
1

Distributed Multimodal Interaction Protocol :

Enabling Transport of Distributed Interactions

 by

Lucas Stephenson

A thesis submitted to the Faculty of Graduate and Postdoctoral Affairs in

partial fulfillment of the requirements for the degree of

Master of Applied Science

in

Human-Computer Interaction

Carleton University
Ottawa, Ontario

© 2013

Lucas Stephenson

ii

Abstract

A growing number of areas in the world have ubiquitous access to mobile, personal technology

provided through a variety of hardware form factors; smartphones, tablets, and more. Despite

this, the ability to use these personal devices to control and interact with remote technology is

limited further progress is mired by proprietary technologies that places this form of remote

access technology in isolated software silos. This project provides an open standard networking

protocol to enable transport of multimodal interactions between disparate endpoints, with

minimal reliance on the personal ŘŜǾƛŎŜǎΩ ǎƻŦǘǿŀǊŜ ƻǊ ƘŀǊŘǿŀǊŜ ǇƭŀǘŦƻǊƳ. This allows

technology enablers to more easily design, develop, deploy and maintain flexible software

solutions. Simplifying the software development life cycle allows for more access to technology

by end users and can increase the resources available for user experience considerations. The

defined protocol is validated through a number of sample implementation tests and by

verifying its ability to transport multimodal interaction information.

iii

Acknowledgements

I would like to express my very great appreciation to Dr. Anthony Whitehead for his valuable

and constructive suggestions during the planning and development of this research work. His

willingness to give his time so generously has been very much appreciated.

I would also like to thank the staff and students of the Carleton HCI program for their moral and

academic support.

Additionally I would like to thank Susan and Meaghan Pinard for their continued support.

Finally, I wish to thank my family for their support and encouragement throughout my

completion of this work.

iv

Table of Contents

Abstract ii

Acknowledgements ... iii

Table of Contents .. iv

List of Tables vii

List of Figures .. ix

List of Appendices .. x

Abbreviations and Terms .. xi

1 Introduction ... 1

1.1 Contributions .. 3

2 Background .. 5

2.1 Research Question .. 5

2.2 Rationale ... 5

2.3 Barriers .. 6

2.4 Related Technologies .. 7

3 Protocol Design .. 13

3.1 Target Audience .. 13

3.2 Requirements .. 13

3.3 Methodology ... 14

3.4 Supporting Technologies .. 15

4 Technology Overview .. 17

4.1 DMIP Clients .. 17

4.2 DMIP Services ... 18

4.3 DMIP Channels .. 18

5 Protocol.. 20

5.1 Protocol Applicability Statement .. 20

5.2 Terminology .. 20

5.3 Notation Conventions ... 21

5.4 Protocol Overview .. 21

5.5 Channel Types ... 22

5.5.1 Channel Type Definition.. 23

v

5.5.2 Channel Type Options ... 24

5.5.3 Channel Type Data .. 24

5.5.4 Standard Channels .. 24

5.5.5 Meta Channels .. 30

5.5.6 Extension Channels ... 33

5.6 Messages ... 34

5.6.1 Header ... 34

5.6.2 Message Types .. 35

5.7 Field Sizes .. 44

5.8 UDP Stream Data .. 44

5.9 Layouts .. 44

5.10 Timeouts ... 45

6 Protocol Flow ... 46

6.1 DMIP Session Overview .. 46

6.1.1 Session Initiation ... 46

6.1.2 Channel Initiation .. 47

6.1.3 Active Channels ... 47

6.1.4 Active Session ... 48

6.1.5 Channel Termination .. 48

6.1.6 Session Termination .. 48

6.2 Examples of DMIP Message Passing ... 49

6.2.1 Client Request Session .. 49

6.2.2 Adding Channels and Meta-Channels ... 50

6.2.3 Sample Session, Button Based Menu ... 52

6.2.4 Client Remove Abilities ... 54

7 Evaluation .. 56

7.1 Validity of Channel Types System ... 56

7.1.1 Common UI Controls ... 56

7.1.2 Raw Data Types ... 57

7.1.3 .ŜǊƴǎŜƴΩǎ aǳƭǘƛƳƻŘŀƭ LƴǘŜǊŦŀŎŜ aƻŘŜǎ ... 57

7.1.4 Interaction Ledger ... 58

vi

7.2 Protocol Implementations .. 59

7.2.1 The Protocol Package .. 59

7.2.2 Connection Class ... 61

7.2.3 ChannelType Definitions ... 64

7.2.4 MessageType Definitions .. 64

7.2.5 Implementation Instances .. 65

7.2.6 Protocol Support and Augmentation .. 74

8 Discussion .. 77

8.1 Value and Testing .. 77

8.2 Limitations... 77

8.3 Future Work .. 78

8.3.1 Multi-User Scenarios ... 79

8.3.2 Additional Implementation Features .. 79

8.3.3 Multi-User Scenarios ... 80

8.3.4 Integration with Other Technologies .. 80

8.3.5 Standardization ... 80

8.3.6 Service Endpoint Location .. 81

8.3.7 Transport Over HTTP and Websockets ... 81

8.3.8 User Friendly Clients ... 81

9 Conclusion ... 82

References 84

Appendix A: Interaction Ledger ... 87

Survey .. 87

Results ... 87

Appendix B: PowerPoint Controller Show XML ... 92

vii

List of Tables

Table 1: Channel Type Classes .. 23

Table 2: Standardized Channels .. 23

Table 3 Range1D Options Payload .. 25

Table 4 Range1D Data Payload ... 25

Table 5 Range1D Options Payload .. 26

Table 6 Range1D Data Payload ... 26

Table 7 Relative3DStream Options Payload ... 27

Table 8 Relative3DStream Data Payload .. 27

Table 9 Relative2DStream Options Payload ... 28

Table 10 Relative2DStream Data Payload .. 28

Table 11 Direction4 Data Payload... 29

Table 12 Chars Options Payload ... 29

Table 13 Chars Data Payload .. 29

Table 14 Image2DView Data Payload ... 30

Table 15 Postionable3D Options and Data Payloads .. 32

Table 16 Interactable Interaction Types and Argument Types .. 32

Table 17 Interactable Options Payload ... 33

Table 18 Chars Data Payload .. 33

Table 19: DMIP Header ... 34

Table 20: DMIP Message Types .. 37

Table 21 Acknowledge Message Structure ... 37

Table 22 Error Message Structure .. 38

Table 23 Close Message Structure .. 38

Table 24: Abilities Message Structure .. 40

Table 25: Abilities Message Structure .. 40

Table 26: AddChannel Message Structure .. 41

viii

Table 27: RemoveChannel Message Structure ... 42

Table 28: SetChannelOpt Message Structure ... 42

Table 29: Data Message Structure .. 43

Table 30: MultiPayload Message Structure .. 43

Table 31. Implemented DMIP Channel Types .. 66

ix

List of Figures

Figure 1: Iterative Design Methodology ... 15

Figure 2: Protocol Flow Overview ... 19

Figure 3: High Level DMIP Protocol Workflow ... 22

Figure 4: Session Request and Initiation ... 50

Figure 5: Distinct Meta Channel Setup ... 51

Figure 6: Inclusive Meta Channel Setup ... 52

Figure 7: Simple User Menu .. 53

Figure 8: PowerPoint Controller Menu to Show Layouts ... 54

Figure 9: Client Configuration Change .. 55

Figure 10: Interaction Ledger Results ... 58

Figure 11: Shared Protocol Package ... 60

Figure 12: Implementation Protocol Package .. 60

Figure 13: Reading and Writing DMIP Payloads ... 63

Figure 14: Windows Forms Client ... 67

Figure 15: Thermostat Service .. 69

Figure 16: PowerPoint Controller from Android .. 70

Figure 17: Network Sequence for Previous Slide.. 71

Figure 18: Number Guess Service Progression ... 72

Figure 19: Windows Mouse Control Service, Android Client ... 74

Figure 20: Sample XML Layout File Result .. 76

x

List of Appendices

Appendix A: Interaction Ledger ... 87

Appendix B: PowerPoint Controller Show XML ... 92

xi

Abbreviations and Terms

¶ DMIP: Distributed Multimodal Interaction Protocol

The technology that is the subject of this thesis. An application protocol, using the

Internet protocol suite that allows flexible data types to be negotiated and

communicated.

¶ Modality

Refers to the type of communication channel used to convey or acquire information. It

also covers the way an idea is expressed or perceived, or the manner an action is

performed [1].

¶ DMIP Abilities (Abilities)

Refers to ŀ ƭƛǎǘƛƴƎ ƻŦ ŀ 5aLt ŎƭƛŜƴǘΩǎ ŀōƛƭƛǘƛŜǎΦ Lǘ ƛƴŎƭǳŘŜǎ ǿƘŀǘ ŘƛǎǇƭŀȅ ƭŀȅƻǳǘǎ ƛǘ ǎǳǇǇƻǊts

as well as an indication of which interaction modes it supports (by way of Channel Types,

see 5.5) as well as the number of instances of an interaction mode it supports.

¶ Mode

Refers to a state that determines the way information is interpreted to extract or convey

meaning [1].

¶ Multimodality

The capacity of the system to communicate with a user along different types of

communication channels and to extract and convey meaning automatically [1].

¶ TCP/IP: Internet Protocol Suite

TCP/IP is a protocol set and model for inter connection between computers it provides

end-to-end connectivity specifying how data should be formatted, addressed,

xii

transmitted, routed and received at the destination. TCP/IP has 4 distinct, cumulative

layers: The link layer provides connection technologies for network segments, or links.

The internet layer allows the interconnection of segments to provide internetworking.

The transport layer provides protocols for communication low level octets between

network endpoints. The application layer provides protocols that provide specific data

communication over the underlying layers [2]. DMIP is an application layer protocol.

¶ IP: Internet Protocol

The IP protocol, or Internet Protocol is the networking layer in the Internet protocol

suite that represents destination addresses and routing information for transmissible

data [2]. It is the base protocol upon which TCP, UDP and other TCP/IP transport layer

protocols are extended.

¶ TCP: Transmission Control Protocol

TCP is a TCP/IP transport layer protocol that provides reliable, ordered, error-checked

delivery of a stream of octets between programs running on computers connected to a

local area network, intranet or the public Internet [2]. The primary transport mechanism

for DMIP.

¶ UDP: User Datagram Protocol

UDP is a TCP/IP transport layer protocol that provides a low-overhead and low latency

transport mechanism, that does not provide error checking or receipt order verification

[2]. UDP is a secondary and optional transport mechanism for DMIP, ideal for latency

sensitive data streams.

¶ Network Node or Endpoint

These terms are both used to represent a network enabled device that can

communicate over a TCP/IP network, and is therefore a potential DMIP capable device.

xiii

¶ Data Type

A data type is strictly defined container for data. The general purpose of the DMIP is to

negotiate compatible data types and allow communication of data encoded in the

negotiated data types. Negotiable and transportable data types within DMIP are called

Channel Types (5.5), and are used to communicate input and output mode data as well

as pure data, such as text, video, images, etc.

¶ Byte and Octet

The terms byte and octet are used interchangeably within this thesis and represents an

8-bit value. Historically, byte was not consistent, so networks used the term octet.

1

1 Introduction

Technology is everywhere within our homes, workplaces and places of leisure. The world is

replete with computing devices, many of which are interactive, and networking of these devices

has allowed basic interconnectedness among them. It is simple to envisage an environment

where everything is controllable in a user-friendly way, from a personal device. However, using

personal devices as general purpose controllers, providing human-usable methods of

interacting with other, remote devices is not widespread. Technology that allows remote

control has existed for well over a century for example, the remote control for your television.

In the majority of cases these technologies do not work together, and when they do, the

technology is often expensive, proprietary and requires the use of a single specific technology.

An example of a single controller interface that has been often demonstrated, but is not widely

accepted is home automation. The concept is a simple one; use any device to control and

manipulate the state of various devices in a home. Automatically turn off a light downstairs

when you fall asleep, pre-heat the oven on the way home from work, change the TV channel

from your phone, and monitor room temperature and security systems from afar. These home

automation tasks are all common tasks that are technically feasible and appealing to end users

and pieces of these exist [3] [4], and seem to work well. However, most of these solutions do

not work together, and rely on costly application and networking design and development time

because a common open standard for modal device to device communication is not available

and are not widely implemented or adopted. The primary goal of this work (Distributed

Multimodal Interaction Protocol: DMIP) is to allow intercommunication between devices using

a standards-based open protocol to transport user interactions between endpoints. In this way,

users can control their thermostat, TV, stove, or any other network connected device, from any

other single networked device that is able to provide a sufficient user interface. Put simply, a

user cannot currently use one general device to utilize the functionality of many others. This

2

work describes the effort made in designing and creating a mechanism that allows interaction

data to be remotely negotiated and transported.

DMIP aims to be able to provide a remote interface for any implementing devices. DMIP

classifies interaction and data so that it can be transported over the network in a standard way.

There is no open standard protocols that allow the transport of an expandable set of well-

defined data types that represent the information needed to provide a human-centric,

interactive experience. Providing a standard network protocol will enable more devices to

inter-communicate by reducing costs associated with developing externally/remotely

interactive devices. Some further examples of enabled scenarios are:

¶ Users enter a shopping mall and use any phone to interact with a large display to: play

games with other shoppers, see specials, use interactive maps, and plan shopping

routes.

¶ At a sports event, use the scoreboard display to play event-community games, polls, and

contests; engage the audience with reduced technology investment.

¶ Use kiosks from personal devices, reduce the need for users to worry about interacting

ǳǎƛƴƎ ǘƘŜ ƪƛƻǎƪΩǎ ǘƻǳŎƘǇŀŘ ŀƴŘκƻǊ ƪŜȅǇŀŘΣ ǉǳŜǳŜ ǳǇ ŀŎǘƛƻƴǎ ōŜŦƻǊŜ ǇƘȅǎƛŎŀƭƭȅ ǳǎƛƴƎ ǘƘŜ

device reducing queue time.

The availability of an increasing number of types of input modes on personal devices like mobile

telephones, music players and video game controllers as well as specialized input mode

devices, like gaze trackers, motion trackers and brain-computer interface (BCI) devices means

that users have an ever increasing number of ways of interacting. In addition to supporting

many interaction modalities, user focused design for interaction integrates interaction feedback

ǘƻ ŀƛŘ ǘƘŜ ǳǎŜǊΩǎ ǳƴŘŜǊǎǘŀƴŘƛƴƎ ƻŦ ǘƘŜ ƛƳǇŀŎǘ ƻŦ ǘƘŜƛr actions [5]. This work intends to provide

an open standard method for negotiating and communicating both emerging and existing

interaction mode data between network connected devices. To support the goal of this work,

3

an open standard was designed to aggregate, negotiate and communicate a variety of static

and interaction mode data signals so that they can be used by any platform adhering to it. This

removes reliance on specific applications or platforms and only requires an interpreter

application to be made available for client platforms. The intended result is a homogenous

application platform the can be used by application creators to provide a more accessible

access to technology. This decoupling of platform and data is accomplished through the

introduction of an application layer network protocol, distributed multimodal interaction

protocol (DMIP).

1.1 Contributions

This dissertation contributes to the human computer interaction field by providing a free and

open standard networking protocol, Distributed Multimodal Interaction Protocol (DMIP) that

allows classified interactions and data types to be negotiated and subsequently transported

between two network nodes. Substantial effort has been put into creating a well thought out

mechanism to transport all potential modal interaction data in a variety of situations and

scenarios.

To support the understanding and adoption of DMIP, a number of resources have been made

available, and discussed herein.

¶ The DMIP protocol specification

¶ Working implementations

o Two DMIP network layer implementations, .NET framework and Java for Android

o Two DMIP client application implementations, .NET Windows Forms and Java

for Android

o A DMIP service SDK for the .NET framework

o Three DMIP service implementation examples, using the above SDK, for the .NET

framework

4

¶ An introductory conference paper, presented and published as part of the International

Conference on Multimedia and Human Computer Interaction, 2013.

¶ A presentation made to, and discussed with the CapCHI society of Ottawa.

A website, (http://iv.csit.carleton.ca/~dmip/) has been created to host the protocol

specification, above listed resources and any additional future resources, updates or

discussions created to support DMIP and any future revisions of the protocol. In addition,

the website will be a central source of information about new, standardized Channel Types,

as discussed in 5.5.1.

http://iv.csit.carleton.ca/~dmip/

5

2 Background

The basic premise of computer networking is to enable computing devices to intercommunicate

[6]. What information is communicated has largely been focused on computer formatted data,

high level abstractions of human knowledge and actions. Focusing on the communication of

human interaction elements allows the field of human computer interaction to be more directly

applied to the manipulation of distinct devices. This could allow applications to be built that

make use of a variety of interaction modes, giving application authors more ability to freely

design services that make use of alternate modes much more simply. Enabling human users to

use computers using their preferred input modes and devices. Similarly, providing a variety of

options for system feedback (output) allows a broader range of users and user scenarios to be

considered [7]. By providing more interaction options to the users to interact with remote

devices, accessibility to those devices and the services they provide is increased [8]. Efforts to

aggregate multimodal data exist, but are either not extendible, do not have a network

transmission focus or are not open and freely usable. In section 2.2 Rationale, we discuss the

need for this technology, from a point of technology ease of access evolution. Section 2.3

discusses reasons that such technology is not already widely available. In section 2.4, we

continue by examining related technologies and identify requirements for the proposed

protocol to overcome the deficiencies in what exists today.

2.1 Research Question

There is an ever-increasing ability for the user to generate data on personal devices, can this

data be simply consumed by remote computer devices to provide an interactive user based

experience for potentially any capable remote technology?

2.2 Rationale

The answer to the question posed in 2.1 represents an evolutionary step towards simpler

access to technology for end users. There are a number of reasons why it is needed to continue

ǘƘŜ ǿƻǊƭŘΩǎ population expanding access to technology. There exists an ever increasing use of

6

server defined applications, via the World Wide Web (WWW) [9]. However to support these

applications by providing improved usability and to make use of additional platform features on

small form factor devices, like smartphones or tablets, specific clients for the large variety of

hardware and software platforms are created and supported. This in turn generates a

significant cost to develop, maintain and support these applications. Removing application logic

and design from the client, so that a single application can be developed and maintained by

application authors reduces costs and increases accessibility for users by removing the cost to

create platform targeted applications and thus giving better access to the augmented

application by way of providing for a greater number of supported client devices. For example,

in a specific, single platform targeted scenario, there are at least two applications that need to

be designed and developed, a client application and the service itself. Revisions of the

functionality require careful consideration of client software. This issue is exacerbated when

there are multiple platforms (example: Android, iOS, Blackberry, Windows Phone) and even

further when considering variations in platforms, as well as the specific client device (abilities).

A solution must remove the additional development time caused by dealing with multiple client

targets, and removes the burden of carefully verifying every target device with every revision of

an application by only having one functional piece for application authors to design, develop

and maintain.

For end-users this is also partial solution to the problem of dealing with ever increasing

numbers of specific applications on their mobile devices, making it difficult to locate and use

them.

2.3 Barriers

While the technology herein is needed and has relevant rationale, prior to this work there did

not exist a sufficient solution. A number of related technologies are discussed in 2.4, but in

general they do not fulfill the requirements needed to fulfill the goals of a distributed

7

multimodal protocol. The reasons a prior solution did not exist is presumed to be a combination

of 2 main factors:

¶ Using modes of interaction, besides mouse/keyboard are relatively novel

o Research efforts have created only protocols for very specific combinations of

modes.

o Using alternate, not specifically defined sets of interaction modes has not been

addressed.

¶ Efforts to increase product line value by providing applications

o Generate specific product line applications meeting only the temporal goals of

the specific product line.

o Proprietary and not released or supported for external development.

o No perceived value to a production company for creating a standard to support

devices or services produced by competing companies.

2.4 Related Technologies

Transporting user interactions over networks is a complex issue impeding the more pervasive

spread of general human control of computers. There is a constant stream of new ways users

can interact with technology [10], as new interaction technology is introduced it adds to the

options available to application authors. Authors are confronted with design decisions that can

limit the adoption of the new technology, or alienate users who do not have access to it.

Furthermore, every application that makes use of the interaction data must encode data so

that it can be transformed into input actions or output signals. Disparate projects have different

goals and due to the proprietary nature of most of these works, the codification is not typically

useable universally between applications. There are some existing technologies that attempt to

simplify the transport and/or classification of multimodal data. Briefly, those most related to

our work are as follows:

8

¶ Tangible User Interface Objects (TUIO) [11] is a spatial (touch, motion tracking) input

library that aims to aggregate these types of devices for use as an API.

¶ Responsive Objects, Surfaces and Spaces (ROSS) [12] provides a development toolkit for

managing combinations of specific devices over a network.

¶ HCI2 [13]is a tool for aggregating machine-local input, so they can be more uniformly

processed.

¶ Extensible MultiModal Annotation (EMMA) [14] is an extensible markup language (XML)

W3C standard for encoding multimodal inputs.

¶ OpenNI [15] is a tool that is aimed at processing and aggregating motion based inputs.

¶ StreamInput is a project aimed at providing a flexible input API.

¶ Radio Frequency for Consumer Electronics (RF4CE) [16] is a network protocol using low

power links to create ŀ ŘŜŎŜƴǘǊŀƭƛȊŜŘ άƳŜǎƘέ ƴŜǘǿƻǊƪΦ

¶ OpenRemote (http://www.openremote.com/) is a platform that focuses on home

automation and provides solutions for managing existing proprietary and fixed-

interaction home automation protocols.

¶ Application specifics Projects ς that separately implement the parts of functionality

required by the answer to the research question, but cannot work with one another

because their implementations are non-standardized and used fixed mode-sets.

These are partial works, but are not sufficient to provide an extensible framework for reusable

data type encoding and transmission. Next, we provide a detailed examination of each of these

related technologies.

TUIO is a network based system that aims at providing aggregate touch input data. The

purpose is to allow easier development of a variety of touch and other related continuous input

systems [17]. While this technology is extensible [11] and does approximate some of the

intentions of the proposed protocol, it is purely for input communication and does not have the

ability to negotiate the usage of modes; implementations have fixed message expressiveness.

http://www.openremote.com/

9

Any application that needs to send data back to the client would not be directly implementable

using TUIO. For example, a simple thermostat app might let you send input to adjust the

temperature up or down, but the user would not be able to receive information about the

current temperature. In addition, TUIO is designed purely for aggregating touch data, other

interaction modes are not supported and negotiation of interaction modes, allowing variable

sets of even touch interaction modes is missing. TUIO data is assumed to be touch based, and

lacks the flexibility to simply define the data types needed for other interaction types. TUIO is

therefore insufficient for providing a general interaction mechanism for network connected

disparate devices.

ROSS is a development toolkit [12] for Tangible media [18] that provides a platform

independent method of consuming and aggregating multimodal inputs. ROSS provides explicit

input schema for devices connected to the system and operates over a TCP/IP network [12].

ROSS allows the development of applications that make use of specific devices. However, the

need for explicit input schema/device templates for each endpoint ƭƛƳƛǘǎ ǘƘŜ ǎȅǎǘŜƳΩǎ ŀōƛƭƛǘȅ ǘƻ

provide services to new, emerging and varied device capabilities. For example, a client device

might support 2D position data input using touch, mouse, gaze or through any number of other

modalities, or combinations thereof. Further, the device may support selection tasks through

varied modalities as well. In order for ROSS to interact with these devices, specific and fixed

schema have to be developed for each device implementation.

HCI 2: A Software Framework for Multimodal Human-Computer Interaction Systems

describes a modular platform that aims to support the development and research of

multimodal systems [13] [19]. This system provides a method of efficiently aggregating

machine-local input signals, so that they can be processed. The framework is a research

platform with a focus on performance, but there is no focus on raw data-type communication.

HCI2 does not provide any networking facilities. Potentially the solution could use the

aggregated local machine signals, provided by HCI2, to help communicate higher level user

10

intent. As HCI2 is a software platform, the relation to a networking protocol is perhaps not

obvious. However, its codification of input modes could be used on the service endpoint to help

interpret user intent of a variety of inputs within a solution. It could also be used to define a

specific method to carry HCI2 data, allowing endpoints to process signals for intent, and then

communicating that intent. HCI2 by itself is insufficient to meet the distributed/remote aspect

of a solution, however used in conjunction it could augment the other.

EMMA is an XML W3C standard [14] designed to alleviate the difficulty in aggregating and

augmenting through annotation multimodal inputs by providing a standard for communicating

them In XML format. EMMA is designed largely with speech audio data as the focus. An

applicable solution protocol must have the potential to support both audio streams and text

based data. However the overhead of 9aa!Ωǎ XML formatted data means that it is not well

suited for a networked scenario. Additionally, the benefits of using a schema designed primarily

for speech are minimal when considering ǘƘŜ ǎƻƭǳǘƛƻƴ ǇǊƻǘƻŎƻƭΩǎ aims to be able to support the

transport of most, if not all conceivable modalities. The solution protocol must provide a means

ǘƻ ǘǊŀƴǎǇƻǊǘ ŀƴȅ ǘȅǇŜ ƻŦ ƳƻŘŀƭ ŘŀǘŀΣ ǇƻǘŜƴǘƛŀƭƭȅ ƛƴŎƭǳŘƛƴƎ 9aa!Ωǎ ·a[ŦƻǊƳŀǘΦ

OpenNI is intended to provide an aggregation of processed continuous (primarily 3D vision)

inputs [15]. It allows applications to be developed based on processed inputs from various

sources. It does not provide a system for transport of these signals. A solution protocol must be

able to operate over a network and provide the ability to transport a variety of modal data

including potentially, 3D position and gesture data.

StreamInput is a project to create a cross-platform API to support application development for

new sensors. StreamInput is yet another system for aggregating interaction controls and does

not provide any transport of such signals. This project is not yet released, but mentioned here

as it may provide insight as to modes that should be supported in the future by the solution.

Unfortunately, because StreamInput is not yet available, it is difficult to assume what it can and

11

cannot it provide. However, seeing as the goals of the project are perceived to be similar to

HCI2, StreamInput could likely provide the basis for the definition of a specific interaction mode,

meant to carry StreamInput specific data.

RF4CE is a networking protocol designed to work over low power personal area networks to

ŎǊŜŀǘŜ ƛƴǘŜǊŎƻƴƴŜŎǘŜŘ άƳŜǎƘŜǎέ ƴƻǘ ǊŜƭƛŀƴǘ on a centralized network structure. RF4CE could

potentially be used to find and connect to services, however it does not provide and explicit

method of negotiating data types with disparate clients to define sets of modalities to use with

clients. It provides a potential network connection option for the solution, but since the

physical link layer is usually abstracted by application protocols and efforts are being made to

provide a generalized TCP/IP abstraction (http://datatracker.ietf.org/doc/charter-ietf-

6lowpan/) for RF4CE.

OpenRemote appears to be a tool to enable aggregation and custom interfaces for other

network protocols that are focused on home automation. This is an approach to solving the end

ǳǎŜǊǎΩ ǇǊƻōƭŜƳ ƻŦ ƛƴǘŜǊŀŎǘƛƴƎ ǿƛǘƘ ŀ ǾŀǊƛŜǘȅ ƻf technologies from their personal device.

However, since it relies of a fixed set of predefined modalities and data structures (from the

aggregated protocols,) adaptability for new client devices and novel modalities is not present. A

solution protocol must be able to represent a varying set of interaction modalities so that the

users can interact with the features and abilities they, through their devices have.

Specific Applications are everywhere, there is a veritable glut of specific remote-control

applications for phones and other handheld devices. Specific applications exist to control TV [3],

PowerPoint Presentations [20], thermostat [4] and any number of other network-able devices.

These types of applications have given users control over remote devices. However, there are

ǘǿƻ Ƴŀƛƴ ƛǎǎǳŜǎ ǿƛǘƘ ǘƘƛǎ άǎŎƘŜƳŜέ ƻŦ ŎǊŜŀǘƛƴƎ ǎǇŜŎƛŦƛŎ ŀǇǇƭƛŎŀǘƛƻƴǎΦ Lǘ ƛǎ ŘƛŦŦƛŎǳƭǘ ǘƻ ŦƛǊǎǘ ƛƴǘŜǊŀŎǘ

with user-novel devices and development and maintenance of both endpoints is made

extremely complex.

http://datatracker.ietf.org/doc/charter-ietf-6lowpan/
http://datatracker.ietf.org/doc/charter-ietf-6lowpan/

12

All of the related technologies cited fall short of meeting the goals of a freely available standard

for multimodal remote negotiation and transport.

To first interact a remote device that uses a specific application, a compatible application must

be acquired. The user must know of, or be informed of the availability, have a method to

acquire the application, and then install and configure it. These steps can all be problematic for

users, notably if there is no information directly available about this function, there is no access

to the internet from the client device or the device does not allow installation of applications.

Furthermore, as the user acquires more specific applications, it is potentially difficult for the

end user to locate or recall how to access the functionality for subsequent sessions. A solution

provides applications as a network transported service, there are no requirements on the client

for any application to be installed for a specific service, and only a single application should be

required. A client needs only a network endpoint to connect to, something that could be

facilitated using a service location mechanism like Service Location Protocol (SLP).

13

3 Protocol Design

The need for a standard method of negotiating, defining and transporting multimodal data

between disparate devices, is supported in section 2. By examining related technologies,

barriers and the methods in which remote technology is currently accessed, a number of

requirements for a new protocol; DMIP, were generated. Section 3.4Error! Reference source

not found., Supporting Technologies introduces the technologies upon which the protocol is

built.

3.1 Target Audience

The goal of this work is to provide a tool to simplify development of applications that

communicate of variable set of interaction modalities. In turn, by providing a better tool for

application authors, we aim to help the end-user have increased access to technology. The

DMIP protocol, its specification (Section 5, Protocol) and associated resources (1.1

Contributions) are intended to be used by:

¶ Authors of

o Client implementations

o Service implementations

¶ Researchers intending to

o Extend or revise the protocol

o Create derivative works

3.2 Requirements

Section 2, identified a number of requirements for an answer to the research question. Many of

the related technologies deal with specific modalities or design-time fixed sets of modalities.

Many of the works cited are not licensed for general use, and others still are verbose and not

suitable for network transport. A formal list of identified requirements are compiled and

clarified below;

14

The system must:

i. Be format-flexible and have the potential to represent any type of computer data,

especially raw format data and interaction modalities

ii. Provide a means to negotiate supported data-types between devices at run-time

iii. Be able to and depend upon operation over a computer network

iv. Be able to send and receive data asynchronously

v. Be able to provide access to any modal-compatible service through a single application

vi. Be able to provide a single, flexible platform for application developers

3.3 Methodology

Iterative design [21] a methodology frequently used in the HCI field was used during the

development of the protocol specification, a diagram of the methodology is provided below in

Figure 1: Iterative Design Methodology. Initially DMIP was designed based on requirements i, iii,

iv, v and vi. Then client and service implementations were created using the .NET framework

(see section 7.2 Protocol Implementations). These implementations were evaluated and the

protocol was revised to support (ii) and tested, subsequent iterations added modes, further

services test and augmentations as well as introducing the Android platform.

15

Figure 1: Iterative Design Methodology

3.4 Supporting Technologies

The DMIP protocol is built upon other foundational technologies, and assumes and

extends the functionality therein. The Internet Protocol Suite (TCP/IP) is used to

provide a communication medium. Service location Protocol (SLP) is a TCP/IP protocol

that can be optionally used to make DMIP more accessible to human users by

providing information about accessible DMIP endpoints.

TCP/IP: DMIP is designed to function on a TCP/IP (Internet Protocol Suite) stack network. The

TCP/IP stack is designed to decouple reliance on the other network layers, DMIP is an

uppermost TCP/IP stack layer protocol. The DMIP application layer protocol that makes explicit

use of both Transmission Control Protocol (TCP) and User Datagram Protocol (UDP) transport

protocols. Using the layers of the TCP/IP stack reduces any concern of link layer (physical

transport medium) and can be transported using a large and expanding set of media.

The transport protocol TCP, is used for all aspects of the protocol except continuous data

streams, which are transported using UDP. TCP provides a guarantee of in order packet delivery

Design

Implement

Evaluate

16

and is used primarily to ensure in order message delivery and processing, while UDP is used for

continuous data streams, where a dropped or out of order message is less significant than the

timeliness of message delivery [2]. The TCP/IP networking stack is broadly supported over a

variety of application platforms and network media including wired and wireless [22] [23]

technologies [2].

Service Location Protocol (SLP) [24]: DMIP is intended to be used in unfamiliar networks.

DMIP applications assume a TCP/IP link and a TCP/IP endpoint are known. The TCP/IP link is

generally configured by the user through their device, or automatically through applications on

the device. DMIP endpoints must however be identified so that devices can connect. In order to

provide a means of locating these DMIP endpoints, SLP is recommended as a solution. This

protocol allows the discovery and query of managed service endpoints through the use of IP

multicast. Further to identifying DMIP endpoints, basic attributes can be queried enabling

connecting devices to connect only to compatible endpoints. The query-able attributes are yet

to be defined and will be defined in future work by creating an SLP service template for DMIP

[25].

17

4 Technology Overview

On a TCP/IP network communication occurs primarily over an endpoint to endpoint link [26].

These two endpoints can typically send and receive data in the form of octet encoded data

from the other endpoint, using any number of supported transport layer protocols [2]. The

most common transport protocols, TCP and UDP both allow the transport of octet streams in

chunks. TCP provides a reliable mechanism with in-order guaranteed delivery of data while UDP

provides a lower latency, but does not guarantee delivery or order of delivery [2]. The DMIP

protocol uses primarily TCP connections, in order to provide a reliable end-user experience.

UDP may be optionally used for the transport of some time-sensitive data if it is supported by

both endpoints. DMIP is an application layer protocol that builds on transport layer protocols,

primarily TCP and optionally UDP. Within a DMIP session there are always 2 endpoints

(necessitated by TCP). One of these endpoints is a client (section 4.1), a DMIP implementing

application that connects to and negotiates a session with a service (section 4.2), a DMIP

ŀǇǇƭƛŎŀǘƛƻƴ ǘƘŀǘ άǎŜǊǾŜǎέ ǘƘŜ ŎƭƛŜƴǘ ǘƘŜ ƛƴǘŜǊŦŀŎŜ ŀƴŘ Ŏŀƴ ǎŜƴŘ ŀƴd receive data using

negotiated channels. Both clients and service devices can support multiple simultaneous

sessions.

4.1 DMIP Clients

DMIP Clients are typically mobile devices that provide a remote, user-centric interface for a

service. Client implementations do not contain any service application specific logic or

presentation information. Clients initiate DMIP sessions by contacting a known network

endpoint over TCP. The discovery of the addresses of these endpoints can be facilitated nicely

using Service Location Protocol (SLP) [24].

Client DMIP applications are independent of services, a client that provides the minimum

channels required to access a service can consume that service. Similar to a web browser, a

single client implementation may be developed for a hardware device/platform, a user would

not generally need more than one client on their device. However, client implementations

18

could provide additional features by providing automatic service location, additional Channel

Types (section 5.5) or any number of other options. It is therefore imaginable that multiple,

potentially competing, clients for a platform might be developed.

4.2 DMIP Services

A DMIP service application is the functional piece. It is located at a known, advertised, or

discoverable network endpoint. Interaction sessions using DMIP have all program logic and

functionality, defined by the service application. To develop a DMIP service a developer creates

client layouts and behaviours to support different modes of interaction by the service

application.

4.3 DMIP Channels

DMIP Channels carry data, formatted according to the enclosing Channel Type (section 5.5) and

represent input and/or output data from either endpoint. As shown in Figure 2: Protocol Flow

Overview, a client sends a listing of its Abilities, represented by the Channel Types it supports

(Label A). Then the service determines if it can interact with all, or a subset, of the presented

abilities, and what channels it will use (Label B). Instances of the chosen channels are created

(Label C). Once confirmed, a channel allows mode formatted data ƻŦ ǘƘŀǘ ŎƘŀƴƴŜƭΩǎ ǘȅǇŜ to flow

(Label D). This data channel stream is valid until the connection times out (section 5.5), or is

explicitly removed (section 5.6.2.8), Label E.

19

Figure 2: Protocol Flow Overview

20

5 Protocol

The DMIP protocol intends to provide a standard method to negotiating and communicating

both emerging and existing interaction modes to network connected devices.

5.1 Protocol Applicability Statement

DMIP is designed to function on a TCP/IP stack network. The DMIP protocol operates under the

premise that a TCP/IP network endpoint is known, that is, that DMIP clients have acquired the

IP address of service(s) to connect to. DMIP is an application layer protocol that makes use of

both Transmission Control Protocol (TCP) and User Datagram Protocol (UDP) transport

protocols. TCP MAY be used for all aspects of the protocol. However for timeliness, continuous

data streams MAY be transported over UDP if so desired, and both endpoints support it. TCP

provides a guarantee of in-order packet delivery and is used primarily to ensure in-order

message delivery and processing, while UDP can be used for continuous data streams, where a

dropped or out of order message is less significant than the timeliness of message delivery.

UDP may be desirable for highly interactive applications using sensor data such as

accelerometers.

5.2 Terminology

¶ Packet ς A packet is a single TCP/IP message.

¶ Message ς A DMIP formatted packet, must always contain a DMIP header, optionally

followed by message data.

¶ Payload ς A single DMIP message/instruction, these can be split or combined between

multiple/single messages.

¶ Request ς Synonymous to Payload, typically used as an alternative, for clarity, when an

action by a remote endpoint is requested.

¶ Channels (or Channel type) ς A static definition of a single type of transportable mode

data.

21

¶ Standard Channels ς Channels included as part of the DMIP protocol definition (this

document).

¶ Meta Channels - Channels used to augment other channel types, and can be associated

1 to 1.

¶ Extension Channels ς Channels created by 3rd party and/or in development stages, not

included within the protocol definition.

¶ Channel (or Channel type Instance) ς An instance of a channel type, within an active

DMIP session.

5.3 Notation Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",

"SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be

interpreted as described in RFC 2119 [27].

If unspecified, binary data fields are to be interpreted as unsigned values.

5.4 Protocol Overview

The DMIP protocol provides a lightweight layer for communicating categorized interaction

mode data over a TCP/IP network. DMIP operates over TCP, and optionally UDP. The purpose

of the DMIP protocol is to provide functionality that simplifies the transport of interaction

mode channels. The purpose of the creation of this protocol is to enable the possibility of

making the devices around us to universally accessible This goal is accomplished by making a

reusable and extendible protocol that simplifies development of distributed, network based

applications, as it allows developers of service applications to focus on behaviours and

presentation rather than being concerned with networking nor the interpretation of a wide

range of input/output types over a range of platforms (OS/hardware). DMIP sessions are

designed to be event based. The implementing systems observe and respond to events, which

are generated by implementing systems when DMIP data is available.

22

DMIP sessions are 1 to 1; a client initiates a session with a service by sending an Abilities packet

(Abilities Message). Clients are independent of services, meaning a single client implementation

of DMIP can connect to, and provide interactive experiences for a variety of DMIP services.

Below, in figure 1, is a high level overview of the DMIP protocol in a system. A Client, (DMIP

Clients, 4.1), is a standardized endpoint that is created and developed for a specific device or

platform, a valid implementation supports any number of the standard DMIP channels (section

4.3) and can optionally support Meta channels (section 5.5.5). A service drives the application,

in that it provides the layout and behaviour for clients. A protocol interpreter layer, such as that

described in (section 7.1), allows multiple applications to be simply developed upon a single

platform.

Figure 3: High Level DMIP Protocol Workflow

5.5 Channel Types

Channel Types represent a single type of mode data, and define what data can be transported

within a Channel, which is an instance of a channel type. A client sends the channel types it can

interpret, as part of Abilities payload. Channels are uniquely identified by 32-bit IDs.

Standardized channels fall within the values 0-1047 (11-bit). The standardized space is further

subdivided, with the first 256 (8 bits) values reserved for meta-channels, 5.5.5. The remaining

23

values (21-bits) 1025-4194304 can be used for extension channels, 5.5.5.4. Table 1: Channel Type

Classes outlines the enumeration of the various classes of Channels.

Table 1: Channel Type Classes

Channel Type Class Range

Standardized Meta Channels 0-255
Standardized Channels 256-2047

Extension Meta Channels 2048-131071
Extension Channels 131072-4294967296

Table 2: Standardized Channels, below Lists the currently standardized channels.

Table 2: Standardized Channels

Type ID Name Description

0 None An Empty Channel

1 TextLabel Meta Channel: indicates the channel has a Unicode
text label

2 Positionable3D Meta Channel: provides 3D vector positioning
3 Interactable Meta Channel: supports interaction events
4 Enabled Meta Channel: allows a channel to be temporarily

άŘƛǎŀōƭŜŘέ
256 SingleState2DButton A button
257 Label2D A label

258 Range1D A range slider
259 ListSelect A selection menu, with key value pairs

260 TextBox A text entry field
276 Title A title, representing the caption of the client

application
296 Relative3DStream 32-bit, 3D data

297 Relative2DStream 32-bit, 2D data

316 Direction4 Direction data up/down/left/right
317 Chars Single character, various encodings
336 Image2DView 2D Image data, jpeg, png or bmp formats

5.5.1 Channel Type Definition

Channel types are defined by two pieces; channel type Options sent as part of an AddChannels

or SetChannelOpt payload and channel type Data sent as the main content of a DMIP Data

payload. Both of these pieces need to be implemented to define a Channel Type.

24

Implementation of a channel type includes definition of what data is included, and how that

data is to be encoded/decoded into message data.

5.5.2 Channel Type Options

The Options payload of a channel is sent to provide initialization and configuration information

about the channel. An Options payload is sent to initialize a channel as part of an encapsulated

AddChannel payload. If options for a channel need to be reset, or initialized for a Meta Channel

they can be sent as part of a SetChannelOpt payload. Note that AddChannel messages are

ignored for already configured channels. Receipt of a SetChannelOpt payload indicates that the

channel, or Meta Channel should be reset to a default state with the Option payload data used

to re-initialize it.

5.5.3 Channel Type Data

The channel Data payload is sent as part of a DMIP Data message. Data payloads include

formatted data for the channel, and can be event based (discrete) or stream based

(continuous). When developing new or extension channel types the importance of in-order

delivery and the frequency of transmission should be considered, so that the Data payloads can

be developed accordingly, features could be added to channel type Data definitions that are

likely to be used over UDP to augment UDP support.

5.5.4 Standard Channels

5.5.4.1 None

The ChannelType enumeration value zero (0) is reserved and should be ignored by endpoints

implementing the protocol.

5.5.4.2 SingleState2DButton

The SingleState2DButton (256) channel is intended to be represented by a selectable button on

clients. The channel type is a skeleton that is intended to have meta-channels attached to it. It

is recommended to be implemented by a standard looking button according to the client

ƛƳǇƭŜƳŜƴǘŀǘƛƻƴ ǇƭŀǘŦƻǊƳΩǎ ǎǘŀƴŘŀǊŘ ǳǎŜǊ ƛƴǘŜǊŦŀŎŜ ŎƻƴǾŜƴǘƛƻƴǎΣ ƻǊ ŀǎ ǘƘŜ ŘŜǾŜƭƻǇŜǊǎ ǎŜŜǎ ŦƛǘΦ

25

¢ƘŜ ŎƘŀƴƴŜƭΩǎ ŀǇǇŜŀǊŀƴŎŜΣ ƭŀȅƻǳǘ ǇŀǊŀƳŜǘŜǊǎ ŀƴŘ ōŜƘŀǾƛƻǳǊǎ Ŏŀƴ ōŜ ǎǇŜŎƛŦƛŜŘκŀǳƎƳŜƴǘŜŘ

through the use of meta-channels. Both SingleState2DButton Options and Data are zero length.

5.5.4.3 Label2D

The Label2D (257) channel is intended to be represented by a text label on connected clients.

The channel type is a skeleton that is intended to have meta-channels attached to it. It is

recommended to be implemented by a standard looking label according to the client

ƛƳǇƭŜƳŜƴǘŀǘƛƻƴ ǇƭŀǘŦƻǊƳΩǎ ǎǘŀƴŘŀǊŘ ǳǎŜǊ ƛƴǘŜǊŦŀŎŜ ŎƻƴǾŜƴǘƛƻƴǎΣ ƻǊ ŀǎ ǘƘŜ ŘŜǾŜƭƻǇŜǊǎ ǎŜŜǎ ŦƛǘΦ

¢ƘŜ ŎƘŀƴƴŜƭΩǎ ŀǇǇŜŀǊŀƴŎŜΣ ƭŀȅƻǳǘ ǇŀǊŀƳŜǘŜǊǎ ŀƴŘ ōŜƘŀǾƛƻǳǊǎ Ŏŀƴ ōŜ ǎǇŜŎƛŦƛŜŘκŀǳƎƳŜƴǘŜŘ

through the use of meta-channels. Both Label2D Options and Data are zero length.

5.5.4.4 Range1D

The Range1D (258) channel is intended to be represented by a range slider or appropriate

alternative on connected clients. The channel type allows a bounded value to be selected by

ŎƭƛŜƴǘǎΦ ¢ƘŜ ŎƘŀƴƴŜƭΩǎ ŀǇǇŜŀǊŀƴŎŜΣ ƭŀȅƻǳǘ ǇŀǊŀƳŜǘŜǊǎ ŀƴŘ ōŜƘŀǾƛƻǳǊǎ Ŏŀƴ ōŜ

specified/augmented through the use of meta-channels. 4-octet values of various types are

supported. Signed and Unsigned 4-octet integers and floating point numbers are supported.

Type values: 1: Unsigned Integer, 2: Signed Integer, 3: Floating Point. The Range1D Data

ǇŀȅƭƻŀŘ ǎƘƻǳƭŘ ōŜ ǎŜƴǘ ǿƘŜƴ ǘƘŜ ŎƘŀƴƴŜƭΩǎ ǾŀƭǳŜ ŎƘŀƴƎŜǎ ƻƴ ǘƘŜ ŎƭƛŜƴǘΦ

Table 3 Range1D Options Payload

Channel Type: Range1D (258)

Field Size Description
Type 8 bits Represent the value type of the output
Max 32 bits The maximum value that the channel can select, of Type
Min 32 bits The minimum value that the channel can select, of Type

Table 4 Range1D Data Payload

Channel Type: Range1D (258)

Field Size Description
Value 32 bits The value currently selected by the Range1D channel

26

5.5.4.5 ListSelect

The ListSelect (259) channel is intended to be represented by a dropdown list or spinner that

typically can displaȅ ƻƴŜ ƭƛƴŜ ƻŦ ǘŜȄǘ ǊŜǇǊŜǎŜƴǘƛƴƎ ǘƘŜ ŎǳǊǊŜƴǘƭȅ ǎŜƭŜŎǘŜŘ ǾŀƭǳŜΦ ¢ƘŜ ŎƘŀƴƴŜƭΩǎ

appearance, layout parameters and behaviours can be specified/augmented through the use of

meta-channels. 4-octet values of various types are supported. Signed and Unsigned 4-octet

integers and floating point numbers are supported. Type is specified within a Range1D options

payload; values: 1: Unsigned Integer, 2: Signed Integer, 3: Floating Point. By default, the

wŀƴƎŜм5 5ŀǘŀ ǇŀȅƭƻŀŘ ǎƘƻǳƭŘ ōŜ ǎŜƴǘ ǿƘŜƴ ǘƘŜ ŎƘŀƴƴŜƭΩǎ ǾŀƭǳŜ ŎƘŀƴƎŜǎ on the client.

Table 5 Range1D Options Payload

Channel Type: Range1D (258)

Field Size Description
Type 8 bits Represent the value type of the output
Max 32 bits The maximum value that the channel can select, of Type
Min 32 bits The minimum value that the channel can select, of Type

Table 6 Range1D Data Payload

Channel Type: Range1D (258)

Field Size Description
Value 32 bits The value currently selected by the Range1D channel

5.5.4.6 TextBox

The TextBox (260) channel is intended to be represented by a text box on connected clients.

The channel type is a skeleton that is intended to have meta-channels attached to it, especially

the TextLabel meta-channel to provide communication of text data that would typically appear

in the textbox. It is recommended to be implemented by a common looking textbox according

ǘƻ ǘƘŜ ŎƭƛŜƴǘ ƛƳǇƭŜƳŜƴǘŀǘƛƻƴ ǇƭŀǘŦƻǊƳΩǎ ǎǘŀƴŘŀǊŘ ǳǎŜǊ ƛƴǘŜǊŦŀŎŜ ŎƻƴǾŜƴǘƛƻƴǎΣ ƻǊ ŀǎ ǘƘŜ ŎƭƛŜƴǘ

ŘŜǾŜƭƻǇŜǊ ǎŜŜǎ ŦƛǘΦ ¢ƘŜ ŎƘŀƴƴŜƭΩǎ ŀǇǇŜŀǊŀƴŎŜΣ ƭŀȅƻǳǘ ǇŀǊŀƳŜǘŜrs and behaviours can be

specified/augmented through the use of meta-channels. Both TextBox Options and Data are

zero length.

27

5.5.4.7 Title

The Title (276) channel is intended to represent a window or application caption, typically

shown in the title area of an application, and running application lists on clients. The channel

type is a skeleton that is intended to have meta-channels attached to it. It is recommended that

implementations implement at least the TextLabel Meta Channel, allowing a text label to be

specified. Both Title Options and Data are zero length.

5.5.4.8 Relative3DStream

The Relative3DStream (296) channel is designed as client output channel, and would not usually

be rendered. However, if representation were desired Meta Channels can be used. This channel

is intended to represent relative 3D spatial data, primarily accelerometer data, but other data

could be represented. Fields for the channel are to be interpreted as single-precision floating

point format. This channel is intended to be used to send data continuously when data is

available and is recommended to be sent over a low-overhead transport protocol, such as UDP.

Interpretation of the data for the channel is left to client and service developer discretion.

Below are the structure of the Options and Data payloads.

Table 7 Relative3DStream Options Payload

Channel Type: Relative3DStream (296)

Field Size Description
MaxX 32-bits The maximum absolute value of the X axis data
MaxY 32-bits The maximum absolute value of the Y axis data
MaxZ 32-bits The maximum absolute value of the Z axis data

Table 8 Relative3DStream Data Payload

Channel Type: Relative3DStream (258)

Field Size Description
X 32-bits Value of the X axis data
Y 32-bits Value of the Y axis data
Z 32-bits Value of the Z axis data

28

5.5.4.9 Relative2DStream

The Relative2DStream (297) channel is designed as client output channel, and would not usually

be rendered. However, if representation were desired Meta Channels can be used. This channel

is intended to represent relative 2D spatial data, which could represent computer mouse

movements, or a variety of other data. Fields for the channel are to be interpreted as single-

precision floating point format. This channel is intended to be used to send data continuously

when new data is available and is recommended to be sent over a low-overhead transport

protocol, such as UDP. Interpretation of the data for the channel is left to client and service

developer discretion. Below are the structure of the Options and Data payloads.

Table 9 Relative2DStream Options Payload

Channel Type: Relative2DStream (296)

Field Size Description
MaxX 32-bits The maximum absolute value of the X axis data
MaxY 32-bits The maximum absolute value of the Y axis data

Table 10 Relative2DStream Data Payload

Channel Type: Relative3DStream (258)

Field Size Description
X 32-bits Value of the X axis data
Y 32-bits Value of the Y axis data

5.5.4.10 Direction4

The Direction4 (316) channel is designed as client output channel, and would not usually be

rendered. However, if representation were desired Meta Channels can be used. This channel is

intended to represent discrete, 4 direction data, and could be used to represent the arrow keys

on a standard keyboard, a directional pad, or a basic joystick. The Options payload is zero

length. When a direction is specified by the client, a Data payload is sent, with a single direction

(Up = 1, Left = 2, Down = 3, Right = 4) single octet field is sent. The structure of the Data payload

is given below. Values outside the given enumeration should be ignored.

29

Table 11 Direction4 Data Payload

Channel Type: Direction4 (316)

Field Size Description
Direction 8-bits The direction selected, Up = 1, Left = 2, Down = 3, Right = 4

5.5.4.11 Chars

The Chars (317) channel is designed as client output channel, and would not usually be

rendered. However representation were desired Meta Channels can be used. This channel is

intended to represent discrete, character data, and could be used to represent keyboard input.

The Options payload specifies the expected encoding of the character data (ASCII = 1, UTF8 = 2,

UTF16 = 3, UTF32 = 4). Standard usage would include the client user pressing a key on a

keyboard, resulting in a Chars Data payload being sent to the service, including the encoded

ŎƘŀǊŀŎǘŜǊΩǎ ǾŀƭǳŜΦ ¢ƘŜ ǎǘǊǳŎǘǳǊŜǎ ƻŦ ǘƘŜ hǇǘƛƻƴǎ ŀƴŘ 5ŀǘŀ ǇŀȅƭƻŀŘ ŀǊŜ ǇǊƻǾƛŘŜŘ ōŜƭƻǿΦ

Undefined values should be ignored. Note that Data payloads also specify encoding, the

Options ǇŀȅƭƻŀŘ ƛǎ ǘƻ ōŜ ǳǎŜŘ ŀǎ ŀ ŎƭƛŜƴǘΩǎ ƛƴǘŜƴŘŜŘ ŦƻǊƳŀǘΣ ƘƻǿŜǾŜǊ Services implementing the

Chars channel type, MUST support all 4 encoding schemes.

Table 12 Chars Options Payload

Channel Type: Chars (317)

Field Size Description
Encoding 8-bit The intended encoding of the characters sent within Data payloads;

ASCII = 1, UTF8 = 2, UTF16 = 3, UTF32 = 4

Table 13 Chars Data Payload

Channel Type: Chars (317)

Field Size Description
Encoding 8-bit The encoding of the included character; ASCII = 1, UTF8 = 2, UTF16 =

3, UTF32 = 4
Character ASCII = 8-bit

UTF8 = 8-bit
UTF16 = 16-bit
UTF32 = 32-bit

A single character, encoded according the Encoding field.

30

5.5.4.12 Image2DView

The Image2DView (336) channel is intended to be represented by a view of an image on

connected clients. Images can be represented in large octet streams, and split over more than

one packet, it is recommended that TCP or other in-order guaranteed transport layer is used.

The Options payload is 0 length, augmentation can be provided with Meta Channels. Behaviour

with no meta-channels is undefined, but valid, client developers can utilize the channel as they

see fit if no meta channels are used (write images to local storage, provide a full screen show,

etc.) Image2DView supports JPEG = 1, PNG = 2, BMP = 3, or other = 255 encoded images,

extended formats may be added in revisions to Image2DView. Implementations can try to

decode any image format not within the given encodings, or with an encoding of Other, but

should either generate a placeholder image, or show empty space if the image cannot be

decoded. Data ǇŀȅƭƻŀŘǎ ƛƴŎƭǳŘŜ ǘƘŜ ƛƳŀƎŜΩǎ ǿƛŘǘƘ ŀƴŘ ƘŜƛƎƘǘ ƛƴ ǇƛȄŜƭǎ ǘƻ ŀƛŘ ƛƴ ƭŀȅƻǳǘΣ ǎƘƻǳƭŘ

the image not be decode-able. Below is the format of Data payloads.

Table 14 Image2DView Data Payload

Channel Type: Chars (336)

Field Size Description
Encoding 8-bit The encoding of the included image; JPEG = 1, PNG = 2, BMP = 3,

other = 255
Width 16-bit Unsigned 16-bit integer representing ǘƘŜ ƛƳŀƎŜΩǎ ǿƛŘǘƘΣ ƛƴ ǇƛȄŜƭǎ
Height 16-bit Unsigned 16-ōƛǘ ƛƴǘŜƎŜǊ ǊŜǇǊŜǎŜƴǘƛƴƎ ǘƘŜ ƛƳŀƎŜΩǎ ƘŜƛƎƘǘΣ ƛƴ ǇƛȄŜƭǎ
ImageData Variable The encoded image binary data

5.5.5 Meta Channels

Meta Channels are channels used to augment other channel types. Clients capable of using a

given Meta channel with a channel, specify so, within an Abilities payload. Services compatible

ǿƛǘƘ ǘƘŜ aŜǘŀ ŎƘŀƴƴŜƭ Ŏŀƴ ǎǇŜŎƛŦȅ ŀ aŜǘŀ ŎƘŀƴƴŜƭΩǎ ƻǇǘƛƻƴǎ ǿƛǘƘ ŀ SetChannelOpt message.

Only one instance of each type of Meta channel is valid for a given channel. Please see the

proceeding sections for examples, meta-channels reduce channel overhead by reducing the size

of data messages and can provide aggregation of common channel functionality.

31

5.5.5.1 TextLabel

The TextLabel (1) Meta Channel allows text strings to be associated to channels. For example,

with the currently implemented channels, it can be used to provide the text for a button,

application window or a label, or a caption for an image. Both the TextLabel Data and Options

payloads have identical structures, and contain only a string, a series of UTF-16 characters.

5.5.5.2 Positionable3D

The Positionable3D (2) Meta Channel allows client-rendered channels, that are representable as

ǳǎŜǊ ŎƻƴǘǊƻƭǎ ƻǊ ǿƛŘƎŜǘǎ ǘƻ ōŜ ǇƻǎƛǘƛƻƴŜŘ ƛƴ ǘƘŜ ŀǇǇƭƛŎŀǘƛƻƴΩǎ ƭŀȅƻǳǘΦ Both Data and Option

payloads are identical. If a position is changed for an existing channel (using a Data payload),

ǘƘŜ ǘǊŀƴǎƛǘƛƻƴ ƛǎ ǳƴŘŜŦƛƴŜŘΣ ōǳǘ ǎƘƻǳƭŘ ƴƻǘ ƛƳǇŜŘŜ ǳǎŀƎŜ ƻŦ ǘƘŜ ŎƘŀƴƴŜƭ ōȅ ǘƘŜ ŎƭƛŜƴǘΩǎ ǳǎŜǊΦ

Three dimensional values are used to provide ordering using the depth dimension on 2D

displays, or to provide positioning in 3D environments. Positionable3D supports both scalar and

vector co-ordinates, the former can be used to allow vectored positions to be calculated within

the service using the dimensions provided as part of the LayoutOption within the initial Abilities

message. Scalar positions are communicated in 32-bit integer values. Vector values are

transported as 32-bit floating point values, from 0 to 1 representing the full range of the given

ŘƛƳŜƴǎƛƻƴΦ bŜƎŀǘƛǾŜ ǾŀƭǳŜǎ ƻǊ ǾŀƭǳŜǎ ōŜȅƻƴŘ м όƻǊ ōŜȅƻƴŘ ǘƘŜ ŘƛǎǇƭŀȅΩǎ ƳŀȄƛƳǳƳ ǎŎŀƭŀǊ ǾŀƭǳŜύ

are valid and could be used to place controls partially, or entirely off screen. Within a single

payload, scalar and vector values cannot be mixed. Below is the structure of Positionable3D

payloads.

32

Table 15 Postionable3D Options and Data Payloads

Channel Type: Positionable3D (2)

Field Size Description
X 32-bits The intended horizontal position (32-bit integer or signed floating

point)
Y 32-bits The intended vertical position (32-bit integer or signed floating

point)
Z 32-bits The intended depth position (32-bit integer or signed floating point)
Width 32-bits The width (32-bit integer or signed floating point)
Height 32-bits The height (32-bit integer or signed floating point)
Depth 32-bits The depth (32-bit integer or signed floating point)
Scalar 8-bits A Boolean representing if the fields are to be interpreted as integers

or floating point values (0 for integer/scalar, otherwise floating
point/vector)

5.5.5.3 Interactable

The Interactable meta-channel allows Channels to have 1 or more classical user initiated

interactions attached to them. The Options payload allows specification of any number and

combination of the defined interactions

Table 16) as well as an optional argument type for that interaction, that will defines the format

of an optional argument transported when that interaction occurs on the Channel. The Data

payload is transmitted when the interaction occurs, and contains the type of interaction (

Table 16) as well as an octet array containing a parameter in the format specified in Options

when the channel was created (argument type,

Table 16).

Table 16 Interactable Interaction Types and Argument Types

Type Enumeration Values

Interaction
Type

1: Select, 2: Focus, 3: Blur, 4: Change

Argument
Type

None; 0
Unsigned Integer; 1: 8 bit, 2: 16 bit, 3: 32 bit
Integer; 8: 16 bit, 9: 32 bit
Character array*; 16: UTF8, 17: UTF16
Floating point; 24: 32 bit, 25: 64 bit,
Boolean: 32: 8 bit;

*Character array argument types represent a string of characters in the specified format; UTF8

or UTF16.

33

Provided below are the bit-layouts of the Options and Data Interactable payloads.

Table 17 Interactable Options Payload

Channel Type: Interactable (3)

Field Size Description
мΧϝΥ hŎǘŜǘ tŀƛǊ ƭƛǎǘƛƴƎ ƻŦ ƛƴǘŜǊŀŎǘƛƻƴǎ
Interaction
Type

8-bit Type of interaction, See

Table 16

Table 18 Chars Data Payload

Channel Type: Chars (317)

Field Size Description
Encoding 8-bit The encoding of the included character; ASCII = 1, UTF8 = 2, UTF16 =

3, UTF32 = 4
Character ASCII = 8-bit

UTF8 = 8-bit
UTF16 = 16-bit
UTF32 = 32-bit

A single character, encoded according the Encoding field.

5.5.5.4 Enabled

The Enabled (4) meta-channel allows enabling or disabling any rendered control on the client. It

is important to note that Enabled is purely a client interface feature and SHOULD NOT indicate

that data for that channel is invalid. The Enabled meta-channel can provide helpful user

interface cues when a feature is not available and SHOULD cause the client rendered control

representing the underlying channel to appear disabled. Both the Enabled Data and Options

payloads have identical structures, and contain only a single octet, with a value of 0

representing false (not enabled) and any other value representing true (enabled).

5.5.6 Extension Channels

Extension channels allow data beyond what is specified within standardized channels to be

transported. Clients and services that implement extension channels must be capable of

performing further verification of the channel type, through the channel type options data that

is sent during AddChannel and SetChannelOpt messages from the service.

34

5.6 Messages

A DMIP message is a formatted packet, made up of a DMIP header followed by message data.

5.6.1 Header

The DMIP Header is a 15-octet (120 bits) grouping of data that is prepended and transmitted

with every DMIP TCP or UDP message. Included in

Table 19: DMIP Header is a description, in byte order, the fields within the header.

Table 19: DMIP Header

Bit Index Field Size Description

0 Length 16 bits (65535 bytes
per message)

Unsigned little-endian
representing the message octet
size

16 Protocol version 8 bits (256 versions) Aid in identifying potential
differing versions of DMIP

24 Message type 8 bits (256 message
types)

Identify the type of message

32 Timestamp 32 bits (49.7 days) Milliseconds elapsed on the
DMIP endpoint since the
session began

64 Message ID 8 bits (256
simultaneous
messages)

Avoid duplicate processing of
simultaneous messages

72 TunnelID 16 bits (65536 DMIP
connections per
TCP/IP port)

Allows multiple connections to
be a carried over a single TCP/IP
port

88 PacketCount 16 bits (65536 packets
per message max)

The number of packets in the
message

104 PacketNumber 16 bits The number of the packet
within the message

The length field is included first to simplify the delineation of messages from streams. It is

included in both UDP and TCP messages in order to provide an identical header over both

transport layers and potentially allow other transport layer protocols to be implemented with

comparatively less difficulty.

35

The protocol version will be 1 for the initial version of the protocol, and will be incremented if

changes are made that are not directly backward and forward compatible.

TunnelID is used to allow the transport of data for more than one interface over a single

connection. Messages using different TunnelIDs MUST be treated as part of an independent

session/connection.

Message types are an enumerated type and indicate how the message data will be interpreted,

message types and associated enumeration values are included in 5.6.2.

A timestamp field is used to allow messages from disparate clients to be synchronized on the

host; an intelligent multi-client host may use this information to compensate for network

latency. The timestamp can be used in conjunction with the Message ID to avoid duplicate

processing of messages, for example from UDP data messages, or multi-homed messages. The

message ID field should be unique for any given Timestamp.

The length field is used to allow split messages to be recombined correctly.

The PacketCount and PacketNumber fields allow messages to be split into smaller packets, this

can be used if a network endpoint has a preferred maximum, or there is a maximum TCP or

UDP packet size.

5.6.2 Message Types

The DMIP protocol is designed to be minimal, to ease development of compatible applications.

The message names and their corresponding message type are listed in

36

Table 20. A description of each message type, and the message data, if applicable follows the

table.

37

Table 20: DMIP Message Types

Message Name Message Type Enumeration Sent By

Acknowledge 0 Client, Service
Error 1 Client, Service
Close 2 Client, Service
Malformed 3 Not sent
Abilities 7 Client
RemoveAbilities 8 Client
AddChannel 9 Service
RemoveChannel 10 Service
SetChannelOpt 11 Service
Data 24 Client, Service
MultiPayload 254 Client, Service
SplitPayload 255 Not Sent

5.6.2.1 Acknowledge Message

Acknowledge messages have two purposes, confirm an AddChannel message (section 5.6.2.7)

or sent as a keep-alive message (section 5.5). Acknowledge messages optionally contain a 16-bit

unsigned integer, which is representative of the Channel ID added by the client. If the value is

omitted, or the Channel ID does not exist, it is to be interpreted as a keep alive only. When

confirming an AddChannel message, the Acknowledge message should only be sent when the

client is prepared to start receiving data. If the channel is purely used for sending data to the

service, then it is not required to be sent as the initial Data message sent by the client is taken

as implicit acknowledgement of the AddChannel message. Messages sent by the service

endpoint on the channel before acknowledgement are undefined and should not be processed

by the client if received, unless these messages are received in a MultiPayload message (section

5.6.2.10) with a matching ChannelID as the AddChannel message.

Table 21 Acknowledge Message Structure

Message Type: Acknowledge (0)

Field Size Description

ChannelID 8 bits (Optional)
The ID of a channel that is ready to send and/or receive data

38

5.6.2.2 Error Message

An Error message is a generic message passing mechanism, it allows passing of a 16-bit Unicode

formatted byte string representing an error message. The ChannelID field allows

communication of the specific channel generating the error, a value of 0 (zero) indicates an

error that is not channel specific. Error messages do not change the state of a DMIP session

(terminate a session nor indicate the removal of a channel). However Error messages should be

sent by clients when an AddChannel request (section 5.6.2.7) is not fulfilled, and thus can

represent the lack of a channel within a session.

Table 22 Error Message Structure

Message Type: Error (1)

Field Size Description
ChannelID 8 bits The ChannelID of the channel generating the error
Message variable A 16-bit UTF string, providing more information about the

error

5.6.2.3 Close Message

The close message is used to terminate a session, a Unicode byte stream is optionally attached.

To provide rationale/reasoning for the connection closing.

Table 23 Close Message Structure

Message Type: Close (2)

Field Size Description
Message variable A 16-bit UTF string, providing more information about the

reason the connection was closed

5.6.2.4 Malformed Message

This Message type is reserved for internal use, and allows processing of incomplete or

malformed messages on either endpoint. It is not explicitly part of the network protocol, except

that the message type value (3) is reserved.

39

5.6.2.5 Abilities Message

The Abilities message is sent by a client device, it is the only message that can initiate a client-

service session. The purpose of the Abilities payload is twofold; to specify what kind of layouts

the device can support (if any) and which channel types a client can utilize. Subsequent Abilities

and RemoveAbilities messages can be sent to add and remove channŜƭǎ ǎƘƻǳƭŘ ǘƘŜ ŎƭƛŜƴǘΩǎ

feature list change during an active session.

If an Abilities message is received within an active session (beyond the session initiating Abilities

message), it is to be processed cumulatively. These messages will add to the list of session

supported Channel Types or update the supported MetaChannels, toggle the IsDiscrete

parameter or change the Multiplicity for previous declared Channel Types. Subsequent

The Abilities message SHALL NOT trigger the direct removal of channels by the client, if

Multiplicity is updated to a value below the current number of active instances of the given

Channel Type the service MUST respond by explicitly removing (see RemoveChannel, 5.6.2.8)

select channels until the new Multiplicity limit is observed, or discontinue the session.

40

Table 24: Abilities Message Structure

Message Type: Abilities (7)

Field Size Description
NumberOfLayouts 8 bits The number of layout options included
NumberOfChannels 16 bits The number of channels included
Layout Options 0..*
 UniqueFeatureID 8 bits A value for layout identification so that multiple displays

can be used
 X 16 bits Extent in pixels
 Y 16 bits Extent in pixels
 Z 16 bits Extent in pixels
Channels 1..*
 MetaChannelCount 8 bits The number of meta channels (0-255)
 Meta Channels 0..*
 MetaChannelsID 32-bits The Channels ID of a meta-channel
 IsDiscrete 1 bit Whether the data is discrete or continuous
 Reserved 7 bits
 Multiplicity 16 bits 0 is any number, otherwise represents how many of these

channels the client supports
 ChannelType 32 bits 32 bit standardized ability identifier for the type of data

sent

5.6.2.6 RemoveAbilities Message

The remove abilities message allows channels to be removed from an active session. Upon

receipt of a remove abilities message, the service should stop processing or sending any

messages for any channel of the given channel types. The remove abilities message contains a

list of 32-bit values representing the channel types that are no longer valid. If the modified list

of Channel Types is not supported by the service, it MAY explicitly disconnect the client (see

section 5.6.2.3) or it MAY maintain the session, the behaviour is definable by the DMIP service

author.

Table 25: Abilities Message Structure

Message Type: RemoveAbilities (8)

Field Size Description
ChannelType 32 bits*i 32 bit identifiers for the channel types to be invalidated, any

number (i) of channel types can be specified

41

5.6.2.7 AddChannel Message

The AddChannel message is used by the service to request that a connected client add a

channel to the active session. An 8-bit layout ID allows a specific layout to be used see Abilities,

A 16-bit identifier for the channel is specified, this identifier must be unique for the active

session, but can be reused if a RemoveChannel message (section 5.6.2.8) is sent for the

identifier prior. The identifier is attached to all related Data messages (section 5.6.2.10) and

must be kept and used by both the client and service. The channel type is specified by the

ChannelType parameter. The Options parameter carries the payload for the construction of the

channel as described in 5.5.1. Table 26: AddChannel Message Structure provides the in-order

structure of an AddChannel message.

Table 26: AddChannel Message Structure

Message Type: AddChannel (9)

Field Size Description
LayoutID 8 bits Specifies which layout the channel should be added to
ChannelID 16 bits An identifier that the channels instance will be referred to as
ChannelType 32 bits The channels feature that is being subscribed/added, initially

specified by the client in Abilities packet
Options Variable ChannelOption for the Channel Type

5.6.2.8 RemoveChannel Message

The RemoveChannel message allows channels to be removed by the service within an active

session, this in conjunction with AddChannel allows a dynamic client experience. The

RemoveChannel message carries a list of 16 bit ChannelIDs, upon sending or receipt or

transmittal of a RemoveChannel message, both endpoints should no longer send or process

messages for any of the given channels. If an unknown/unused identifier is specified, the

identifier should be ignored. After sending a RemoveChannel, request, the ChannelID is then

available for re-use for additional channels.

42

Table 27: RemoveChannel Message Structure

Message Type: RemoveChannel (10)

Field Size Description
ChannelID 16 bits*i A list of i identifiers representing active channels to be removed

5.6.2.9 SetChannelOpt Message

The SetChannelOpt message, sent by the service, allows options to be set or reset outside of

the AddChannel message, more importantly, it is the only means by which to specify meta-

channel options. The message consists of the 16-bit channel id, the 32-bit channel type and the

encoded channel type options payload discussed in 5.5.1. SetChannelOpt messages can be sent

by the service for any active (acknowledged) channel, additionally, they are valid as part of a

MultiPayload message, provided a prior AddChannel message for that channel is given within

the MultiPayload, this allows meta-channels to be initialized more easily and concisely.

Table 28: SetChannelOpt Message Structure

Message Type: SetChannelOpt (11)

Field Size Description
ChannelID 16 bits The identifier of the channel
ChannelType 32 bits The channelΩs feature that is being subscribed/added, initially

specified by the client in Abilities packet
Options Variable ChannelOption for the Channel Type

5.6.2.10 Data Message

Data messages are the main transport mechanism for information within the DMIP protocol. A

data message contains the associated Channel ID, generated by the service and included as part

of an AddChannel message. The 16-bit channel ID is prepended to a variable length byte stream

along with the ChannelType, which can be the type given the specific channel instance or any of

its associated MetaChannels, this enables decoded according to the given Channel Type

definition 5.5.1.

43

Table 29: Data Message Structure

Message Type: Data (24)

Field Size Description
ChannelID 16 bits An identifier for the channel instance that the data is from
ChannelType 32 bits The ChannelType of the data
Data Variable Data in the specified ChannelType format

5.6.2.11 MultiPayload Message

MultiPayload messages can carry multiple payloads. This allows lower network overhead when

dealing with smaller payloads. It also eases the development use and initialization of meta-

channels. Each encapsulated message is formatted with an 8-bit message type followed by a

16-bit unsigned integer length of the payload, and the byte encoding of the payload. The order

of payloads within the MultiPayload message must be observed by network endpoints and

should be processed synchronously (the first payload must complete processing before the next

is processed).

Table 30: MultiPayload Message Structure

Message Type: MultiPayload (254)

Field Size Description
1..*
 MessageType 8-bits The MessageType of the proceeding payload
 Length 16-bits The octet length of the proceeding payload
 Payload Length

octets
The payload of the encapsulated message

5.6.2.12 SplitPayload Message

A SplitPayload Message is a message that has been split into 2 or more messages to overcome

the header length field limitation (16-bit) and to support potential limits in frame sizes over the

transport layer protocol. The SplitPayload MessageType in not directly transported over the

network, instead the 16-bit DMIP header fields PacketCount and PacketNumber are used. This

allows a maximum message size of approximately 4 gigaoctets. The SplitPayload MessageType

44

enumeration value (255) is reserved to allow the SplitPayload MessageType to be more simply

represented in software implementations of the protocol.

5.7 Field Sizes

The design of a novel protocol requires estimation of a number of parameters, including the

size of fields and types of messages included. Every effort has been made to avoid choosing

values arbitrarily and to allow the representation of all imaginable types of data. Estimates

were aimed at keeping message header and overhead low as well as keeping data byte-aligned.

The result is that there are limits to several values within the protocol. Notably, there is a limit

of 232 different Channel Types that a client/service can understand, there is a limit of 216 active

Channels in a single DMIP session and a single DMIP message has a maximum size of 64

kilobytes. Maximum message size of 64 kilobytes combined with the 216 maximum number

messages within a single payload (Section 5.6.2.12 SplitPayload Message), means that a single

payload has maximum size of 4 gigabytes. Data types that are envisioned to potentially exceed

this limit MUST incorporate splitting/recombining within the Channel Type definition.

5.8 UDP Stream Data

The User Datagram Protocol allows lower latency [2], and MAY be used as a transport

mechanism for some Channels. DMIP services SHOULD have the ability to utilize UDP to send

or receive Data messages, but MUST only do so for a channel type whose abilities, specified by

the client include an IsDiscrete (Abilities Message, 5.6.2.5) property set to true (1).

5.9 Layouts

Layouts represent combination of channels on a client device. Allowing the specification of a

layout allows host devices to control how multimodal interaction channels will be displayed a

client device. In the current version of the protocol, only vector layouts are supported through

the use of the Positionable3D meta-channel. However, extension of the protocol could provide

meta-channels to support additional types of layout and positioning.

45

5.10 Timeouts

DMIP connections are considered terminated after 10 seconds (10,000 milliseconds) of

inactivity. Inactivity means no receipt of a message. Both clients and services should observe

this restriction. Sessions terminated due to timeout should send a close message (section

5.6.2.3) to the remote endpoint if the TCP socket is still available. Both endpoints should ensure

that a message is sent at least every 7 seconds, making use of the Acknowledge message

(section 5.6.2.1) as a keep alive message if necessary.

46

6 Protocol Flow

In order to describe the intended flow of DMIP sessions using the Protocol (section 5), this

section provides an overview of DMIP session flow (section 6.1). Additionally, a number of

examples of typical sessions are provided (section 6.2).

6.1 DMIP Session Overview

A DMIP session is a 1 to 1, single TCP endpoint to TCP connection, which can be supplemented

by UDP, all session management messages are, however sent using TCP to ensure, in order

delivery [2]. Sessions are initiated by clients (section 6.1.1), if services accept the clients, they

can add channels (section 6.1.2) to communicate (section 6.1.3), active sessions can have any

number of channels added to them, and they can be removed (section 6.1.5) allowing dynamic

user interfaces and other scenarios (section 6.1.4). Session are terminated by either endpoint

explicitly or implicitly after a timeout (section 6.1.6).

6.1.1 Session Initiation

A session is initiated from a client by sending an Abilities message (section 5.6.2.5), providing a

listing of Channel Types (section 5.5) it can support, Meta-channels (section 5.5.5) those

channels can support, as well as information about display devices available for Positionable3D

Channels (section 5.5.5.2). This information should be stored by the service so that it can

evaluate compatibility, and respond approprƛŀǘŜƭȅ ǘƻ ǘƘŜ ŎƭƛŜƴǘ ŘǳǊƛƴƎ ǘƘŜ ǎŜǎǎƛƻƴΩǎ ƭƛŦŜŎȅŎƭŜΦ

Service applications can explicitly reject clients by sending a Close message (section 5.6.2.3) in

response to an initial Abilities message (section 5.6.2.5), this allows an explanation for

connection refusal to be provided. The service can reject a client for any reason. Wherever

possible, services should provide rationale for rejection, to enable user understanding [28].

Examples of reasons for rejection are; incompatible/insufficient Channel Types available on the

client and service capacity/user limits reached. Rejection is implied if the client does not receive

a response from the service within the timeout period (section 5.5). The rationale for this is to

handle situations where the service is unavailable/unable to respond, but should not be

47

purposely used by service authors, as doing so inhibits user understanding because it limits

visibility of system status [28].

6.1.2 Channel Initiation

If the service accepts the client, it can add compatible channels, using AddChannel (section

5.6.2.7) messages. A service should not send messages for a channel until either an initial Data

(section 5.6.2.10) or Acknowledge (section 5.6.2.1) message is received from the client for the

channel. If the client is unable to add a channel, it should send an Error message (section

5.6.2.2) ŎƻƴǘŀƛƴƛƴƎ ǘƘŜ ŎƘŀƴƴŜƭΩǎ ChannelID, to the service.

Meta-channels provide augmentation of channels by allowing additional data types to be

specified for a channel (section 5.5.5). Meta-channels (as specified by the client during session

initiation, 6.1.1) for a channel are automatically available when it is added, default options are

however, undefined. Initial options for Meta-channels can be bundled in a MultiPayload

message (section 5.6.2.11) as SetChannelOpt messages (section 5.6.2.9) by the service if initial

values are required.

These channels are the method in which data is communicated within DMIP, the primary

identifier for a Channel is its ChannelID, this need to be registered by, and handled

appropriately at both endpoints.

6.1.3 Active Channels

Once a channel is added and acknowledged, the endpoints can communicate using Data

messages (section 5.6.2.10) in the format of the Channels TypeΩǎ associated data type,

described in 5.5.3. Meta-channel data is communicated using the same ChannelID as the

attached channel, with the Meta-/ƘŀƴƴŜƭΩǎ ǘȅǇŜ ŀǎ ǘƘŜ ŎƘŀƴƴŜƭ ǘȅǇŜ όŀƭƭƻǿƛƴƎ ŦƻǊ ƻƴƭȅ ƻƴŜ

instance of each meta-channel per channel). Additionally options for the channel and

associated meta-channels can be updated by the service using SetChannelOpt messages. When

a complete Data or SetChannelOpt payload is received at an endpoint, it should be decoded

and processed to generate relevant actions.

48

6.1.4 Active Session

Within an initiated session, all valid DMIP messages are processed. Messages that refer to an

inactive channel are typically ignored. A client can modify its available channel type abilities by

sending Abilities or RemoveAbilities messages (section 5.6.2.8, 5.6.2.8). If a client removes a

channel type ability that is currently in use within the session the service should discontinue its

use, terminating the session with a Close message (section 5.6.2.3) if required. Channels

removed in this way are then considered inactive, and may ǊŜǉǳƛǊŜ ǊŜƳƻǾŀƭ ǿƛǘƘƛƴ ǘƘŜ ŎƭƛŜƴǘΩǎ

interface. Services may request the addition or removal of channels to the session at any time

through the use of AddChannel and RemoveChannel request, as described in 6.1.2 and 6.1.5

respectively. By removing and adding channels, services can generate dynamic applications that

Ŏŀƴ ŜŦŦƛŎƛŜƴǘƭȅ ƳŀƪŜ ǳǎŜ ƻŦ ǘƘŜ ǊŜƳƻǘŜ ŎƭƛŜƴǘΩǎ ŀōƛƭƛǘƛŜǎΦ

6.1.5 Channel Termination

Active channels can be terminated explicitly by way of a RemoveChannel request from the

service. When the service sends this request, it is indicating that it is not going to send or

process incoming additional messages referring to the channel. When the client receives a

RemoveChannel request, it stops initiating actions for that channel; Data messages are no

longer sent and any visual representations of the channel in the client interface are removed.

Channels can be implicitly removed through a RemoveAbilities request from the client, in which

case the channel should be explicitly removed from the client so that the ChannelID can be

reused and any interface elements relating to the channel are removed.

All active channels are also terminated when a session is terminated, and both endpoints can

safely perform removal and cleanup of any channels associated with the session.

6.1.6 Session Termination

Session can be terminated by either the client or the service within an active session by sending

a Close request. The Close should be the last message transmitted for any session. When an

endpoint receives a Close request it terminates the session and removes any resources

49

associated with the session. If a client receives a Close ǊŜǉǳŜǎǘΣ ǘƘŜ ƳŜǎǎŀƎŜΣ ǿƛǘƘƛƴ ǘƘŜ ŘŜǾƛŎŜΩǎ

interface should be communicated to the end user. The service may log the session, but should

ƴƻǘ ƛƴƘƛōƛǘ ƻǘƘŜǊ ǳǎŜǊǎ ŦǊƻƳ ŎƻƴƴŜŎǘƛƴƎΣ ƛƴƛǘƛŀǘƛƴƎ ǎŜǎǎƛƻƴǎΣ ƻǊ ǳǎƛƴƎ ǘƘŜ ǎŜǊǾƛŎŜΩǎ ŦǳƴŎǘƛƻƴŀƭƛǘȅΦ

Sessions can also end implicitly if the session is inactive for a duration that exceeds the timeout

length (section 5.5). Both endpoints follow the same steps as above, however both endpoints

can use a generic timeout message to show the user, or log, in absence of a Close Message.

6.2 Examples of DMIP Message Passing

Explanations and supporting diagrams demonstrating several DMIP session scenarios are

presented within this section, the rationale being that they provide specific visual examples to

aid in conveying DMIP usage scenarios. The examples provided assume context, meaning that it

is assumed that a DMIP client and service exist, and the client has the IP endpoint for the

service.

6.2.1 Client Request Session

After or asynchronous to a client acquiring a service endpoint, it must;

1. Initialize and enumerate its DMIP abilities.

¶ Channel types it can support.

¶ Layout format(s) and properties.

2. Create a DMIP Abilities (section 5.6.2.5) message.

3. {ŜƴŘ ǘƘŜ ƳŜǎǎŀƎŜ ƻǾŜǊ ŀ ¢/t ŎƻƴƴŜŎǘƛƻƴ ǘƻ ǘƘŜ ǎŜǊǾƛŎŜΩǎ Lt ŜƴŘǇƻƛƴǘΦ

4. Listen for and respond appropriately to messages.

¶ With the same port and address the abilities message was sent from.

¶ TCP must be listening, UDP is optional.

¢ƘŜ ǎŜǊǾƛŎŜ ŜƴŘǇƻƛƴǘ ǘƘŜƴ ǘŀƪŜǎ ŀŎǘƛƻƴ ŘŜǘŜǊƳƛƴƛƴƎ ƛŦ ǘƘŜ ŎƭƛŜƴǘΩǎ !ōƛƭƛǘƛŜǎ ŀǊŜ ŎƻƳǇŀǘƛōƭŜ ŀƴŘ

can:

50

5. If it is not able to communicate with the client:

¶ Ignore the request.

¶ Preferably send an explicit close message (section 5.6.2.3) back to the client.

6. If it can interact with the client, a session in the service process is created.

7. Acknowledge (section 5.6.2.1) or AddChannel (section 5.6.2.7) message(s) are sent to

the originating endpoint of the Abilities message.

Figure 4: Session Request and Initiation, below shows a diagram that represents the

intended flow of this process.

Figure 4: Session Request and Initiation

6.2.2 Adding Channels and Meta-Channels

DMIP services drive the communication channels that can be used within a DMIP client-service

session. Channels are added only by the service, using the AddChannel message (section

5.6.2.7). Meta-channels that a client can use for a channel type are included in Abilities

messages, the service should retain this information if it is to use those meta-channels. The

AddChannel ƳŜǎǎŀƎŜ ǎǇŜŎƛŦƛŜǎ ǘƘŀǘ ǘƘŜ ƎƛǾŜƴ ŎƘŀƴƴŜƭ ǘȅǇŜ ƛƴǎǘŀƴŎŜΩǎ ŎƘŀƴƴŜƭ ƻǇǘƛƻƴǎΦ IƻǿŜǾŜǊ

51

any attached meta-channels have default, undefined initial values set for options. Options for

meta-channels are set using SetChannelOpt messages (section 5.6.2.9), these messages can be

sent for a channel after it is confirmed by the client, or in a MultiPayload message (section

5.6.2.11), provided it is in the same MultiPayload message and proceeds the AddChannel

payload for the attached channel.

Figure 5: Distinct Meta Channel Setup

Figure 5: Distinct Meta Channel Setup shows DMIP steps used to configure meta-channels

associated with a channel distinct from an AddChannel message, note that the method of

attachment is matching Channel ID values (x in the diagram). This sample flow highlights the

fact that meta-channel options can be set at any time after a channel has been confirmed. The

rationale for choosing this method is that it allows properties to be calculated and

asynchronously set. Additionally, if meta-channel options are to be set programmatically as a

session progresses, it may not serve any purpose to set these options immediately.

52

Figure 6: Inclusive Meta Channel Setup

Figure 6: Inclusive Meta Channel Setup shows the networking steps for adding a channel and

the same associated meta-channels is in the previous example (Figure 5). As dictated by the

protocol specification MultiPayload messages (section 5.6.2.11) must be processed in order,

thus ensuring that the subsequent processing of the SetChannelOpt have a valid target.

Specifying meta-channel options using this method provides a reduction in network overhead,

and reduces logic required for setting up channels from the service (no need to wait for

Acknowledge to send initial options). And allows design tools to be more simply implemented.

The XML layout language used in the evaluation implementation (section 7.2.6.1) uses this

method.

6.2.3 Sample Session, Button Based Menu

Most applications will not make ǳǎŜ ƻŦ ǘƘŜ ǎŀƳŜ ƳƻŘŜǎ ǘƘǊƻǳƎƘƻǳǘ ǘƘŜ ǳǎŜǊΩǎ ǳǎŀƎŜ ƻŦ ǘƘŜ

application. An initial menu, prompting the user for input, to choose various areas of

application functionality is an often used example of this. In the PowerPoint Controller Service,

discussed in section 7.2.5.4 a simple menu is provided if the service is running but no show is

running. As seen in Figure 7: Simple User Menu, this menu allows the user to request that the

show be started or allows to the user to explicitly end the session. This is accomplished using an

instance of the SingleState2DButton for each menu option. Once the user makes ǘƘŜ ά{ǘŀǊǘ

{Ƙƻǿέ selection, the service no longer makes use of the channels associated with the buttons,

53

and removes them to re-use screen real estate and reduce session overhead for managing

channels.

Figure 7: Simple User Menu

After the RemoveChannel requests have sent to the client, an interface for interacting with the

active show are provided to the user, as seen in Figure 14: Windows Forms Client. In this way

interaction elements can be added and removed to provide dynamic applications. Figure 8:

PowerPoint Controller Menu to Show Layouts, shows a simplified network diagram of the DMIP

messages used in the PowerPoint Controller Service when switching to the show running

interface from the show menu interface.

54

Figure 8: PowerPoint Controller Menu to Show Layouts

6.2.4 Client Remove Abilities

Only DMIP services have the ability to explicitly add remove channels, that is, AddChannel

(section 5.6.2.7) and RemoveChannel (section 5.6.2.8) messages can only be sent from the

service endpoint. The client endpoint can however modify the list of abilities it supports. When

a DMIP client connects to a service, it sends a list of abilities, via an Abilities message, this list

can be modified by the client with subsequent Abilities and RemoveAbilities messages (section

5.6.2.5, and 5.6.2.6). If a RemoveAbilities is received by the service that contains a Channel Type

that is needed for the session to continue, then the session can either be terminated or can be

retained. A service might retain a session that cannot progress so that should client

functionality return, the application state could be maintained. There are a number of alternate

55

methods of retaining session state, and in most cases the service will explicitly end the session.

An network example of an explicit close in response to a RemoveAbilities, is seen in Figure 9:

Client Configuration Change.

Figure 9: Client Configuration Change

56

7 Evaluation

To validate that DMIP is able to meet the goals set out in (section 1), a review of potential data

types was performed further described in (section 7.1). To validate whether DMIP is functional

and can be used to meet the stated requirements, it was implemented on 2 platforms as

discussed in (section 7.2).

7.1 Validity of Channel Types System

Before the design process began it was thought that a system that could natively support any

interaction mode type could be designed. However it was noted that the resultant data

transferred would be too varied and it would not be possible to define what modes/abilities a

session could use and the data transferred would not contain enough intrinsic meaning to be

directly consumable. Therefore, this view was modified as development of the protocol

progressed and was replaced with the concept of providing an extensible framework that

defines strictly defined Channel Types and allows development of further Channel Types outside

the explicit protocol. This raised the concern that 3rd party developers may incorporate

proprietary Channel Types, limiting the cross compatibility of clients, counter to the goals of this

work. It is therefore our intention that extension Channel Types should be catalogued and

reviewed for standardization as part of future work.

Considering that development of additional standard Channel Types requiring minimal effort

and with inclusion of extensible Channel Types we aim to allow an expanding list of interaction

types to be supported by clients and services. To verify that all imaginable interaction types

could potentially be supported, a review of potential raw data types, common UI controls and

interaction modes defined by Bersen [29] was performed, as well as an informal web survey of

users, asking how they interacted with everyday objects.

7.1.1 Common UI Controls

Common user interface controls were observed by looking at user interface implementation

tools, namely Microsoft Visual Studio 2012 Windows Forms designer and the Android Layout

57

Editor plug-in for Eclipse. Rigorous evaluation was not performed as the controls used for these

platforms form the basis of how the protocol was designed. In these systems, various

properties for a control can be configured, this can be mapped directly onto Channel Type

Options (section 5.5.2). Common properties (those shared amongst most types of control and

across platforms) can be mapped to meta-channels (section 5.5.5). Controls typically generate

events indicating some status has changed or new data has arrived, these are often generated

by the user interacting with the control. Events are mapped to Channel Type Data (section

5.5.3) and while a single control might provide a variety of events, the design of Channel Type

Data types is flexible and thus could allow for any combination or digital events to be

represented.

7.1.2 Raw Data Types

Basic digital-format data types for example images, video, sound, and documents, are

represented by octet streams or blocks of binary encoded data and be simply transported using

Channel Type Data, and can be split up, or transmitted using UDP datagrams for timely data.

Raw files could be transferred in this way. Analog data sources could also be transmitted if they

are first converted to digital. This conversion has been shown to be possible for many kinds of

data, the discussion of which is beyond the scope of this thesis.

7.1.3 BernseƴΩǎ Multimodal Interface Modes

¦ǎƛƴƎ bƛŜƭǎ hƭŜ .ŜǊǎŜƴΩǎ ƎŜƴŜǊƛŎ ǘŀȄƻƴƻƳȅ ƻŦ ǳƴƛƳƻŘŀƭ ƳƻŘŀƭƛǘƛŜǎ [29] as a guide provided a

comprehensive listing of potential data types to consider. These were reviewed and were found

to be directly translatable to digital raw data types or subject to analogue to digital signal

processing, which while potentially complicated, is required in order to capture/process that

data on the digital devices used by DMIP, and is therefore not actionable consideration for the

design of the protocol.

58

7.1.4 Interaction Ledger

An informal study, asking users to specify interactions with everyday objects around them. The

survey and results can be seen in Interaction Ledger. While this survey was very open-ended it

provided insights as to how users interacted with the real world objects around them. These

interactions can all be broken down into one or more modalities in defined by Bernsen in his

taxonomy [29]Σ ŀƴŘ ŀǊŜ ǘƘŜǊŜŦƻǊŜ ǇƻǎǎƛōƭŜ ǘƻ ǘǊŀƴǎǇƻǊǘ ǳǎƛƴƎ ǘƘŜ 5aLtΩǎ ŜȄǘŜƴǎƛƻƴ ŎƘŀƴƴŜƭǎ

(section 5.5.6) or standardized Channel Types in future revisions.

Further, the individual tasks where codified to help identify the types of general interaction

steps taken by the user to accomplish regular/common tasks they encountered in their daily

lives. The actions taken were classified as either Motion based, Selection based or both. A chart

representing the results of this process is below, Figure 10: Interaction Ledger Results.

Figure 10: Interaction Ledger Results

Out of the 20 entries, a large number of the specified tasks (85%) included selection subtasks,

and thus the Channel Types created for the initial version of the DMIP protocol were focused on

selection, buttons, labels, range selects, list boxes and character channels were implemented to

support selection tasks. While a significant number (50%) of subtasks incorporated motion, only

the 3D and 2D motion channels were introduced, the rationale for this is that the interpretation

0

2

4

6

8

10

12

14

16

18

Motion Selection

General Interaction Types For Common Tasks

59

of motion signals (or gestures) is beyond the scope of this work, but can be supported by these

two channels. The responses and the respective codification can be seen in Appendix A:

Interaction Ledger.

7.2 Protocol Implementations

Initially, an object oriented software design was created to fulfill the requirements set out by

the protocol. The design of the implementation application is focused on a central package,

called Protocol which encompasses all low level functionality for both clients and services. It

provides the transport functionality, message processing, channel type definitions, and event

dispatch as well as managing queues to support SplitPayload (section 5.6.2.12) and

MultiPayload (section 5.6.2.11) messages. Centralizing the common functionality reduces the

amount of effort required to implement the combination of clients and services, particularly

when they share the same platform. This benefit is generated by eliminating code duplication,

reducing the development time, errors and maintenance effort. Section 7.2.1 outlines the

pieces of the protocol package.

7.2.1 The Protocol Package

For the evaluation Implementation, a shared package that provides common DMIP functionality

for both clients and services was created. Both client and service APIs rely directly upon this,

the protocol package. A representation of the dependency is seen in Figure 11: Shared Protocol

Package.

60

Figure 11: Shared Protocol Package

A diagram identifying the main pieces of the protocol package is provided as Figure 12:

Implementation Protocol Package. Description of these pieces and of how they are utilized to

implement the DMIP specification follows. Instances of the Connection class (section 7.2.2)

manage single DMIP sessions, which is used to transport MessageType (section 7.2.4)

messages, which can contain ChannelType (section 5.5.3) data.

Figure 12: Implementation Protocol Package

61

7.2.2 Connection Class

The connection class is designed to handle the interaction with lower level operating system

networking facilities. Because the operating systems used for implementation project included

implementations of both TCP and UDP transport layer protocols, the connection class is used to

manage these lower level implementations and provide specific functionality in support DMIP.

A connection instance (object) manages a single active TCP connection and optionally a UDP

connection, representing a local endpoint and a remote endpoint.

The Connection class is the central component of the demonstration implementation. To

achieve the ability to transport DMIP messages, the octet representations of all network

transportable data must implement methods to serialize and de-serialize data to/from the

formats defined within the protocol (section 5.5) the IByteSerializable interface explicitly

identifies the octet encoding and decoding requirement by specifying that methods used for

these purposes are included in all types representing data transportable by the connection

class. The Connection object is responsible for using these methods to translate messages for

transport, or consumption within the DMIP endpoint applications as required. The connection

object must utilize separate threads or lightweight processes for each transport layer

connection UDP/TCP that is open, to wait for incoming data. An additional thread is additionally

required to manage the listening threads, process incoming messages and send outgoing

messages. The listen threads should block and consume as few resources as possible when no

data is available from the lower level transport layers.

The connection object is created with an initiated TCP/IP endpoint and whether the endpoint is

UDP capable. The Connection object is then responsible for both reading and writing data to

the transport stream(s) on the given port using network transported byte streams. To encode

and decode messages, the Connection object processes external objects that implement the

IByteSerializable interface, to ensure that they can be encoded.

62

Section 7.2.2.1, Handling Multi-Payload and Split Payload Messages , further describes the

special messages that support that enable large payloads (Split Payload) to be sent and small

payloads to be combined (multi-payload). Section 7.2.2.2 Octet Encoding (IByteSerializable

Interface) and subsequent sections describe the way TCP/IP stream data is read and written

using the Connect, Message and Payload Objects.

7.2.2.1 Handling Multi-Payload and Split Payload Messages

The DMIP protocol allows for multi message payloads and multi-payload messages, as such the

Connection object must collect and transmit messages that are part of a multi-message

payload, and be able to split large payloads.

When a connection object receives a multi-payload message, it is processed as any other DMIP

payload, however instead of providing notification of an incoming message (MessageReceived

Event, Figure 12: Implementation Protocol Package), notifications for each contained payload

are generated, with the order within the MultiPayload message maintained.

Splitting payloads in the implementation(s) is utilized to allow large payloads exceeding the

DMIP header length (65535 bytes) value to be transmitted, splitting is translucent to DMIP

implementation endpoints. Meaning that this process is automatic, but potentially observable.

Providing notification of arrival of pieces of a SplitPayload is not currently part of the

implementation but is recommended for future work (8.3.2 Additional Implementation

Features).

7.2.2.2 Octet Encoding (IByteSerializable Interface)

DMIP specifies 12 formatted message types (section 5.6.2) and an ever expanding list of

channel types (section 5.5) that can be transported using the protocol. To be enable conversion

between stream compatible octets and code-useable data objects, all transportable types

implement the IByteSerializable interface. The interface indicates that methods to perform

serialization and de-serialization of encapsulated data must be provided. Additionally, these

63

classes all provide a construction method (constructors) to utilize the de-serialization method

to initialize an object from its octet-serialized representation, but this requirement is not

enforced by the interface specification as it is not possible to define required constructors from

interface specifications on the implementation platforms, however this specification is included

and must be observed for the design to be functional.

Figure 13: Reading and Writing DMIP Payloads

7.2.2.2.1 Incoming Data (Reading)

In order to support the protocol requirements, the Connection object waits and reads all

incoming packets on the given transport (TCP and optionally UDP) stream(s), until the

connection is terminated. The connection object takes read bytes and processes them into

payloads by way of messages (5.6 Messages). Within the implementation, when messages are

received, events are fired and listening objects are notified. Pulling the messages from a

transport layer protocol and generating actionable DMIP payloads is identical for clients and

services as the protocol is designed to have identical message structures for both endpoints,

the implementation reflects this by having a single Connection implementation that is shared

between DMIP clients and services. Payloads are further decoded and processed using the

specific channel type implementation objects. Incoming TCP data is placed in a first in, first out

(FIFO) queue so that data can be segmented into Messages as TCP provides data in a

64

continuous stream. Messages are either processed immediately as they arrive, or in the case of

SplitPayload messages, they are placed in a data object used to collect all the fragments before

a message received event is fired.

7.2.2.2.2 Outgoing Data (Writing)

The connection object is responsible for taking DMIP messages and sending them over a

specified transport layer streams. The Connection object manages the TCP and UDP endpoints,

and therefore also tasked with sending UDP targeted messages over TCP if a UDP connection is

not available. To accomplish sending messages over the TCP/IP transport layer, the payloads

are serialized into octet arrays. Additionally, the Connection object is also responsible for

splitting payloads into multiple messages (SplitPayload messages) if they exceed the 16-bit byte

size specified in the header (section 5.6.1).

7.2.3 ChannelType Definitions

As specified in section 5.5, Channel Types, channel types are comprised of two pieces, Options

and Data. These pieces are specified by implementing the IChannelOption and IChannelData

interfaces to create classes for each Channel Type implemented on the platform. The interfaces

are architecturally identical, but semantically distinct, so that there is a clear separation in the

implementation code. These interfaces require that implementing types have a Channel Type

specified.

7.2.4 MessageType Definitions

DMIP Payloads and Messages are similar, and for most purposes are the same objects and are

implemented using the same classes. These classes all implement the IPayload interface which

specifies that member classes must provide byte serialization methods and be able to return

one of the 12 message types (section 5.6.2). The IPayload interface is used for network

transmitted Messages, Payloads that potentially need to be further aggregated after being split

into SplitPayload messages (resulting in single IPayload objects) and payloads containing

multiple (MultiPayload messages) messages to be processed in sequence (MultiPayload objects

65

can contain multiple IPayload objects). Each class implementing the IPayload interface provides

a directly useable representation of the carried data, methods to construct objects of that type

from either a stream of octets, or as explicit parameters and methods to serialize the contained

Řŀǘŀ ŀŎŎƻǊŘƛƴƎ ǘƻ ǘƘŜ ƳŜǎǎŀƎŜ ǘȅǇŜΩǎ ǎǇŜŎƛŦƛŎŀǘƛƻƴ ǿƛǘƘƛƴ ǘhe protocol 5.6.2.

The IMessageType interface is used because IPayload objects must provide both a message

type and implement the IByteSerializable interface, and thus IPayload amalgamates the

requirements by way of the IMessageType interface.

7.2.5 Implementation Instances

Implementation of the protocol was performed on two platforms. The .NET framework was

ŎƘƻǎŜƴ ŦƻǊ ǘƘŜ ƛƴƛǘƛŀƭ ǿƻǊƪΣ ǘƘŜ ǊŀǘƛƻƴŀƭŜ ǿŀǎ ǘƘŜ ǊŜǎŜŀǊŎƘŜǊΩǎ ŦŀƳƛƭƛŀǊƛǘȅ ǿƛǘƘ ǘƘŜ ǇƭŀǘŦƻǊƳ ŀƴŘ

the broad range of target-able services and platforms. The .NET framework is memory managed

development platform that is available on a broad range of devices and allowed rapid

development of prototypes1. A full implementation of both DMIP client and service endpoints

were implemented in .NET, in C#, the source code, is available from the DMIP website

(http://iv.csit.carleton.ca/~dmip/). To test and demonstrate the viability on alternative

platforms, the Connection object, all messages coding objects and the client-side application

were additionally implemented in Java for Android. The Android implementation is also

available from the DMIP website (http://iv.csit.carleton.ca/~dmip/). The .NET implementation

is the primary platform for the implementations, the Android implementation is ported from

the .NET implementation. Both implementations are released with a permissible MIT license.

The primary purpose of creating the implementation was so that the protocol itself could be

verified, to see if it could be utilized to meet the goals set out for it (section 1). Additionally

creating implementations in conjunction with the authoring of the protocol in an informal agile

development process allowed for issues with the protocol to be identified and adjusted as

1 http://www.microsoft.com/net

http://iv.csit.carleton.ca/~dmip/
http://iv.csit.carleton.ca/~dmip/
http://www.microsoft.com/net

66

authoring and development iterations progressed. Beyond validation, the test implementation

allowed for use of the protocol, and helped identify key areas that additional work could be

performed to further ameliorate developer, designer and end-user experiences. Further, these

implementations provide a reference that can be used to implement and augment services,

clients, or as examples to help others port these layers to other platforms.

The Connection class is used as a parent class to Client and Service classes. These classes are

designed to augment the Connection class and provide specific features for Client and Service

endpoints. Service specific functionality was not ported to Android.

7.2.5.1 Implemented Clients

The Client class is a minimal layer intended to fully implement DMIP client connections, the

client layer creates and manages a single instance of the Connection object by providing a

service endpoint. A client application, based on this client layer was created, the application

provides the Abilities of the client device, initiates the connection, transmits data using

SendMessage and responds to incoming data by way of events fired from the Connection

object. The client applications implement a number of the DMIP standard channels based on

the target platformΩǎ capabilities. The channels implemented in each of the two ǇƭŀǘŦƻǊƳΩǎ

client applications are listed below, in Table 31. Implemented DMIP Channel Types.

Table 31. Implemented DMIP Channel Types

 .NET Android

TextLabel R R

Positionable3D R R

Interactable R R

Enabled R R

SingleState2DButton R R

Label2D R R

Range1D R

ListSelect R

TextBox R R

Title R R

Relative3DStream R R

Relative2DStream R

67

Direction4 R

Chars R

Image2DView R R

An image of the .NET windows forms implementation, connected to a PowerPoint controller

service, is provided in Figure 14: Windows Forms Client, below.

Figure 14: Windows Forms Client

The implementation of the client layer provided a validation of the DMIP protocol, and

programming reference for projects that intend to use DMIP.

7.2.5.2 Implemented Services

A .NET API supporting the authoring of services was created, this API provides common

functionality for services and is divided across 2 packages; Service and Library.

The Service package provides functionality for basic service implementations; it provides

session handling, basic layout definition from XML-format (7.2.6.1 XML Layout Language) files,

basic channel type compatibility checking.

The Library package provides additional augmentation/utility methods for services to ease

repetition of some common service coding tasks and make service development simpler,

68

including transport of client compatible layouts, clearing/switching of layouts and methods to

broadcast DMIP payloads to all connected clients.

A number of simple sample service applications were created to help develop the protocol

itself, test a variety of scenarios and help the formulation of Channel Types. These sample

services are available as a reference, and are included in the .NET DMIP implementation source,

available: http://iv.csit.carleton.ca/~dmip/. The sample services created are described and

discussed in the proceeding sections; Thermostat (section 7.2.5.3), PowerPointController

(section 7.2.5.4), NumberGuess (section 7.2.5.5), and WindowsMouseControl (section 7.2.5.6).

7.2.5.3 Thermostat Service

The Thermostat Service was created as an initial exploratory prototype upon which to explore

and test DMIP. It allows a user to see a current temperature (simulated) and adjust the target

temperature. The service simulates automatic cooling/heating and keeps the connected

client(s) updated.

The thermostat service defines a layout fully from an XML-layout file (7.2.6.1 XML Layout

Language). It uses the channel types Label2D and SingleState2DButton to allow basic

interaction with the service. Optionally, a Title channel ƛǎ ǳǎŜŘ ǘƻ ŎƻƴǘǊƻƭ ǘƘŜ ŀǇǇƭƛŎŀǘƛƻƴΩǎ ǘƛǘƭŜΦ

Figure 15: Thermostat Service shows the windows form client connected to a thermostat

service.

http://iv.csit.carleton.ca/~dmip/

69

Figure 15: Thermostat Service

Development of the Thermostat service aided the evolution of DMIP and provided initial

validation that the Channel Types scheme was valid. It also drove the development of an XML

format layout language (7.2.6.1 XML Layout Language). It now provides a basic example which

can be used by others to learn how to use the protocol and provided APIs.

7.2.5.4 PowerPoint Controller Service

The purpose of the development of PowerPoint Controller Service application was twofold;

create a directly useable application that could be used by the researcher, and peers, and to

ǾŜǊƛŦȅ ǘƘŀǘ 5aLt ŎƻǳƭŘ ōŜ ǳǎŜŘ ǘƻ ŎǊŜŀǘŜ ŀǇǇƭƛŎŀǘƛƻƴǎ ǎƛƳƛƭŀǊ ǘƻ 9ǊƛŎ ¢ƻǊǳƴǎƪƛΩǎ [20] PowerPoint

controller application. The application allows the control of a PowerPoint slide show.

As part of the development of this service additional Channel Types were created and of meta-

channels (section 5.5.5) were introduced to reduce Channel definition duplication and to

provide flexibility for channels.

The PowerPoint Controller Service application was created as a .NET PowerPoint Add-In, and

makes use of Visual Studio Tools for Office2. An XML file is used to define a standard layout for

all clients. The XML file provides positioning, interaction and text label information for relevant

2 http://msdn.microsoft.com/en-us/library/d2tx7z6d(v=vs.120).aspx

http://msdn.microsoft.com/en-us/library/d2tx7z6d(v=vs.120).aspx

70

channel instances, as well as providing what channel types are required or optionally used by

the connecting clients. A view of the service from the windows forms client is seen in Figure 14:

Windows Forms Client, and from the android client in Figure 16: PowerPoint Controller from

Android.

Figure 16: PowerPoint Controller from Android

The channels Label2D and SingleState2DButton are required and enable the client to display

slide navigation buttons, and allow viewing the slide notes. Optionally the service supports

Direction4 to enable arrow key navigation, Title to provide a title caption for the client

application, Image2DView that enables a view of the current, previous and next slides in the

PowerPoint slide deck and ListSelect which gives a selectable list of slides that can be navigated

to. When a compatible client connects, it is provided with an interface generated by the service.

The network sequence diagram below in figure 4, shows the network messages used for the

άtǊŜǾƛƻǳǎέ ōǳǘǘƻƴΣ ǿƛǘƘƛƴ ǘƘŜ ŀǇǇƭƛŎŀǘƛƻƴΦ

71

Figure 17: Network Sequence for Previous Slide

7.2.5.5 Number Guess Service

The Number Guess Service was created to test multi-user scenarios. The service allows users to

join the game, each round the service randomly selects and integer and allows users to guess

the number. The specific user, by way of the client is informed if their guess is too high or too

low (or correct). Only one client is allowed to guess at a time, and the clients guess in sequence

until the number is guessed.

The Number Guess service was the first service created that required text/number input and

thus the TextBox channel type was developed, and the TextLabel meta-channel was introduced

to centralize Channel Type text data. The Enabled meta-channel was also developed to provide

a channel for visually enabling/disabling channels on clients.

Figure 18: Number Guess Service Progression ǎƘƻǿǎ ǘƘŜ ōŀǎƛŎ ǇǊƻƎǊŜǎǎƛƻƴ ƻŦ ŀ άƎŀƳŜέ ƛƴ ǘƘŜ

number guess service. Label 1 shows the initial client layout that allows users to input a name.

Label 2 shows the second layout that asks the user to enter a guess, buǘ ǘƘŜ άDǳŜǎǎέ ōǳǘǘƻƴ ƛǎ

disabled (via the Enabled meta-channel) because a round is not started (or it is not their turn).

72

Label 3 shows the service application, allows for a round to be started. Label 4 shows the

άDǳŜǎǎέ ōǳǘǘƻƴ ŜƴŀōƭŜŘΣ ŀƴŘ [ŀōŜƭǎ р ŀƴŘ с show the win condition state on the client and

service respectively.

Figure 18: Number Guess Service Progression

To support multi-user scenarios, functionality was added to the service API to allow messages

to be broadcast to service connected clients. The service provides two layouts (login and play)

and thus switching of client layouts was developed for the service library package. The

development of this service provides validation of the possibility of handling multi-user

scenarios and a useable example thereof.

73

7.2.5.6 Windows Mouse Control Service

The Windows Mouse Control Service was created to test UDP channel data. The service allows

users to control the mouse on the service computer. Buttons are provided to emulate the

buttons on a mouse, and mouse position is controlled through either a Relative3DStream or

Relative2DStream channel. For timeliness UDP transport is used if the connection supports it.

The Android client implements Relative3DStream by way of the accelerometer, the service

ƳŜǊŜƭȅ ǘŀƪŜǎ Řŀǘŀ ŀƴŘ ƳƻǾŜǎ ǘƘŜ ƳƻǳǎŜ ƻƴ ǘƘŜ ǎŜǊǾƛŎŜ ŎƻƳǇǳǘŜǊΩǎ ǎŎǊŜŜƴ ōŀǎŜŘ ƻƴ ǘƘŜ Řŀǘŀ

provided by the Relative3DStream Data payloads.

This implementation is not useable with windows forms client, as the client buttons are not

selectable without moving the mouse, the default Data source for Relative2DStream.

!ƭǘŜǊƴŀǘƛǾŜƭȅΣ ǘƘŜ ŎƭƛŜƴǘ ǿƻǳƭŘ ŎŀǇǘǳǊŜ ǘƘŜ ƭƻŎŀƭ ƳŀŎƘƛƴŜΩǎ ƳƻǳǎŜ ƳƻǾŜƳŜƴǘǎ ŀƴŘ ƛƴǎǘŜŀŘ ƻŦ

mouse clicks, use key presses, using the Chars channel.

A view of the Android client, connected to a Windows Mouse Control service is provided below,

in Figure 19: Windows Mouse Control Service, Android Client.

74

Figure 19: Windows Mouse Control Service, Android Client

7.2.6 Protocol Support and Augmentation

The implementation sample services application developed shared some common functionality.

In order to minimize the effort required to author DMIP services tools and methods were made

ƎŜƴŜǊŀƭƭȅ ŀŎŎŜǎǎƛōƭŜΣ ǎƻ ŀǎ ǘƻ ōŜ ǇŀǊǘ ƻŦ ǘƘŜ ƛƳǇƭŜƳŜƴǘŀǘƛƻƴΩǎ !tLΦ ¢Ƙis functionality is not part

of DMIP itself but can aid in the development of future services it is discussed in 7.2.5.2,

Implemented Services. Design of client interfaces within code can be overbearing and tedious,

an XML layout engine was therefore developed, it is described in section 7.2.6.1, below.

7.2.6.1 XML Layout Language

Creating graphical layouts from code is tedious for the developer. While the creation of a

graphical tool would be ideal, it was beyond the scope of this thesis. Progression towards a

graphical tool for interface designers, and centralizing layout design was made by defining of an

75

XML file format for services. This file format is simpler to maintain than code sections. A sample

layout XML file (layout file) is available in Appendix B: PowerPoint Controller Show XML.

The requirements section of the layout files specify what Channel Types are required by the

client. Additionally, optional Channel Types are also specified. The requirements section allows

the service API layer to automatically evaluate compatibility with incoming client Abilities

(section 5.6.2.5) payloads. In layout file fragment below, it is specified that Label2D and

SingleState2DButton channels are required by the client to interact with the service.

Additionally 3 optional ChannelTypes are specified (Title, Relative2DStream and

Relative3DStream), this allows the API layer to notify implementing service applications what

relevant Channel Types are available.

<requirements>

<required type="Label2D" />

<required type="SingleState2DButton" />

<optional type="Title" />

<optional type="Relative2DStream" />

<optiona l type="Relative3DStream" />

</requirements>

Channel sections represent instances of Channel Types that are to be added to the client by the

service. Enclosed within the channel sections are optional metachannel and options sections,

these contain the information that is to be sent by the service as part of initial SetChannelOpt

and AddChannel messages. The following file fragment specifies that a SingleState2DButton be

ǎƘƻǳƭŘ ōŜ ǇƭŀŎŜŘ ƻƴ ǘƘŜ ŎƭƛŜƴǘΩǎ ŘƛǎǇƭŀȅΦ ¢ƘŜ ōǳǘǘƻƴ ƛǎ ŎŜƴǘŜǊŜŘ ǳǎƛƴƎ ǘƘŜ Positionable3D Meta

Channel Type, 20% from the vertical edges, and 30% from the horizontal. It has a label, of

άIŜƭƭƻέ ǎǇŜŎƛŦƛŜŘ ōȅ ǘƘŜ TextLabel Meta Channel Type. It also must send messages according to

the Interactable Meta Channel Type when the button is pushed, or released.

76

 <channel type="SingleState2DButton" id="1" name="Hello">

 <metachannel type="Positionable3D">

 <x>0.2</x>

 <y>0.3</y>

 <z>0.1</z>

 <width>0.4</width>

 <height>0.6</height>

 <depth>0.1</depth>

 </metachannel>

 <metachannel type= "TextLabel">

 <text>Hello</text>

 </metachannel>

 <metachannel type="Interactable">

 <interaction type="Down" />

 <interaction type="Up" />

 </metachannel>

 <options />

 </channel>

The resultant channel is shown in the Windows Forms client implementation, in Figure 20:

Sample XML Layout File Result.

Figure 20: Sample XML Layout File Result

77

8 Discussion

DMIP currently provides a simplified development path to enable networked devices to utilize

network based services. Every effort has been made to validate DMIP, it has been validated for

several basic scenarios (section 7.2) however as a new technology there exists the possibility

that there are limitations. Section 8.2, discusses some potential limitations of DMIP. In order to

support and strengthen DMIP solutions further, related work is discussed and proposed in

section 8.3, Future Work.

8.1 Value and Testing

DMIP is a tool to aid authors of applications by providing them with a platform that reduces

concerns over networking and disparate device user-interaction capabilities. This, in turn can

provide greater access to the technology to the current and potential users of their applications

by making them immediately available to a greater number of client devices and providing a

flexible, yet consistent interface across devices. Testing usability of applications developed with

the tool is beyond the scope of this work, application design, while facilitated with DMIP,

remains part of the application development process. DMIP provides an application layout and

data-flow design platform. By targeting one effective platform, application authors can design,

deploy, evaluate and maintain a single application providing a higher return on investment and

additional resources for additional development. While effort has been made to communicate

with industry and interest has been shown, time limitations have reduced the ability to

evaluate the platform directly with developers.

8.2 Limitations

Despite extendibility, standardization of additional channel types can enable application

developers to more simply make use of more interaction modalities in their applications

potentially making the resultant applications more appealing to end users. Extension channel

ǘȅǇŜǎ ŀƭƭƻǿ άоrd-ǇŀǊǘȅέ ŎƘŀƴƴŜƭ ǘȅǇŜǎ ǘƻ ōŜ ŎǊŜŀǘŜŘΣ ƘƻǿŜǾŜǊ ƛǘ ƛǎ ǳƴƭƛƪŜƭȅ ǘƘŀǘ ǘƘŜȅ ǿƛƭƭ ōŜŎƻƳŜ

widespread without standardization centralizing the definition of novel channels.

78

Another potential improvement is security; while the underlying transport layer could provide

connection encryption [30] using a transport layer security scheme, it might be valuable to

encrypt specific channel instances and have protocol handling of security measures so that

users can view and manipulate the security information and/or to optimize transport of such

information.

DMIP relies on a TCP/IP based network to operate, as such, it is not directly compatible with

other remote technologies that do not include the TCP/IP stack. Lower level transport

mechanisms, such as Bluetooth, near field communication (NFC) and others could be used to

transport interaction data, but DMIP does not directly support these technologies.

It is possible that DMIP clients can support some channel types in different (multiple input

mechanisms) ways, or the same input could implement multiple channel types. For example the

Windows Mouse Control service (section 7.2.5.6), could potentially be provided the target

mouse co-ordinates in multiple ways, remote mouse co-ordinates, gaze tracking,

accelerometer, or any other input that could be provided in at least 2 dimensions. Currently,

the service application chooses between multiple channel types, whereas in the situation that

multiple client inputs could implement a channel type, it is left to the client developer to

choose, or provide configuration options so that the user can decide.

8.3 Future Work

To build upon and improve the DMIP specification, and supporting technologies developed for

this thesis, additional future work is proposed. The proceeding sections describe proposed

work. Section 8.3.1, Multi-User Scenarios discusses the use of DMIP to support multiple

simultaneous users. Section 8.3.2, Additional Implementation Features, describes additions

that could augment the API developed as part of the evaluation implementation (Section 7.2).

Section 8.3.4, Integration with Other Technologies, discusses integration with other modality

aggregation techniques as introduced in section 2.4 . Section 8.3.5 Standardization details

79

rationale and proposal for a means of standardizing DMIP and the supported Channel Types.

Service location, allowing automatic detection of DMIP services by clients is discussed in section

8.3.6. Service Endpoint Location and integration with popular web technologies, is discussed in

section 8.3.7 Transport Over HTTP and Websockets. And section 8.3.8, User Friendly Clients

discusses the opportunity for a variety of client DMIP implementing applications.

8.3.1 Multi-User Scenarios

It is simple to imagine DMIP working in multi-user scenarios, in fact perhaps most, if not all

scenarios can make use of multiple simultaneous client connections. While the DMIP protocol

focuses on a single Client-Service session, services are expected to be designed to support

multiple sessions. The number guessing game implementation (section 7.2.5.5) was created to

test the feasibility of this type of scenario. The other evaluation implementations created and

discussed in section 7.2.5 all work with multiple connected clients. However the number

guessing game manages a shared state for all connected clients, this functionality rests within

the service implementatioƴΩǎ ŎƻŘŜ ŀƴŘ ǘƘŜ Φb9¢ ǎŜǊǾƛŎŜ !tLΣ ōǊƛŜŦƭȅ ŘƛǎŎǳǎǎŜŘ ƛƴ ǎŜŎǘƛƻƴ тΦнΦсΦ

While ability for DMIP to support and enable multi-user scenarios is verified, it is suggested that

further examples and testing be completed, so that best practices can be compiled and the

service implementation API can be further developed.

8.3.2 Additional Implementation Features

The service implementation API described in section 7.2.5.2 provides developers with common

service functionality to make development of services implementing DMIP simpler and faster.

Implementing additional services would provide discovery of common features that could be

implemented in a re-useable API. One example feature that could be implemented would be

notification of incoming SplitPayload messages, so that partial data can be processed and

progress messages could be provided to end users on DMIP endpoints.

80

8.3.3 Multi-User Scenarios

It is simple to imagine DMIP working in multi-user scenarios, in fact perhaps most, if not all

scenarios can make use of multiple simultaneous client connections. While the DMIP protocol

focuses on a single Client-Service session, services are expected to be designed to support

multiple sessions. The number guessing game implementation (section 7.2.5.5) was created to

test the feasibility of this type of scenario. The other evaluation implementations created and

discussed in section 7.2.5 all work with multiple connected clients. However the number

guessing game manages a shared state for all connected clients, this functionality rests within

ǘƘŜ ǎŜǊǾƛŎŜ ƛƳǇƭŜƳŜƴǘŀǘƛƻƴΩǎ ŎƻŘŜ ŀƴŘ ǘƘŜ Φb9¢ ǎŜǊǾƛŎŜ !tLΣ ōǊƛŜŦƭȅ ŘƛǎŎǳǎǎŜŘ ƛƴ ǎŜŎǘƛƻƴ 7.2.6.

While ability for DMIP to support and enable multi-user scenarios is verified, it is suggested that

further examples and testing be completed, so that best practices can be compiled and the

service implementation API can be further developed.

8.3.4 Integration with Other Technologies

The related technologies section (2.4) discusses several related technologies that provide

methods of codifying, aggregating and consuming multimodal user data. DMIP Channel Types

could be created to support each these technologies by allowing transport of encapsulated

classified data.

8.3.5 Standardization

The authors of this work will be evaluating options for the standardization of DMIP. The goal of

standardization is to facilitate greater adoption of the technology and to aid in providing a

consistent target for application authors. However, standardization can take a long time, it is

therefore planned that Channel Types be removed from the formal standard and instead be

standardized and through less time-intensive process to allow faster reactions to changes in the

available interaction modalities. To enable the use of modalities not currently supported by the

existing Channel Types there exists the need to define community accepted means of

representing various modes. A standardization procedure needs to be created to support the

introduction of new transportable DMIP Channel Types.

81

8.3.6 Service Endpoint Location

To make the location and consumption of DMIP services simpler for end users, integration with

service location protocol (SLP) is proposed. SLP allows the location of service endpoints on local

networks [24]. A preliminary study was conducted to explore the feasibility of using SLP to

locate network endpoints for novel services, and it was successful3. A DMIP client able to

manage connect-able services and provide service endpoint location using SLP is therefore

proposed, in order to improve user experience by increasing accessibility of DMIP services.

8.3.7 Transport Over HTTP and Websockets

Higher level TCP/IP stack protocols, such as the Hypertext Transfer Protocol (HTTP) combined

with Websockets (WS) could be used to transport DMIP-like data, and could provide

opportunities for creating clients for web browsers if a DMIP-to HTTP/WS layer were created. It

is imagined that such clients would be able to provide flexible interaction services over the

internet and could be used to offer alternative/augmented ways of navigating the World Wide

Web.

8.3.8 User Friendly Clients

Despite considerations for things like SLP, there is further need for client implementations to

have their user experience evaluated and designed. Additional helpful features can be

imagined, configuration options and common endpoints are immediate candidates for

requirements lists. DMIP offers a method of negotiating, providing and consuming multimodal

data, however the design client applications is not defined. Future work should include a focus

on creating guidelines for DMIP client authors.

3 http://iv.csit.carleton.ca/~dmip/files/SLP.pptx Implementing Service Location Protocol

http://iv.csit.carleton.ca/~dmip/files/SLP.pptx

82

9 Conclusion

¢ƘŜǊŜ ƛǎ ǳǎŜǊ ŘŜǎƛǊŜ ǘƻ ǳǎŜ ƳƻōƛƭŜ ŘŜǾƛŎŜǎ ŀǎ άǳƴƛǾŜǊǎŀƭ ǊŜƳƻǘŜέ ŎƻƴǘǊƻƭǎΣ ŀǎ ƛǘ ŜƴŀōƭŜǎ ǘƘŜƳ ǘƻ

access technology in new ways. Users that could not previously use a technology based service,

by not having access to specific equipment or because of a physical disability can use a broader

range of devices and human input and output devices if the technologies involved support

DMIP. Giving more ubiquitous access to consume and control technology is the purpose of

DMIP. For DMIP to become pervasive so that users can use the technology around them it

needs to have/support:

¶ An expanding list of input/output modalities

¶ Support for different configurations/combinations of these modalities

¶ Be an accessible and open (free) standard

¶ Have tools and sample code accessible to developers

¶ Have tools for designers so that they can create useable interface designs

¶ Be useable and simple to use for end users.

By providing the extensible modality system, DMIP can potentially support any human-

computer interaction modality (Section 7.1). DMIP also provides basic negotiation of these

modalities so that a dynamic set of remote client modalities can be used to interact with a

service application (section 5.5). DMIP is released to be freely and openly used by anyone, and

is provided with a permissive MIT license. Developing software that makes use of distributed

ŎƭƛŜƴǘǎ ƛǎ ƳǳŎƘ ǎƛƳǇƭƛŦƛŜŘ ōȅ ǊŜŘǳŎƛƴƎ ŎƻƴŎŜǊƴ ŀōƻǳǘ ǘƘŜ ŎƭƛŜƴǘΩǎ ƻǇŜǊŀǘƛƴƎ ǎȅǎǘŜƳΣ ƘŀǊŘǿŀǊŜ

abilities and simplified network programming, additionally with the sample implementations

developers have tools, including sample code that can be used as a starting point so that

developers can more easily create DMIP capable services. An XML based file format has been

defined so that interfaces can be laid out external to service code (section 7.2.6.1). User

interface designer tools for DMIP are proposed, and could be developed by the public, given

the open-standard nature of the protocol. Beyond the core goal of DMIP, to provide a useable

83

interface for ǘŜŎƘƴƻƭƻƎȅΣ ǘƘŜ ŜƴŘ ǳǎŜǊΩǎ ƴŜŜŘǎ are not directly addressed (section 8.3.8) but

there exists opportunity for clients to be developed for many different devices and platforms.

The question posed in 2.1 Research Question:

There is an ever-increasing ability for the user to generate data on personal devices,

can this data be simply consumed by remote computer devices to provide an

interactive user based experience for potentially any capable remote technology?

Is answered and proven positive with the designed and evaluated protocol, DMIP. DMIP can

enable ubiquitous access to technology by providing an open standard means of negotiating

and transporting multi-modal interaction data. DMIP is a tool to help enable new scenarios, and

to increase access to existing ones. Although DMIP provides many features, it is at most a single

piece of any human-computer interaction. The implementations provided herein were created

primarily to aid in evaluating the protocol and to provide samples to interested parties. DMIP is

an enabling technology, or tool, and can be used in a potentially limitless number of scenarios.

DMIP aims to help application authors create new experiences for users. DMIP Implementation

and source code examples are available: http://iv.csit.carleton.ca/~dmip/.

http://iv.csit.carleton.ca/~dmip/

84

References

[1] L. Nigay and J. Coutaz, "A design space for multimodal systems: concurrent processing and
data fusion," in Human factors in computing systems , New York, 1993.

[2] W. R. Stevens, TCP/IP Illustrated: the protocols, Boston, Massachsetts: Addison-Wesley
Professional, 1994.

[3] Rogers Communications, "Rogers Nextbox 2.0," [Online]. Available:
http://www.rogers.com/web/content/Rogers-Nextbox2. [Accessed 15 July 2013].

[4] J. Rempel, "Control Your Thermostat from Almost Anywhere? There's an App for That: An
Evaluation of the Nest Thermostat," AFB AccessWorld ® Magazine, vol. 13, no. 12,
December 2012.

[5] J. Nielson and R. Molich, "Heuristic evaluation of user interfaces," Seattle, WA, 1990.

[6] Quinstreet Enterprise, "What is network? - A Definition From the Webopedia Computer
Dictionary," [Online]. Available: http://www.webopedia.com/TERM/N/network.html.
[Accessed 20 June 2013].

[7] T. Markku, H. Soronen, S. Pakarinen, J. Hella, T. Laivo, J. Hakulinen, A. Melto, J.-P.
Rajaniemi, T. Miettinen, E. Mäkinen, T. Heimonen, J. Rantala, P. Valkama and R. Raisamo,
"Accessible Multimodal Media Center Application for Blind and Partially Sighted People,"
Computers in Entertainment (CIE) - Theoretical and Practical Computer Applications in
Entertainment, vol. 8, no. 3, p. Article 16, December 2010.

[8] P. Cohen and S. Oviatt, "Perceptual user interfaces: multimodal interfaces that process
what comes naturally," Communications of the ACM, vol. 43, no. 3, pp. 45-53, 2000.

[9] A. Taivalsaari and T. Mikkonen, "The Web as an Application Platform: The Saga
Continues," in Software Engineering and Advanced Applications (SEAA), Oulu, Finland,
2011.

[10] S. K. Card, J. D. Mackinlay and G. G. Robertson, "The design space of input devices," in CHI
'90 Proceedings of the SIGCHI Conference on Human Factors in Computing, Seattle, USA,
1990.

[11] M. Kaltenbrunner, "reacTIVision and TUIO: A Tangible Tabletop Toolkit," in Interactive
Tabletops and Surfaces, Banff, Canada, 2009.

85

[12] A. Wu, J. Jog, S. Mendenhall and A. Mazalek, "A Framework Interweaving Tangible
Objects, Surfaces and Spaces," in HCI International, Orlando Florida, USA, 2011.

[13] J. Shen, S. Wenzhe and M. Pantic, "HCI 2 Workbench A development tool for multimodal
human-computer interaction systems," in Automatic Face & Gesture Recognition and
Workshops (FG 2011), Santa Barbara, CA, 2011.

[14] M. Johnston, "Building multimodal applications with EMMA," in 2009 international
conference on Multimodal interfaces, Beijing, China, 2009.

[15] OpenNI, "OpenNI: Introduction," OpenNI, 27 November 2011. [Online]. Available:
http://o penni.org/Documentation/Reference/introduction.html. [Accessed 14 September
2012].

[16] K. Bonhyun, A. Taewon, I. JungSik, P. Youngsuk and S. Taesgik, "R-URC: RF4CE-Based
Universal Remote Control Framework Using Smartphone," in Computational Science and
Its Applications (ICCSA), Fukuoka, Japan, 2010.

[17] M. Kaltenbrunner, T. Bovermann, R. Bencina and E. Costanza, "TUIO - A Protocol for
Table-Top Tangible User Interfaces," in 6th International Workshop on Gesture in Human-
Computer Interaction and Simulation, Vannes, France, 2005.

[18] H. Ishii and B. Ullmer, "Tangible bits: towards seamless interfaces between people, bits
and atoms," in SIGCHI conference on Human factors in computing systems (CHI '97),
Atlanta, Georgia, USA, 1997.

[19] J. Shen and M. Pantic, "A software framework for multimodal humancomputer interaction
systems," in IEEE International Conference on Systems, Man, and Cybernetics, San
Antonio, TX, USA, 2009.

[20] E. Torunski, A. El Saddik and E. Petriu, "Gesture recognition on a mobile device for remote
event generation,," in Multimedia and Expo (ICME), Barcelona, 2011.

[21] J. Nielson, "Iterative user-interface design," Computer, vol. 26, no. 11, pp. 32-41, 1993.

[22] N. Johansson, M. Kihl and U. Körner, "TCP/IP over the Bluetooth Wireless Ad-hoc
Network," Department of Communication Systems, Lund University, Lund, Sweden, 2003.

[23] L. M. de Sales, H. O. Almeida and A. Perkusich, "On the performance of TCP, UDP and
DCCP over 802.11 g networks," in ACM Symposium on Applied Computing, Ceará, Brazil,
2008.

[24] E. Guttman, C. Perkins, J. Veizades and M. Day, "Service Location Protocol, Version 2,"
June 1999. [Online]. Available: http://tools.ietf.org/html/rfc2608.

86

[25] E. Guttman, C. Perkins and J. Kempf, "Service Templates and Service: Schemes," June
1999. [Online]. Available: http://tools.ietf.org/html/rfc2609.

[26] R. Braden, "Requirements for Internet Hosts -- Communication Layers," October 1989.
[Online]. Available: http://tools.ietf.org/html/rfc1122.

[27] S. Bradner, "Key words for use in RFCs to Indicate Requirement Levels," March 1997.
[Online]. Available: http://tools.ietf.org/html/rfc2119. [Accessed 10 July 2013].

[28] J. Nielson, "10 Usability Heuristics for User Interface Design," 1 January 1995. [Online].
Available: http://www.nngroup.com/articles/ten-usability-heuristics/. [Accessed 9 March
2013].

[29] N. O. Bernsen, "Modality theory in support of multimodal interface design," in ERCIM
Workshop on Multimodal Human-Computer Interaction, Roskilde, Denmark, 1994.

[30] T. Dierks and E. Rescorla, "The Transport Layer Security (TLS) Protocol, Version 1.2,"
August 2008. [Online]. Available: https://tools.ietf.org/html/rfc5246. [Accessed 2
February 2013].

[31] D. Mills, U. Delaware, J. Martin, J. Burbank and W. Kasch, "Network Time Protocol Version
4: Protocol and Algorithms Specification," June 2010. [Online]. Available:
http://tools.ietf.org/html/rfc5905. [Accessed 3 September 2012].

[32] W3C, "The WebSocket API," 29 September 2011. [Online]. Available:
http://www.w3.org/TR/websockets/. [Accessed 21 November 2011].

87

Appendix A: Interaction Ledger

Survey

Available: http://lucasstephenson.net/hcin5909/

Results

Interaction
Object

Purpose Actions Performed Best Simulated Motion Selection

car opening, closing locking etc I use a smart key which
means that my door can be
locked and unlocked as long
as I carry the key in my purse
or pocket -

? I am not sure
what to put here

V
User does a
wrist motion

V
User selects key and

points to lock

computer
mouse.

interacting with the object to
perform desktop tasks.
accomplishing: getting
around the desktop and
selecting pages I wish to see,
i.e.: i would like to open a
file so double click to open;
or I would like to see below,
so I scroll.

Actions: 1 - move, 2 - click,
and 3 - scroll
anticipated results: 1 - as i
move the mouse, the cursor
also moves on the computer
screen, 2 and 3 -- as i click
and scroll i expect a change
within the interface.

 V
Move mouse

cursor

V
Select items by
clicking mouse

Keyboard
attached to

my laptop

filling in this form. lol.
However, entering text in
any way necessary (word
documents, emails,
facebook, etc.)

What I did to the object was
depress keys. The anticipated
result was that the key I
depressed would result in the
corresponding character or
symbol being displayed on

touch-screen key
pad on screen.
That\ 's all I\ 've
really got for this
one.

 V
Select items on

screen, select keys

http://lucasstephenson.net/hcin5909/

88

the screen in the order in
which I pressed the keys.

Spoon using it to eat my breakfast
(oatmeal)

I picked up the spoon out of
the cutlery drawer, and
placed it into my bowl of
oatmeal. I then used the
spoon to scoop the oatmeal
out of the bowl and into my
mouth. The anticipated result
is that when I scoop the food,
it stays in the spoon and
doesn\ 't fall off, until I move
the spoon up to my mouth to
eat.

Good question.
Currently, holding
down the ctrl
button while
selecting objects
with a mouse
offers the
individual the
ability to \ "scoop\"
several objects at
once. However,
this may not be the
best metaphor.
Maybe just
dragging a mouse
over several
objects and they
are automatically
selected (similar to
how the swype
keyboard input
works on Samsung
phones)

V
Scoop

V
Select multiple

objects by
grasping/pointing

Playstation
controller

I am using this object to
control what is going on with
the playstation e.g. selecting
a video to watch, selecting a
game to play, making my
character on screen do

I picked up the controller,
and started pressing buttons
which corresponded with
what I wanted to happen on
screen (I wanted to scroll to
the right to select video

The most similar to
this would be
scrolling with the
mouse.

 V
User pressed buttons

89

various tasks within a video
game, etc.

games, so I pressed the pad
right button several times).
The anticipated result was
that the focus on the screen
would move in the direction I
pressed on the pad.

Can opener Opening a can cranked the know? it went
around in a circle and opened
the can

 V
Rotation

boots To put on my boots 1. untied my laces
2. put my foot in the boot
3. pulled the boot up onto
my foot

 V
Complex
gestures

stove/burner heating water on the stove turned the knob on the stove
to reach the right
temperature

 V
Select temperature

litter box clean it scoop the poop with a
scooper

 V
Scoop

phone calling my parents pushing buttons talking to the
phone telling it
who I want to call
without picking up
the phone or
dialing.

 V
Select numbers on

device

light switch turning on the lights to turn
on the christmas lights

flipped the switch on the wall talk to the tree or
press a button on
my phone

 V
Press

switch/buttons/voice
selection

ignition turning on my car put the key in the ignition
and turning it

 V
User does a
wrist motion

V
User selects key and

points to lock

90

typing on a
keyboard

typing on a keyboard pushing buttons with all of
my fingers

talking to the
computer instead -
voice recogintion?

 V
Selecting keys

USB stick interacting with object
because I want to
manipulate files (i.e.: save,
move, copy)
accomplishing: successfully
transferred (for backup
purposes) and saved a file.

i removed the cap and
plugged it into the USB slot
of my computer, it
automatically opened a
window and I dragged and
dropped a file from my hard
drive into the USB stick.

 V
Remove

cap/insertion,
mouse

V
Select items using

mouse in on screen
display

my cell
phone

because i need to call some
one.
accomplishing: being
connected to the person
who I wish to speak to.

first, i flipped my phone
open, then i turned my
phone on by pressing the
power button, then i entered
my unlock code, then
selected contacts, then i
scrolled through my contacts
list, then I selected the
person who i wanted to
contact and the phone
automatically dialed the
number.

 V
Select

numbers/menu
items on device

Radio
Controls

Tuning and volume button presses to change
state
turning dial for volume
change
button press for on/off

Single state
buttons
Range Slider for
volume

 V
Select

numbers/menu
items on device

TV Buttons in all cases V
Select

numbers/menu

91

items on
device/remote

Washing
machine

Wash clothes Select washing mode on dial
Start load

Segmented slider,
labeled with all
modes
Buttons to start
the load, set
modifiers

 V
Select

numbers/menu
items on device

Dimmer
switch

Operate lights On/Off switch
Graduated slider to control
light level

Button, and slider V
Select on/off or

slider level

highlighter to highlight text that I think
is important and that I would
want to notice right away
the next time i look at this
paper.
accomplishing: make text
stand out more.

i removed the cap with one
hand and then with the
highlighter in my other hand,
i drew a thick line across a
sentence to highlight it.

 V
Swipe motion

V
Select the text

location

water bottle to drink water.
accomplishing: pour water
into mouth to satisfy thirst.

i picked it up, turned the cap
to remove it, then I took a sip
of water from it. Result was
that the water would transfer
from the bottle to mouth.

 V
Removed
cap/bottle

motion

92

Appendix B: PowerPoint Controller Show XML

Provided here for quick reference is a sample XML format DMIP API layout file. The client

representation of which is viewable in Figure 14: Windows Forms Client and Figure 16:

PowerPoint Controller from Android.

<?xml vers ion="1.0" encoding="utf - 8"?>

<layout type="vector">

 <requirements>

 <required type="Label2D" />

 <required type="SingleState2DButton" />

 <optional type="Direction4" />

 <optional type="Title" />

 <optional type="Image2DView" />

 <optio nal type="ListSelect" />

 <optional type="Relative3DStream" />

 </requirements>

 <channel type="Title" id="999" name="Title">

 <metachannel type="TextLabel">

 <text>PowerPoint Remote Control</text>

 </metachannel>

 <options />

 </channe l>

 <channel type="SingleState2DButton" id="1" name="Previous">

 <metachannel type="Positionable3D">

 <x>0.01</x>

 <y>0.9</y>

 <z>0.1</z>

 <width>0.48</width>

 <height>0.1</height>

 <depth>0.1</depth>

 </metachannel>

 <metachannel type="TextLabel">

 <text>Previous Slide</text>

 </metachannel>

 <metachannel type="Interactable">

 <interaction type="Select" />

 </metachannel>

 <options />

 </channel>

 <channel type="Relative3DStream" id="34" name= "Accel">

 <options>

 <max- x>10</max - x>

 <max- y>10</max - y>

 <max- z>10</max - z>

 </options>

 </channel>

 <channel type="SingleState2DButton" id="2" name="Next">

 <metachannel type="Positionable3D">

 <x>0.51</x>

 <y>0.9</y>

 <z>0.1</z>

 <width>0.48</width>

93

 <height>0.1</height>

 <depth>0.1</depth>

 </metachannel>

 <metachannel type="TextLabel">

 <text>Next Slide</text>

 </metachannel>

 <metachannel type="Interactable">

 <interaction t ype="Select" />

 </metachannel>

 <options />

 </channel>

 <channel type="SingleState2DButton" id="90" name="bClick">

 <metachannel type="Positionable3D">

 <x>0.01</x>

 <y>0.79</y>

 <z>0.1</z>

 <width>0.48</width>

 <heigh t>0.1</height>

 <depth>0.1</depth>

 </metachannel>

 <metachannel type="TextLabel">

 <text>Reverse Step</text>

 </metachannel>

 <metachannel type="Interactable">

 <interaction type="Select" />

 </metachannel>

 <options />

 </channel>

 <channel type="SingleState2DButton" id="91" name="fClick">

 <metachannel type="Positionable3D">

 <x>0.51</x>

 <y>0.79</y>

 <z>0.1</z>

 <width>0.48</width>

 <height>0.1</height>

 <depth>0.1</depth>

 </metacha nnel>

 <metachannel type="TextLabel">

 <text>Forward Step</text>

 </metachannel>

 <metachannel type="Interactable">

 <interaction type="Select" />

 </metachannel>

 <options />

 </channel>

 <channel type="Label2D" id="51" name="No tes">

 <metachannel type="Positionable3D">

 <x>0.01</x>

 <y>0.65</y>

 <z>0.5</z>

 <width>0.98</width>

 <height>0.2</height>

 <depth>1</depth>

 </metachannel>

 <metachannel type="TextLabel">

 <text>Notes</text>

 </metachannel>

94

 <options />

 </channel>

 <channel type="Image2DView" id="5" name="Slide">

 <metachannel type="Positionable3D">

 <x>0.0</x>

 <y>0.0</y>

 <z>0.1</z>

 <width>0.65</width>

 <height>0.56</height>

 <depth>0 .1</depth>

 </metachannel>

 <metachannel type="Interactable">

 <interaction type="Select" />

 </metachannel>

 <options />

 </channel>

 <channel type="Image2DView" id="6" name="previous_slide">

 <metachannel type="Positionable3D">

 <x>0.65</x>

 <y>0.0</y>

 <z>0.1</z>

 <width>0.35</width>

 <height>0.28</height>

 <depth>0.1</depth>

 </metachannel>

 <metachannel type="Interactable">

 <interaction type="Select" />

 </metachannel>

 <options />

 </channel>

 <channel type="Image2DView" id="7" name="next_slide">

 <metachannel type="Positionable3D">

 <x>0.65</x>

 <y>0.28</y>

 <z>0.1</z>

 <width>0.35</width>

 <height>0.28</height>

 <depth>0.1</depth>

 </metachanne l>

 <metachannel type="Interactable">

 <interaction type="Select" />

 </metachannel>

 <options />

 </channel>

 <channel type="Direction4" id="4" name="Arrows"></channel>

</layout>

