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Abstract

The Artificial Neural Network (ANN) prototype was developed using medical databases
available at the CHEO (Children’s Hospital of East Ontario) to help neonatologists in
their decision-making. Nine SNAPPE-II (The Score for Neonatal Acute Physiology-
Perinatal Extension-II ) variables were used as the input variables of the ANN tool.
Weights of the nine variables were trained using the CNN (Canadian Neonatal Networks)
database. The system was designed to predict the likelihood of infants’ survival, the
duration of artificial ventilation, and length of stay in the Neonatal Intensive Care Unit
(NICU).

Two pilot studies were conducted for its evaluation. One was an attitude test, which
aimed to measure the physicians’ attitudes toward using the ANN tool and collect
opinions and suggestions for its improvement. The results of the study found that
physicians’ responses to the ANN tool were fairly positive. One variable, gestational age,
which was currently not used by the tool, was identified as important in guiding
physicians in predicting outcomes. The other pilot study was laboratory experiments,
which aimed to evaluate the performance of the tool. The results of the experiments
demonstrate that the best testing results of the ANN training using CNN database are
better than the performance of the physicians on EPIC database in terms of sensitivity,
the specificity and the CCR. When used with the EPIC database — in which the
population was different from the CNN database — the ANN tool also showed a
comparable performance to that of the physicians. This serves as a further indication that

the ANN tool has the strength to help physicians with their decision-making.

i
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Chapter 1 Introduction

1.1 Motivation

1.1.1 The Neonatal Intensive Care Unit Environment

Neonatal intensive care units (NICU) are designed with special equipment to care for
premature, low-birth-weight and/or seriously ill newborns. Neonatal medicine has been
available in developed countries for more than three decades to provide specialized and
intensive care measures aimed at improving the health and survival of premature and
critically ill newborns [Carter BS, 2004). Throughout these years, many advances have
been made, such as the substantial reduction in the mortality of premature infants, and the
steadily declining rate of disability or significant morbidity in survivors of the NICU of
nearly all gestational ages and weights [Carter BS, 2004]. However, according to the
author, the rate of prematurity, low birth weight and the rate of birth defects have

remained relatively constant over the past few decades.

1.1.2 Medical Expert System

The computer-aided expert system can extract, formalize and store much information
provided by human experts, which in turn, can apply the acquired knowledge in a
particular problem-solving task by emulating the reasoning process of human experts.
Such computer-aided expert systems in medicine are expected to provide physicians with
useful information from large numbers of patient records. A well designed expert system
can improve the quality of patient care by helping clinicians in making a diagnosis and

treatment plan. It can also help physicians to allocate resources and reduce the overall
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costs of health care. In recent years, due to the explosion of technologies, especially in
computer science and engineering, scientists and engineers have shown interest in
medical expert systems, neural networks and other artificial intelligence techniques.
Healthcare providers also realize their potential. Medicine and healthcare are a popular

field for developing new or applying existing technologies.

1.1.3 The application of Artificial Neural Networks in Intensive Care Units

The application of Artificial Neural Networks (ANNSs) in Intensive Care Units (ICU)
includes evaluating clinical parameters, estimating medical outcomes, resource utilization
and management of treatment. ANN can support physicians by initiating necessary
responses in case of emergency (within 17 seconds instead of the 45-second average by
clinicians) [Kornel P. et al. 1994]. [Buchman et al.1994] reported the use of a ANN to
evaluate the relationship of several demographic, pharmacologic, and physiologic
variables with chronicity in a surgical ICU. A ANN model with fifteen input variables
developed by Tu and Guerriere [1993] is reported to estimate the length of stay and
mortality in cardiovascular ICUs. Snowden et al. [1993; 1997] developed an ANN system
with two hidden layers, each composed of fifty nodes to manage ventilated neonates in
the NICU. The system takes blood-gas parameters and the current ventilator settings as

inputs and outputs a set of suggested new ventilator settings.

Frize et al. began research on ANN for intensive care in the early 90s. A feed-forward
ANN was trained using the back-propagation algorithm to estimate mortality, duration of
ventilation and length of stay in the adult ICU [Buskard T. et al. 1994]. In 1995, the

MIRG (Medical Information technology Research Group) [Frize M. et al. 1995]
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developed the application of intelligent monitoring techniques of case-based reasoning
and ANN analysis to physician decision making concerning patient care in an ICU.
Walker et al. [2000] applied a three-layer feed-forward back-propagation ANN to predict
ventilation duration less than or, more than or equal to 8, 12, and 24 hours and death on a
large database of NICU patients. An evidence-based ethical decision-making tool [Frize
M. et al. 2004; Lang Y. et al. 2004]], combined with two artificial intelligent approaches,
case-based reasoning and ANN, was developed in early 2005 [Frize et al. 2005]. The
system was designed to provide more information to clinicians and parents when they are
facing very difficult, ethical decisions regarding the care or management of neonatal

intensive care patients.

1.2 Research Status and Objectives

The long term objective of the MIRG is to use artificial intelligence approaches to create
a number of promising clinical decision-support systems which will ultimately be
integrated into one main system. With the efforts of many research projects, the ANN and

CBR systems have been developed to a point of clinical applicability.

The objective of this thesis was to evaluate MIRG’s ANN tool for its usefulness in
neonatal intensive care unit (NICU), to see whether the tool was able to help physicians
in estimating outcomes and counseling parents. This was a pilot study which was

employed as a preparation for a large scale clinical trial in the future.
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1.3 Summary of the Contributions

The objective of the thesis was met through the implementation of an attitude test to
measure the physicians’ attitude on using the ANN tool, and a laboratory test to evaluate
the performance of the ANN tool. Since this study involved some ethical issues, a
proposal of this project has been developed and submitted to the Ethics Review
Committee at CHEO (Children’s Hospital of Eastern Ontario), and was subsequently
approved. The results of the study show that the ANN tool is fairly welcomed by the
physicians, and the performance of the ANN tool is comparable with that of the
physicians. From the results, a key variable was identified (gestational age), which is
important for physicians to do predictions, but was not included in the input variables of
the ANN tool. Also, several strengths and limitations of the ANN tool were identified

from analysis of the results, which can form the basis for future work.

1.4 Thesis Outline

The thesis consists of six chapters. Chapter] outlines the motivation, research status and
the objective. A literature review of related subjects to the thesis is given in chapter 2. It
includes evaluation methodology for medical expert system and overview of ANN.
Chapter3 provides a detailed introduction of ANN tool that needs to be evaluated. The
methodology for the evaluation is addressed in chapter 4. There are two parts: one is from
the user’s perspective, measuring the attitudes and collecting user’s opinion for the tool’s
improvement; the other focuses on the performance of the ANN tool by comparing the
predictions made by physicians and by ANN tool, as well as real outcomes. Chapter 5

summarizes the results of the study and presents an analysis and discussion for the
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results. In the last chapter, conclusions of the study are presented. Contributions to new

knowledge and suggestions for future work are also supplied.

Chapter 2 Literature Review

This chapter reviews literature on evaluation methods of medical expert systems which
led to the selection of a method for the evaluation of our ANN tool. Also, theories,
structures, and applications of ANNS are briefly introduced to provide a general idea of
ANNSs, and to help to understand the training process of ANN discussed in the next

chapter.

2.1 Evaluation Methods for Medical Expert Systems

Today, health care depends more and more on advanced technologies, especially on
computer systems. However, there are risks that the use of computer expert systems in
medicine could reduce the quality of health care. It is clear that usually there are bugs in
soft wares. Excessive reliance on systems, overestimation of their performance, and
insufficient evaluation and maintenance are factors causing misdiagnosis, mistreatment
and even fatalities [Leveson N., 1993]. For these reasons we first discuss the importance

of evaluating medical expert systems before the overview of evaluation methods.

Three major reasons — ethical, legal and intellectual — have been mentioned by Wyatt
et al. [1990] in discussing the necessity of performing evaluations. The ethical basis of
medicine refers to the improvement of patients’ health while attempting to do no harm
and using limited health care resources wisely. Therefore, the evaluation should focus on

whether an expert system is effective and safe and how it might change usage of
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resources, before attempting to distribute it. Expert systems technology is also subject to
litigation. “Product liability law dictates that it must be safe, no matter what precautions
have been taken to avoid mishaps™” [Wyatt J. ef al. 1990]. The intellectual arguments for
testing expert systems include: which technical advances lead to progress; which domains
are the most fruitful to pursue; and how to predict the performance of a knowledge-based

system from its structure.

Reisman [1996] points out additional purposes for which the evaluation should be
performed: to provide a concrete test of a prototype system; to obtain feedback for further
system development and refinement; and to determine the system’s clinical effects, that
is, whether the system indeed achieves its goal; and to develop new evaluation

methodologies.

In the overview on the evaluation methodology of knowledge-based systems, [Wyatt J. e
al. 1990] summarize the evaluation of medical expert systems in three stages. “The first
stage consists solely of a definition phase, which identifies the exact decision problem,
the users and their environment. To achieve a complete definition of user requirements,
an early prototype system should be built, and users should be requested to comment on
how this could be improved. Thus, stage one may prove to be an iterative build-test-

refine cycle.”

In the second stage, further prototype systems are built. At this stage, formal laboratory

testing should begin before the system can be introduced into clinical practice. “This
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laboratory testing phase is necessary to show that the system is safe and has at least the
potential to benefit patients. The system at this time is viewed as a ‘decision taker’, in
that its conclusions are judged directly. Only in the next phase of evaluation will its

effects as an aid to clinical decisions be considered.” [Wyatt J. et al. 1990]

The structure, process and outcome of the system should be tested. Questions about
knowledge-based structure and reasoning need to be answered by those with insight into

both the technology and the domain [Pearl J. 1988].

“From the user’s perspective, we must have a means of measuring attitudes and “user
satisfaction’ and this may be difficult to do formally because of their subjectivity. It can
be done with a structured questionnaire combining verbal scales with visual analogue
scales.” [Reisman Y. 1996] Questions that could be asked are the following:
“Structure (Is the system wanted?)

Is there a perceived need?

Can the advice be made available at the right place and time?

Process (Is it pleasant to use?)

Is the interface satisfactory?

Is the system fast enough?

Outcome (Does it say sensible things?)

Do its conclusions seem as sound as those of a respected authority?

Are the explanations adequate?” [Wyatt J. ez al. 1990]
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To measure the accuracy of a system an appropriate test sample is required. Data used for
debugging a system should not be used for laboratory testing since any expert system will
usually perform much better on such ‘training” data than on a fresh set of data, collected

as part of a separate study [Wasson JH. et al. 1985].

The third stage of evaluation consists of field trials, which are crucial to determining if
the expert systems have value for patients or for decision-takers [Wyatt J. ez al. 1990].
They can be designed to check whether the intervention has an effect on outcome (a
pragmatic motive) or to elucidate how it exerts this effect (explanatory motive) [Schwartz
D. et al. 1967]. “It seems reasonable to examine the effect of a system on the structure
(how well does the system fit into its intended environment), on the process (what effects
does the system have on the process of health care) and on the outcome (does use of the
system have an effect on outcome measures) of the health care process, controlling for

the effects of bias and of confounding variables.” [Johnston ME. ez al. 1994; Nohr C.

1994]

Clarke et al. [1994] place emphasis on the importance of safety, correctness and the
users’ confidence in the knowledge-based expert systems. They describe an iterative,
four-phased development evaluation cycle covering the following areas: early prototype
development, evaluation of validity of the system, functionality of the system, and ficld
trials where the impact of the system is evaluated. In phase two, the evaluation of the
system’s validity needs to be determined during the implementation of the system.

Validity assessment focuses on the correctness of the output of the system. The authors

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



point out several methods for assessing outcomes: the traditional error rate approach is a
simple method whereby the rate of correct answers of the system is measured. This does
not take into account systems that give answers in terms of probability, or those that rank
their answers in order of likelihood; top-down correlation compares the ranked preferred
solutions of the expert(s) with those of the system. It has been shown to be an excellent
form of correlation as it places more emphasis on the top of an expert’s rank-ordered list
than on the bottom; ROC (Receiver Operated Characteristics) is a plot showing the
covariation of the sensitivity and 1-specificity as a function of the discriminator value.
The ROC function is independent of the prevalence of the actual disorder and has been
used in the evaluation of knowledge based systems [Miller RA. et al. 1982]. The
optimum of these plots is a2 compromise between false positive and false negative

findings — the compromise being dictated by the application of the system.

Adelman et al. [1997] Riedel give five types of evaluations including requirements
validation, knowledge-base validation, knowledge-base verification, usability evaluation
and performance evaluation. Requirements validation and performance evaluation
address the same very basic evaluation question: “will the operational system meet
organizational and user goals and needs?” [Adelman L. et al. 1997] Both types of
evaluation are predicting to what extent performance of the final system will match what
is needed. The requirements are a stand-in for the actual system until development has
proceeded to the point where the developing system can be assessed. Performance
evaluation is more specifically concerned with whether performance using the system is

more timely or results in an improved quality of the task process and products. The
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quality of the knowledge base is assessed in two types of evaluations: knowledge-base
verification and knowledge-base validation. “Knowledge-base verification looks at the
logical consistency and adequacy of the knowledge base. Knowledge-base validation, on
the other hand, is the discovery of potential errors in the logical content and structure of
the knowledge base.” [Adelman L. ez al. 1997] Usability evaluation helps determine
“how easy a system is to learn, the number of errors users are likely to make in using the
system, whether or not users will have confidence in the system results, the amount of
cognitive effort system operation takes, and even whether users will use the system.”
[Adelman L. et al. 1997] Knowledge-base verification and validation, as well as usability
evaluation are more concerned with identifying problems that might interfere with the
optimal performance of the system. Each of the five types of evaluation can be conducted
using many different methods. Unfortunately, the evaluator usually does not have his or
her choice of all of these methods because the choice of methods and sources of data are
constrained by a number of different factors, such as “the amount of evaluation funding,
availability of SMEs (subject matter experts) and users, time to plan the evaluations,
number and expertise of evaluation personnel, cooperation of sponsors and developers,
and opportunity for the evaluator to learn about users and organizational units using the

system.” [Adelman L. et al. 1997]

2.2 Theories and Structures of Artificial Neural Networks

In medical areas, techniques of ANNs have been widely used. The main advantage of
ANN over statistical techniques is that the model does not have to be explicitly defined
before beginning the experiments to develop the model. ANN have a learning ability and

can perform successfully where statistical techniques do not, in recognizing and matching
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complicated, vague, or incomplete patterns [Blum 1992, Livingstone ez al. 1997]. Also,
with statistics, it is difficult to integrate data of different formats (i.e., working
simultaneously with continuous, binary, ordinal and nominal data). Medical data are
often believed to have nonlinear relationships between the input variables and the
outcome, so multilayer ANN are a logical choice for analysis in the medical environment

[Baxt 1994].

An ANN is a parallel, distributed, adaptive system that processes information in order to

learn patterns as a result of exposure to a set of representative training cases [Penny W. et
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Figure 2- 1 A Basic Artificial Neuron [Anderson D. et al. 1992]

al. 1996). The original intention was to use ANNs to emulate human brain function
through the structure of nodes. In the biological sense, a neuron is “a cell with long

processes specialized to receive, conduct, and transmit signals in the nervous system”

11
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[Alberts B. et al. 1998]. There are about 100 billion neurons in the human brain. Learning
is accomplished by the adjustment of the synaptic connections between adjacent neurons.
ANNSs learn the solution to problems by adjusting the connecting weights to output

appropriate results.

The artificial neuron (Fig. 2-1) is a simplified mathematical model of biological neurons.
It is the basic unit of ANNs. Each artificial neuron, which is called a node in ANNSs, has
many inputs (Xo — X»), 2 processing unit and one output (y). The processing unit sums the
products of inputs and their corresponding weights (wo — wy), and the signal passes

through a transfer function to yield a result (y).

In ANNS, nodes are grouped into three kinds of layers: input layer, hidden layer(s) and
output layer. An ANN can have two layers (input and output layer) or more Chidden

layer(s)) as shown in Fig. 2-2 and Fig. 2-3. Nodes in the input layer receive input

Input Layer Output Layer

Figure 2- 2 Two-layer ANN
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Input Layer Hidden Layer Output Layer

Figure 2- 3 Three-layer ANN

information from the external environment and yield input signals to the other layer(s).
The outputs of the system can be obtained from the nodes in the output layer. The signal
processing path is normally unidirectional, but there may be a two-way connection
between layers. The different types of connections between layers create various ANNS,
which include fully-connected, partially-connected ANNS. In more complex structures,
intra layer connections can be observed. The nodes within a layer are fully or partially
connected to one another. A feed-forward network allows information to travel directly
from the inputs to the outputs. If any outputs are fed back as inputs to previous layers,

this is a feedback or a recurrent network [Fausett L. et al. 1994].

Hidden layers are introduced to solve more complicated problems using non-linear
algorithms; however, training time will significantly increase with the increase of hidden

layers. The good news is that not all networks require a hidden layer, and no substantial
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evidence has been found showing that more than one hidden layer will improve the

predictive performance of a network [Penny W. ef al. 1996].

Caution must be taken when choosing the number of nodes in the hidden layer(s). This is
a trade-off situation. In order to model the dataset closely, more nodes should be added to
the network. However, a model that is too closely related to the training set is unable to
generalize to accommodate new data [Fausett L. et al. 1994]. Also it may reduce the
efficiency of the system since having too many nodes in the hidden layers would use
considerable computing resources. On the other hand, too few nodes will not provide
sufficient resources to solve the problem, resulting in underfitting. Underfitting means

that the ANN does not learn enough about the dataset to correctly classify cases.

Like the human brain, ANNs can learn from experience as more data are added into the
training dataset. Applying the new training data to the chosen algorithm will generate
new connection weights in the network. In this way, the system learns new knowledge by
adjusting these connection weights. The leamning ability of ANN is determined by its
architecture and by the algorithmic method selected for training. The training can
generally be grouped into unsupervised and supervised learning. Unsupervised training
means that the true output is unknown and the nodes must find a way to organize
themselves without help from the outside. In this approach, no sample outputs are
provided to the network against which it can measure its predictive performance for a
given vector of inputs. This is so-called learning by doing. For supervised training, the

true output is known and the ANN uses this information to reshuffle the connections and
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correct its errors. This reinforcement learning is also called learning by example.

[Anderson D. et al. 1992]

There are a variety of learning rules in common use. These rules are mathematical
algorithms used to update the connection weights. The feedforward, error back-
propagation algorithm, also known as gradient descent learning, was first introduced by
Rumelhart ez al. in 1986, and since then a number of computational enhancements have
been developed to improve the algorithms [Mehrotra K. ez al. 1997]. This method is
among the most commonly used network training algorithm [Werbos P. et al. 1974]. It
uses the error between the target (true output) and system output to modify the weights of
the network. The error is propagated back through the layers, adjusting the node weights
to minimize the overall error or to reinforce the important weight [Livingstone DJ. et al.

1997].

2.2.1 Transfer Functions

There are several transfer functions which are commonly used, such as the hard-limit, the
linear and the log-sigmoid transfer function. The log-sigmoid transfer function is often
used in the back-propagation networks. The hyperbolic tangent, or tan-sigmoid function,
differs from the former in its sharp transition between its output values that permits faster
learning of ANNS. It is also a common transfer function in ANNS for the reasons that it is

a very flexible, non-linear function, and is also continuous and differentiable.
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2.2.2 Weight-elimination and Weight-decay

Weight-elimination and weight-decay add a complexity term to the error function to
prevent overfitting to the training set [Weigend AS. ez al. 1990]. Overfitting means the
networks are too specific to the training data to extend to the prediction of general cases.
The weight decay penalty term causes the weights to converge to smaller absolute values
than they otherwise would. Large weights can cause excessive variance of the output
[Geman S. et al. 1992]. Therefore, weight decay results in a more stable network.
According to Bartlett [1997], the size of the weights is more important than the number
of weights in determining generalization. On the other hand, weight-elimination focuses
on the small weights by trying to reduce them to zero. The small weights only add
unwanted “white noise” to the model. This network pruning approach simplifies the
network and can eliminate variables that offer little or no assistance in predicting the

correct outcome [Weigend AS. ez al. 1990].

2.2.3 Adaptive Network Parameters

Network parameters need to be adjusted to gradually reach the optimal performance of
the networks and to develop the best ANN model. The error ratio err_ratio is a user
defined value that measures the error change from current to previous for the
determination on how the learning rate I, momentum m and the weight decay constant 4
(or lambda) are updated. The objective is to have the error ratio get smaller with each
iteration to show that the performance is improving [Fausett L. e al. 1994]. The learning
rate controls the size of steps across the decision surface. By adjusting it during the
training process through the parameter Ir_inc and Ir_dec, the optimal performance of the

network can be reached.

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table 2-1 shows the pseudocode for how parameters are adjusted [Fausett L. ez al. 1994].
TSSE refers to the training set error from the current epoch (an epoch is defined as a
single pass through the entire training set, followed by testing of the verification (testing)

set); SSE is the error from the previous epoch. The use of momentum is to prevent the

if TSSE>SSE*err_ratio
Ie=It¥lr_dec;
lambda=lambda*lambda_dec;
m=0; '

else if TSSE<SSE*err_ratio
Ir=Ir¥lr_inc;
lambda=lambda*lambda_inc;

end

Table 2- 2 Pseudocode for neural network parameters [Fausett L. et al. 1994]

training from getting caught in local minima and allows it to continue to search for the
global minimum. Just like a low-pass filter disregards low-level noise, momentum
follows the general flow of the error surface by ignoring any small feature [Fausett L. et
al. 1994]. 1t is implemented by adding a fraction of the last weight change to the new
weight change. If the current-to-previous iteration error is greater than the error ratio,
then the momentum is set to zero and the new weights and biases are rejected. Otherwise
the new weights and biases are retained and the weight change is calculated [Fausett L. ez

al. 1994].

The role of the weight decay constant (lambda, A) is to determine how strongly weights
are penalized. Weight elimination adds the following penalty term in addition to the main

mean squared error function [Weigend AS. ez al. 1990]:
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AT (wirwo)’ | [(witwo)’ + 1]
where w; represents the individual weights of the ANN and wy is the weight-decay
scaling parameter. The value of A is user-defined. The larger the value of 4, the closer the
weights must be to zero to be considered among the “noise” distribution. A larger A also
puts more pressure on smaller weights to go to zero [Fausett L. ez al. 1994]. If the value is
too small, there will be no impact on the network; however, if it is too large, all weights
will be forced to zero [Fausett L. ez al. 1994]. Weigend et al. [1990] suggested initially
setting the value of A to zero to allow the network to gather information for all input
variables, then gradually increasing its value until the performance begins to degrade, at

which point we fine turn the 4 value to optimize the performance.

2.2.4 Stopping Criteria

The automated network [Frize M. et al. 2000, Ennett CM et al. 2004] was developed to
optimize each network parameter without user supervision. A stopping criterion
determines when the automated network has reached a satisfactory level of performance
and needs to stop training. Several stopping criteria are used by MIRG, such as correct
classification rate (CCR), Average Squared Error (ASE) and the log-sensitivity index
[Scales 2001, Ennett CM ez al. 2002]. Also, an early stopping criterion is employed in the
training program combined with each of the above stopping criteria. It stops the training
when the performance does not improve during the subsequent 500 epochs in order to
prevent overfitting. Using the CCR as stopping criterion, the network stops iterating after
reaching the highest correct classification rate, while ASE lets the network stop when the

lowest average square error is found. Both can be good measures of performance when
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outcomes are relatively common (representatively of approximately 15 percent or more

of the database). [Ennett CM. et al. 1998]

The logarithmic-sensitivity index (or log-sensitivity index) is introduced as a stopping
criterion when working with data where the outcome is a rare occurrence (represented by
only a few percent of the cases in the database). It is defined as the following:

log- sensitivity index = ~sensitivity” *log 10(1 - sensitivity * specificity)

This function expands towards infinity as sensitivity and specificity approach one, but is
slightly weighted in favour of sensitivity [Fausett L. ez al. 1994]. The degree of weighting
can be controlled by the exponent n [Scales N. 2001]. Studies have shown that an
automated ANN which optimizes the log-sensitivity index can classify outcomes better
than manually-optimized networks, and can classify rare outcomes equally well or better
than networks that use the maximum correct classification rate or the minimum mean

squared error as the stopping criteria [Ennett CM. et al. 2002; 2003].

2.2.5 Performance Measurement
To evaluate the performance of networks needs appropriate measurements [McGowan
HCE, 1996]. There are several performance measurements for ANN which are commonly

accepted and used.

2.2.5.1 Constant Predictor
A constant predictor is a basic statistical benchmark that classifies all cases as belonging
to the class with the highest a priori probability [Frize M. et al. 1995]. To illustrate this,

consider the Canadian Neonatal Network (CNN) database. The percentage of deaths is
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3.7, while the survival is 96.3 percent. With this data set, a constant predictor would
classify all patients as surviving, and it would correctly classify the patients 96.3 percent

of the time.

2.2.5.2 Correct Classification Rate

Correct classification rate (CCR) identifies the rate at which the model correctly classifies
the data into their proper categories. Based on the contingency table below, CCR or
accuracy, is calculated by sum of true positive (TP) and true negative (TN) divided by the
total number of cases in the dataset. The calculating formula is (TP+TN)/(TP+TN+FP+
FN). TN and TP represent cases that are correctly classified into their respective classes,
while false positive FP and false negative FN represent those incorrectly classified cases.
Though CCR is a good measure of network performance, it can not reflect the whole
aspect of the classification especially when the data are highly skewed. Therefore, it is
better to combine this with other measures such as CP, sensitivity, specificity and ROC

curves to obtain a more valuable performance evaluation.

Table 2- 3 Contingency table

Real output
Negative (N) Positive (P)

Predicted output | N | True negative(TN) | False negative(FN) TN+FN
False positive(FP) | True positive(TP) FP+TP

-]

TN+FP FN+TP Total cases
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2.2.5.3 Sensitivity and Specificity

The network’s sensitivity is the proportion of positive cases that are correctly identified.
Therefore, the formula for sensitivity is TP/(TP+FN), where TP+FN represents the total
number of positive cases. Specificity is the proportion of negative cases that are correctly
identified. The calculating formula is TN/(TN+FP), where TN+FP represents the total

number of negative cases.

2.2.5.4 Receiver Operating Characteristic (ROC) Curve

The ROC curve shows the performance as a trade off between sensitivity and specificity.
It is a plot of the model’s sensitivity versus one minus its specificity (false positive rate).
Constructing an ROC curve on a dataset allows one to identify how well a model
discriminates between positive and negative results. The curve always goes through two
points (0, 0) and (1, 1), where (0, 0) means no positives are detected and (1, 1) represents
a classifier that classifies all cases as positives. The upper left hand corner, point (0, 1),
represents a perfect classifier, which identifies correctly all the positive cases as positives
and all the negative cases as negatives. Point (1, 0) represents the worst classifier, which
cannot identify any case correctly. Therefore, a good ROC curve is the one that climbs
rapidly towards the upper left hand corner of the graph, and far away from the 45-degree
diagonal line which corresponds to a useless classifier. This means that true positive rate

is high and the false positive rate is low.

Figure 2-4 [ROC onlinel] shows three ROC curves representing excellent, good, and

worthless tests plotted on the same graph. Accuracy is measured by the area under the
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ROC curve.
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Figure 2- 4 Sample ROC Curves [ROC onlin1)

An area of 1 represents a perfect test; an area of 0.5 represents a worthless test. A rough
guide for classifying the accuracy of a diagnostic test is the traditional academic point
system [ROC online2]:

0.90-1 = excellent (A)

0.80-0.90 = good (B)

0.70-0.80 = fair (C)

0.60-0.70 = poor (D)

0.50-0.60 = fail (F)
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2.3 Application of Artificial Neural Networks

Not until the1940s did the concept of the ANNs come into Being, when W. McCulloch, a
neurophysiologist, and a young mathematician, W. Pitts, published a paper on how
neurons might work [McCullogh WS. ez al. 1943]. With the invention of the computer, it
became possible to simulate an ANN. Since the early nineties of the last century, ANNs
have played an increasing role in the development of new biomedical systems, especially

in the four basic categories: modeling, bio-signal processing, diagnosing, and predicting.

The application of ANNs has been introduced into almost every field of medicine. In
1990, Baxt [1990] used ANN as an aid to diagnose acute coronary occlusion and later for
myocardial infarction [1991]. In order to classify heart failure patients, F. Atienza, et al.
[2000] estimated three outcomes (death, readmission and one-year event-free survival) by
applying ANNs. Although their sample size was limited, the total accuracy of predictions

was over 93 percent.

Ravdin, et al. [1992] developed ANN system to judge the possible recurrence rate of
tumors by using data from lymphatic node positive patients. The accuracy reached 96%.
Fogel et al. [1995] reported their work on ANN recognition of breast cancer that
evaluated mammographic, cytological and epidemiological findings in an integrated

system.

In the neurological field, ANNSs can be used to differentiate Alzheimer disease and
vascular dementia. R. DeFigueiredo et al. [1995] analyzed brain SPECT image data with

the help of ANNSs. Kuntz ez al [1994] developed a cascade-correlation ANN model to
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predict mortality and length of stay for patients with closed-head injuries. Walczak S. et
al. [2001] evaluated the efficacy of using ANNs for determining epileptic seizure

occurrences for patients with lateralized bursts of theta (LBT) EEGs.

Because of its ability to deal with large databases, ANNs have also been applied in the
radiological field. By selecting an appropriate training set and learning process, ANN
modeling becomes suitable for filtering, reconstruction and recognition of images, which
contain so much information that it is impossible to interpret them using conventional
rule-based systems. For the diagnosis of pulmonary embolism, Tourassi ez al. [2000;
2001] presented an automated texture analysis method by calculating the complexity or
“roughness” of each image. Based on ultrasonographic and laboratory findings, a
differentiator [Maclin PS. ez al. 1992] powered by ANN was created to diagnose five

classes of liver disease.

There are also publications on applications of ANNS to the recognition of a particular
pathology. To examine features extracted from light microscopic images, Dawson e al.
[1991] developed ANN and established a classification process of breast carcinoma. To
screen breast cancer and estimate its risk, analysis of DNA flow cytometric histograms
are helpful. Nazeran et al. [1995] reported a study on increased breast cancer diagnostic

precision by using ANN analysis.
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Chapter 3 Introduction of ANN tool

The ANN tool was trained using the Score for Neonatal Acute Physiology Perinatal
Extension-II (SNAPPE- II) as input variables. The training data were sampled from the
Canadian Neonatal Network (CNN) database. The tool was trained with 5088 complete
cases (without any missing values) by a graduate student in the MIRG. In this study, the
tool was trained with 19398 cases in CNN database, where missing values had been
replaced using MIRG’s ANN and CBR (Case-Based Reasoner) hybrid system. In this
chapter, more details about the ANN tool and its training processes we performed during

this study are provided.

3.1 Score for Neonatal Acute Physiology

The Score for Neonatal Acute Physiology (SNAP) was developed as a neonatal illness
severity index in the early 1990’s. SNAP scores the “worst physiologic derangements in
each organ system in the first 24 hours” [Richardson DK. et al. 1993]. It aims to make
comparisons of differences in the substantial variation in birth-weight-adjusted mortality
among newborns in NICUs. SNAP showed little correlation with birth weight and was

highly predictive of neonatal mortality even within narrow birth weight strata.

The modeling technique was based on the scoring systems: APACHE (Acute Physiology
and Chronic Health Evaluation) and PSI (Physiologic Stability Index), which had been
developed for measuring the severity of illness in the adult or pediatric intensive cares.

Variables selected for SNAP were modified from PSI for the purpose of adapting it to
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neonates’ particular characteristics. The specifications for SNAP [Richardson DK. ef al.

1993] are provided in appendix 3.

Points of the SNAP scoring system were assigned to each variable according to deviation
from the normal physiological value. The scale ranges from 0 to S, with the definitions

listed in Table 3-1. Missing data take a 0 value on the assumption that if such results were

Table 3- 1 Definitions of SNAP point assignment [Richardson et al. 1993]
Points Definition

0 Normal physiologic range/Missing value

1 Physiologic deviation was sufficiently abnormal to merit careful
monitoring

3 Deviation was such that most clinicians would alter therapy to
correct it :

5 Acutely life-threatening

important for clinical management they would have been measured and recorded
[Richardson DK. et al. 1993]. Some values include both high and low measures for a
particular physiologic variable in order to represent more extreme physiologic instability.
SNAP consists of 28 variables (Appendix 1) of which 9 variables have both high and low
values, resulting in 37 input variables being used to assess mortality risk. Scores ranged
from 0 to 42, with a mean of 8.7. The more severe the condition, the higher the points
scored. The score not only directly predicts in-hospital mortality, but is also highly
correlated with several measures of medical resource use, including therapeutic intensity,

nursing workload and LOS (length of hospital stay).
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3.2 SNAP-II and SNAPPE-II

As a first-generation newborn illness severity score, SNAP was cumbersome to use
because of the number and complexity of variables. Richardson et al. [Richardson DK. et
al. 2001] modified the original SNAP score and created a second-generation SNAP score,
which would have the following advantages:
1. Simpler: by reducing the number of score variables;
2. More reliable: by eliminating score variables that are complex or difficult to
define and abstract;
3. Empirically weighted: by deriving the score empirically so that score variables
reflect actual mortality risk rather than the original clinician estimates;
4. Recalibrated: by updating mortality risk estimates to reflect experience in the mid-
1990s.
The new score is called SNAP-II, which includes 6 of the original 37 variables from
SNAP as a measure of newborn illness severity. Birth weight, low Apgar score, and small
for gestational age were added to create a 9-variable SNAP-Perinatal Extension-1I
(SNAPPE-II) to predict in-hospital mortality, as listed in Table 3-2. Excluded patients
are babies released to the regular nursery within 24 hours, moribund infants when an
explicit physician decision not to provide life support was made at the time of NICU
admission, those admitted to the NICU after 48 hours since birth or after having been
discharged home, and babies who died in the delivery room. The time frame for data
collection was shortened from the first 24 hours to the first 12 hours after admission to
the NICU in order to minimize the effect of early treatments. The discrimination of

deaths from survivors by SNAPPE-II is good. SNAP-II and SNAPPE-II apply to
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babies of all birth weights and are simple, rapid and accurate. However, they are more
useful in estimating outcomes for a group of patients rather than a single patient [Frize M.
et al. 2001). New approaches should attempt to make estimates on a patient by patient

basis.

Table 3-2 SNAP-II and SNAPPE-II variable list and scoring system [Richardson et al. 2001}

Variable Range Points
Lowest blood pressure MBP®20-29 mmHg 9
MBP* <20 mmHg 19
Lowest temperature 95-96 °F 8
<95 °F 15
Lowest PO,/FiO, ratio 1.0-2.49 S
0.3-0.99 16
<0.3 28
Lowest serum pH 7.10-7.19 7
<7.10 16
Multiple seizures >1 19
Lowest urine output 0.1-0.9 mL/kg/h 5
<0.1 mL/kg/h 18
Birth weight 750-999 g 10
<750 g 17
Small for gestational age < 3" percentile 12
Apgar score at 5 minutes <7 18

® MBP= mean arterial blood pressure

3.3 About Canadian Neonatal Network (CNN) Database

33.1 The CNN Database and Missing Values in CNN Database

The CNN Database contains 20,488 admissions from seventeen NICUs from across
Canada during the 22-month collection period (January 8, 1996-October 31, 1997). Data

were collected on Day 1 (admission to the NICU), Day 3, Day 14 and Day 28 (or
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discharge). Our two models used Day 1 data, which were collected within the first 12

hours in the NICU.

Similar to other databases, the CNN Database also suffers from the missing value
problem. There are several reasons for missing data: [Ennett CM. 2003]
1. The data were not collected because
(1) it was unnecessary for the problem diagnosis;
(2) it was presumed normal;
(3) may not be done in a urgent situation;

2. The test results were missing because they were lost or contaminated.

3. Outliers. The outlier may be a data-entry error like entering “0.21” rather than
“21” for the fraction of inspired oxygen; impossible values like a value below
zero for heart rate; or even cases of extreme but plausible values for special cases
such as a baby with a respiratory rate of 300 breaths per minute (rare but
possible).

The simple and easy approach for dealing with missing data is to discard all incomplete
cases, which should be with the premise that complete cases are a random sub sample
adequately representing the original sample population with respect to the outcomes. For
several reasons, this hypothesis may be violated. This approach also causes information
loss. Sometimes missing values can be replaced with “normal” values when the data were
not collected because unnecessary or the parameters were presumed normal. This
approach for replacing missing values can bias results towards less sick cases [Knaus

WA. et al. 1981]. In order to reduce any biasing effects, outliers are often simply replaced
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