INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI
films the text directly from the original or copy submitted. Thus, some
thesis and dissertation copies are in typewriter face, while others may be

from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indicate

the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comner and
continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in reduced
form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6” x 9” black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly to

order.

UMI

A Bell & Howell Information Company
300 North Zeeb Road, Ann Arbor MI 48106-1346 USA
31377614700 800/521-0600

Applying Layered Modelling to a Bridge/
Router Architecture

By: Peter Maly

A thesis submitted to the Faculty of Graduate Studies in
partial fulfillment of the requirements for the degree of

Master of Engineering

Ottawa-Carleton Institute for Electrical Engineering
Faculty of Engineering

Department of Systems and Computer Engineering
Carleton University
Ottawa, Ontario, Canada, K1S 5B6

August 29, 1997

© Copyright 1997, Peter Maly

vl

National Library Bibliothéque nationale
of Canada du Canada
Acquisitions and Acquisitions et

Bibliographic Services
395 Wallington Street

Ottawa ON K1A ON4

Canada Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Your file Votre référence

Our file Notre rélérence

L’auteur a accordé une licence non
exclusive permettant a la
Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette theése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L’auteur conserve la propriété du
droit d’auteur qui protege cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimeés
ou autrement reproduits sans son
autorisation.

0-612-27002-5

Canada

The undersigned recommend to the Faculty of Graduate Studies and
Research acceptance of the thesis

Applying Layered Modelling to a Bridge/Router
Architecture

submitted by Peter Maly, B. Eng.
in partial fulfillment of the requirements for
the degree of Master of Engineering

Chair, Department of Systems and Computer Engineering

L] Lot

C N——
Thesis Supervisor

Carleton University
August 29, 1997

Abstract

Designing real-time embedded computer systems to meet certain performance criteria
is a significant problem. Not knowing where the performance problems in the system are,
make it very costly to try to solve them. A methodology is proposed in this thesis that sys-
tematically looks at the relevant parts of the hardware and software architecture, to
develop a layered performance mode! of the system. Once this model is derived, problem

areas can be identified, and performance questions can be answered.

This thesis demonstrates the use of this performance methodology on a case study of
the Expressway RLAN system. It demonstrates the application of the methodology step
by step, and then shows examples of how the model can be exploited. Examples include

using different traffic sources, and a hypothetical re-design of the system.

Acknowledgments

I would like to thank my supervisor Murray Woodside for guiding me through this
research. I also thank Alex Hubbard, Greg Franks, Curtis Hrischuk, and others in the

RADS lab who helped me in one way or another during various stages of this work.

I thank the following people at Gandalf Technologies for their help and support at the

beginning of the thesis work:

Alan Spurdle, Ralph Mask, Zoltan Racz, Chuck Triemstra, Sukhvinder Parmar, Winga

Ho, Mick Chawner, Kulrattan Bakhshi.

Financial support from Gandalf Technologies, and Software Performance Engineering

Chair was greatly appreciated.

Last but not least [thank my parents for their understanding and support throughout

the whole Masters program.

Table Of Contents

Abstract
Acknowledgments
Table Of Contents
List Of Figures
List Of Symbols

Chapter 1:
Introduction

1.1 The Purpose Of Performance Modelling
1.2 Motivation And Perspective
1.3 Problem Statement

1.3.1 Goals Of Thesis

1.3.2 Contributions Made By Thesis

Chapter 2:
Background

2.1 Layered Queuing Network Modelling
2.2 Use Case Maps
2.3 Real-Time Embedded Systems
2.3.1 Obtaining Measurements From Real-Time Embedded Systems
2.4 Real-Time Embedded System Example: Bridges And Routers
24.1 Implementation Issues Of Bridges And Routers

2.5 Communication Protocols

12

14

17
19

21

Chapter 3:
Outline of a methodology for modelling embedded systems

3.1 A Methodology For Modelling Embedded Real-Time Systems

3.2 Comparison Of Presented Methodology With Connie Smith’s

Chapter 4:
Description of an embedded system

4.1 High Level Description Of System To Be Studied
4.2 Description Of The Hardware Architecture

4.3 Description Of The Software Architecture

Chapter S:
Building a Base Model of the RLAN

5.1 Determining Scenarios In The RLAN System

5.2 Mapping Scenarios In The System To A Layered Model

5.3 Adding Behavioral Detail To Model
5.3.1 Main Bus Arbitration
5.3.2 Adding Detail To The Munich Chip
5.3.3 Polling Delay And Polling Overhead In Port Worker
5.3.4 Concurrency In Scenarios And Scaling Of The Model
5.3.5 Accounting For Munich Throttling

5.4 Calculation To Account For Munich Chip Polling

5.5 Calculation To Account For Polling By Software

5.6 Simplifications of the model

5.7 Summary

v

23
23
29

32
32
33
38

45
45
51
56
56
58
59
61
62

66
71

74

Chapter 6:

Measurement Gathering And Model Validation 75
6.1 The CodeTEST Profiling Tool 75

6.1.1 Instrumenting in a RTOS 77
6.2 Goals Of Measurement Experiments Performed On The RLAN 78
6.3 Measurement Setup 79
6.4 Approach Taken To Make Measurements 81
6.5 Measurement Results For Software Functions 85
6.6 Measurement Results For Hardware Operations 85
6.7 Comparing Model Predictions With Real Observations 87
6.8 Discussion Of Utilization Results 90
6.9 Summary 92

Chapter 7:
Exploiting Model For Capacity Planning And Architectural Re-design 94

7.1 Goals Of The Performance Study 94
7.2 Predicting Capacity Of The Expressway RLAN With Poisson Arrivals 95
7.3 Polling Discipline 99
7.4 Selective Server 103
7.5 Bursty traffic analysis 104
7.5.1 Definition Of Three Traffic Profiles 105
7.5.2 Bursty Reference Task 107
7.6 Using New ParaSRVN Extensions To Model The RLAN 110
7.6.1 Defining The Port Worker Using The Poll Server 110
7.6.2 Comment On Model Modularity 112

7.7 Results Using Three Different Bursty Traffic Profiles 113

7.8 Approximations For Faster Solution Times With Bursty Traffic 117
7.9 Hypothetical Hardware Re-design Of The RLAN 120
7.10 Summary 126

Chapter 8:

Discussion and Conclusions 127
8.1 Summary Of Results 127
8.2 Conclusions 127
8.3 Future Research 129
References 131

Vi

FIGURE 1.
FIGURE 2.
FIGURE 3.
FIGURE 4.
FIGURE 5.
FIGURE 6.
FIGURE 7.
FIGURE 8.
FIGURE 9.

FIGURE 10.
FIGURE 11.
FIGURE 12.
FIGURE 13.
FIGURE 14.
FIGURE 15.
FIGURE 16.
FIGURE 17.
FIGURE 18.
FIGURE 19.
FIGURE 20.
FIGURE 21.
FIGURE 22.

List Of Figures

Example of a layered model

Illustrating some Use Case Map notation

Example situation where a router and bridge would be used
High level diagram of the RLAN’s major input and output ports
Hardware interconnection in the RLAN system

Priority built into arbiter

High level state machine diagram of the Munich chip arbiter
High level software/hardware diagram of the Expressway RLAN
High level pseudo code describing the Port Worker polling order
Task scheduling employed in the RLAN

Use Case Map of a packet going from LAN to WAN, singlelink
Use Case Map of a frame going from WAN to LAN, singlelink
Grouping of responsibilities to resources

Addition of another layer to represent the main bus.

Grouping responsibilities for the reception of an acknowledgment
Merging the two models derived from the two scenarios
Addition of two more scenarios to model

Model with a more representative bus arbitration scheme

With added detail of the Munich chip

Model with software polling.

Final structure of the RLAN model

Polling orders for frames and packets in Port Worker

Vii

11
I3

19

57
59
60
62
70

FIGURE 23.
FIGURE 24.
FIGURE 25.
FIGURE 26.
FIGURE 27.
FIGURE 28.
FIGURE 29.
FIGURE 30.
FIGURE 31.
FIGURE 32.
FIGURE 33.
FIGURE 34.
FIGURE 35.
FIGURE 36.
FIGURE 37.
FIGURE 38.
FIGURE 39.
FIGURE 40.
FIGURE 41.
FIGURE 42.
FIGURE 43.
FIGURE 44.
FIGURE 45.
FIGURE 46.

Simplified model of the RLAN system

Instrumentation process

Data gathering when code is running

Measurement setup in the lab

Histogram of a function being called in an experiment
Process trace data goes through to generate an execution profile
An example of a execution profile

Diagram of experiment setup for model validation

Defining operating range for an open system

Average waiting time experienced in the WAN queue
Average waiting time experienced at the LAN queue
Re-definition of LQN parameters for the polling discipline
Polling order implemented in the exhaustive polling discipline
Description of the Bursty traffic profile

Re-definition of LQN parameters for the Bursty client

Polling Task entries, note calls are asynchronous

A modified model of the RLAN with the new extensions
Another way of expressing polling in the model

Corporate profile, with bursts, plotting end to end delay

ISP profile, with bursts, plotting end to end delay

Worst Case, with bursts, plotting end to end delay

WAN to LAN delay curve with one poll cycle time reduced
Corporate profile, plotting delay resuits from 3 different modelis

ISP profile, plotting delay results from 3 different models

vili

73
76
77
80
81
83
83
88
94
96
97
101
103
105
108
110
111
113
114
114
115
116
118

118

FIGURE 47.
FIGURE 48.
FIGURE 49.
FIGURE 50.
FIGURE 51.

Worst Case, plotting delay results from 3 different models
Hypothetical hardware/software re-design of the RLAN
Layered model of a hypothetical hardware re-design
Average waiting time experienced at the LAN queue

Average waiting time experienced in the WAN queue

IX

119
122
123
124
125

List Of Symbols

Symbol Definition Typical
Usage
i Represents an index to an active channel. 64
f Maximum transmission speed of the DS0 channel, being 64
8000 bytes/sec.
P(i) Transmission link utilization of the Munich chip on channel ;. 64
v, Average size of the frame to be transmitted on channel i. 65
A Frames per second to be transmitted on channel ;. 65
Z () Derived average cycle time when channel i gets polled to see if 65

there is anything to transmit.

Crmunich Munich chip cycle time to check all of its ports to see if there 65
is anything to transmit.
Upoir Percentage of time the Munich chip occupies the bus with polling. 65
A Time to check if there is something to transmit. 65
N Number of active channels on each Munich chip. ¥ < 33 because 66
one Munich chip can only handle 32 channels.
Upotitorat Percentage of time all Munich chips occupy the bus with polling. 66
j Represents an index to a Munich chip. 66
UpoulJ) Percentage of time the ;% Munich chip occupies the bus with polling. 66
M Number of Munich chips in the system. 66
E[C] Average time to complete one cycle of a polling loop. 67
k Set of software functions to process packets/frames. 67

B LAN

BMunich

VLA N
VMuni ch
A'LAN

Arfunich

Epoll[W]

Eenlry[W]

E wtal_delay [W]

Switchover time to go from queue i,k to queue i,k -1. This is
polling overhead of queue % .

Offered load of queue i,k .
CPU cost of servicing a job waiting in queue associated with & .
Arrival rate of jobs going into queue i, k .

Average time the Port Worker takes to complete one cycle, with
compensation for DMA activity.

Utilization fraction used by the LAN chip on the main bus
copying data to/from memory.

Utilization fraction used by the Munich chip on the main bus
copying data to/from memory.

Utilization fraction used by the Munich chip on the main bus for
polling TX descriptors.

Service time for the LAN chip to perform a 32 bit read/write
operation.

Service time for the Munich chip to perform a 32 bit read/write
operation.

Average size of the packet incoming on the LAN side.
Average size of frame incoming on the WAN side.
Average throughput of packets incoming on the LAN side.
Average throughput of frames incoming on the WAN side.
Average polling delay seen by frames/packets in system.
Average time to service a request at an entry.

Total delay seen by a packet/frame in a queue serviced by the
Port Worker.

The mean number of messages served per visit to queue i,k .

Xl

67

67

67

67

67

68

68

68

68

68

68

68

68

68

71

71

71

71

Chapter 1

Introduction

1.1 The Purpose Of Performance Modelling

Designing computer systems to meet certain performance criteria is a significant prob-
lem. Depending on measurement data from the system alone is not an effective way to
ensure a computer system will meet its performance targets. To make measurements on a
system, it has to be already implemented. It will cost significant amount of time and
money to solve performance problems when the system is already built. Measurements
alone are not capable of telling a designer where the performance problems are in the sys-
tem. This is because measurements only provide a snap shot of the system performance,
without any explanation to why the system is behaving a certain way. Not knowing where

the problems are in the system, how can they be fixed the first time?

Performance modelling at design or re-design stage substantially increases the
chances of creating a computer system that will meet performance expectations. It does
this by incorporating all the relevant knowledge spread out among many engineers work-
ing on different aspects of the system. The model will then be able to tell the designers
which factors most influence its performance. This will focus designing or re-designing
efforts on relevant factors within the system that have significant impact on various perfor-

mance concermns.

The performance model also provides other useful information like predictions of

throughputs and delays, which can provide insight on system capacity. Model predictions

-1-

can give designers confidence the current design will meet the required performance
expectations, or give early warnings to potential performance problems. If preliminary
analysis indicates some performance problems in the design, the model can allow design-
ers to rapidly explore alternatives to correct the problems before they arise in the imple-

mented system.

Overall performance analysis is partly a risk reduction technique, and partly a useful
engineering practice. From a business perspective, performance analysis is a risk reduc-
tion technique because it forces engineers to address performance issues before they
become problems. With systems becoming more complicated everyday, it is easy to over-
look certain factors which can affect performance. Therefore performance analysis is a
risk reduction technique, and not a method that guarantees success all the time. Perfor-
mance analysis is also useful engineering practice because it gives a global perspective on
how the system works. It provides feedback on how well the design performs, which gives

the designers more insight into the system they are building.

This thesis demonstrates through a case study, how performance modelling can be

used to reduce risk, and show its usefulness as a engineering practice.

1.2 Motivation And Perspective

There is a wide variety of standard techniques for analyzing the performance of a com-
puter system, for example [12], [18], [21]. Regardless of the study or solution technique,
the three results normally obtained from the model are delays, utilizations, and through-

puts for various resources or for the whole system. Utilization of resources can tell the per-

formance analyst where the bottleneck(s) in the system are. This knowledge will focus the
efforts of the designers to work on these bottleneck(s) to either fix the performance prob-
lem in the existing system, or prevent a performance problem from happening in the
future. Delay results from the model can answer performance questions about quality of
service. For example it can answer how many users the system can simultaneously handle,
given a metric for quality of service. Throughput results can predict how many transac-

tions per unit time the system is capable of handling under various system loads.

Services the system is capable of performing, are invoked by external stimuli. When
building a model, it is necessary to understand how the system fulfills each service to the
end user. A scenario is a trace of causality through the system to determine how a transac-
tion is completed. Performance models usually represent more than one scenario, and the
number of scenarios in the model is usually determined by the scope of the performance
analysis. When tracing scenarios through the system, the amount of detail captured can

vary, and to some degree is dependent upon the solution approach.

Solution approaches for models usually fall into two categories, which are simulation
and analytic. Models that use simulation tend to have more detail than analytic models.
Many properties and interactions within a system can be captured very precisely because
simulation is very general and robust. This generality comes at the cost of setting up the
model, even if using a simulation package. Getting results from a simulation can take sig-
nificant amount of computing resources and time until acceptable confidence intervals are
achieved. Analytic models are not as general as simulation, and abstract more away from

detail within the system. This means that analytic models are simpler, and are easier to

-3.

construct than simulations, assuming the analytic solution technique does not have to be
invented. The greatest advantage analytic modelling possesses is, that fairly accurate

results can be obtained many times faster than from a simulation.

When performance studies of computer systems are done, typically either the hard-
ware of the system is well described, and the software is approximated, or vice versa. Per-
formance studies on hardware architectures are usually done with simulation. The reason
for this is hardware architectures that are normally modelled are too complex for an ana-
lytic solver to handle accurately. When an analytic approach is possible, a queueing net-
work model is constructed. The queueing network model is usually solved using Mean
Value Analysis (MVA), which is a relatively fast solution technique for queueing models.
To obtain an exact solution, the queuing model has to obey rules that make the model
product form. Sometimes the MVA rules are too restrictive in describing the system being
modeled. In this case MVA can be extended by including the necessary features to better
capture the elements of the system. This is done by modifying the delay equations in the
MVA algorithm, therefore not guaranteeing an exact solution because the model is no
longer product form. The extension to MVA is called Customized Mean Value Analysis
(CMVA) [14], [24]. A weakness that the CMVA approaches have is there is no concept of
simultaneous resource possession. Even the most simple hardware architectures exhibit
simultaneous resource possession. For example when a CPU wants to access memory, it
must acquire the bus, and then acquire memory. Not properly representing a system in a
model, may mislead a performance analyst to where the true trouble spots in the system

are. There are analytic techniques like [11] which can solve for simultaneous resource

possession. It does not modify the MVA algorithm in the manner as CMVA does, but still
is not a product form solution. Compared to layered modelling, these types of approaches
are often complicated and difficult to use when dealing with simultaneous resource pos-

session.

A method of software performance analysis is layered modelling [27], which is an
analytic method for solving such systems. Layered modeling can also account for simulta-
neous resource possession, which allows the model to capture mutual exclusion in soft-
ware. The concept of layered modelling is to capture the software interactions from a
software architecture, and then determine how these interactions pose various demands on
the underlying hardware. How this hardware functions can almost always can be
abstracted out, because it usually is not necessary to understand it. The main reason for
this is, the hardware architecture which runs the software was either simple, or provided
no significant effect on the system within the scope of the analysis. Thus most layered

models have not represented hardware detail.

Embedded systems which are studied in this thesis, form a class of computer systems
where abstracting from the software or hardware may not always work. The reason for this
is, hardware and software are intimately coupled because they are designed for each other,
rather than for general use. Therefore these systems will tend to have more complex hard-
ware architectures, because they try to deliver high performance at low cost. To achieve
high performing embedded systems, designs commonly have multiple CPUs, shared
bus(es), shared slave device(s), DMA, and Application Specific IC chips (ASIC). With

these elements present in a system, one has to wonder how much effect do all these ele-

-5.

ments have on the execution of software. DMA activity, ASICs, and other CPUs that all
share a bus will experience contention. From a software perspective, this contention trans-
lates into slower execution of code, and ultimately leads to longer execution times of sce-
narios within the system. Clearly ignoring the hardware architecture or accounting for it in
a non-precise way will not yield to very good performance predictions. Ignoring the soft-
ware architecture is not a very good strategy either. The software model will give no
insight into what kinds of demands the software puts on specific areas of the hardware,
and how the hardware or software can be optimized for maximum performance. Average
processor throughput of a hardware architecture, which is a common hardware perfor-
mance metric, is not a good enough to optimally tune hardware and software as a com-

plete entity.

The approach taken in this thesis to modelling embedded systems is, applying layered
modelling in such a way that it encompasses both the hardware and software architecture
in one model. Layered modelling provides the simplicity and speed of analytic modelling,
and many of the interactions that exist at the software level also exist at the hardware level.

As a result of this approach, this introduces layered hardware resources.

1.3 Problem Statement

The primary goal of this thesis is to present a generic methodology to apply layered
modelling to embedded systems, where including the hardware and software architecture
in a performance model is equally important. This methodology will be applied to a real

case study to demonstrate how to apply it, and to show how well it works.

1.3.1 Goals Of Thesis

The goals of the thesis are the following:

+ Outline a methodology for applying layered modelling to embedded systems.

» Apply this methodology to a case study, which is a bridge/router embedded system.
 Describe and derive a model of the case study.
» Describe how measurements were done on the embedded system.

» Show how the model can be exploited for several purposes and explore faster solution

techniques.

1.3.2 Contributions Made By Thesis

The contributions of this thesis are the following:

» Demonstrate a new application of Layered Queuing Network Modelling by modelling
an embedded system. In previous studies using layered modelling, it has never been
important to include the hardware architecture to such extent. This explores the notion

of layered hardware resources, which is something new.
« Document a case study of modelling a bridge/router embedded system.

» The case study has polling at the hardware and software levels. A system with any form
of a polling discipline has not been studied before with layered modelling, so this is an

addition to the modelling framework.

« Addition of three new components to ParaSRVN which is a simulator for layered mod-

els. The three new components are the selective server, exhaustive polling discipline,

and bursty reference task. These components can be specified freely in a model and are
automatically incorporated for simulation. They are used to refine the layered model to

yield more accurate and realistic results.

Chapter 2

Background

2.1 Layered Queuing Network Modelling

Layered Queuing Network modelling [26], [27] is a convenient way of modelling dis-
tributed software client server systems. The two advantages it possesses are, it has seman-
tics to express common interactions found in distributed client server systems, and the

layered models can be solved both by simulation and analytic modelling.

One of the fundamental components in a layered model is a “task’ which can represent
a process, task, or object. A task is an entity that executes some work, and can only do so
if it has acquired access to a processor. There are only two classes of tasks in layered mod-
elling which are client and a server. A client task (also called a reference task) is a task
which never receives any requests to do work. The server task is just the opposite of a cli-
ent task because, other tasks make requests to it. Just like the client, the server optionally

can make requests to other servers, but only when the server task has to service a request.

Each task can impose different work on the processor, by serving different requests
which are represented by entries. An entry is a service interface offered by the server task
to its clients. All the requests for each task are put into the same queue. The order in which
the requests are served is dependant upon the queueing discipline selected for the task.
Layered modelling supports First In First Out (FIFO), and Head Of the Line (HOL)

queueing disciplines for entries.

There are three ways in which service invocations from one task to another can occur.
These are by synchronous, asynchronous, and forwarding calls. An asynchronous call is
one in which the client task makes a request to a server, and does not wait for a response
from the server. On the other hand, a synchronous call is one in which the client makes a
request to the server, and the client will do nothing until the server has responded back
with a reply. The forwarding call is similar to a synchronous call, except that after the
server finishes servicing the request, it will transfer the request to another server which

will be responsible for sending the reply back to the client.

There are three types of servers that can exist in a layered model. The number of cop-
ies of a task on each processor(s) is what determines the server type, which can be a sin-
gle, multiple, or infinite server. A single server is a single task, and can only handle one
request at a time. A multiserver is a copy of N tasks that take requests from one queue, and
can handle up to N requests simultaneously. Finally the infinite server is an infinite num-
ber of tasks, which can handle an infinite amount of requests simultaneously. To add a
constant delay in the model, an infinite number of tasks and processors have to be speci-
fied, so that the server can handle infinite requests simultaneously and never wait for the

Processor.

Server tasks that receive synchronous requests may optionally implement a second
phase. This is a phase of execution the server does work after sending a reply back to the
client. Figure 1 shows an example of a layered model using the notation to represent the

various concepts discussed.

-10-

FIGURE 1. Example of a layered model

Tl x3 Pla P2, P3 Processors
s: 0 5

T1 reference task x3

T2, T3 server tasks

s. 0.3, 1 s O l 2
« N e forwarding call
<«——— asynchronous call
T3 <«——— synchronous call
s 0 2, 0 5

Each entry has a service time which is specified by “s:” followed by a list of times,
one for each phase. The number of service times in the list specifies the number of phases
an entry has. For example E4 in figure 1 has two phases, with a service time of 0.2 in
phase 1, and 0.5 in phase 2. The multiplication factor near a task indicates task multiplic-
ity, and the multiplication factor near a request indicates number of times the entry is

called. The number of visits to an entry is another way of saying the number of times an

entry is called. A visit ratio is the relative number of visits made to other entries. For

example entry E1 in figure 1 visits E2 once, and E3 5 times. The visit ratio for E1 visiting

E2 and E3 is 1:5 which means that for every visit to E2 there will be 5 visits to E3.

«11-

For all the layered model diagrams in this thesis, three features found in figure 1 have
been left out for simplicity. First simplification is that service times are not shown. Second
simplification is most entries associated with a task are not shown, and only a single paral-
lelogram is shown to represent the task. The third simplification is processors are not
shown, and any time a task is copied, it is always assumed that there is an equal number of

processors, unless otherwise specified.
Below is a summary of the assumptions and limitations of the layered modelling:

» synchronous, asynchronous, and forwarding call types

» random or deterministic messaging

« exponential distributed or deterministic service times

« task will always accept a request on any entry

- three different server types: single server, multiserver, infinite server.

« scheduling policies: First In First Out (FIFO), Head Of the Line (HOL), Random, Pro-

cessor Sharing, and Pre-emptive Priority (PP).

2.2 Use Case Maps

This thesis will use Use Case Maps (UCM) as a means to document and describe the
processing of various services in the system before a model is built. Use Case Maps [5] is
a high level design notation that traces causality through a computer system given a cer-
tain set of stimuli. This trace of causality is called a scenario, and is drawn on top of a
component context diagram. The component context diagram is a high level diagram,

showing the major components in the computer system. Use Case Maps are drawn over a

-12.

component context diagram, to show the sequence of events that occur to complete a sce-
nario. Components in the system are usually teams or objects. A Team represents some
functionality in the system. It can consist of a group of objects, but the actual composition
of the team in terms of hardware or software may not be known. When the UCM goes
through a component, this means the component has some role in fulfilling a scenario.

Figure 2 illustrates a typical UCM diagram.

FIGURE 2. lllustrating some Use Case Map notation

start of scenario
o
OR fork AND fork
\ /
‘—r/ B
\ I feSpOﬂSlblllty
e, AH— |

| ———team
DIB |[e—]
< AND join

end of scenario

OR join

Scenarios also have the capability of forking and joining. Two types of forks that can
occur in a UCM are the AND fork and OR fork. The AND fork indicates that the scenario
has concurrency, which means the scenario splits into two parallel executing paths. The
OR fork indicates the scenario will only execute one of possible scenarios. This does not
mean the OR fork represents a logical decision, but rather a convenient way of expressing
a group of scenarios that have similar causality. Similarly two joins exist in UCM notation,

which are the AND join and OR join. The AND join is a synchronization point for scenar-

-13-

ios involved. No scenario can continue executing until the rest of the scenarios have
reached the AND join. In figure 2, after executing responsibility D, that scenario will have
to wait until responsibility B has completed, or vice versa. The OR join just indicates the
merging of two scenarios. It has no logical implications, and reduces the complexity of the
UCM diagram, by only drawing one path for two scenarios which have some common
responsibilities. The basic UCM notation discussed can be found in figure 2. More

detailed information on Use Case Maps can be found in [5].

2.3 Real-Time Embedded Systems

A real-time system is defined as any system where the time between a stimulus and
response is of importance [4]. The target value for the response delay varies from system
to system, and depending on the type of system, the target response delay can range from
nanoseconds to seconds. There are two categories of real-time systems, which are hard
and soft real-time systems. A hard real-time system is defined by the need for a response
by a certain deadline. If the response comes after the deadline, a failure will occur. An
example of a hard real-time system is a missile guidance system. Trajectory calculations
have to be fed into a missile by certain times, otherwise the missile may never reach its
intended destination. Soft real-time systems do not have strict requirements on response
time, because in these systems it is acceptable to have some variation. A database system
is an example of a soft real time system, because if the response for a query takes 2 sec-
onds, or 3 seconds it has no catastrophic repercussions. Response requirements for a soft
real-time system can be expressed by mean and variance on the response time, or by a per-

centage of responses occurring within a certain time.

-14.

Embedded computer systems are systems in which a computer plays a role within a
larger engineering system to process information. Embedded systems have two distinct
features which are, they are designed to perform specific tasks, and the system interacts
with other hardware devices which interface to the external world. In these applications,
the timeliness of processing data can be crucial to the operation of the entire system, hence
making them real-time systems. Embedded computing is also a cost effective way of
building a computer system to perform specific operations very quickly, like DSP boards

for example.

2.3.1 Obtaining Measurements From Real-Time Embedded Systems

When modelling any system, some parameters will be required to come from measure-
ment data. Obtaining measurements is very similar to testing, in the sense that both require
to execute some scenario within the system. However measurement and testing have differ
goals. The intent of measurement gathering is to determine how long it takes to execute
parts of a scenario. Testing is concerned with verifying the proper execution of the sce-
nario against the design. Testing, and therefore measurement gathering for embedded sys-
tems is more difficult than a PC or a workstation [7], [20]. The reason for this is,
embedded systems have just enough hardware and software to perform their intended
task(s). This means many features that makes a PC or a workstation convenient to use like
file storage, video display, user memory, and keyboard are not present in an embedded
system. User interfaces found in embedded systems range from shorting a jumper, to a

command line or menu driven interface, accessed through a serial cable. This is the oppo-

-15.

site to what can be found on a PC or a workstation, which has a general command line

interface with many commands, and batch scripting to automate work.

Usually the only way to get measurements out of an embedded system is by some cus-
tom hardware/software solutions, like CodeTEST [1]. This means that the measurement
infrastructure built for one embedded system is only good for that system, and is not very
portable. This is because measurements are largely dependant upon specific low level
hardware details of the system, which boil down to monitoring signals at various points on
a printed circuit board. To perform such low level monitoring of system behavior, this will
require electronic equipment like a frequency counter, logic analyzer, or an oscilloscope.
Equipment of this nature usually have no provisions to be interfaced with a PC or a work-
station, hence making it difficult to automate the measurement process. Achieving some
degree of automation in measurement analysis is important because sometimes many
measurements have to be obtained. Even little procedures like manually recording mea-
surements can become monotonous and error prone because embedded systems usually do

not have the memory to store much information.

Embedded systems have interfaces for input and output, and the only way the system
will do useful work is by driving these interfaces. This means more specialized hardware
will be required to properly interface with the system. The extra equipment may be custom
built, which probably will be another embedded system, or some commercial product.
Again this comes back to the issues mentioned earlier about the lack of automation, and
general facilities to make the process of measurement gathering less tedious. Interface

equipment needed for measurement experiments will probably have no provisions for

-16-

automation or a interface to a PC or workstation to govern its operation. This means a

human operator will be required to properly set up experiments.

Real-time kernels found in embedded systems may lack high resolution timing facili-
ties (in tens of microseconds) to make measurements on software and other important
events happening on a small time scale. Solaris and HPUX provide the getrusage ()
function that has a resolution within 10 microseconds. Real-time kernels require 1 to 10
millisecond timers to exist in the target system for the kemel’s internal use. In order for a
real-time kernel to provide an equivalent to getrusage (), the kernel would have to
keep track of which task is currently executing, and how long the task ran for to get proper
readings. All of this extra tracking would take up memory, and kernels cannot consume a

lot of memory, because they are designed to work in as many systems as possible.

2.4 Real-Time Embedded System Example: Bridges And Routers

Bridges and routers [8], [22] are devices that make ubiquitous inter networking possi-
ble. The primary purpose of these devices is to connect different networks together. From
an OSI [22] communication protocol stack perspective, bridges and routers implement the
bottom 2 (up to Data Link Layer) and 3 (up to Network Layer) layers respectively. OSI
defines these devices as relays, because they support enough of the protocol stack to for-

ward information to other networks.

A bridge connects two networks that use the same networking protocol. Since bridges
only implement the bottom two layers of the OSI model, they are less complex than rout-

ers. All bridges employ address filtering, which means the user of the bridge can program

-17 -

which packets addressed to various destinations should not be forwarded to the other side.
This is primarily done so a LAN connected with more than one bridge may not get flooded
with redundant packets. Some bridges also have the capability of dynamically changing
their records to keep track of when nodes are added or removed on different LANs. The
bridge will add a new address to its records when a packet destined for a new address is
successfully transmitted. This implies that a new node has been added to the network.
When a node is removed from the network, the bridge will erase this entry from its records

so that it does not forward packets addressed to that node.

Routers are more complex because they encompass all the functionality found in a
bridge, and extrapolate this functionality by connecting more than one network together.
Each network connected to the router does not necessarily have to support the same net-
working protocol as the other connected networks. This means the router must be
designed to support all the possible networking protocols, and be able to convert packets
from one protocol to the other. Since routers generally do more processing on each incom-
ing packet, there is always a chance that the rate of incoming packets may be too greatat a
given time. In circumstances like these, it is natural for the router to drop packets, and

allow the higher level protocol to re-transmit the packet.

Figure 3 shows an example network where a bridge and router would be used. Below
each LAN number, is the higher level protocol, and following the slash is the networking
protocol used. Notice that the bridge only links two networks with the same networking

protocol, yet the router joins many different LANs with different networking protocols.

-18.-

FIGURE 3. Example situation where a router and bridge would be used

LAN2
TCP/802.5 LAN4
Router JCP/IPX
LANI1
TCP/TP
LAN3 Bridge
TCPTPX
LAN4
TCP/TP

2.4.1 Implementation Issues Of Bridges And Routers
All routers must be capable of manipulating, constructing, fragmenting, and merging

packets for all the protocols the router supports [8]. Manipulating and constructing packets
1s important for sending acknowledgments that a packet(s) has been received, or to convert
from one packet format to the next. Packet fragmenting is required for networking proto-
cols that have an upper or fixed limit on packet size. Packet merging is needed for those
network protocols that have either a minimum packet size, or a fixed larger size of packet.
It can also be used to tune the performance of the protocol by reducing the packet over-

head for each frame, which is done by decreasing the payload to packet header ratio.

FIFO queues or mailboxes are used to buffer packets between layers of the protocol
stack, travelling either up or down the stack. Despite having provisions for buffering pack-

ets between layers, there has to be flow control between layers. This is so that certain lay-

-19.

