
Research and Development of Porting SYCL on
QNX Operating System for High Parallelism

by

Dengpan Wang

A thesis submitted to the

Faculty of Graduate and Postdoctoral Affairs

in partial fulfillment of the requirements for the degree of

Master of Information Technology: Network Technology

School of Information Technology

Carleton University

Ottawa, Ontario

August, 2021

c©Copyright

Dengpan Wang, 2021



Abstract

As a standard C++ programming model, SYCL has gained popularity on incorpo-

rating various parallel computing frameworks. With the development of hardware

technologies, low-level computing devices are becoming increasingly varied and thus

result in the great heterogeneity of hardware. Although many computing frameworks,

such as OpenCL, OpenMP and CUDA, can benefit to heterogeneous computing, they

increase the complexity of cross-platform deployment and reduce productivity due to

low portability and miscellaneous features. By comparison, SYCL allows program-

mers to write high-performance parallel applications in the standard C++ syntax and

execute them across vendor-specific hardware without diving into low-level technolo-

gies. However, despite the popularity of SYCL on Windows and Linux, there is little

research on porting SYCL to QNX, a real-time operating system (RTOS). Therefore,

we choose two SYCL implementations and conduct corresponding experiments. In

particular, we build a new path of calling OpenCL APIs in SYCL-GTX and signifi-

cantly reduce the time of compiling SYCL kernels. Although the overall performance

of SYCL-GTX on QNX is evaluated on Linux, our experiments demonstrate that

there are many possible optimizations that can improve SYCL-GTX on QNX.
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Chapter 1

Background

1.1 Heterogeneous Computing

1.1.1 Hardware Heterogeneity

With the rise in general-purpose computing and the improvement of hardware tech-

nologies, it is pervasive to build a heterogeneous computing system to meet vari-

ous computing requirements. General PCs (Personal Computer) and laptops, usu-

ally making use of a multi-core CPU (Central Processing Unit), an embedded GPU

(Graphic Processing Unit), and a discrete GPU, are the best examples of heteroge-

neous computing systems. The computing devices in such a heterogeneous system

may use different instruction sets and memory layouts, resulting in increasing hetero-

geneity in hardware.

Traditional CPUs focus on executing instructions sequentially as fast as possible

by increasing CPU clock frequency or the number of instructions executed in a sin-

gle clock cycle. As general-purpose processors, CPUs have been competent for most

computation tasks until the explosion of machine learning, but multi-core and simul-

taneous multi-threading technologies do not make CPUs perform well on such tasks

requiring high data parallelism [2].

By comparison, GPUs are more effective than CPUs when computation-intensive

applications are executed [3]. Furthermore, benefiting from SIMD (Single Instruction

1
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Multiple Data) architectures, GPUs are more friendly to machine learning applica-

tions that usually compute massive data in parallel, although they suffer from the

extra overhead of sending the data back and forth between GPU’s and CPU’s mem-

ory [4]. However, only discrete GPUs require data transfers via PCIe, while integrated

GPUs can share data between CPU and GPU without copying through the external

data bus. Some graphics cards, mainly NVIDIA GPUS, particularly embed tensor

cores and specific function units (SFUs) to accelerate operations used in artificial

intelligence applications, especially deep learning.

In addition, there are also many other accelerators available with various strengths

to fulfil the acceleration of computation-intensive tasks. For example, FPGA (Field

Programmable Gate Array), a hardware circuit, has the performance of the hardware

solutions and can be programmed using a hardware description language (HDL). Be-

sides their flexibility and performance, FPGAs can scale by connecting serval FPGA

boards together, fastly executing frequent instructions and efficiently handling a vast

amount of streaming data. Another example is DSP (Digital Signal Processor). As

with any specialized circuits, DSPs are more power-efficient than general-purpose pro-

cessors for these types of applications. It is a must in many portable devices to process

analog signals, such as audio and video. They can also be used in high-performance

computing for scientific applications. It is also worth noting that Google has de-

signed TPU (Tensor Processing Unit) chips to accelerate AI (Artificial Intelligence)

applications, specifically accelerating neural networks used in machine learning [5].

A TPU can do matrix multiplication more efficiently than a GPU by quantizing and

transforming floating points to 8-bit integers.

As we can see, to fulfil the requirements of heavy computation in the AI era,

there are a variety of accelerators used to enhance data parallelism. As a result, it

is becoming a critical task for different operating systems to effectively manage and

incorporate heterogeneous compute resources.

1.1.2 Parallel Framework Heterogeneity

Apart from the heterogeneity of the hardware solutions, a myriad of computing plat-

forms has been proposed to enhance parallel computing or manage heterogeneous
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hardware resources on an operating system. Therefore, programmers can use those

computing models to attain high parallelism in computer-intensive applications.

• MPI. Message Passing Interface is a message-passing application interface, to-

gether with protocol and semantic specification for how its features behave

in any implementation [6]. It has become a de facto programming model for

distributed memory architectures. Any MPI implementation should support

creating processes to execute the same code on different chunks of the data,

thereby attaining high data parallelism. Also, although MPI does not have a

memory model, it can be used with shared memory models like OpenMP or

accelerator languages like CUDA.

• OpenMP. It is designed for shared memory architectures, such as CPUs and

assigns different tasks to threads in parallel. However, OpenMP requires pro-

grammers to take care of checking data dependencies and thread sharing, mak-

ing it error-prone. It is worth noting that OpenMP has enabled offload tasks to

accelerators since the version of 4.0 [7], making it less different from OpenCL.

• OpenCL. OpenCL is designed to abstract underlying parallelism and thus max-

imize the portability of programs by unifying all computation resources. As

a result, OpenCL programs can accelerate code (called kernels) in parallel on

cross-vendor platforms, such as CPUs, GPUs, and FPGAs, and hide the com-

plexities of the low-level parallelism, thereby easing the efforts of memory con-

trol and task scheduling.

• OpenACC. It is designed to simplify parallel computing of heterogeneous sys-

tems. The parallelized part in OpenACC is in the way of OpenMP and in a

philosophy similar to OpenCL. In contrast, it has no support of other types of

accelerators.

• CUDA. It is a GPU programming language, exploiting GPUs to solve com-

putational problems efficiently. Following the same philosophy as OpenCL, a

CUDA kernel can be offloaded from the host to the device (i.e., GPUs). By

grouping processing units into a hierarchy structure, the CUDA programming

model provides high data parallelism. Unfortunately, it is exclusive to NVIDIA

hardware and not compatible with other vendors’ devices.
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Figure 1.1: The future workflow of AI modules on multiple systems.

The above discussion is not an exhaustive list of parallel programming for hetero-

geneous systems. There are many other computing models/standards that are built

with multi-core processors and not accelerators in general. For example, thread-

ing building blocks (TBB), developed by Intel as a C++ template library, enables

programmers to break the computations and group them as parallelized tasks with

dependencies. Besides, PThreads is also another essential model. It is a language-

independent standard and can be implemented in any language to support multi-

threading parallel execution. However, although programmers can have fine-grained

control of threads in Pthreads, they are at the expense of more coding, thus reducing

their productivity.
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1.2 Motivation and Problem Statement

Since 2014, SYCL has been proposed as a single-source C++ programming model

that can incorporate mainstream computing frameworks, providing more user-friendly

programmability with unified programming interfaces. Both Linux and Windows

have supported mainstream SYCL implementations to address the heterogeneity of

hardware and computing frameworks. However, the development of autonomous

driving requires heterogeneous hardware to accelerate autonomous driving [8] [9] [10].

Therefore, QNX needs beyond a traditional real-time operating system in terms of

functions and undertake many other tasks to address the increase of computations

and computing heterogeneity. Mainly, it requires incorporating different computing

frameworks targeting various accelerators to exploit cross-vendor processors to handle

various computing tasks.

By porting SYCL to QNX, we may have some benefits when dealing with heavy

computations on QNX:

• User-friendly programability. Different frameworks have a quite different ab-

straction of low-level parallelism and thus make it complicated to port them

to QNX one by one. Moreover, it may be exhausting to expose different com-

puting frameworks to developers and thus not benefit the autonomous driving

ecosystem on QNX, as developers must dedicate great efforts to master differ-

ent programming languages to develop secure, reliable QNX applications with

high parallelism. Consequently, it requires significant efforts to implement those

frameworks on QNX and complicates programmability. From this perspective,

SYCL, a unified computing framework designed to incorporate those comput-

ing models and improve productivity, is an excellent choice to integrate the

features of miscellaneous computing models and empower QNX to perform well

in heavy computations. In particular, [11] and [12] have proposed integrat-

ing SYCL as a standard C++ library class on parallelism and heterogeneous

computing. Therefore, it should be another reason for QNX to support SYCL

standards if SYCL could be integrated into C++ standards.

• Portability. As QNX is a commercial operating system for its great security

and real-time, there are not abundant open-source projects on QNX compared
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to Linux and Windows. Nevetheless, SYCL could enable developers to mi-

grate their Linux or Windows applications to QNX easier, instead of rewriting,

re-optimzing, re-testing their SYCL applications for QNX. As a result, devel-

opers could reuse their source code and experience on QNX and improve their

productivity, thereby thriving the QNX developement community.

Moreover, if SYCL would be workable on QNX, as one of the most popular RTOSs

on cars, QNX will have the ability to incorporate heterogeneous hardware and do

heavy computation directly. As a result, the future workflow of computing on au-

tonomous driving may be shown in Figure 1.1. Since the computations happen on

discrete accelerators, the core functions of QNX will not be affected a lot. There-

fore, QNX can keep its security and real-time while handling intensive data, thereby

maintaining a competitive edge in autonomous driving.

Besides, benefiting from the pluggable backend philosophy in SYCL, QNX could

introduce new computing backends selectively without refactoring the high-level pro-

gramming interfaces. More importantly, although many researchers [13] [14] focus on

edge computing for autonomous driving to deliver enough computing power, it is still

essential to handle compute-intensive tasks in QNX environments to ease related ex-

periments. By comparison, the simplicity and programmability of SYCL could allow

programmers to accelerate their QNX applications without extra mental burdens, at-

tracting more programmers to develop innovative car applications for QNX and thus

thriving the autonomous driving community of QNX.

Due to the disparate landscape of parallel and heterogeneous systems, we need to

demonstrate if SYCL could indeed empower QNX. Hence, in this thesis, the research

questions are summarized as follows:

• RQ1: Many existing SYCL implementations are mainly written for Windows

and Linux. Which one of the existing SYCL implementations is compatible

with QNX?

• RQ2: Mainstream SYCL implementations may cover different features of the

previous and latest SYCL specifications, so what limitations do they have when

migrating into QNX environments.
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• RQ3: If existing SYCL implementations could work in a QNX environment,

how does it perform well compared to Linux environments? If SYCL on QNX

would underperform on Linux, what do possible reasons result in the worse

performance? And what could potential solutions improve its performance on

QNX?

1.3 Major Contribution

It is not true that SYCL implementations could be migrated into QNX without

engineer refactoring, so we choose the possible SYCL implementation, SYCL-GTX,

that can work on QNX and then avoid rewriting most of SYCL toolchains. Besides,

after refactoring and building the SYCL runtime, we test floating-point multiplication

in vector and matrix to illustrate and compare the performance of SYCL and OpenCL

in both QNX and Ubuntu. Our major contribution can be summarized as follows:

• By following RQ1 and RQ2, we compare existing SYCL implementations and

try to refactor them. After refactoring and building SYCL-GTX for QNX, we

demonstrate the feasibility of SYCL on QNX.

• We propose our research methods and schemes according to RQ2 and RQ3.

In the experiments of floating-point multiplication in vector and matrix, by

analyzing the performance difference of SYCL on QNX and Ubuntu compared to

pure OpenCL, we point out the possible problems and potential improvements

of SYCL on QNX. Meanwhile, we provide a new way to compile SYCL kernels on

the basis of SYCL-GTX and turn out the significant improvement of compiling

SYCL kernels on QNX.

• by referring to our experiment results and RQ3, we compare the compilation

mechanisms of different SYCL implementations and indicate a possible solution

for QNX to build a mature, product-ready SYCL environment.



Chapter 2

Related Work

In this chapter, we introduce some techniques used by popular parallel computing

frameworks. We focus on explaining the architecture of LLVM and comparing it with

traditional GCC architecture to give the reason why many computing frameworks

tend to embrace LLVM in cross-compilation environments and heterogeneous systems.

Besides, as the two primary intermediate represewntations, SPIRV and PTX are

also introduced to show how they can convert to native instruction sets and how

hardware drivers consume them. Besides, there are some research that demonstrate

the potential applications of SYCL and the performance difference between SYCL,

OpenCL and CUDA.

2.1 Introduction to requisite techniques of SYCL

2.1.1 Low Level Virtual Machine

LLVM (Low-Level Virtual Machine) began as a research project at the University of

Illinois, intending to provide a modern, SSA (Static Single Assignment [15]) -based

compilation strategy capable of supporting both static and dynamic compilation of

arbitrary programming languages [16]. Since then, LLVM has grown to be an umbrella

project that hosts and develops a set of close-knit low-level toolchain components. A

8
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C/C++ 
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Figure 2.1: A typical compiler pipeline.

number of commercial and open-source projects1 and academic research2 use widely

LLVM.

2.1.2 The Architecture of LLVM

LLVM was designed as reusable libraries with well-defined interfaces working as plug-

ins in LLVM-based projects. Apart from the modularized libraries, the essential parts

of the LLVM infrastructure include frontends, IR and backends.

LLVM Frontend

The frontend translates source code written in arbitrary programming languages into

the LLVM IR. Any LLVM frontend should conform to a typical compiler pipeline

shown in Figure 2.1 (taking the Clang compiler as an example). The modular design

of LLVM also allows developers to write a custom LLVM frontend for a particular

language through LLVM official libraries. Therefore, many projects are using their

customed LLVM frontends, such as LLILC [17] and rustc [18].

LLVM IR

The LLVM IR plays the middle point between the frontends and the backends and

does not depend on any particular source language or specific target architecture.

Therefore, there is no high-level language feature or machine-dependent feature in

LLVM IR [19]. It uses an abstract RISC (Reduced Instruction Set Computer) -like

1The list of open-source projects based on LLVM. See https://llvm.org/Users.html
2The list of academic projects on LLVM. See https://llvm.org/pubs/

https://llvm.org/Users.html
https://llvm.org/pubs/
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LLVM IR

Passes Instruction 
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Instruction 
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.asm
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Figure 2.2: The sequential passes of LLVM backends.

instruction set [20] to represent arbitrary programs while keeping high-level informa-

tion of programs to support sophisticated optimizations and transformations.

To avoid machine-specific constraints, LLVM provides the typed virtual registers

in the form of SSA [15] and does not limit the number of virtual registers. Code in

LLVM IR is organized in three address code [21] [22] that is very close in spirit to

machine code and easily compressed for high-density LLVM outputs. Besides, there

are two representations of the LLVM IR – assembly (.ll) and binary-encoded (.bc)

representations. Developers can use a wide range of open-source tools to convert them

each other or into other language representations, such as emcc [23] for WebAssembly

[24] and llvm-spirv [25] for SPIR-V.

LLVM Backend

The backends consume LLVM IR and generate assembly code or object code binaries

through sequential passes (shown in Figure 2.2) for multiple targets. Hence, LLVM

can work on multiple host platforms3. At the phase of instruction selection, the

code generator converts IR into the target-machine nodes, a data class representing

machine instructions. The set of virtual registers in LLVM IR will be transformed

into target-specific registers at the point of register allocation. Finally, the backend

pipeline will finalize the target-machine nodes and target-specific register allocations

and output native assembly code or object code.

Such a pipeline allows developers to write retargetable LLVM code generator for

3The list of supported target architectures by LLVM. See https://llvm.org/docs/

GettingStarted.html#hardware.

https://llvm.org/docs/GettingStarted.html#hardware
https://llvm.org/docs/GettingStarted.html#hardware
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Figure 2.4: The three phase design (based on tree structure) of GCC.

their new targets through modifying parts of those passes without rewritting an entire

code generator from scratch [26].

The Comparison of GCC and LLVM

Like GCC4, the LLVM infrastructure also implements the three-phase design (illus-

trated in Figure 2.3) to support multiple source languages and target architectures.

However, since LLVM IR is self-contained5, LLVM gives a more explicit division of

frontends and backends in terms of functions and thus ease the efforts to port differ-

ent source languages and targets. The LLVM frontends and backends only need to

operate on the standalone LLVM IR, whereas GCC only supports distinct variants

of tree-structured representations in the three-phase design (illustrated in Figure 2.4)

since GCC 4.0 [27].

4GNU Compiler Collection. The GCC compiler is one of GCC frontends. See wikipedia https:

//en.wikipedia.org/wiki/GNU_Compiler_Collection.
5LLVM IR is language- and target-independent, and supports to covnert each other between its

two representations.

https://en.wikipedia.org/wiki/GNU_Compiler_Collection
https://en.wikipedia.org/wiki/GNU_Compiler_Collection


12

GCC frontends output GENERIC IR [28] converted into the three kinds of GIM-

PLE IR6 by Gimplify, GIMPLE optimizer and GIMPLE expander (See Figure 2.4).

Finally, GCC backends will hand SSA GIMPLE IR [29] over different backends to

output native assembly code. Although GCC also modularizes the conversion of

representations and enables the intermediate representations to work independently

from source languages and target architectures, the intermediate outputs of the entire

process are invisible to developers and cannot convert conversely. Consequently, de-

velopers can not reuse the intermediate outputs and need to compile their programs

from source code and walk through the sequential process strictly.

By comparison, the three phases of the LLVM infrastructure only need to in-

terface with the LLVM IR and break passes of each phase into modularized tools,

thereby enabling developers to customize their programs by modifying those tools.

Remarkably, LLVM IR can be (de)serialized efficiently to/from LLVM bitcode using

tools llvm-as/llvm-dis7 since the mapping of LLVM assembly [20] and bitcode [30]

representations is strict and lossless [26]. For example, in Figure 2.5 (a), the LLVM

compiler frontends can emit LLVM bitcode/assembly representations before gener-

ating native object code. Other LLVM tools can re-link, re-optimize or retarget the

LLVM IR to other supported architectures. In contrast, the gcc compiler hides the

outputs of intermediate representations and only emits native assembly code and

object code in Figure 2.5 (b).

To summarize, LLVM makes everything is pluggable and customizable and can

port to different target architectures and languages conveniently, whereas the entire

process of GCC compilation is opaque, exclusive and not allow developers to modify

in demand.

2.1.3 Standard Portable Intermediate Representation

The previous SPIR-V version is SPIR [31] based on LLVM techniques to construct

and distribute platform-dependent binaries within the OpenCL stack. SPIRV was

6The classification of GIMPLE IR. See https://gcc.gnu.org/wiki/GIMPLE.
7The description of the two LLVM tools. See https://llvm.org/docs/CommandGuide/.

https://gcc.gnu.org/wiki/GIMPLE
https://llvm.org/docs/CommandGuide/
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announced in March 2015 and fully defined by Khronos Groups without the depen-

dency on LLVM. (still able to convert each other by the tool llvm-spirv [25] since

both use the SSA [15] form.) It is designed as a cross-vendor intermediate language

in the form of self-contained binaries for graphics and parallel computation.

The Mapping of Client Drivers in SPIRV

SPIR-V provides a series of instructions to express a client driver, such as Vulkan [32],

OpenCL and OpenGL [33]. The high-level abstraction of low-level architectures en-

ables SPIR-V to port to various platforms and then launch on heterogeneous devices.

• Programming Model. Each SPIRV file is called a SPIRV module that can

specify the features8 of the language frontends9 of client drivers through

the OpCapability instruction. SPIRV provides a unified style of instruc-

tions mapped into the programming interfaces of supported platforms through

Decoration instructions. Besides, Extended instruction sets are used to sup-

port the built-in functions (trigonometric functions, exponentiation, etc.) from

high-level languages in SPIRV.

• Execution Model. A SPIRV module contains multiple entry points10 to poten-

tially share functions between the entry point’s call trees [34]. The OpEntryPoint

instruction allows each entry point to specify the execution model that will be

mapped into the execution model of the specified platform.

• Memory Model. SPIRV does not define a typical memory model. Instead, it

provides the OpMemoryModel instruction to specify which memory model of sup-

ported platforms will be chosen and then handle all memory objects decorated

by Decoration instructions over the client drivers. Besides, the OpMemoryModel

instruction also supports the two kinds of addressing modes – logical and non-

logical addressing modes to express the virtual pointers and physical pointers

used in client drivers.

8The list of features from Page 101-104 in [34].
9GLSL(OpenGL), ESSL(OpenGL ES), OpenCL C/C++, etc. The full list at Page 43 in [34].

10A function in a SPIRV module where execution begins.



15

Figure 2.6: The ecosystem of SPIRV.

The Ecosystem of SPIRV

The ecosystem of SPIR-V is illustrated in Figure 2.6. Different frameworks of parallel

computing support compiling the accelerated kernels or shaders into SPIRV IR and

then lowered by the client drivers. Besides, the command line tool called clspv [35]

can compile OpenCL kernels into Vulkan computing shaders. However, it is worth

noting that SPIR-V IR contains the specific information of target backends, so only

the SPIRV IR converted from LLVM IR can launch by OpenCL runtimes11.

The design of SPIRV enables parallel computing not bound to a particular plat-

form (supported platforms in Figure 2.7) through porting to various backends. Al-

though SPIR-V cannot target directly on Metal [36], SPIRV Cross [37] can parse and

convert SPIRV IR to Metal Shader Language [38] and then execute in Apple Metal

as long as the SPIRV IR is written for compute shaders.

11Any OpenCL implementation. OpenCLOn12 is a mapping layer of OpenCL 1.2 specification
for Windows.
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Figure 2.7: The supported platforms in the ecosystem of SPIRV.
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Figure 2.8: The overview of PTX code to native ISA.

2.1.4 Parallel Thread Execution

Parallel Thread Execution (PTX or NVPTX) [39] defines a low-level virtual machine

and ISA used in NVIDIA’s GPUs for general-purpose parallel programming. It has

an assembly-language style syntax and provides a machine-independent ISA for exe-

cuting across CUDA devices with different architectures. In the CUDA programming

environment, kernels are compiled as PTX code and then handled over the CUDA

driver at install time to translate to native target-architecture instruction sets (illus-

trated in Figure 2.8).
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Since PTX is dedicated to CUDA devices, more details about CUDA/PTX are de-

scribed in Section 3.2.

2.2 Recent Research and Development of SYCL

Although CUDA can exploit NVIDIA devices and achieve high performance, it has

been exclusive and only supports NVIDIA chipsets. By comparison, SYCL and

OpenCL provide an efficient way to support heterogeneous target hardware. There-

fore, there are a lot of researches to port CUDA programs with SYCL or OpenCL

runtimes. [40] [41] [42] show that the conversion between OpenCL and CUDA also

performs well, even though there are some extra overheads compared to native CUDA

programs. [43] provides a refactoring tool for transforming CUDA programs into

SYCL programs automatically. [44] integrates the cuDNN library via SYCL and thus

enables oneDNN to target NVIDIA hardware.

There have many kinds of research to exploit SYCL in machine learning projects.

[44] demonstrate that SYCL can work for cuDNN and oneDNN to achieve seamless

cross-platform performance portability. [45] utilizes SYCL-DNN, one open-source li-

brary based on SYCL, to accelerate neural networks on OpenCL devices and argues

that further optimizations on memory prefetching are necessary to make it perform

better. Meanwhile, SYCL BLAS [46] and SYCL-DNN are also exploited to deploy

computing kernels auto-tuned by machine learning while keeping good performance

across heterogeneous accelerators [47] [48]. [49] research on using oneAPI, an SYCL-

based programming model, to facilitate co-execution and explore the performance

limits of heterogeneous systems and turns out oneAPI can enhance co-execution and

improve efficiency when using dynamic load-balancing algorithms.

Apart from the above, SYCL also shows the potential to contribute to autonomous

driving since many papers propose computing stacks based on OpenCL and CUDA to

address the computing heterogeneity of autonomous driving systems. For example,

4C framework [50] requires defining the top-level APIs to incorporate computing

models, such as OpenCL, CUDA and OneAPI, but SYCL could ease their efforts to

write the top-level APIs to interact with low-level computing resources. Besides, a

modularized computing stack based on OpenCL is depicted in [8] but cannot support
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other vendor accelerators except OpenCL, such as NVIDIA GPUs. With the support

of SYCL, this computing stack would enable accelerating computations across vendor

hardware instead of limiting to OpenCL.

Concerning the performance comparison among computing frameworks, on the one

hand, SYCL has significantly improved performance compared to its earlier versions

[40] [41], although it still cannot outperform plain OpenCL and CUDA. On the other

hand, with the improvement of SYCL implementations, [51] [52] [53] [54] compares

SYCL and other popular frameworks and illustrates the negligible gap in performance

between them, and SYCL has the potential to be competitive with other conventional

computing frameworks. Some research [55] [56] also parameterizes SYCL kernels to

demonstrate the performance portability of SYCL across heterogeneous platforms

and show that SYCL provides competitive performance against optimized libraries

such as CLBlast [57] and MKL-DNN.



Chapter 3

Parallel Frameworks

In this chapter, we try to illustrate the overall architectures of three popular parallel

frameworks (OpenCL, CUDA and SYCL), as both OpenCL and CUDA are the two

most prevalent frameworks supported by SYCL and have technical supports in QNX

environments. By explaining the architectures of OpenCL and CUDA and illustrating

how they are related to techniques mentioned in the previous chapter, we can exem-

plify why SYCL is proposed. Finally, the programmability and kernel construction

in three computing frameworks is compared to illustrate how they are integrated as

unified programming interfaces.

3.1 OpenCL

OpenCL is a programming framework and standard set from Khronos Group, aiming

for heterogeneous parallel computing on cross-vendor and cross-platform hardware.

To handle massively parallel code execution on heterogeneous platforms, it layers the

programming model as the platform model, the memory model, and the execution

model. Therefore, OpenCL enables to scale of code from simple embedded microcon-

trollers to general-purpose CPUs up to parallel GPGPU hardware pipelines, without

rewriting existing code massively.

19
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Figure 3.1: OpenCL platform model.

3.1.1 Platform Model

The platform model for OpenCL is a top-level abstraction for low-level hardware

resources. It consists of a host connected to one or more OpenCL devices. Each

OpenCL device includes one or more Computing Units (CUs), further divided into

one or more processing elements (PEs), which perform the actual computation. As

shown in Figure 3.1, the OpenCL host, emulated on CPUs, controls multiple OpenCL

devices. Therefore, an OpenCL application is implemented as both the host code

and device kernel code. The host code runs on a host processor, such as CPU, bound

to the OpenCL host, and submits the kernel code as commands from the host to

OpenCL devices. At the lowest level, all processing elements and computing units

are responsible for scheduling and executing OpenCL kernels1.

In OpenCL, device kernels are compiled just in time via an online compiler2 or

ahead of time via offline compiler3 provided by an OpenCL platform. The OpenCL

platform also has multiple version identifiers, including the OpenCL C4 language, the

device and vendor-specific platform, as developers may provide programs in the forms

of C source strings, the SPIR-V intermediate language, or as implementation-defined

binary objects.

1A kernel is a function declared in a program and executed on an OpenCL device for acceleration.
2An online compiler is available during host program execution using standard APIs.
3An offline compiler is invoked outside of host program control, using platform-specific methods.
4OpenCL C is a subset of C99 with appropriate language additions.
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3.1.2 Execution Model

The OpenCL execution model is conformant to the platform model and is defined in

terms of two distinct units of execution: kernels and a host program.

An OpenCL kernel executes within a well-defined context managed by the host.

The context is exposed by an OpenCL platform and defines the environment within

which kernels execute. It maintains OpenCL devices, kernel objects5, program ob-

jects6 and memory objects7 during its lifetime. To enable the host to interact with a

targeted device, OpenCL exposes various functions to the host through a command

queue associated with the device, which mainly includes three command types:

• Kernel-enqueue commands: Enqueue a kernel for execution on a device.

• Memory commands: Transfer data between the host and device memory, be-

tween memory objects, or map and unmap memory objects from the host ad-

dress space.

• Synchronization commands: Explicit synchronization points that define order

constraints between commands.

Regardless of the host side or the device side, the OpenCL runtime handles all

commands in a command queue through six states shown in Figure 3.2. Commands

can capture the status of other commands through event objects8 and thus execute

relative to each other in either in-order execution or out-of-order execution. Multiple

command queues in the same context can also keep consistent via synchronization

points established in event objects.

The OpenCL execution model also provides details about how the kernels exe-

cute. Once a kernel enqueue command submits a kernel for execution, the kernel is

instantiated, and then an index space (called NDRange) is created for managing the

5A kernel object encapsulates a specific kernel function declared in a program and the argument
values to be used when executing on OpenCL devices.

6A program object encapsulates a reference to an associated OpenCL context, a program source
or binary, the number of kernel objects attached and the latest built program executable.

7A memory object is a handle to reference counted region of the global memory.
8An event object encapsulates the staus of operations such as commands.
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Figure 3.2: The six states and transitions of commands in the execution model.

kernel instance, argument values and parameters. The fine-grained composition of

the index space is called work-groups that manage all work-items9 associated with

the kernel instance. Such a mechanism provides some functions to guarantee the syn-

chronization between work-groups and the invisibility between work-items belonging

to different work-groups, thereby guaranteeing the correctness of computations on a

device.

The kernel instance will not launch until its dependencies - data dependency and

event dependency, are captured. The targeted device schedules work-groups in the

work-pool for execution on the computing units of the device. After completing all

computations, the global memory will update according to global IDs bound to work-

groups.

3.1.3 Memory Model

The OpenCL memory model describes the structure, contents and behaviour of the

memory exposed by an OpenCL platform as OpenCL programs execute. It is defined

9A work-item is executed by Processing Elements as part of a work-group executing on a Com-
puting Unit.
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Figure 3.3: OpenCL Memory Model. Global and constant memories are shared
between the devices in a context, while local memory and private memory are
assoicated with a single device.

in four parts:

• Memory regions. The distinct memories are visible to the host and the devices

within the same OpenCL context, called the host memory and device memory.

The device memory is further divided into four memory regions (shown in Figure

3.3) -global memory, constant memory, local memory and private memory, to

provide fine-grained control and parallelism on devices.

• Memory objects. The objects on the global memory are defined by the OpenCL

API and their management by the host and devices. All allocations of memory

are done in the host, and the movement of memory objects between the host

and devices is through interfaces provided by a shared virtual memory.

• Shared virtual memory (SVM). A virtual address space exposed to both the host

and the devices within an OpenCL context. SVM enables the use of pointer-

based data structures in OpenCL kernels since it logically extends a portion of

the global memory into the host address space and allows work items to access

the host address space.

• Consistency model. Rules that define the visibility of data when multiple units

of execution load data from the memory.
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Figure 3.4: The overview of OpenCL compilation.

By mapping device memories into the unified memory model, different devices

can work correctly using the consistent OpenCL APIs, thereby facilitating parallel

computing on heterogeneous devices. Furthermore, the memory model gives program-

mers more explicit control over the behaviour of each work item and work-group, while

there are no details of target-specific architectures exposed outside of the OpenCL

environment.

3.1.4 OpenCL Compilation

Since many vendors have different OpenCL implementations conforming to the

OpenCL standard, OpenCL defines the Installable Client Driver Loader [58] mecha-

nism that enables developers to build applications against the ICD loader and load

a specific OpenCL implementation (shown in Figure 3.4) when executing. The ICD

loader can expose OpenCL API entry points, enumerate vendor-specific OpenCL im-

plementations and forward OpenCL API calls to the correct implementation, while

the vendor-specific implementations can expose hardware devices and provides defi-

nitions of OpenCL API entry points.

The OpenCL kernels are extracted from one OpenCL program and then trans-

lated into LLVM IR (See section 2.1.2) in the pipeline of clspv [35] compiler. Users
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can provide different compilation options to use different LLVM backends and pro-

duce corresponding intermediate representations (SPIRV for Intel devices, PTX for

NVIDIA devices, for example). During execution, the vendor-specific OpenCL run-

times can compile IR into device binaries just-in-time or launch device bianries di-

rectly compiled ahead-of-time.

3.2 CUDA

CUDA is a general-purpose parallel computing platform introduced by NVIDIA in

2006 that enables NVIDIA GPUs to solve complex computational problems more

efficiently than CPUs. Through the extension of CUDA C/C++, developers can

develop high-performance parallel programs running on NVIDIA GPUs. To provide

fine-grained parallelism of data and threads, the CUDA programming model abstracts

its cores as the three keys – a hierarchy of thread groups, shared memories and barrier

synchronization – that programmers can utilize simply as a series of programming

interfaces.

3.2.1 Execution Model

In NVIDIA hardware, the thread hierarchy (illustrated in Figure 3.5) is similar to

the division of work items and work-groups in the execution model of OpenCL. Each

independent element that executes a kernel is called CUDA thread (which OpenCL

refers to as work-item), and the batch of threads is organized as a grid of basic blocks

(also called Cooperative Thread Array aka CTA, and which OpenCL refers to as

work-group). To manage hundreds of threads effectively running several different

programs, NVIDIA GPUs employ the SIMT architecture to create, manage, schedule

and execute kernels. Each thread is mapped to one scalar processor core that owns

a private instruction address and register state during execution. Therefore, threads

within the same block execute in the SIMT mode: threads execute the same kernel

instance but may operate different data region. The unique thread identifier for each

thread allows them to work independently on different data or cooperatively on the
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Figure 3.5: The thread hierarchy in CUDA.
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Figure 3.6: The memory hierarchy in CUDA.

same data region through the mechanism of synchronization points specified in the

block, thereby peaking the performance of parallelism.

3.2.2 Memory Model

Typically, a system is composed of a host and one or more devices, each of which has

a separate memory. Figure 3.6 illustrates the hierarchy of the memory model in the

CUDA programming model. Each thread is guaranteed to own private local memory,

while each thread block exposes a shared memory to all threads of the block during

its lifetime. Apart from the global memory that all threads have access to, additional

memory spaces, including constant memory and texture memory, are reserved for

optimizing different memory usage and accessible by all threads. It is similar to the

memory model of OpenCL except that CUDA provides more explicit mechanisms to

regulate and synchronize the behaviour of each thread and block.
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3.2.3 CUDA Compilation

The separate compilation of CUDA kernel functions is supported since CUDA 5.0 [59],

allowing the CUDA driver to run PTX code generated by other compilers. In Figure

3.7, the PTX-to-GPU translator of the CUDA driver can translate PTX instructions

(.ptx) as executable device code (.cubin) for various NVIDIA GPU architectures.

Then, the executable device code is wrapped in a host object to output as a fat

binary. The embedded fat binary is linked with the host code to generate the final

executable. The CUDA driver can unwrap the fat binary (or just-in-time compile

PTX into binaries) and load executable device code into the specific device during

execution.

On the other hand, LLVM supports targeting LLVM IR to the PTX backend

since LLVM 3.0 [60], so PTX code can also be generated from OpenCL kernels in

an OpenCL programming environment. The whole process is similar to OpenCL

compilation (See Figure 3.4, except that the compilation of OpenCL kernels requires

including the libclc library to maps OpenCL built-in functions to target-specific

functions in the LLVM IR.

3.3 SYCL

SYCL [61] is a single source, high-level, standard C++17 programming model, that

can target a range of heterogeneous platforms (listed in Table 3.1), developed by

Khronos Group, announced in March 2014. It is a royalty-free, cross-platform parallel

programming framework designed to abstract the complexity of traditional parallel

programming models like OpenCL, allowing developers to use modern C++ features,

such as inheritance, templating and operator overloading.

Earlier versions of SYCL [62] were closely aligned with OpenCL and behave like

a C++ abstraction layer over OpenCL, aiming to make parallel programming easier

based on OpenCL. However, SYCL 2020 [63] transitioned to a generalized backend

model, making OpenCL just one of many different potential backends. SYCL is ca-

pable of hiding a large amount of the complexities of different backends, substantially
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Table 3.1: Features of SYCL

Single source Developers can write both host and device
code in the same C++ source file (executed
like in Figure 3.8), and then the source file
will be compiled through two compilation
passes, one for the host code and one for the
device code.

High-level Backend APIs (e.g., OpenCL) is abstracted
as common boilerplate code in SYCL, in-
stead of writing different codes for specific
backends.

Heterogeneous platforms SYCL can target any device supported by
its backend, including CPU, GPU, ASIC,
FPGA and DSP. (The current specification
is limited to OpenCL and CUDA.

SYCL  
C++ source code

submitted by
sycl::queue

Runs natively on
CPU

SYCL devices

Regular CPU code

Device  
kernels

Figure 3.8: Execution of single source file.

reducing the amount of the host-side code needed over. It is designed to abstract

low-level resources as different models, which makes it more user-friendly.

3.3.1 Backend Model

The ability of SYCL to target multiple heterogeneous accelerators is from the SYCL

backend model. Under the SYCL backend model, SYCL objects can contain one or

multiple references to a certain SYCL backend native type. However, not all SYCL

objects will map directly to an SYCL backend native type, so the mapping between
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SYCL interfaces and a particular SYCL backend is defined either by the documenta-

tion of SYCL implementations or by a separate SYCL backend specification document

provided by Khronos Group.

Although different code implementations of SYCL specification have different

strategies to construct the SYCL backend model, the core philosophy is to abstract

a plugin layer to interface different backends with the SYCL runtime. The plugin

layer can map specific backend APIs into SYCL generic interfaces, exposing different

backends to the SYCL platform model and thus providing unified programming in-

terfaces. Such a mechanism enables SYCL applications to build upon several active

backends, thereby guaranteeing the interoperability between SYCL backends.

With the support of SYCL, a system will be able to integrate different accelerators

and provide more powerful computing ability. Although existing SYCL implemen-

tations do not support all vendor-specific backends, the situation will happend to

change with the improvement of backend plugins.

3.3.2 Platform Model

The platform model behaves like a proxy of computing resources exposed by the

backend model. An SYCL context, which holds all runtime information interfaced

with the SYCL runtime and SYCL backends, can be constructed from the platform

model explicitly or implicitly, and then is used to group multiple devices managed by

the SYCL platform. As a result, a group of devices in the same SYCL context can

have the visibility of each other’s memory objects and therefore allow to exchange of

data between devices. Nevertheless, developers do not need to manipulate at the level

of the SYCL context. All device attached to a particular context will be bound to

SYCL queues and then exposed to developers. Therefore, the SYCL platform model,

represented as the SYCL runtime in one system, can bridge SYCL backends with

SYCL applications.
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3.3.3 Execution Model

In SYCL applications, there are three scopes, including application scope, command

group scope and kernel scope. Only code in the kernel scope, called kernels, runs on

selected devices. Therefore, the SYCL execution model is comprised of the application

execution model and kernel execution model. The schedule and execution of one

SYCL application are under the control of the SYCL runtime conformant with the

SYCL execution model.

• Application execution model. Code in the application scope and command

scope, called the host code, runs on the host that is an emulated environment

on CPU in SYCL. The SYCL runtime exposes SYCL interfaces, a mapping of

low-level resources, to SYCL applications. Therefore, SYCL applications can

capture the requisites of kernels and group them into command group objects.

Command group objects contain the order execution of kernels under the control

of the SYCL runtime and will be submitted to execute on devices bound to

SYCL queues. The application execution model depends on the result of the

kernel execution model if the SYCL runtime requires to synchronize between

the host and devices. Therefore, the host code in an SYCL application can

be compiled in any C++ compiler, called the host compiler, reducing a large

amount of work to porting SYCL on QNX.

• Kernel execution model. The SYCL kernel execution model abstracts the com-

plexities of parallel computing as unified programming interfaces. Typically,

OpenCL devices and CUDA devices use different programming styles to write

parallel kernels, while SYCL allows developers to use unified programming in-

terfaces to write kernels for both kinds of devices. Their differences in kernel

code are shown in the code snippets.

Besides, built-in kernels in specific backends are also supported in SYCL, because

SYCL can directly encapsulate such kernels as object files and send them together

with SYCL kernels to targeted devices. However, since different backends may sup-

port different instruction set architectures, SYCL is designed to compile kernels as

intermediate representations that will be finalized on targeted devices. As a result,
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SYCL implementations must provide an SYCL-aware compiler, called the device com-

piler, to compiler kernels separately.

3.3.4 Memory Model

The SYCL memory model must keep consistency on both the host and devices so

that SYCL can be conformant to the platform model and the execution model. It is

essential to map the host memory and devices memory to the same global address

space, otherwise, the SYCL runtime may fail to synchronize data between the host

and devices. Therefore, an SYCL implementation must guarantee that the same

consistency model is used across the host and devices.

• Application memory model. SYCL memory objects are not designed to bind

with particular devices. Instead, all devices can access SYCL memory objects

in one SYCL application, regardless of the SYCL context where they reside.

By encapsulating underlying SYCL backend memory objects together with the

host memory, SYCL enables the same memory object to be shared between

the host and devices in different contexts, platforms or backends. the SYCL

memory model enables the device compiler to handle SYCL memory objects

correctly and keep them consistent behaviour between the host and devices.

• Device memory model. After SYCL memory objects are instanced as backend-

specific memory objects, SYCL also provides unified interfaces for developers to

control their consistency on the targeted device, avoiding developers to manage

memory using complicated backend-specific APIs. It is also worth noting that

backend-specific memory objects are visible to each other only when they have

the same SYCL context.

As the high-level abstraction of OpenCL, the memory model of SYCL is also

inherited from OpenCL (like Figure 3.3).
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Figure 3.9: Overview of SYCL implementations.

3.3.5 SYCL Architecture and Compilation

SYCL Architecture

Although SYCL implemetations10 may have different definitions of some SYCL fea-

tures, all of them have the same SYCL architecture like in Figure 3.9:

• SYCL implementations provide the SYCL interface as a C++ template library

that developers can use to access the features of SYCL. Both host and device

code can use the same interface.

• SYCL runtime is a library that is responsible for scheduling and executing

tasks submitted by SYCL command queues11. It loads kernels12, tracks data

dependencies and schedules commands in command groups13.

• The host device is an emulated backend that is executed as native C++ code

and emulates the SYCL execution and memory model.

10Existing SYCL implementations. See https://www.khronos.org/sycl/.
11A SYCL command queue is an object that holds command groups to be executed on s SYCL

device
12A SYCL kernel which can be executed on a device, including SYCL host device, created by three

ways: C++ lambda expression, named function object and interoperability with other languages or
APIs

13The group of commands for transferring and processing data on a device using kernel

https://www.khronos.org/sycl/
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• The backend interface is where the SYCL runtime calls down into a backend

to execute on a particular device. (In SYCL 1.2.1, the standard backend is

OpenCL but the latest SYCL implementations have supported interfaces from

other vendors (like CUDA from NVIDIA).

• The SYCL compiler is a C++ compiler that can identify SYCL kernels and

compile them down to an IR or ISA (which can be SPIR, SPIR-V, PTX or any

proprietary vendor ISA).

Each SYCL implementation may provide different SYCL-aware C++ compilers, such

as DPC++ [64] and ComputeCPP [65], thereby enabling SYCL programs to perform

best while developers have access to the full range of capabilities of OpenCL and

other backends through the features of the SYCL libraries.

SYCL Compilation

The SMCP (Single-source Multiple Compiler-Passes) design of SYCL offers the power

of source integration and remains the flexibility of toolchains. Multiple different

compilers can work together as a compilation flow where the source file is passed

through and the resulting application combines with the compiled results. Therefore,

the compilation of SYCL applications also requires two separate compilation, similar

to OpenCL and CUDA compilation, to output the final executable.

Figure 3.10 illustrates how SYCL implementations handle SYCL applications.

The device compiler firstly generates the headers to provide the declarations of SYCL

kernels for the host code and then emits the intermediate representations that will be

handled by the device driver (such as OpenCL runtimes or the CUDA driver) when

executing the application (shown in Figure 3.11). The offload wrapper encapsulates

the generated IR as a host object, and then the host linker outputs the final executable

by linking the wrapped IR and the host code. Particularly, if users provide an option of

ahead-of-time compilation (AOT) for the device compiler, the wrapped object file will

also include the target-specific binary code. Particularly, most SYCL implementations

only support ahead-of-time compile SYCL kernels for CUDA devices.
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When running SYCL applications, the OpenCL ICD loader can launch the binary

code directly or compile the IR just-in-time for the specific LLVM backend (contained

in the device compiler). Then, the API calls in the binary code can be forwarded to

the target architecture by the loader.

3.4 The Comparison of CUDA, OpenCL and

SYCL

3.4.1 Programmability

For most programmers, the construction of OpenCL and CUDA programs is not

easy to deal with. Before executing a kernel, programmers must call host APIs

sequentially to construct and execute a kernel in CUDA and OpenCL (See code A.1

and A.2), making the whole program verbose. By comparison, SYCL hides a lot of

the complexities of host APIs1 and enables users to focus on writing clean accelerated

kernels (see code A.3). Apart from the simplicity of application source code, the design

of SYCL empowers the reusability of templated kernels for different data types [51].

Besides, SYCL can manage data access automatically, whereas CUDA and

OpenCL require explicit data management in one program. After allocating memory

on the host or devices, SYCL runtime can handle data movement and synchronization

since SYCL relies on the C++-style RAII and thus can capture data dependencies

between devices and the host [51]. In contrast, developers must manually move data

to the selected device and manage data access explicitly in a CUDA or OpenCL en-

vironment. Particularly, SYCL may be integrated as a C++ standard library class

on parallelism and heterogeneous computing [11] [12].

3.4.2 Kernel Construction

According to the compilation of the three computing frameworks (see section 3.1.4,

3.2.3 and 3.3.5), the essential part of them is to extract the kernels from source code.

Both CUDA and OpenCL provide some extensions and macros to handle kernels in
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the host code, while SYCL allows writing kernels in standard C++ syntax.

• Marking kernels14. CUDA uses three specifiers: __host__, __global__,

__device__ to mark a kernel and specify on which device the kernel executes,

while OpenCL kernels are marked by __kernel, but its parameters are bound to

different address space qualifiers for a particular device. By comparison, SYCL

kernels represent as C++ lambda functions or class functors, not requiring extra

macros to mark an SYCL kernel.

• Invoking kernels15. The invocation of CUDA kernels is like a regular C++

function call, whereas OpenCL kernels must handle by sequential API calls for

execution. In contrast, SYCL queues can submit kernels automatically.

• Special indices16. CUDA organizes the threads executing a kernel as a hierarchy

level of grid-block-thread (see section 3.2.2) and provides unique identifiers for

indexing. On the other hand, due to the similarity of OpenCL and SYCL mem-

ory model (see section 3.1.3 and 3.3.4), both provide the ND-range mechanism

to index each work item and work group.

By comparison, SYCL has a cleaner syntax to write a kernel and execute device

code in standard C++ function calls. The three code lists also demonstrate that

SYCL makes parallel programming more intuitive and user-friendly than OpenCL

and CUDA, thereby providing a simpler abstraction for heterogeneous computing.

14See Appendix B.2: device API equivalence for kernel specifiers.
15See Appendix B.1: runtime API equivalence.
16See Appendix B.3: indexing equivalence.



Chapter 4

Proposed Methods of Porting SYCL on

QNX

In this chapter, we briefly compare the current development of SYCL implementations

and choose to use DPC++ and SYCL-GTX in our experiments. Then, we present

our experiments in two cases and introduce our proposed methods and schemes.

4.1 Possible SYCL Implementations for QNX

There are many mainstream SYCL implementations shown in Figure 4.1. By com-

parison, ComputeCpp is a closed-source commercial project developed by Codeplay

and thus does not allow us to customize in our experiments, and triSYCL is incom-

plete and requires pre-installing many toolchains (especially LLVM toolchains) before

building their SYCL runtime in a system. Most accelerators supported by hipSYCL

work through OpenMP and HIP instead of OpenCL. DPC++ includes SYCL libraries

and contains all required tools in their source code. Besides, SYCL-GTX, a minimal

SYCL implementation developed by a single developer, implements many main fea-

tures in the SYCL 1.2 specification and can connect with OpenCL runtime directly.

Therefore, we decide to use DPC++ and SYCL-GTX in our tests since our primary

goal is to demonstrate the feasibility of porting SYCL on QNX, not to build a robust,

complete SYCL toolchain at the initial stage.

39
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Figure 4.1: Existing mainstream SYCL implementations.

It is essential to compile device code for specific accelerators in SYCL (see sec-

tion 3.3.5), but there is no ready device compiler on QNX. Consequently, we first

conducted our experiment on Ubuntu 18.04 to figure out the workflow of SYCL ar-

chitecture and then tried different strategies to build an SYCL environment on QNX.

In our Linux machine, there are three SYCL backends: the host backend (Intel CPU),

the OpenCL backend (Intel GPU) and the CUDA backend (NVIDIA GPU). We broke

our tests into two stages: using DPC++ and SYCL-GTX respectively on Linux and

QNX.

4.2 Using DPC++

DPC++ is an SYCL implementation maintained by Intel, which is conformant to

SYCL specification 1.2.1 [66] and supports some features of SYCL specification 2020

[67]. It supports different backends, including OpenCL and CUDA, by the Plugin

layer – an abstraction between SYCL runtime and specific backend runtime (shown

in Figure 4.2). The section SYCL backend model describes why the plugin layer can

connect with vendor-specific accelerators.
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Figure 4.2: The overview of DPC++ architecture.

We mainly test DPC++ on Linux to demonstrate the importance of compiling

device code for accelerators. Then, we try DPC++ on QNX and report some existing

problems preventing from building DPC++ runtime on QNX.

4.3 Using SYCL-GTX

4.3.1 The Design of SYCL-GTX

SYCL-GTX [68] is an SYCL implementation maintained by a single developer, but

now this project is no longer actively maintained by the author [69]. The implemen-

tation is far from complete and only covers some features of SYCL specification 1.2.

However, this project still can help us try some SYCL features on QNX.

Our tests demonstrated that SYCL-GTX is a high-level encapsulation of OpenCL

runtime APIs rather than has a plugin layer that can interact with different backends.

Figure 4.3 shows the mapping of SYCL-GTX and OpenCL.

To make SYCL-GTX code workable with any host compiler, some special C++
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classes and macros are used to capture the kernel code:

• source class. . The kernel invocation parallel_for<..>(..) will create source

object to capture SYCL kernel code line by line and then combine with the

argument information held in accessors class.

• data_ref class. As the host cannot have access to the private memory region of

the accelerators, all variables in SYCL kernels must be derived from data_ref

class to emulate them as native types in the host but behave as OpenCL vari-

ables.

• C++ macros. To enable the host compiler to recognize OpenCL control

flow correctly, SYCL_IF, SYCL_FOR, SYCL_WHILE, SYCL_END are used to decorate

OpenCL control flow so that the SYCL-GTX runtime can translate SYCL con-

trol flow as OpenCL C code.

The above unique mechanisms enable SYCL-GTX to generate OpenCL C code at

runtime correctly and feed the generated code to the OpenCL C compiler to output

the device binary just in time. On the one hand, as a result, the traditional GCC

compiler can also compile SYCL-GTX applications. However, on the other hand,

compared to the workflow of OpenCL, those mechanisms result in more compilation

time (see section 5.2.2) and may introduce extra overhead at runtime (see section

5.2.4 and 5.2.5).

Besides, there are some drawbacks to SYCL-GTX:

• Cannot run SYCL applications on CPU devices. SYCL-GTX does not imple-

ment an SYCL host backend required in SYCL specification 1.2.1. Hence, users

cannot execute their SYCL kernels on the host backend emulated on CPUs.

However, it is still possible to accelerate SYCL kernels on OpenCL devices.

• Can only run SYCL applications on OpenCL devices. As a high-level abstrac-

tion of OpenCL, SYCL-GTX does not provide the mapping of interfaces of other

vendor-specific backends. Consequently, SYCL-GTX runtime can only offload

kernel acceleration to OpenCL devices. It is worth noting that SYCL-GTX can

query the information of CUDA devices, but there is no way to interact with

the CUDA driver.
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we will discuss the possible impacts of those drawbacks to the future work in the

next chapter.

4.3.2 Experiment Methods in SYCL-GTX

As most machine learning algorithms require heavy floating-point operations, we de-

termine to benchmark floating-point multiplication in vector (algorithm 1) and matrix

(algorithm 2). It is worth noting that we use iterative matrix multiplication algorithm

and do not take any optimization, although many optimized algorithms could improve

the performance of matrix multiplication. Its time complexity should be O(N^3) and

would inflate dramatically with the increase of data volume. Consequently, when

running real-time application, we must offload computations carefully to guarantee

the execution of real-time applications.

Besides, since SYCL-GTX is built upon OpenCL, we test the two algorithms using

OpenCL and SYCL-GTX to further demonstrate the performance of SYCL-GTX on

Linux and QNX.

Algorithm 1: Vector Multiplication

Input: A, B, C, N
for i = 0 to N do

C[i] = A[i] ∗B[i];
end

Since QNX has better support on Intel boards than general laptops and PCs, all

cases are tested on Intel NUC 6i5SYH. Furthermore, SYCL-GTX does not provide

the interface to load pre-compiled device binaries and consequently requires compiling

the kernel every time. Therefore, all programs call identical OpenCL APIs to keep

consistent between them and thus minimize possible errors. Having a clear compari-

son of the performance difference between OpenCL and SYCL-GTX on Ubuntu and

QNX, the total execution time is divided into five parts:

• Warmup. This part includes querying platform information, preparing execu-

tion contexts and creating execution queues.
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Algorithm 2: Matrix Multiplication

Input: A, B, C, N
for i = 0 to N do

for j = 0 to N do
temp← 0.;
for j = 0 to N do

temp← temp + A[i ∗N + j] ∗B[i + j ∗N ];
end
C[i][j]← temp;
; . Or in vectorization-style: C[i ∗N + j]← temp

end

end

• Kernel compilation. Compiling the kernel source for all devices or a specific

device.

• Linkage. Linking a set of the compiled program objects and libraries for all the

devices and creating the final executable binary.

• Data movement. Copying data from the host memory to dedicated device

memories.

• Computation. Executing the compiled kernels after data ready.

Besides, we also tried to find some methods to improve the performance of SYCL

on QNX.



Chapter 5

Result Analysis and Discussions

In this chapter, we test DPC++ and SYCL-GTX separately according to our pro-

posed methods in chapter 4. Then, we analyze the results of the two cases and discuss

some possible solutions and future directions for their problems. Besides, we also show

the improvement of our new method in SYCL-GTX and give some suggestions for

QNX to port SYCL in the future.

5.1 Testing DPC++

As we finally demonstrate that DPC++ is not compatible with QNX and cannot com-

pare its performance difference on both Linux and QNX, we divide the experiments

of DPC++ into two sections and introduce them separately.

5.1.1 DPC++ on Linux

Our experiment illustrates that the plugin layer in DPC++ does not directly map

CUDA driver APIs. Currently, DPC++ only maps OpenCL API entry points in

the plugin layer, and the OpenCL ICD loader can forward requests from those entry

points to CUDA device runtime APIs (see section 3.3.5 and Figure 3.11).

After modifying code List A.3, we compile and run the simple SYCL application

46
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Table 5.1: The relation of DPC++ compilation and execution.

Compilation option Selected back-
end

Execution error

-fsycl Host backend N/A

-fsycl OpenCL back-
end

N/A

-fsycl CUDA backend CL_INVALID_KERNEL_NAME

-fsycl,

-fsycl-targets=nvptx64

Host backend CL_INVALID_KERNEL_NAME

-fsycl,

-fsycl-targets=nvptx64

OpenCL back-
end

CL_INVALID_KERNEL_NAME

-fsycl

-fsycl-targets=nvptx64

CUDA backend N/A

by different compilation options and specify different SYCL backends. The result is

shown in Table 5.1.

DPC++ compiles the device code after specifying the option -fsycl and out-

put the SPIRV code in default, whereas the option -fsycl-targets=nvptx64 sets for

outputting PTX code. Since users must specify the compilation option for CUDA

devices, it must be compiled ahead of time when targeting CUDA devices.

The execution error CL_INVALID_KERNEL_NAME occurs when the kernel name cannot

be found in a program. The host compiler is responsible for converting the SYCL

kernel as LLVM IR and just-in-time finalize it as the target-specific instructions during

execution. If the compilation option of the device compiler is not matched to the

selected backend, the host code cannot distribute the compiled kernels to the selected

backend. Consequently, it will report the execution error CL_INVALID_KERNEL_NAME.

For the OpenCL backend, the compilation option -fsycl-targets specifies the

device compiler to generate PTX code for the CUDA backend. Consequently, the de-

vice binary cannot be recognized by OpenCL devices during execution. On the other

hand, the wrong device binary can pass the compilation since the device compiler

wraps all kernels as host objects, and the internal properties of wrappers are invisible



CHAPTER 5. RESULT ANALYSIS AND DISCUSSIONS 48

to the OpenCL runtime before execution. Therefore, OpenCL can create a program

by clCreateProgramWithBinary() but fail to instantiate the wrong device binary as

an OpenCL kernel and create the correct kernel name. When it comes to the CUDA

backend, the cause is also due to unmatched device binaries, and the CUDA error is

mapped as the standard OpenCL error.

Hence, it is essential to generate the device binary for the selected backend. Oth-

erwise, it will crash down during execution, even though the SYCL application could

pass ahead-of-time compilation.

5.1.2 DPC++ on QNX

We failed to build SYCL runtime on QNX from DPC++ source code since there are

many incompatible issues between DPC++ and QNX.

The SYCL libraries of DPC++ only support Windows and Linux, so QCC re-

ported errors about system-dependent services, such as accessing local files and di-

rectories. Mainly, QNX does not have an LLVM stack available currently, and conse-

quently, some functions bound to the toolchains of the device compiler cannot pass

the compilation. Besides, the OpenCL interfaces used in DPC++ is inconsistent with

those defined in the legacy version of OpenCL header files on QNX. As a result, the

plugin layer of DPC++ fails to map OpenCL APIs as SYCL interfaces correctly. Par-

ticularly, DPC++ may not be compatible with the internal OpenCL archive provided

by QNX since DPC++ includes some OpenCL extensions exclusive to Intel. It is also

worth noting that those errors are parts of SYCL core libraries. We could not con-

tinue compiling the rest of the SYCL libraries since the above errors terminated the

compilation. Therefore, there may have many unknown problems to build DPC++

SYCL runtime on QNX.

To summarize, our tests on Linux demonstrated that it is essential for executing

SYCL applications to correctly generate the device code for the selected backend and

devices. It also turns out that device binaries only have impacts when executing

and do not influence the compilation of an SYCL application. Although it may not

be feasible to reuse DPC++ source code to build SYCL runtime on QNX due to

compatibility issues, it is still possible to compile the host code and device code of an
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Figure 5.1: The summary of vector and matrix multiplication.

SYCL application with different compilers built for different systems separately. We

will give more discussions in the section 5.3

5.2 Testing SYCL-GTX

In our research, SYCL-GTX is the only one SYCL implementation that we can refac-

tor and then apply to QNX. Therefore, we put the results of SYCL-GTX experiments

on both systems together to illustrate their performance gap on difference operating
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systems.

The overall results are shown in Figure 5.1. As we can see, warmup virtually

takes no time compared to the other aspects during execution. However, on the

one hand, the increased size of vectors leads to the decreased percentages of kernel

compilation and linkage, while data movement and computation take more and more

time. On the other hand, matrix multiplication inclines to be stable in computation

whose percentage keeps steady even with bigger matrix sizes. Meanwhile, there is a

prominent increment in the percentage of data movement on QNX. It is also worth

noting that both OpenCL and SYCL-GTX have difficulty in matrix multiplication

when feeding more and more data. For example, on Ubuntu, the usage of GPU

reached 100% for 3000*3000 matrix in SYCL-GTX and 4000*4000 matrix in OpenCL,

and feeding more data will not get any response in a long time.

5.2.1 Warmup

Both Ubuntu and QNX do not take much time on warmup (shown in Figure 5.2),

and the warmup time only has slight fluctuation with the increased size of vectors

and matrixes.

As the OpenCL we used on QNX is just an internal archive and not formally

released, QNX has no dedicated optimizations on OpenCL, requiring more time to

construct OpenCL and SYCL-GTX context than Ubuntu. Besides, the difference in

system features between them may also result in a gap in warmup. However, despite

the performance difference, their warmup time keeps under 3ms, significantly superior

to the time used on kernel compilation and linkage (illustrated in Figure 5.1).

5.2.2 Kernel Compilation

Compared to warmup, both OpenCL and SYCL-GTX take more time on compiling

kernels (shown in Figure 5.3). In particular, the performance of OpenCL and SYCL-

GTX (about 150ms) on Ubuntu is almost twice that of QNX (about 300ms).
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Figure 5.2: The warmup time of vector and matrix multiplication.
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Figure 5.3: The kernel compilation time of vector and matrix multiplication.

One reason is that the OpenCL C compiler on QNX has not been optimized yet,

while Linux currently has better optimizations on the compiler. Moreover, it may

not be easy to support Clang/LLVM in QNX better, making it hard to optimize the

OpenCL C compiler on QNX. Besides, the design of SYCL-GTX requires generating

OpenCL C code line by line at runtime and then feeding it to the OpenCL C compiler.

As a result, we can also observe a similar performance difference of SYCL-GTX kernel

compilation on Ubuntu and QNX.

Besides, both OpenCL and SYCL kernels are compiled just in time, so it is in-

evitable to compile them repeatedly in our tests. Theoretically, we could compile

SYCL kernels once and reuse them in subsequent tests. For example, the latest
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DPC++ and ComputeCpp support compiling SYCL kernels as separate files and

then loading them at runtime, and programmers can also use pre-compiled OpenCL

kernels clCreateProgramWithBinary() to reduce the compilation time. Therefore,

Comparing five performance aspects in Figure 5.1 illustrates that reducing the time

on kernel compilation is a powerful method to optimize SYCL-GTX.

Nonetheless, SYCL-GTX only covers parts of features of legacy SYCL specification

and does not provide such a mechanism to load pre-compiled kernels and thus reduce

the total execution time significantly. From this perspective, it is possible to add more

features to SYCL-GTX through code refactoring, thereby improving its performance

on QNX. In section 5.2.6, we tried another way to compile SYCL and OpenCL kernels

and found some surprising results, even though those kernels are still compiled just

in time.

5.2.3 Linkage

In our latest experiments, we provide strict exception mechanism to guarantee the

execution of SYCL applications. It turns out that both OpenCL and SYCL-GTX

require enough time to link requisite OpenCL libraries and compiled objects on both

systems (illustrated in Figure 5.4) and then emit the final executable. Since compi-

lation is usually twisted with linkage in the workflow of a compiler architecture, the

reason of the performance gap in the linkage between Ubuntu and QNX should be

the same as we analyzed in the kernel compilation 5.2.2.

However, our new way to compile SYCL-GTX kernels could avoid linkage and

directly emit the compiled kernels, thereby saving much time on kernel compilation

and linkage.

5.2.4 Data Movement

As shown in Figure 5.5, the increased data volume requires more and more time to

move data between the host and accelerators. Owing to the totally different ways to

allocate and access memory between Linux and QNX, Figure 5.5 shows a momentous
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Figure 5.4: The linkage time of vector and matrix multiplication.
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Figure 5.5: The data movement of vector and matrix multiplication.

gap in data movement between the two systems. The reason may be because inte-

grated GPUs share the physical memory with the CPU and must compete for access

memory with the CPU, and thus the gap in memory operations between Linux and

QNX is enlarged. Consequently, we can see the data movement of SYCL-GTX and

OpenCL encounters the bottleneck earlier on QNX than Ubuntu.

Generally, clEnqueueWriteBuffer() copies data from the host memory to the ded-

icated memory if OpenCL devices have dedicated device memories, but our machine

only has one integrated Intel GPU that shares the memory with the CPU. So, instead

of operating self-owned memory regions as a dedicated GPU does, the integrated GPU
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must compete for memory access with the CPU. As a result, the gap in data move-

ment between Ubuntu and QNX inflated with the rise of the number of elements. In

particular, the execution of host code on the CPU also experienced significant inter-

ference due to the increased data volume on both systems. The situation may change

if QNX and SYCL-GTX support connecting with dedicated GPUs, such as NVIDIA

GPUs.

5.2.5 Computation

Concerning the computation time (see Figure 5.6), the figure for matrix multiplica-

tion is weird compared to that for vector multiplication. Unlike the trend in vector

multiplication, matrix multiplication does not take increasing time on computing

when feeding more data. We used intel-gpu-tools to monitor the usage of our GPU

on Ubuntu. The maximum GPU usage for vector multiplication was approximately

24%, whereas matrix multiplication ate GPU fiercely until reaching 100% and no

response. A possible reason is that the GPU had kept working in a state of full

load, although it only indicated a quarter of usage at the beginning. And most time

is used to access the host memory based on the virtual address space mapped by

clEnqueuWriteBuffer(). We believe that it has a similar situation on QNX.

Figure 5.7 could be proof of our guess because the bigger size of vectors also

shows a similar trend compared to matrix multiplication. When the size of vectors

rises to 109, the float-point operations in vector multiplication is the same as matrix

multiplication with the size of 1000*1000, as the computational complexity of matrix

multiplication is O(N3). As we can see, the computation time of them (109 for vector

vs. 1000 for matrix) is at the same level in Figure 5.6. If we feed more data in

vector multiplication, the computation time only fluctuates slightly and maintains a

similar level compared to matrix multiplication, but the data movement time enlarges

further.

By our analysis, we tend to consider that SYCL-GTX introduces extra overhead

during kernel execution, and its encapsulation of variables also results in more time

accessing data than OpenCL.
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Figure 5.6: The computation time of vector and matrix multiplication.
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Figure 5.7: The computation time of vector multiplication (more data) on QNX.

However, we need to emphasize that although we somehow made the separation

of the time on data movement and computation in SYCL-GTX, we cannot define

the boundary of data movement and computation precisely. The same SYCL-GTX

application even has a different execution order but returns correct calculations on

both QNX and Ubuntu. For example, SYCL-GTX only takes one queue to access

data and execute the kernel on Ubuntu, whereas it splits two sub-queues implicitly

to complete all computing tasks on QNX. As a result, the computation time and

data movement time shown in the figures should not be considered accurate data but

approximate somewhat the changes and the gap between OpenCL and SYCL-GTX

on both systems.

5.2.6 Another Way of Kernel Compilation and Linkage in

SYCL-GTX

As the author replied1, we could try another path to build OpenCL programs di-

rectly. Therefore, instead of compiling SYCL/OpenCL kernels in two-step calls:

clCompileProgram() and clLinkProgram(), we replaced them with one OpenCL API:

clBuildProgram() and created a new function compile_once() in SYCL-GTX. The

new function somehow compiles kernels for OpenCL and SYCL-GTX more efficient

1The issue in github. See https://github.com/ProGTX/sycl-gtx/issues/24.

https://github.com/ProGTX/sycl-gtx/issues/24
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on QNX.

Using the new function, we found that the total compilation time (kernel compi-

lation + linkage) on QNX somehow shrinks to about 0.149 ms (OpenCL) and about

0.317ms (SYCL-GTX) in both vector and matrix multiplication. However, this new

function did not take effect on Ubuntu, and the total compilation time just decreased

slightly. Therefore, to avoid the cause of capturing the compilation time wrongly, we

average the total execution time and compare the results before and after using the

new function (shown in Figure 5.8). The valid time includes warmup, data movement

and computation before using the new function, while the total execution time after

using the new function is regarded as the valid time since the compilation only takes

a little time.

As we can see, if we remove kernel compilation and linkage, the valid time is simi-

lar. Thus, it turns out that the one-step compilation reduces the total execution time

dramatically on QNX through diminishing kernel compilation and linkage. However,

we have not figured out why it happens and why it only happens to QNX, and it

requires more research to verify the correctness of such a case.

To summarize, on the one hand, float-point multiplication of SYCL-GTX in vector

and matrix turns out to be viable to port SYCL to QNX, although the differences

at the system level lead to a significant performance gap in data movement between

Ubuntu and QNX. Besides, the design of SYCL-GTX also requires more time on data

movement and computation compared to OpenCL. Nevertheless, on the other hand,

it is surprising that the new way to compile SYCL/OpenCL kernels shrinks the total

execution time and thus makes QNX outperform Ubuntu. It requires more research to

figure out why it happens and verify its correctness. Even then, future optimizations

should focus on reducing the compilation time of SYCL-GTX and OpenCL on QNX

and enabling reusing the compiled kernels.
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5.3 Discussions about SYCL Device Compiler on

QNX

As we have analyzed, SYCL-GTX is not mature and has problems on performance.

Therefore, we compare the compilation mechanisms of the two mainstream SYCL im-

plementations (DPC++ and ComputeCpp) and consider that reusing existing SYCL

implementations may benefit QNX to provide a product-ready SYCL environment.

On the one hand, apart from SYCL-GTX that compiles SYCL kernels just in time

by the OpenCL runtime, other mainstream SYCL implementations require an SYCL

device compiler to generate device binaries from SYCL kernels. As the sole compiler

on QNX, QCC cannot compile device code and generate acceptable intermediate

representations or device binaries, and consequently, users cannot compile SYCL

applications correctly only using QCC. On the other hand, it is possible to use existing

SYCL device compilers to generate device binaries and wrap them with the host code

using QCC. Therefore, we research how existing SYCL implementations generate

and integrate device binaries to output the final executable and see if this strategy is

viable.

In DPC++, compiling and wrapping the device code are shown in Figure 5.9.

If SYCL kernels execute on OpenCL devices, it requires clang-offload-bundler to

bundle some system-dependent libraries with the generated IR, making it impossible

for QCC to wrap the generated IR directly. By comparison, the CUDA backend only

utilizes the toolchains of the CUDA driver, isolating the generated IR from system-

dependent environments. However, there is little information about accessing and

interacting with the CUDA driver and devices on QNX. As a result, DPC++ may

not be an appropriate way to compile SYCL kernels.

The whole process of compiling SYCL kernels in ComputeCPP is similar to that

in DPC++, but ComputeCPP emits the compiled device code and integrated header

files as an SYCL stub file (.sycl). The generated SPIRV IR is stringified, and the

integrated header is like standard C/C++ header files. In our tests, the host code

can include the SYCL stub file directly without any modification, and then GCC can

link the entire source code with the SYCL runtime (libComputeCpp.so) and output
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the correct executable.

To summarize, ComputeCPP may be more suitable to generate device binaries for

QNX than DPC++. As we summarized in DPc++ experiments (see section 5.1, the

core feature of SYCL is to compile SYCL kernels correctly in a host environment and

enables executing the compiled kernels in different accelerators. By comparison, the

host environment can affect ComputeCpp less than DPC++ and allow an isolated

compilation process in ComputeCpp. Therefore, it may be a viable solution for QNX

to work with ComputeCpp and then build commercial-grade SYCL toolchains.



Chapter 6

Conclusion and Future Work

6.1 Conclusion

Based on our experiments and research, we can answer the research questions:

• RQ1: Most SYCL implementations are not compatible with QNX since they re-

quire various toolchains that QNX could hardly provide currently. Only SYCL-

GTX, as a high-level abstraction of OpenCL, can work on QNX without rewrit-

ing source code significantly.

• RQ2: Although SYCL implementations may cover different features of SYCL,

they are conformant to the SYCL specification that is backward-compatible.

Moreover, considering SYCL-GTX, it is limited to OpenCL devices and cannot

support discrete accelerators (e.g., NVIDIA GPUs). Besides, SYCL-GTX is not

maintained actively any more, so it could hardly go through some new features

in the latest SYCL specification.

• RQ3: Generally, SYCL-GTX does not perform well on QNX than Ubuntu. The

major performance differences is due to kernel compilation and data movement,

while the time on computation has little difference in both operating systems.

Therefore, by optimizing the SYCL/OpenCL compiler, we could reduce the time

on kernel compilation. With respect to the data movement, the differences

of QNX and Linux may cause performance degradation, so it requires more

64
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research to explore possible solutions. For example, we could accelerate SYCL

kernels on discrete GPUs to compare the impact of integrated and discrete

GPUs on both systems and then find possible optimizations.

In summary, our experiments based on SYCL-GTX illustrate the feasibility of

having SYCL on QNX. However, at the initial stage, our results only can demonstrate

that there is a significant gap in SYCL-GTX performance between QNX and Linux,

but we cannot arbitrarily conclude SYCL on QNX has no potential to surpass SYCL

on Linux through dedicated optimizations. Besides, by analyzing the experiment

results, we consider that improving kernel compilation and data movement should

be the next stage to enhance SYCL on QNX. Moreover, the new way to compile

SYCL kernels on SYCL-GTX also demonstrates the importance to optimize kernel

compilation, although we need to take more research why it does not happen to

Ubuntu.

6.2 Future Work

Since experiment conditions are not mature and there are not abundant technical

references about SYCL on QNX, it needs to take further research to evaluate the

performance and significance of SYCL on QNX. First of all, better optimizations on

OpenCL are required to explore the potential performance of SYCL on QNX. Then,

future experiments could focus on multi-dimensional data (e.g., tensor) and advanced

machine learning algorithms to monitor how it perform well. Specially, to maintain

the real-time of QNX, we will also try more methods to decrease the time complexity

of advanced algorithms and thereby exploit the benefits of SYCL on QNX.

Besides, it is also essential to enable SYCL-GTX to interact with dedicated accel-

erators or choose a more mature SYCL implementation supporting more backends, as

integrated GPUs can affect the CPU execution significantly with a big data volume

and thus may make SYCL adverse to the security and real-time of QNX.
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Appendix A

Code Lists

Listing A.1: Vector Addition in CUDA

1 #include <stdio.h>

2 #include <cuda_runtime.h>

3

4 float *generate(int size);

5 //CUDA kernel

6 __global__ void cudaAddition(float* a, float* b, float* c, int nums) {

7 int i = blockDim.x * blockIdx.x + threadIdx.x;

8 if (i < nums) {

9 c[i] = a[i] + b[i];

10 }

11 }

12

13 int main() {

14 int length = 10;

15 size_t size = length * sizeof(float);

16 int threadsPerBlock = 256;

17 int blocksPerGrid = (length + threadsPerBlock - 1) / threadsPerBlock;

18

19 //generate host data

20 float *host_a = generate(size);

21 float *host_b = generate(size);

22 float *host_c = generate(size);
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23 //declare pointers to device data;

24 float device_a = nullptr;

25 float device_b = nullptr;

26 float device_c = nullptr;

27 // memory allocation on devices

28 cudaMalloc((void **)&device_a, size);

29 cudaMalloc((void **)&device_b, size);

30 cudaMalloc((void **)&device_c, size);

31 // copy host data to devices

32 cudaMemcpy(device_a, host_a, size, cudaMemcpyHostToDevice);

33 cudaMemcpy(device_b, host_b, size, cudaMemcpyHostToDevice);

34 // [ass kernel parameters and execute the CUDA kernel

35 cudaAddition<<<blocksPerGrid, threadsPerBlock>>>(device_a, device_b,

device_c, length);

36 //copy the result to the host memory

37 cudaMemcpy(host_c, device_c, cudaMemcpyDeviceToHost);

38 // release unused resources

39 cudaFree(device_a);

40 cudaFree(device_b);

41 cudaFree(device_c);

42 free(host_a);

43 free(host_b);

44 free(host_c);

45 }

Listing A.2: Vector Addition in OpenCL

1 #include <stdio.h>

2 #include <math.h>

3

4 #define MAX_SOURCE_SIZE (0x100000)

5

6 #ifdef MAC

7 #include <OpenCL/cl.h>

8 #else

9 #include <CL/cl.h>

10 #endif
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11

12 float *generate(int size);

13

14 int main(int argc, char* argv[]) {

15 unsigned int length = 10;

16 size_t bytes = length * sizeof(float);

17 size_t local_size = 64;

18 size_t global_size = math.ceil(length / local_size) * local_size;

19 // generate host data

20 float *host_a = generate(length);

21 float *host_b = generate(length);

22 float *host_c = generate(length);

23 // declare pointers to device data;

24 cl_mem device_a;

25 cl_mem device_b;

26 cl_mem device_c;

27 // declare OpenCL objects to construct a program

28 cl_platform_id platform;

29 cl_device_id device_id;

30 cl_context context;

31 cl_command_queue queue;

32 cl_program program;

33 cl_kernel kernel;

34 // read the kernel file as bytes

35 FILE *kernelFile = fopen("openclKernel.cl", "r");

36 char *kernelSource = (char *)malloc(MAX_SOURCE_SIZE);

37 size_t kernelSize = fread(kernelSource, 1, MAX_SOURCE_SIZE,

kernelFile);

38 fclose(kernelFile);

39 // acquire computing resources from the OpenCL runtime

40 clGetPlatformIDs(1, &platform, NULL);

41 clGetDeviceIDs(platform, CL_DEVICE_TYPE_GPU, 1, &device_id, NULL);

42 context = clCreateContext(0, 1, &device_id, NULL, NULL);

43 queue = clCreateCommandQueue(context, device_id, 0);

44 program = clCreateProgramWithSource(context, 1, (const char

**)&kernelSource, NULL);

45 clBuildProgram(program, "openclKernel");
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46 kernel = clCreateKernel(program, "openclKernel");

47 // create tasks to copy data to devices

48 device_a = clCreateBuffer(context, CL_MEM_READ_ONLY, bytes, NULL

,NULL);

49 device_b = clCreateBuffer(context, CL_MEM_READ_ONLY, bytes, NULL

,NULL);

50 device_c = clCreateBuffer(context, CL_MEM_WRITE_ONLY, bytes, NULL

,NULL);

51 clEnqueueWriteBuffer(queue, device_a, CL_TRUE, 0, bytes, host_a, 0,

NULL, NULL);

52 clEnqueueWriteBuffer(queue, device_b, CL_TRUE, 0, bytes, host_b, 0,

NULL, NULL);

53 // set kernel parameters for devices

54 clSetKernelArg(kernel, 0, sizeof(cl_mem), &device_a);

55 clSetKernelArg(kernel, 1, sizeof(cl_mem), &device_b);

56 clSetKernelArg(kernel, 2, sizeof(cl_mem), &device_c);

57 clSetKernelArg(kernel, 3, sizeof(unsigned int), &length);

58 // execute the kernel and finish

59 clEnqueueNDRangeKernel(queue, kernel, 1, NULL, &global_size,

&local_size, 0, NULL, NULL);

60 clFinish(queue);

61 // copy the result back the host memory

62 clEnqueueReadBuffer(queue, device_c, CL_TRUE, 0, bytes, host_c, 0,

NULL, NULL);

63 // release unused resources

64 clReleaseMemObject(device_a);

65 clReleaseMemObject(device_b);

66 clReleaseMemObject(device_c);

67 clReleaseProgram(program);

68 clReleaseKernel(kernel);

69 clReleaseCommandQueue(queue);

70 clReleaseContext(context);

71 free(host_a);

72 free(host_b);

73 free(host_c);

74 }

75
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76 // "openclKernel.cl"

77 __kernel void openclKernel(__global const float *a, __global const float

*b, __global float *c) {

78 int i = get_global_id(0);

79 c[i] = a[i] + b[i];

80 }

Listing A.3: Vector Addition in SYCL

1 #include <Cl/sycl.hpp>

2

3 using namespace cl::sycl;

4

5 float *generate(int size);

6

7 int main() {

8 int length = 10;

9 size_t size = length * sizeof(float);

10 // create a SYCL queue to schedule computing tasks

11 queue Q;

12 // generate host data

13 float *host_a = generate(length);

14 float *host_b = generate(length);

15 // allocate device memory

16 float *device_a = malloc_device(size, Q);

17 float *device_b = malloc_device(size, Q);

18 float *shared_c = malloc_device(size, Q);

19 // copy host data to devices

20 auto event1 = Q.memcpy(device_a, host_a, size);

21 auto event2 = Q.memcpy(device_b, host_b, size);

22

23 Q.submit([&](handler &cgh) {

24 // ensure data copy has completed

25 cgh.depends_on({event1, event2});

26 // execute the kernel as a C++ lambda function

27 cgh.parallel_for(range<1>(length), [=](id<1> i) {

28 shared_c[i] = device_a[i] + device_b[i];
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29 });

30 });

31 // wait SYCL runtime synchronize the result

32 // and copy the result to the host memory (shared_c) implicitly

33 Q.wait();

34 // release unused resources

35 free(device_a, Q);

36 free(device_a, Q);

37 free(device_a, Q);

38 free(host_a);

39 free(host_b);

40 }

Listing A.4: Vector Addition in SYCL-GTX

1 #include <Cl/sycl.hpp>

2

3 using namespace cl::sycl;

4

5 float* generate(int size);

6

7 class Addition;

8

9 int main() {

10 int length = 10;

11 // create a SYCL queue to schedule computing tasks

12 queue Q;

13 // generate host data

14 float* host_a = generate(length);

15 float* host_b = generate(length);

16 float* host_c = generate(length);

17 // create 1-dimension buffer

18 buffer<float, 1> buffer_a{host_a};

19 buffer<float, 1> buffer_b{host_b};

20 buffer<float, 1> buffer_c{host_c};

21

22 Q.submit([&](handler &cgh) {
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23 // enable the accelerator to access the buffers

24 auto accessor_a = buffer_a.get_access<access::mode::read>(cgh);

25 auto accessor_b = buffer_b.get_access<access::mode::read>(cgh);

26 auto accessor_c = buffer_c.get_access<access::mode::write>(cgh);

27

28 // execute the kernel as a C++ lambda function

29 cgh.parallel_for<class Addition>(range<1>(length), [=](id<1> i) {

30 accessor_c[i] = accessor_a[i] + accessor_b[i];

31 });

32 });

33 // waiting for writing the result back host_c vector

34 Q.wait();

35 }



Appendix B

Nomenclature Difference in CUDA,

OpenCL and SYCL

Table B.1: Runtime API equivalence

CUDA SYCL OpenCL

... nd range class
global work size
local work size

Kernel Name... () queue::submit()

clCreateProgramWithSource/Binary()
clBuildProgram()
clCreateKernel()

clCreateKernelArg()
clEnqueueNDRangeKernel()
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Table B.2: Device API equivalence for kernel specifiers

CUDA SYCL OpenCL

golbal N/A kernel

device N/A N/A

constant variable declaration N/A constant variable declaration

device variable declaration N/A global variable declaration

shared variable declaration N/A local variable declaration

Table B.3: Indexing equivalence

CUDA SYCL OpenCL

N/A nd item class N/A

gridDim.{x, y, z} nd item::get num group({0, 1, 2}) get num group({0, 1, 2})

blockDim.{x, y, z} nd item::get local range({0, 1, 2}) get local size({0, 1, 2})

blockIdx.{x, y, z} nd item::get group({0, 1, 2}) get group id({0, 1, 2})

threadIdx.{x, y, z} nd item::get local id({0, 1, 2}) get local id({0, 1, 2})

N/A nd item::get global id({0, 1, 2}) get global id({0, 1, 2})
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