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he present study is-a contr1but1on tomard'“the*désign”ﬁ ;

w1th by tttie mater1ais fﬁ‘ 2 i .W? o NS

"The tonsidenaﬁion of matenial propepties‘wisely, in -

hlre 1

~

ﬂf{deSI n opt1m1;at}on is a- fundamental eng1neer1ng probiem The f;x}

1ncr?as1ng demand far.‘high- pressure systems st1mu1ates research " a

;.towand.moré/accurate.know1edge of mater1a1 properttes and the
employment of alioys “which are espec1ally attractlve for th1s use

o Therefore at was declged'to analyse a tungsten canb1de cobalt N

- cy]Lnder as a: component of h1gh pres;ure equlpment because the-
cy11nder 15 typwcal of .the geometry common]y emp1oyed *while the

- ﬂmten1a] presents spec1a1 problems -and dlff1cu1t1es that could be 2

° Y -

encountered when us1ng brittle material.

o To analyse the stress d1str1butlon and to 111ustrate how the

~
0
&

' stresses Gan 1nteract in the de51gn w1th the stra1ns, an 1nteract1ve
&

computer package of _programs’ fhr f1n1te element ana]ySIS has been

.. developed.® A descr1pt1on of the computer package is prov1ded in
. the thesis. ‘ Co . . ' }P '

Us1ng the genera11zed computer package plus yield-brittle

tfa11ure criteria based on exper1menta] ata §ystematica1]y collated
from the 11terature;_the present thesis serves to illustrate in an

organized way how loading conditions, material, properties geometric

* s

_'conf1gurat1ons and boundary conditions can be successfully 1ntegrated
to 1dent1fy areas of poss1b1e crack 1n1ttat1on or growth as a

function of geometry and’loads;r
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The necessity to increase the pressure volume size for

r+  production purposes, 1éads to even more complex problems;

~ v

probability of survival of the componeniobased on a stati

v

asd

c{/

stical

approach to the design, allows optimization of the_geqmetric

! &

- tonfiguration with the loading conditions. ;
& E ’ -
K - ) -
- .~ )
\ - .
. oo v N ’f
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NOMENCLATURE
6nly the symbols used more tham once in the text are'listed below
| | s

a semi crack length ¥

C . r"'adi‘us at the elastic-plastic inéerface :

.C.wc\‘ contiguity of WC particles ‘ -

d average diamelter .
di' _ "internal diameter

) d; external diameter ‘ \
D, - mean._diameter of WC.particles
N E | Young's modu'lus ~
F - ‘prabability of Afaﬂuré e
F(g) "probabi]ity"of fai]ur.e at stress’c - ‘ [ ° '
‘ h .- height ' '

H sbherical éompo,nent of the.stréssl tensor

k '\ plane strain-yield shear stress

K ratio-of outside to Wnside di-ameterj -

) . Kig. critical stres‘s-’intensit,v factor | : g . .
[Co < mean Aﬂ?? path. of Cobalt: interlayeku ‘ | o -
m . Weibull's exponent  * - - ' ' ‘
: p . . hydrostatic or internal pressure .
. . Py . inter‘nac] pressure | o \
Py '.‘ext rnal pressu’re‘ T \ |
_ - .paA aﬁxia pressure .
] P ‘@éed load Cy
P, probability of failure | :
] Po— ~ probability of failure per unit volume
" . » L

- oxi




r general radius .

] ’ .
r
ry > internal radius ) ) ‘
r external radius ' )
.0 . v -

R - risk of rupture

S . ' probability.of survival
: So ‘ probability of survival per unit volume
SRF Strength Reduction Factor (ratio of mean»fai1uré stresses

in biaxial loading to uniaxial loading conditions)

t .  thickness
;u axial disp]acpment“
v | number of unit volumes(-l ‘ i
v ' 'total volume | \
W. applded‘loéd : :
Y " .tensile yield stress*-
B crack angle | "
Y5 effective“sﬁrfacg eneréy _ } L : o ‘.
e -equivalent strain .
€ ( comﬁressivelstrain .
€t 4‘ 'tengjle étrain ‘ ]
v ngséon'é ratio\ . . ’
.9 'applied str;ss
o equivalent stress
°1> 92 principal stress ‘
o3 ' " o . !
o compressive~§tress , ,': s .
cc yieldj§;ress in'biaxial com ression )
N E: L U
" 4




g

, .

%oy Ory’

ox” %rx

.1, -4 ,Shear .yield stress ‘ : .h ¢

y

1

- -~

"oe © effective stress (by maximum tejsile.strain criteria)
o s effective stress (by Von Mises criteria)
oy "+ hydrostatic or mean stress .
% characteristic stress of Weibull line
o radial stress -
““ré radial -stress at interface ¢
Opp radial stress in plastic region -
N tensile stress ' ) __— s
Tec. tangential stress at interface ¢
I¢p tangential stress in D]astic region »
4t yie]d_stréss in biaxial tehsion .
o _ limiting tensile.stress in Weibull relationship .
. ‘ v a‘ ¢‘ - _' . .
oxs Gy) ; . . RRCE .
-7 stress in x, y, z directions " .
ag ' U . Co ’
z )
. %¢ yield stress in uniaxial compression
%t yield stress in uniaxial tension ’
o _. tangential stress - ‘

_stress along the principal diameters of the disc test

N
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Chapter ]

INTRODUCTION

.

1.1 ‘Biitt1e Material Design

~In recent years there has been considerable interest in the ¥
structural use of materials with very high strength or capacity to

resist high temperatures, or both. ‘ s .

Usable mater1als that possess such characteristics are general-

ly brittle comggs1tes such as. the we]l known tungsten carbide- cobalt

comb1nat1on. In some cases refractory~ceram1c5vhave also been con-
&
sidered. Character1st1ca11y, these mater1a]s show little or no plastic

deformatlon before failare. and they. have 11tt1e toughness to arrest

crack growth Jhis charatteristic has resulted in a genera] lack of

1

, coandence by desxgners and an unw1111nqness\$o risk the potential

dangers of high pressure situations without better fa]]ure criteria

_ than are now available. ‘ S

£ ' .
ﬂsﬁunyentional design with ductile metallic materials involves a

number of approximations which are made in the interest of analytical

‘and experimental simplicity, and which generally invo]ve the use of

. average Qalues of,app]ied-s;resses, applied loads, etc. Such metnods

have, indeed, been‘very successful because structures built with
) . . ,
ductile materials .are not_sensitive to local effects and are, con- -

.sequently, better able to accommodate “the approximations made by the

-designer.

o,




1

AN of the considerations 1nvo]ved in br1ttle mater1a1~des1gn
reSult from the condition that the mater1al ‘shows A11tt1e.or ne yleld-.
ing pr1or;§6 fatlure. The consequences of this assunotien are i]]ustré-
ted and su;;;rized in Figure 1.1 [1.1], which shows a series of depen-
dences and the design consequences that follow from: each .The first
row gives the 'S tian of degendences and vertically be]ow'thesetare

¢

the eonsequent]y new or improved design techniques.

1)  The initial assumption of no yielding leads to failure at
points of maximum stress, regardless of the fact that these high
“stresses might be 1ocalized. As a consequence additional requirements

are 1mposed on the stress analysis methods since they must define

these 10ca11zed maximum stresses. New concepts-must be introduced in--

- to the design and impprtant changes are required in the methods for

experimentally determining the mechanical‘nroperties~of the mater}als.

2) . One of the sources.of very localized hIgh stresses may be

,

. flaws w1th1n the material, and thus the apparent strength of, the

material becomes dependent on the size, type and frequency of occur-

L

rence of such. f]qws. This requires an improved hnderstanding of 1

mater1a] fracture mechan1sms and the estab11shment of appropr1ate

r

mater1a1 fracture theorwes, part1cu1ar1y under complex stress con-

A

ditions.

3) Since the‘material strength is affected by the presence of -
flaws wh1ch are in themselves random phenomena a var1ab111ty in

mater1a] among supposed]y 1dent1ca1 specamens, can be expected.
L3
Such ,variations are present in all materials, but the inability to

»
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relieve high local stresses by local yielding makes ‘this condition

in brittle materials sufficiént]y serious that it must be considered

£

) Y
- - .
A .
U . - - . . "

IniFigure'i.Z [i.Z] the ab®se-described ‘situation is sche-

in the design.

“ . . . :
matically represented for the case of a thick-walled cylinder (a). In

(b) it is given an assumed distribution oflheterogeneities which in

turn 'will lower the maximum stress level for heterogeneous materiais
as in (c). If the applied stress 1eve1 (a tensile hoop stress, for |
éxamp]e)’is such as_to exceed the maximum allowable stress, a condi-

tion of fai]ure is present.

v

It thus becomes necessary to use a statistical rather than a

deterministic definition of materiail strength This variability a]so
. \ . ol
requires attention, by the’'designer, to the materfal processing and

quality control to minimize such variability, and hence maximize the
strength that can be expected with a specified level of reliability.
Variabi]ity also introduces the consideration of other methods of

o "

achieVing high workino stfésses in conJunction With high reiiability,

and these me thods w111 generaliy affect the deSign processes. -

4) . As a consequence of the variation in the-mechanical properties
of brittle materia]s: a singie strength value cannpt be 9ssigned,'bdt_

the usable strenbth level -must be associated with an acceptab]efprob—

5
- “ . . -
-

ability of failure.

- By conducting tests on a .large number of samples, strength
data can be obtained. from which & curve can be plotted to show an

expected failure rate'against stress level. The definition of -

>

T
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material strength as a matfer of probabi]ityxrathen.than certainty is
perhaps one of the most ;nportant dvfferences between Brittle mater1al
design techno]ogy and the techno]ogy used with duct1]e materla]s In
addltlon to the ana]ytlcal techniques required to calculate the prob—

. ab111ty of failure for a complex structure, this stat1st1ca1 coricept
1ntroduces changes in design.criteria ph1losophy, with the need to
define an acceptable failure probab111ty, and the poss1b111ty of trade-

&y

en a11owab1e stress level and failure probab111ty

-The brittle material design principles presented above, lead

> to an expectation.that newvdptimizatiOn concepts in the design should

be in@reduced and evaluated. This, K is particularly so when a high
Hegree of sephistjcation is required in the deeign and analysis of
the st}ucture in which thé brittle meteriaTs (eeoeeia1ly‘ceramics)
are increasingly emp]o&ed, for example in high temperature turbines -

[1.3] and in certain new types of automotive turbine [1.4].

Consider for examp‘e a turbine r0t5r§ "First the engineer-

ing requ1rements of aerodynamlc performance, 1nert1a, etc.,-are
estab11shed The rotor mater1a] and the fabrlcatlon process are '

selected and the rotor s1zed us1ng crude analytical models and then

- Al

eva]uated against predetermlned loading modes representatlveeof eng1ne
r

, operqtjon. The ‘rotor geometry 1s roughly optlmlzed for minimum stress - ”‘l

&

,’within*§pecjfied inertia eonstraints and the preliminary feasibility =
for the candidate material verified. -Using the conventional deter-
‘ministic approach, it 'is shown that the disk stresses are within the

material's cqpabi]ities. With this information, preliminary drawings -

il







