

¶ The Base Model Selector takes both the testing set and the outputs of the Single 

Model Learner as inputs, to determine the Base Models for constructing the 

ensemble. 

¶ The Relabeler receives the training set with original labels for data instances, and 

then relabels the training set with the outputs of the Base Model Selector. The 

relabeling of each instance is performed according to the behaviors of Base 

Models on the original training set.  

¶ The Meta Model Learner uses the relabeled training set to train the meta model.  

¶ The Meta Model takes the feature vector of each unknown instance to predict its 

most suitable base model, and then passes the feature vector to the selected Base 

Model for the final prediction, which is the output of the system.  

Differing from other modules in the system, the Meta Model and Base Model are not 

only considered as parts of the system, but also the outputs of other modules. Also, they 

are the ones forming the final ensemble model, which is then used for predicting. As the 

specific problem varies, each module of the system can be modified to adapt to the practical 

requirements, especially for the Pre-processor, which heavily depends on the problem-

related domain knowledge. 

In addition to the system architecture, the data flow as indicated in Figure 3.3 also 

demonstrates the workflow of the system. There are two types of input to the system: 

known raw data and unknown raw data, and both of them need to be pre-processed before 

further operations. The known raw data is a group of instances that has been already 
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collected, so that the size of the data is fixed. The unknown data are those without labels 

and will be used for prediction. Meanwhile, the unknown data usually enter the system 

randomly so that the data size is not fixed. 

The next sub-sections discuss Pre-processor, Base Model Selector and Relabeler 

modules in more detail, since they have covered most of the design and implementation of 

the proposed method. Other modules are similar to the one described in Section 2.1.5. 

3.2.2 Pre-processor 

The task of the Pre-processor module mainly contains four parts: transformation, 

normalization, feature engineering and splitting. Firstly, transformation is a general process 

to restructure the raw features in another format. The purposes of transformations are 

highly diverse. In this thesis, the main focuses are data type conversion, text parsing and 

feature vectorization. For example, the log of users is initially in strings which cannot be 

directly computed. Therefore, the text has to be parsed into meaningful and computable 

real-valued features. In general, transformation is conducted to make the features capable 

of describing the instances more properly and informatively, as well as more compatible 

with the applied machine learning algorithms. 

Secondly, normalization is usually known as the process of scaling the values of 

feature vectors into a unified range. The main goal is to standardize different variances of 

features. Normalization mostly contributes to the performance of those algorithms that are 

based on Euclidean metric space, such as k-means and k-nearest neighbors [Fukunaga, 

1975]. But normalization has little benefit for decision tree-based algorithms [Friedl, 1997]. 

Although normalization is not always required by any algorithm, it seldom brings adversely 

effects to the overall performance. In addition to performance improvement, normalization 
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is also used for speeding up the learning process for the algorithms using gradient descent-

based loss function solvers [Varma, 2009]. Accordingly, in this thesis, normalizations were 

applied for logistic regression to speed up the learning process. 

Thirdly, for many practical problems, feature engineering or feature extraction is a 

vital process. Feature engineering is sometimes even more important than the algorithm 

selection, because the original features in the raw data are not adequate for characterizing 

the instances. Feature engineering often means the artificial creation of new features by the 

computation of two or more existing features, based on the background knowledge of the 

specific problem. In this thesis, feature engineering is the major workload of pre-processor, 

in which many new features were created through the computation on multiple original 

features in the raw data, so that the interactions between multiple features could be 

represented based on the understanding of this specific problem. 

Finally, the splitting task is to divide the processed data into training set and testing 

set according to a certain ratio determined by Pre-processor. 

3.2.3 Base Model Selector 

The Base Model Selector is the module that determines the base models for 

constructing the final ensemble model. Initially, various single models learnt by different 

machine learning algorithms are tested on the testing set obtained from the Pre-processor. 

Each single model generates a group of probabilities for data instances in the testing set. 

Then the performance of each single model is evaluated. However, the main focus of Base 

Model Selector is the behaviors of the single models, rather than their performances. In 

other word, it is acceptable if the single models are relatively ñweakò, but the final 

performance can be improved by combining these single models as long as the behaviors 
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of the single models are diverse. Therefore, the main goal of Base Model Selector is to 

measure the pairwise diversities between each two single models based on their predictions 

for the testing set. 

The probabilities generated by single models usually cannot be used directly for 

calculating the pairwise diversities, as the probabilities generated by the single models have 

different distributions. For example, the probabilities generated by AdaBoost are all around 

0.5 on the Repeat Buyer Prediction dataset, whereas the ones from Logistic Regression are 

up to 0.9. Therefore, the probabilities generated by different single models need to be 

normalized into identical scale based on their corresponding ranks. 

Table 3.1 Example of Normalizing Probabilities Based on Ranks 

Instance lr_proba lr_rank lr_normalized ab_proba ab_rank ab_normalized 

0 0.245 2 0.4 0.501 3 0.6 

1 0.781 4 0.8 0.534 4 0.8 

2 0.344 3 0.6 0.496 2 0.4 

3 0.106 1 0.2 0.558 5 1 

4 0.983 5 1 0.472 1 0.2 

 

Table 3.1 shows an example of the normalization. The probabilities generated by 

Logistic Regression (lr_proba) and AdaBoost (ab_proba) are not in unified scale, so the 

difference between the probabilities cannot represent the diversity between the behaviors 

of two classifiers. To normalize the probabilities into the same scale, firstly each testing 

instance is assigned two ranks (lr_rank, ab_rank) corresponding to its positions in the 

ascent order of each group of predicted probabilities. Secondly, both groups of ranks are 

divided by the number of data instances to obtain two groups of normalized probabilities 

(lr_normalized and ab_normalized). The rank will be used to calculate the pairwise 

diversity. 
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With the normalized probabilities, a global threshold can be set to determine the 

predicted classes by each single classifiers. For example, if 0.7 is set as the global threshold, 

then instances 1 and 4 are identified as positive class by Logistic Regression, while 

instances 1 and 3 are classified as positive by AdaBoost. At last, the pairwise diversities 

are calculated from the ranks, and the algorithm of determining the single models based on 

diversities is described as follows: 

 
Algorithm 1 : Base Model Selection 

 
1. Given a testing set Ὓ ίȿὭ ρȟςȣὲ and a group of trained single classifiers ὅ

ὧὮ ρȟςȣά , where ὲ and ά denote the number of samples in testing set and the 

number of trained single classifiers, respectively; 

2. For each classifier ὧ in ὅ: 

3. Use ὧ to make predictions for each ί in Ὓ to obtain a set of probabilities ὖ

ὴ Ὥ ρȟςȣὲ, where ὴ  represents the probability of ί being positive generated 

by ὧ; 

4. Sort all ί according to their ὴ  in ascending order, and then obtain a set of ranks 

Ὑ ὶ Ὥ ρȟςȣὲ, where ὶ denotes the rank of ί in all ordered test samples 

given by ὧ; 

5. End For 

6. Calculate the root-mean-square deviation (RMSD) of each two Ὑ as the metric of 

pairwise diversity Ὀ
В

; 

7. Choose the Ὧ single classifiers ὧ with highest RMSDs as the base models for 

constructing the ensemble. 

 

In addition to RMSD described in the above algorithm, another metric called Zero-

One Loss (ZOL) [Domingos, 1997] is also calculated to represent the pairwise diversity. 

In binary classification, the two classes are usually named as positive and negative. Simply, 

1 and 0 are used to represent positive and negative, respectively. Thus, ZOL is defined as 

the number of instances with different predicted classes (sum of (1-0)). RMSD is used to 

indicate the difference between the ranks, whereas ZOL denotes the difference between the 
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predicted classes. An example for calculating the two types of pairwise diversity is 

presented in Table 3.2 as follows: 

Table 3.2 Example of Calculating Two Types of Pairwise Diversity 

Instance lr_rank lr_normalized lr_pred ab_rank ab_normalized ab_pred 

0 2 0.4 0  3 0.6 0  

1 4 0.8 1  4 0.8 1  

2 3 0.6 0  2 0.4 0  

3 1 0.2 0  5 1 1  

4 5 1 1  1 0.2 0  

0: negative; 1: positive 

Similar to the example shown in Table 3.1, assuming that the global threshold is set 

to 0.7, so that the predicted classes by each single classifier is are shown as the two columns 

lr_pred and ab_pred in Table 3.2. Based on Algorithm 1, from the data in Table 3.2, The 

RMSD of Logistic Regression and AdaBoost is calculated as the following equation: 

ςȢφρ. The ZOL is calculated as ȿπ πȿ ȿρ ρȿ

ȿπ πȿ ȿπ ρȿ ȿρ πȿ ς, which means that the two classifiers have different 

predictions on 2 data instances. 

In summary, ZOL describes the diversity in terms of the predicted class, whereas 

RMSD measures the diversity in terms of the rank (equivalent to the normalized 

probability), which represents the confidence of the prediction. Some insignificant 

diff erences are taken into account by RMSD. For example, although the ranks (lr_rank and 

ab_rank) of instance 0 in Table 3.2 are different (2 and 3 respectively), both classifiers 

identify this instance as negative. Therefore, ZOL depicts the explicit diversity, while 

RMSD also consider the implied diversity and the measurement is relatively more fine-

grained. Finally, all base models are determined by the method described above in the Base 

Model Selector. 
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3.2.4 Relabeler 

The function of Relabeler is to design a new training set for training the meta-level 

model. The aim is to identify the proper base model for a given instance. A training set 

consists of two parts: feature vectors and labels. The former describes the characteristics 

of data instances, while the latter indicates the class of instances in a certain class space. 

For example, feature vectors consisting of age, gender, height, weight and income 

could describe persons. They can be mapped to a class space of ñrichò and ñpoorò by a 

certain classifier, and also to another class space of ñactiveò and ñpassiveò by another 

classifier. The same group of feature vectors could be used for solving different 

classification problems as the labels vary. Therefore, in order to obtain such a meta model, 

the feature vectors of the training set for single models need to be mapped to another class 

space with base models being the labels. In other words, a new training set is derived from 

relabeling the consistent feature vectors with labels of different base models, so that the 

meta model learnt from this training set could assign a proper base classifier for each 

unknown instance. 

The new label for each instance in the training set is determined by comparing the 

predictions of base models for this instance. Similar to base model selector, the rank of 

each instance is used for comparison rather than directly probabilities comparison. This is 

also because the AUC score is selected as the evaluation metric. Therefore, based on the 

previous explanation of AUC (see Section 2.1.4.5), a base classifier is considered to be 

more suitable for a certain instance if it could assign a higher rank to the instance in 

descending order than other base models when the instance is positive (or a lower rank 

when negative). Accordingly, the algorithm of relabeling is designed as follows: 



 52 

 
Algorithm 2: Relabeling Training Set for Meta Model 

 
1. Given a training set Ὓ ίȿὭ ρȟςȣὲ obtained from pre-processor and a group 

of base classifiers ὄ ὦὮ ρȟςȣά  determined by base model selector; 

2. For each base classifier ὦ in ὄ: 

3. Use ὦ to make predictions for each ί in Ὓ to obtain a set of probabilities ὖ

ὴ Ὥ ρȟςȣὲ , where ὴ  represents the probability of ί being positive 

generated by ὦ; 

4. Sort all ί according to their ὴ  in ascent order, and then obtain a set of ranks 

Ὑ ὶ Ὥ ρȟςȣὲ, where ὶ denotes the rank of ί in all ordered samples 

given by ὦ; 

5. End For 

6. For each training sample ί in Ὓ: 
7. If  ί is positive: 

8. relabel ί as ὦ which generates the largest ὶ; 

9. End If  

10. If  ί is negative: 

11. relabel ί as ὦ which generates the smallest ὶ; 

12. End If  

13. End For 

14. Return the relabeled training set. 

 

The training set derived from the algorithm above indicates the proper base model 

for each instance, and then it is further used for training meta-level model, so that the meta 

model can be used to predict the appropriate base models for unknown instances. An 

example of relabeling according to Algorithm 2 is presented in Table 3.3. 

Table 3.3 Example of Relabeling 

Instance lr_rank ab_rank original_label new_label 

0 2 3 Positive AdaBoost 

1 4 2 Positive Logistic Regression 

2 3 4 Negative Logistic Regression 

3 1 5 Positive AdaBoost 

4 5 1 Negative AdaBoost 
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In Table 3.3, the original label of instance 1 is positive, and Logistic Regression can 

assign it a higher rank than that of Ababoost, i.e., 4 > 2, in the ascent order, which represents 

that Logistic Regression has more confidence to predict instance 1 as positive. Therefore, 

instance 1 is relabeled as ñLogistic Regressionò to indicate that Logistic Regression is more 

proper for this instance. On the contrary, for instance 4 in Table 3.3, its original label 

demonstrates that it belongs to the negative class. AdaBoost can assign it a lower rank than 

that of the Logistics Regression in the ascent order, i.e., 1 < 5. That means that AdaBoost 

is more confident to predict instance 4 as negative. Thus, instance 4 is relabeled as 

ñAdaBoostò to indicate that AdaBoost is more proper for this instance. In summary, the 

ranks assigned to each instance by the single classifiers imply the probabilities of this 

instance to be positive class. Hence, a higher probability indicates a higher confidence of 

the classifier for its prediction. For a certain instance, the more confident classifier is 

considered the more proper one. 
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Chapter 4: Experiments and Evaluation 

This chapter will firstly go through the datasets utilized to validate the proposed 

ensemble method, which is followed by a brief introduction of the system implementation 

process. The experiments design is then discussed, as well as the analysis of the results. 

4.1 Overview of Datasets 

Two binary classification datasets were selected to validate the proposed ensemble 

method. The first dataset is the Repeat Buyer Prediction dataset, obtained from a machine 

learning competition, which was held by International Joint Conference on Artificial 

Intelligence (IJCAI) and Alibaba Group in 2015 [IJCAI, 2015]. The other dataset, Census 

Income Prediction, was obtained from University of California, Irvine (UCI) machine 

learning repository [UCI. 1996]. More detailed information of these two datasets are 

introduced below. 

4.1.1 Repeat Buyer Prediction (RBP) [IJCAI, 2015]  

This dataset is provided by Tmall, which is the largest business-to-consumer (B2C) 

online shopping website of China under Alibaba Group. Tmall is a platform for merchants 

to sell their branded goods to customers, therefore, it works as a coordinator between 

merchants and customers. The activities between merchants and customers including each 

transaction and all types of user behaviors are recorded for data mining and building 

predictive system through machine learning techniques, which could help merchants for 

solving practical problems so as to improve their business. 

Merchants usually provide various promotion sales on particular dates (such as 

Boxing Day, Black Friday in western countries and Double 11 in China), to promote their 

brand, acquire new customers, and strengthen customer loyalty. Since many of new 
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customers are so-called one-time deal hunters, the promotions are considered rarely 

produce long-term effects on businesses. The return on investment (ROI) of merchants can 

be enhanced if the potential loyal customers for each merchant could be targeted (DataSet, 

2015). Overall, the question of the competition IJCAI, as well as extended to this research, 

is to identify the potential loyal customers for each merchant based on the given dataset by 

building a predictive system which is capable to recognize whether a customer would be a 

repeat buyer of a merchant or not. 

Table 4.1 The Definitions of Data Fields in User Behavior Logs in RBP 

Data Field Data Type Definition 

user_id integer A unique id for the shopper 

merchant_id integer A unique id for the merchant 

item_id integer A unique id for the item 

brand_id float A unique id for the brand of the item 

cat_id integer A unique id for the category of the item 

time_stamp integer Date the action took place (format: mmdd) 

action_type integer 

Type of the action, which is enumerated as the set {0, 1, 

2, 3}, where 0 represents click, 1 is for add-to-cart, 2 

denotes purchase and 3 is for add-to-favorite 

 

The dataset consists the behavior log of anonymized users accumulated during the 6 

months before and on the ñDouble 11ò day, with labels indicating whether a customer is a 

repeat buyer of a merchant or not. As we did not take part in the competition, the dataset 

we have is only a subset of the complete dataset that the competitors used. The dataset is 

1.92 GB in total and stored as three comma-separated values (CSV) files: user behavior 

logs, user profile information and training and testing. The definitions of data fields in each 

file are described as shown in Table 4.1, 4.2 and 4.3, respectively. 
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Table 4.2 The Definitions of Data Fields in User Profile Information in RBP 

Data Field Data Type Definition 

user_id integer A unique id for the shopper 

gender float 
Gender of the shopper: 0 for female, 1 for male, 2 and 

NULL for unknown 

age_range float 

Age range of the shopper: 1 for less than 18, 2 for [18, 

24], 3 for [25, 29], 4 for [30, 34], 5 for [35, 39]; 6 for [40, 

49], 7 and 8 for more than 49, 0 and NULL for unknown 

 

Table 4.3 The Definitions of Data Fields in Training and Testing Data in RBP 

Data Field Data Type Definition 

user_id integer A unique id for the shopper 

merchant_id integer A unique id for the merchant 

label integer 

A binary label {0, 1} indicating whether a shopper is a 

repeat buyer of a merchant, where 1 represents repeat 

buyer and 0 is for non-repeat buyer 

 

As the tables shown above, some data types in the raw data are not appropriate for 

this research, such as gender, age range, and brand_id, which are supposed to be integer. 

Hence, data transformation is performed in the pre-processing phase. 

4.1.2 Census Income Prediction (CIP) 

This data was extracted from the census bureau database for census income 

prediction. It is popular used in research area for validating and evaluating binary 

classification algorithms and methods, as it does not require feature engineering and it is 

relatively convenient to use. There are 6 continuous attributes and 8 categorical attributes 

in the raw data. The labels indicate whether an anonymous person makes an income over 

$50K/yr. Table 4.4 lists the definitions of each data field. Note that the fields in data type 

of string are all categorical, therefore they need to be transformed to proper formats during 

pre-processing for further operations. 
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Table 4.4 The Definitions of Data Fields in CIP 

Data field Data type Definition 

age integer The age of an anonymous person 

workclass string The work class of an anonymous person 

fnlwgt integer 
Independent estimates of the civilian non-institutional 

population of the US 

education string The highest degree of an anonymous person 

education_num integer 
Number of years an anonymous person is under 

education 

marital_status string The marital status of an anonymous person 

occupation string The occupation of an anonymous person 

relationship string The role of an anonymous person in a family 

race string The race of an anonymous person 

sex string The gender of an anonymous person 

capital_gain integer The capital gain of an anonymous person 

capital_loss integer The capital loss of an anonymous person 

hours_per_week integer The working hours of an anonymous person per week 

Native_country string The native country of an anonymous person 

Labels string 
Indicates whether an anonymous person makes over 

$50K/yr 

 

4.2 System Implementation 

4.2.1 Pre-processing 

In this thesis, pre-processing is mainly performed by Pandas, and the task could be 

generally summarized as two parts: data transformation and feature engineering. 

4.2.1.1 Transformation 

Two datasets have been used. They require different data transformation operations. 

The following highlights the transformation for each dataset. 

4.2.1.1.1 RBP Dataset 

For the RBP dataset, firstly, the data stored in three separate tables need to be merged, 

so that further operations can be conducted on the merged data. To avoid producing 

redundant rows, the three tables are merged by inner join, during which the user behavior 



 58 

logs table and the user profile information table are joined on ñuser_idò, and then joined 

with the training and testing data table on pair of ñuser_idò and ñmerchant_idò. Secondly, 

the data types of some data fields need to be converted to more proper ones. For example, 

brand_id is originally in float type, then it is converted to integer which is more proper to 

represent ID fields. Thirdly, the time_stamp is parsed into the data type of datetime64, 

which is defined in NumPy to indicate date and time. At last, the rows containing missing 

values are discarded directly (1.41%). The final merged data is in the shape as shown in 

Table 4.5. 

Table 4.5 An Example of the Merged Data in RBP 

 
 

The first column of the table is the indexes of rows, which is only an indicator. From 

the table it can be observed that many duplicated rows in the merged data (for example, 

rows 0, 2 and 3), and they are the real logs of the repeated activities. In this dataset, around 

37.1% of the whole data instances are duplicated and they are representing actual repeated 

user behaviors. Therefore, these data instances can be further processed for feature 

engineering, e.g., the number of times a user has browsed the particular merchant. Those 

data instances, though duplicated, should not be deleted. Some data statistics from various 

perspectives are presented in Table 4.6, Table 4.7, Table 4.8, Table 4.9 and Table 4.10, 

respectively. 












































































