.

Pp4; = false alarm probability of the first dwell Ce

* »

Pp a3 = false alarm probability of the isecoqd dwell

. My ‘.
qg= ngmber of cells to be searched

"N = njumber of chips to be searched N
AT? = step size of search
: . .
A f. = code doppler in chips P

K = penalty (in terms of 7p,) for a false alarm w‘ith the second dwell time

Note again that the algebraic sign of tﬁq‘ code doppler Af. is assigned in such a
way as to be positive when the search is speeded {1p by the code doppler. Note also
-that with 7p; = 0 and Pp4; = 1, the equations for the double dwell system reduces

ltg those obtained for the single dwell system.
2.2.1.1.3 Detection and False Alarm Probability Approximations

The mean acquisition time and variance depend both on the probébility of detection
Pp and the.probabili-‘y of false alarm PFA; In the ensLuing‘ paragraphs, expressioﬁs
| for the probabilities of detection and false alarm for a fixed dwell integlr‘ation period,
following a square law detector, with an inpqt'consisting of signal ax;d/or band-
limited Gaussian noise, will be described. Following this, the modifications that
must be made to account for the effects of modulatiop and a nonconstant detection
proba.bility, will be discussed. Although mfore ailed and exact derivations exist
“{see references [14) and [20}), the analysis presented here will follow the more simple

derivations presented in reference-|[15].
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ABSTRACT

b
A direct sequencqf:sp"read spectrum multiple access system has been discussed,

built and tested. A spread spectrum multiple access system is not only useful in
military communications but also has varied commercial applications. The attrac-
tiveness of making such systems portable is the motivation for the integrated circuit

implementations of a few parts carried out here. .Essentially, two transmitters were
_ built, one with voice capability. Gold codes were used for the spreading sequence
and PN-acquisition was accomplished using a serial search technique. PN tracking
was achieved with a tau-dither loop. A squaring loop and a differential en'coding
scheme (for carrier phase ambiguity) was employed in the demodulation process,
which was followed by conversion to a voice output when desired. The system was
found to perform quite well under both single and multiple access conditions. As a
demonstration of the feasibility of implementing the system on chips, a few small
blocks were put on ICs (using CMOS technology); these performed as expected and
clearoly demonstrated both the feasibility and attractiveness of a VLSI implementa-

tion of the system.
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Chapter 1

INTRODUCTION

1.1 INTRODUCTION

Spread spectrum communications systems have gained greater prominence over the
last fifteen years as a result of the .advanceme:nts in VLSI technology. A‘ spread
spectrum system can be defined as a system in which a transmitted signal “occupies
a bandwidth much in excess of the minimum necessary to send the information”
(1]. The bandspreading is accomplished by using a code that is independfnt of the
data. At the receiver, an identical code, synchronized with the received code, is

required to despread and recover the information®

At first glance, it may seem illogical to use a technique that occupies more
bandwidth than is necessary to transmit the information. Nonetheless, the benefits

inherent in such a system justifies its use. Some of these benefits irnclude:
’ '

¢ interference suppression (intentional or otherwise) 1

e sharing of a spectrum by many users at the same time (multiple accessing

capability) \ .



e low probability of intercept

e ranging or time delay measurements

selective addressing

combatting of multipath [1,2]

These advantages, however, can not be realized if the received code is not
synchronized with the receiver local code. Since the synchronization circuits make
up a large portion of the spread spectrum receiver, it would be desirable in many
applications to reduce the space taken up by these circuits. In as much as a direct
sequence spread spectrum system is one of the simplest and least expensive of the
spread spectrum systems, part of this thesis will focus on the feasibility of putting

some of the direct sequence synchronization subsystems on a chip.

1.21. MOBILE COMMUNICATIONS

\
As was earlier mentioned, spread spectrum can be used to combat multipath fading,
whiah is one of the major problems that affect the performance of a mobile commu-
nications system, Variations in received signal strength resulting from multipath
fading is a consequence of the fact that the mobile radio channel is characterizea
by multiple signal paths between the transmitter and receiver. The multiple signal
paths is a result of buildings, terrain, and other structures in proximity to the r‘e-
ceiver, which scatter the signal energy. The multiple reflected signals add according
to their phase relationships to produce a roughly stationary standing wave pattern
with nulls occurring approximately at half wavelengths of the RF frequency. Thus,
a mobile receiver moving through this spatial interference pattern experiences ran-
dom signal fading (Figure 1.1). Signal strength variations as high as 40 dB are quite
possible (2,3,4,5].
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Figure 1.1: Multipath Fading in a Mobile Communication Environment, (3].
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The mobile communications channel is often represented in literature [4,5,6,7)
as having a slowly varying mean (due to shadowing by man-made and natural struc-
tures) with a lognormal probability density function, upon’which is superimposed
a fast fading component (due to multipath) with a Rayleigh distribution. Based on
the experimental data obtained from various cities and suburbs, comparisons have
been made between several distribution functions (Rayleigh, Rice, lognormal and
Nakagami) and the experimental distribution functien. The best fit to the data, as

can be seen from {4,8,9} have come from the Nakagami and Rician distribution.

If a Rician channel is thus assumed, t}}en the channel would“give rise to a major
L;.table communication path and a number of weakef communication paths. If the
stable component is of sufficient.amplitude, then the effécts of fading (caused by
the other paths) on the performafce of a spread spectrum direct sequence synchro-
nization subsystem'can be neglectled (notg that a Rayleigh distribution provides no
strong stable component) [10]. Thus, under the stated conditions, direct sqquénce
spread spectrum can be used for. mobile radio and will offer ,not only protection
against multipa:ch fadi;lg but will also offer a multiple accessing capability, interfer-
ence rejection, privacy, ete~-Lhe obvious advantage over a conventional system is
that the DS system will combat}sultipath without any additional signal processing

(space diversity, etc.) as would be required in a conventional system.

1.3 DS SSMA FOR GAUSSIAN CHANNELS

Direct-sequence spread—spectrmél multiple access (DS/SSMA) is a form of code
division multiple access communications. In this system, several users occgpy' the
same bandwidth simultaneously. How;ever, each user uses a distinct pseudo noise
(PN) code sequence which allows only the receiver with an identically syr;chronized
code sequence to receive the‘ message. Any interfering signal or transmissions using

1

different sequences are rejected. :



Under a Gaussian channel, a DS/SSMA system can accommodate a lot more _
users than under a fading channel {11,12]. Moreover, the analysis for a fading
channel is much more complex than for a Gaussian channel. As a result, the syn-
chronizers that will be designed here will be based on the assumption of an additive
white Gaussian noise (AWGN) channel. Some of the performance considerations
for a DS / SSMA "that would affect the design of the synchronization subsystem will

be touched upon in a later section.

1.4 VLSI CMOS CIRCUITS

As was earlier mentioned, it is highly desirable to put some of the DS synchroniza-
tion subsystem on a chip. Of the available IC families, it was decided that CMOS
logic would be preferred because of its low power, high fanout {ability to drive other

gates) and high noise immunity.

As an illustration of the feasibility of the VLSI implementation of t:he direct
sequence synchronization subsystem, some parts have been implemented on CMOS
ICs. This has been done using the Metheus-Computervision 700 series workstation
provided by the Canadian Microelectronics Corporation. Using the standard cells
developed by previous students, Ralph Mason and Richard Vallee, the circuits have
been designed and then subsequently fabricated by Northern Telecom. Because the
whole layout was done manqally (placing and “ro.uting of standard cells), there was

time to implement only a few of the synchronization subblocks.

3




Chapter 2

SPREAD SPECTRUM
SYSTEMS THEORY

~

Before embarking on the design of the spread spectrum system, a consideration

of the different kinds of spread s;;ecti'um systems and their characteristics will be

given. This is followed by a detailed analysis of the synchronization .subsystem of

the direct sequence system.

2.1 SPREADING TECHNIQUES

There are two fundamental types of spread spectrum systems:

1. Direct or pseudorandom sequence systems: in this system the carrier is di-
rectly biphase modulated by a code sequence which has a much higher bit

rate (chip rate) than the bandwidth of the information signal.

2. Frequency hoppers: here the carrier frequency is shifted in discrete increments

from frequency to frequency in a pattern determined by a code sequence.



Other spreading techniques such as time hopping and chirp systems will be discussed
later. Hybrids of the above systems are often used in order to capitalize upon the

advantage of a particular method while avoiding the disadvantages [13].

5

A measure of performance improvement that is common to all SS systems is
the “processing gain”. It is deﬁnéd as the difference between system.interference
rejection performance using sprga.d specirum techniques and interference rejection
performance when not using spréa.d spectrum, all other conditions being equal [14].

The processing gain is quite often given as the ratio .

R,
== 21-1
PG R { )

i

where R, is the information symbol rate and R, is the spreading code’s “chip” rate. -

2.1.1 Direct Sequence
® '

Direct sequence modulation is obtained by digitally adding (modulo 2) the binary
output of a code generator with that of the binary message, which is then used
to modulate a carrier. This is .i‘llust‘;ated in Figure 2.1. The output of the code
generator - the pseudonoise (PN) code - is obtained by use of a maximal length
(ML) shift register by using the appropriate feedback taps. The length of the
output sequence for a maxima_ltggngth shift register is given by 2" — 1, where n is
the number of stages. A list of maximal lengtTh sequences as well as a discussion of

other types of PN code generators can be found in [2,14,15].
|

]

In order to better illustrate what goes on in a DS system, the transmission
and reception. process will be examined for the simplest form of DS spread spec-
trum system - DS BPSK (Direct Sequence Binary Phase Shift Keying). Figure 2.2

illustrates a more mathematically tractable way of viewing Figure 2.1 (note that
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d(t) and ¢(t) are the bipolar waveform representations of the data bits and the PN
generator output, respectively, while v 2P cos wot represents the carrier signal). The

output of the transmitter is then given (as shown) by:

-

‘- 5e(t) = V2P cos|wot + O4(t)] xe(t) (2.1.1-1)
_ S4(t)

where O4(t) represents the data phase modulation and S;(t) = v/2P cos [wot + O4(t)].
At the receiver, if there is a correlation with a code which is identical to the spread-
ing code, whose estimate of the transmission delay 74 is given by #; as in Figure

2.3(a), the recovered signal becomes

Sr(t) = V2Pc(t — 13)c(t — 74) cos [wot + O4(t — 73) + @] . (2.1.1-2)

where ¢ is random phase. Now, if the receiver estimate 7; is equal to 74, then

et — 14) % ¢(t — 74) will equal 1 since c(t) = £1. The result will then be equal to

S4(t) = V2P.cos [wot + O4(t — 74) + @] (;‘2.1.1 - 3)

which can then be demodulated by a conventional phase demodulator [14]. Figure

2.3(b) shows the BPSK DS spreading and despreading waveforms.

A lot of insight can be gained by considering the power spectra of the signals
discussed above. The data modulated signal before spreading has a two sided power

spectral density (PSD) given by [13,15)

Sulf) = L PT. {sin*(f ~ fo)T.] + sine?[(f + fo)T.]} (24,1 - 4)

.

10
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assuming that the data is random (7, represents the data symbol period while f,

represents the curigr frequency). For the spread waveform, this becomes '[13,15]

v
~

Si(f) = 3PT. {sinc'|(f = fo)T] + sinc® ((f + o) 2]} (2.1.1- 5)

again assuming that ihe spreading code is truly random (the act®l power spectrum
of a pseudorandom code sequence will be discussed later). These spectrﬁms are
illustrated in Figure 2.4, where 1/2PT, has been assumed equal to F. Comparing
the two PSDs, it can be seen that the spectrum of the transmitted sigflal has been

spread and lowered by a factor equal to

M= =2"=PG (2.1.1=6)

This gives it a lower probability of detection. Now, at the receiver (with a synchro-
nized code), the transmitted signal is collapsed to the data bandwi'dth, whereas any
interfering signal‘ is spread by a factor of M. Thus, the transmitted information is
afforded a power ad\;antage (over an interfering signal) that is equal to a factor of

M.

2.1.2 Direct Sequence (PN) Power Spectral Density

In the previous section, the power spectru;n for the transmitted signal was obtained
by assuming that both the information signal and the spreading code sequence were
tota.ll} ’ra.ndom. In practice, though, the spreading PN code sequence is periodic.
To determine the effect of thig periodicity, the true power spectral density (PSD)

of a PN waveform will be found. R

12
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Figure 2.5: Autocorrelation Function for PN Waveform. [15]
In order to obtain the PSD of the PN waveform, it is more convenient to first
determine its aﬁtocorreiation function, from which the PSD is obtained by taking

its Fourier transform {15]. The autocorrelation function is given as [15]

. 1 | \ ‘
Ren(r)'= 5 [0 PN()PN(t+1)dt (212-1)

’ . _ + . . - . . . ‘ .

where T, is the chip time, N is the length of the code sequence, PN(t) is the

PN waveform and 7 repreéents the time displacement between the two waveforms

*

.4
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being correlated. (While the autocorrelation indicates the similarity between two
identical codes or waveforms that have a time displacement 7 between them, the
cross-correlati~n would indicate the same thing between two different codes or wave-
forms). Rpxn(7), which is periodic, with a period equal to NT¢ is shown in %‘igure

2.5. It can be written as

Ren(r) = -3 + N; LA ¢ S 6(r + NmT)) (2.1.2 - 2)

m=-0oo

&

(X 2]

where the denotes the convolution operation and A(7) is given by [15]

Te

Alr) = ‘ - (2.1.2 — 3)

Te 0; elsewhere

Looking at Figure 2.5, it is easy to see how the spread spectrum system rejects
multipath. If the reflected signal is delayed (compared with the direct path signal
which it is assumed that the SS system {s tracking) by more than one chip, there_
will be no ccrrelation between it and the local code reference. Thus, it is treated

exactly the same as any other interfering signal.

Now taking the Fourier transform of Rpn(7) gives [15]

Sen(f) = ~=6(f) +'N+1 5 sincz(m)6(f+

bl ) (2.1.2 — 4)
N N

NT,

given as [15)

15
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O Sf) = TeSenlf + fo) + e Sen(f - fo) (212 -5)

ANot,e that the result of this modulation is that the discrete spectrum of Figure 2.6
is shifted upward and downward by a frequency fo (the lines are still separatea by
1 /HT ') If, as is often the case, the carrier is also randomly modulated by data (in
pra.ctné‘e, the dlgltal data is exclusively ored with the spreading sequence), then each
one of the discrete lines in Figure 2.6 will be spread over the data bandwidth, result-
ing in a continuous spectrum. The resulting spectral shape however will depend on
the relative size <;f 1/T, and 'N_lr—.' where 7, is the data period. Figure 2.7 illustrates
the cases for T, > 2NT, and T, < NT.. It is obvious that for data concealment,
the case of T, < NT, is preferred. Thus, if T, < NT,, most of the power will not be

restricted to only a few spectral components but is spread out such that its power

spectral density is lower, flatter and more difficult to distinguish from thermal and

-

1

environmental noise [16].

5.1.3 Frequency Hopping

As stated earlier, frequency hoppers (Figure 2.8) vary the carrier frequency fro
one frequency to another in a pattern detérmined by a code sequﬁence. FrequenS
hoppers é.re often classified as either “fast hop” or “slow hop” systems. In the fast-
. hop system, the frequency hopping occurs at a rate that is greater than the message
bit rate; while in the slow-hop system, the hop rate is less than the message bit rate

[13].

Reception of frequéncy hopping signals is usually done on a noncoherent basis
because coherent reception is more difficult to achieve. Thus, binary or M-ary

FSK with noncoherent detection is commonly employed with FH spread spectrum

systems [2,14,17]. Although FH systems can easily attain high spectrum spreading,
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