NOTE TO USERS

This reproduction is the best copy available.

DisJ - Reactive Distributed Simulation in Java

Nothapol Piyasin, B.C.S.

A thesis submitted to the
Faculty of Graduate and Postdoctoral Affairs

in partial fulfillment of the requirements for the degree of

Master of Computer Science

Ottawa-Carleton Institute for Computer Science
Department of Computer Science
Carleton University
Ottawa, Ontario

April, 2012

©Copyright
Nothapol Piyasin, 2012

UMI Number: MR93707

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

" Dissevtation Publisting

- UMI MR93707
Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author.
Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against
unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway
P.O. Box 1346
Ann Arbor, Ml 48106-1346

Abstract

The designing of reactive distributed algorithms has many challenges, both
theoretical and in implementation. Theoretical challenges include the
computing environment being different than single process computing.
Implementation challenges include the necessity of handling various
constraints of the underlying systems. A simulation is an important tool for
the algorithm designer to overcome these challenges and be able to solely
focus on the design of the algorithm. Many simulation systems have been
built, but they have many limitations

This thesis presents DisJ, a reactive distributed simulation system written in
Java. DisJ provides a full cycle of algorithm development from writing a
protocol to generating simulation results. DisJ supports three different types
of distributed communication models: Message Passing, Mobile Agent with
Whiteboard, and Mobile Agent with Token. Also, Dis] provides an
adversary mechanism for the designer to validate the correctness of the
algorithm.

To all mankind who are righteous

Acknowledgments

In the name of God, Most Gracious, Most Merciful

This thesis would not have been possible without the help and support of many
people around me, to only some of whom it is possible to give particular mention
here.

Above all, my parents who alway give me their unequivocal support throughout.
I will never be able to repay them and find words to express my appreciation for their
love and support.

I am grateful for the advice and guidance of my principle supervisor, Professor
Nicola Santoro, and my second supervisor, Associate Professor Doron Nussbaum.
Without their knowledge and kindness I would never have succeeded in this study.

I owe my deepest gratitude to Associate Professor Irwin Reichstein, P’ Chadchalee
Sinhaseni, P’ Anuwath Sinhaseni, and P’ Ratana Nawong for their encouragement and
support when I most needed it.

Also, I would like to thanks my colleagues, Hein Mar, Prab Dhaliwal, and Badr
Asiri for their support of my studies and research. Last but not least, special thanks
to my proofreaders, Brian Foster, Gerrit De Vynck, and Marijke Large. Without

them my thesis writing would have been very difficult to achieve.

vi

Table of Contents

Abstract iii
Acknowledgments vi
Table of Contents vii
List of Tables xii
List of Figures xiii
1 Introduction 1
1.1 Framework. e e e e e 1
1.2 Existing Solutions and Problems 2
1.3 Contributions of This Thesis o o v ... 3
1.4 Thesis Layout 5

2 Background 6
2.1 Overview. e 6
2.2 DAJ - Distributed Algorithmsin Java. 9
2.2.1 Introduction 9

2.2.2 Environment 9

2.2.3 Visualization 9

vii

2.2.4 Limitations v v e 10

2.3 T-DAJ - Toolkit for Distributed Algorithms in Java 11
2.3.1 Imtroduction 11
2.3.2 Environment o e 11
2.3.3 Visualization 000 12
2.3.4 Limitations e 14

2.4 DAP - Distributed Algorithms Platform by University of Patras, Greece 14

2.4.1 Imtroductiono 14
2.4.2 Environment o 14
2.4.3 Visualization 16
244 Limitations e 16

2.5 SinAlgo - Simulation of Network Algorithm 16
2.5.1 Introduction oL 16
2.5.2 Environment 0o 17
2.5.3 Visualization L. 17
2.54 Limitations o 18

2.6 DisASTer - Distributed Algorithm Simulation Terrain 19
2.6.1 Introduction Lo 19
2.6.2 Environment 20
2.6.3 Visualization 20
2.6.4 Limitations 21

3 Distributed Environments and Models 22
3.1 Distributed Computing Environments 22
311 Entities 22
3.1.2 Network Environments 23

viil

3.1.3 Communications v v v v e 26

3.14 Knowledge. o 28

3.1.5 Cost and Complexity 29

3.2 The Communication Models in the Netscape Environment 30
3.2.1 The Message Passing Model 30
3.2.2 The Mobile Agent with Whiteboard Model 31
3.2.3 The Mobile Agent with Token Model 32

4 Simulation System Requirements 34
4.1 System Requirements Overview 35
4.1.1 The Input Requirements 35
4.1.2 The Output Requirements 38
4.1.3 System Requirements Partition 39

4.2 The Primary Inputs Subsystem 40
4.2.1 Protocol Editor Component 41
4.2.2 Topology Editor Component 45

4.3 The Runtime Execution Subsystem 49
4.3.1 Runtime Execution Overview 49
4.3.2 Simulator Engine Component o1
4.3.3 Logger Component 52
4.3.4 Playback Component 94
4.3.5 Adversary Control Component 55
4.3.6 Replay Component 60

4.4 The Presentations Subsystem 61
4.41 Types of Information 62
4.4.2 Live Presentation, 64

ix

4.4.3 Final Presentation 65

5 Architecture and Implementation 67
5.1 A Simulation System Design Overview 68
5.2 Software Development Methodology and Approach 70
5.3 DisJ Simulation System Design and Architecture 73

5.3.1 DisJ Simulation System Workflows 73
5.3.2 Loading Group Architecture 75
5.3.3 Runtime Group Architecture 88
5.3.4 Infrastructures L. 103
5.4 DisJ Implementation L. 114
5.4.1 Coding Structure and Deployment 114
5.4.2 Reusing Existing Applications and Codes 118
5.4.3 Using Software Design Patterns 121
6 Case Studies 125
6.1 The Ring Election algorithm for the Message Passing Model 126
6.1.1 Problems 126
6.1.2 The Assumptions of the Network Environment 126
6.1.3 ThePseudoCode 127

6.2

6.1.4 The Implementation of the As Far Protocol in Java with Dis] 129

6.1.5 The Simulation Results 132
6.1.6 Worst Case Scenario of the As Far Protocol 133
6.1.7 Writing an Adversary Script for the As Far Protocol 134
6.1.8 The Results Comparison 137

Black Hole Search algorithm for the Agent with Whiteboard Model . 138
6.21 Problems 138

6.2.2 The Assumptions of the Network Environment 138
6.23 ThePseudoCode 139
6.2.4 The Implementation of Co-Locate Agent Black Hole Search

Protocol in Javawith DisJ 141

6.2.5 The Simulation Results 146
6.26 TheResults Analysis 148

6.3 A Black Hole Search algorithm for the Agent with Token Model . . . 151
6.3.1 Problems 151
6.3.2 The Assumptions of the Network Environment 151
6.3.3 The Pseudo Code B 152

6.3.4 The Implementation of Ping Pong Protocol in Java with DisJ 156

6.3.5 The Simulation Results 159

6.36 The Results Analysis 162
7 Conclusion 165
List of References 168
Appendix A As Far Protocol in Java 176
Appendix B Co-Locate Black Hole Search Protocol in Java 183
Appendix C Ping Pong Protocol in Java 198
Appendix D DisJ Plug-in Implementation in Java 213
Appendix E DisJ User Manual: Cookbook 214

xi

List of Tables

2.1

2.2

2.3

9.1
5.2

Comparison of some features and aspects of existing simulation systems
with the proposed DisJ Simulation System
cont.. Comparison of some features and aspects of existing simulation
systems with the proposed DisJ Simulation System
cont.. Comparison of some features and aspects of existing simulation
systems with the proposed DisJ Simulation System
The Organization of the Simulation System

Another Possible Organization of the Simulation System

xii

List of Figures

2.1
2.2
2.3
24
2.5
3.1
3.2
3.3
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
5.1
5.2

The DAJ Simulation Control Screen Snapshot [6] 10
The T-DAJ Screen Snapshot form Java Applet [72] 13
The DAP GUI Architecture [16] 15
The SinAlgo Screen Snapshot [40] 18
The DisASTer Global Message Queue View Screen Snapshot [62] . . . 21
An Example of Different Devices form the Netscape Environment . . 24

The Mobile Network Environment Deployed in Planar with Obstacles 24

The Distributed Communication Models in the Netscape Environment 30

Overall requirements for a Reactive Distributed Simulation System . 36
The Simulation System and its Subsystems 40
The Protocol Editor Component Requirements 42
The Topology Editor Requirements 46
The Runtime Execution Subsystem 50
The Simulator Engine Lifecycle 52
The Types of Collected Information 62
The Information Presentations Formats 65
Use case for the user input data directly into the system 75

Use case for the user that uses the system to produce data and then

input the data back intothesystem 75

xiii

5.3
5.4
5.9
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17

5.18
5.19

5.20
5.21
5.22
5.23

5.24

The User Inputs Workflow 76

Outputs Workflow, 77
Execution Workflow 78
The components grouped by the time of activity 79
Topology Editor Class Relationship with GEF 81
The Topology Editor Internal Components 81

The Protocol Editor Internal Components with Java Implementation 84

Distributed Communication Model Libraries that DisJ Supports . . . 86
The Flow of Runtime Information Process 88
Simulator Engine Internal Components 89
Simulator Engine Internal Components Relationship. 90
DisJ Simulation Log Content 93
DisJ Log Class Relationship 93
DisJ Log and Network Element Classes Relationship 9

Playback Animation and Report are Visual Display of the DisJ Simu-

lation System 95
The MVC Architecture for DisJ Views 97
Relationship between Adversary Script Instructions, Default Instruc-

tions, and Simulator Engine oL L. 99
Radom Number Generator and Adaptation of External Distribution . 100
The Replay Main Workflow 102
The DisJ Plug-in with the Eclipse Platform [73] 104
Mapping the infrastructures that the DisJ Simulation System Compo-

nents reused from the Eclipse Platform 105

The System Log View when system error occurs in the DisJ simulation

xXiv

9.25
5.26
5.27
5.28
5.29
5.30
5.31
5.32
5.33
5.34
5.35
5.36
5.37
5.38
6.1

6.2

6.3

6.4

6.5

6.6
6.7

Protocol Editor with JDT plug-in 108
Topology Editor with a Palette on the Righthand Side 109
The Eclipse Workbench that Contains Some of Default GUI Components111

The DisJ View that extends Eclipse View 111
The Outline of the Topology Editor in the Eclipse Outline View . . . 112
The Outline of the Protocol Editor in the Eclipse Outline View . . . 113
The Properties View is Displaying a Topology Information 114
GUI for DisJ Build Configuration and Deployment 117
The Eclipse IDE Provides Plug-in Export GUI Wizard 118

GUI Configuration Plug-in Dependency for the DisJ Simulation System 119

XML Scripts Describes the Extension Plug-ins in Eclipse 120
The Factory Method Pattern used in the DisJ System 121
The Faade Patternusedin DisJ 122
The Template (Algorithm) Pattern used in DisJ 123
A snapshot of DisJ during the simulation of the As Far protocol. . . . 132
The Ring Topology Connected in the Worst Case Scenario 134
A snapshot of the User Adding the Adversary Script into DisJ 136

A snapshot of DisJ during the simulation of the As Far protocol with
the FifoDelay Adversary Script 136
A snapshot of DisJ during the simulation of the Co-Locate Black Hole
Search protocol 145
A snapshot of the Agent View during the simulation of DisJ 145
A Graph Comparison Results of the Protocol with Three Different
Locations of Black Hole 147

Xv

6.8

6.9

6.10

6.11
6.12
6.13
6.14

A snapshot of the DisJ view that show the Whiteboard of a last safe
node of the dead agent in an ordered ID Ring topology of size 50, where

a home base is at n7 and a back hole is exact opposite the home base,

A snapshot of the DisJ view that show the Whiteboard of a last safe
node of the dead agent in an ordered ID Ring topology, where a home
base is at n7 and a back hole is besided the home base, n6
A snapshot of the DisJ view that show the Whiteboard of a last safe
node of the dead agent in an ordered ID Ring topology of size 50, where
a home base is at n7 and a back holeisatn26
A snapshot of DisJ during the simulation of the Ping Pong protocol .
A snapshot of the Node View during the simulation
A snapshot of graphical report during the simulation
A Graph Comparison Results of the Protocol with Three Different

Locationsof Black Hole

xXvi

Chapter 1

Introduction

1.1 Framework

In modern technology, there are many systems that use reactive distributed algo-
rithms such as communication services, security controls, system coordination, per-
vasive applications etc. These systems are commonly used and are important to many
applications in the modern world. A distributed system is made up of a large num-
ber of entities located in physically distributed environments such as search engine
servers, telephone switches, desktop computers, mobile devices etc. These entities
require communication exchanges amongst themselves in order to achieve a common
goal. The communication exchanges are done through a network of communication
media, both wired and wireless that, by nature, are asynchronous and unreliable,
which makes these systems very complex. The complexity of these systems makes
the development of distributed algorithms perhaps the most difficult type of algo-
rithms to successfully work with. For example, routing telephone calls in a telephone
network requires constructing virtual networks and routing tables in order to forward
the calls more efficiency. The virtual networks and the routing tables are required

to be updated periodically due to the stability of entities in the telephone network.

CHAPTER 1. INTRODUCTION 2

The construction of the virtual networks and routing table is a very challenging task
because there are many factors to consider, such as the size of the network, the dif-
ferent types of priority of telephone calls, the dynamic of the network structure due
to the mobility of devices, and the loss of connections due to power shortages, the
device shutdown or the device malfunctions, etc. Therefore, the construction requires
sophisticate algorithm, which the performance of the algorithm may affect the qual-
ity of service.The routing table construction has been researched and used in various
network environment [59] [2] [48] [41].

The development of any algorithm involves more than just writing a protocol. It
also involves a complex process of testing and verifying correctness of that protocol.
The challenges of developing a protocol for distributed systems are compounded by
the fact that such systems are physically distributed and consist of a large number
of entities. Therefore, one of the most important problems that any developer must
overcome when working on these systems is achieving cost effectiveness during devel-
opment cycle. This can be achieved by having an efficient tool or mechanism that can
help in developing, testing and verifying algorithms in a large number of distributed

entities and various network environment configurations.

1.2 Existing Solutions and Problems

There are several existing technologies that provide communication tools and in-
frastructure for developing reactive distributed algorithms including PMV [33] [78],
MPI [28] [27], RMI [39] [88], COBRA [63] etc. Unfortunately the learning curve for
these technologies is very steep and the libraries provided are mainly for the net-
work communication layer. The developer is individually responsible for creating

higher layers of libraries specifically designed for applications and testing reactive

CHAPTER 1. INTRODUCTION 3

distributed computing. Furthermore, these technologies do not provide a test and
verification mechanism for the algorithms, meaning that the developer must create
such a tool or use some existing network simulation tools to test and verify the al-
gorithms. However, as the name makes clear, network simulation tools are used to
simulate the network communication and data transmission aspects of the algorithms
not the algorithms in and of themselves. There are some existing tools and simulations
that have been built to simulate reactive distributed algorithms but these systems are
also limited in term of usability, capability, and efficiency etc. For example, every
system we found during the research supported only the Message Passing model and
use only bi-directional link for communication, but do not have adversary supports
or uni-directional links. Moreover, there are very few systems that provide the ability
to configure the network and provide statistical reports, and simulation replay etc.,
which are very important for testing and verifying correctness of the algorithms. The

discussion of existing systems will be elaborated more in next chapter.

1.3 Contributions of This Thesis

The development of reactive distributed algorithms is different and more troublesome
than the development of single process algorithms because of the distributed environ-
ment properties such as a large number of asynchronous processes, limitation of data
sharing, unreliable network communication, etc., are factors which highly increase
the complexity of the algorithms. Hence, it is necessary to have a simulation system
that is able to model a distributed environment and execute distributed algorithms
in order to test and verify correctness. Moreover, a simulation system should support
various distributed communication models and be easy to use. Therefore, this thesis

proposes a single processor simulation for distributed algorithms in Java named DisJ,

CHAPTER 1. INTRODUCTION 4

to fulfill the above requirements in developing a reactive distributed algorithm.

DisJ is a discrete event simulation system meant for developing, simulating, testing
and verifying a reactive distributed algorithm in Java, which is executed on a single
processor computer. The DisJ simulation system provides a full development cycle of
algorithm development tool that supports every step from writing codes to generating
simulation results. The objective of the DisJ simulation system is to help develop,
test and verify the reactive distributed algorithms more efficiently and cost effectively,
helping the developer to be more productive when working on a reactive distributed
algorithm.

The DisJ simulation system currently supports three communication models for
a fixed Netscape environment e.g. the Mobile Agent with Whiteboard model, the
Mobile Agent with Token model and the Message Passing model. The DisJ simulation
system is an Eclipse Plug-in that includes the Java IDE and the topology editor, which
allows the user to develop a reactive distributed algorithm in the Java language, and
to create the network topology needed for a simulation of the algorithm. During a
simulation of an algorithm, DisJ provides animation playback that shows the progress
of the algorithm, and allows the user to inject an adversary interruption program to
verify the algorithm. At the end of the simulation, DisJ generates reports of the
simulation for the user to review. DisJ also allows the user to replay past simulations
from recorded files without any alteration of the simulation.

Finally, DisJ provides reactive distributed communication API libraries for the
user so that the user can fully concentrate on developing reactive distributed algo-
rithms instead of being distracted by low level infrastructures and configurations such
as network communication, network configuration, and hardware configuration issues

etc.

CHAPTER 1. INTRODUCTION 5

1.4 Thesis Layout

The thesis consists of seven chapters that explore the background of our works detail
proposed contributions, to this field. Chapter 2 presents some of the existing work on
reactive distributed algorithm simulation systems. Chapter 3 provides an introduction
to aspects of a particular reactive distributed environment. Chapter 4 discusses a
simulation system model for a reactive distributed algorithm and its requirements.
Chapter 5 explores the architecture and implementation of the DisJ simulation system
while Chapter 6 shows some examples and case studies of how to develop reactive
distributed algorithms with DisJ. Chapter 7 concludes with a discussion of the future

directions and work on DisJ.

Chapter 2

Background

This chapter discusses real world distributed systems development difficulties that
motivate the development of distributed simulation systems, then briefly discusses

about some interesting distributed simulation systems that have been developed.

2.1 Overview

Distributed systems and applications are commonly used in day to day life, from a
mobile phone to an internet search engine. The designing of distributed algorithm for
distributed systems has many challenges both at the theoretical and implementation
levels [75]. At the theoretical level, by nature of distributed environment, there are
many aspects that are different from single process computing, such as asynchrony
and synchrony computing, limitation of data sharing, and network reliability, etc. At
the implementation level, there is an underlining system that the developer has to
take into account beyond a distributed algorithm, such as network communication
and especially network protocols. Moreover, there is also the configuration of a dis-
tributed environment that is not easy to duplicate from a real life environment into

a testing environment such as the size of network, data transmission reliability, and

CHAPTER 2. BACKGROUND 7

Table 2.1: Comparison of some features and aspects of existing simulation systems
with the proposed DisJ Simulation System

DAJ T-DAJ
Programming language Java Java
Distributed models Message Passing Message Passing
Network environment fixed wired fixed wired
Environment configuration n/a n/a
Topology complete network only any
Topology creating coding coding
Communication type bi-directional bi-directional
Simulation playback step by step yes
Replay yes n/a
Stats report n/a n/a
Adversary support n/a code assertion

activation/deactivation of entities within a network, etc.

Therefore, a simulation for distributed algorithms plays an important role for a
developer to overcome such limitations and difficulties in order to develop distributed
algorithms more effectively. The simulation not only provides an environment for the
developer to develop, test, and verify the algorithm, but also helps the developer to
understand behaviours and characteristics of the algorithm.

This thesis focuses on reactive distributed computing. We researched several
interesting simulators for reactive distributed algorithms that have been developed
in the past, and briefly discuss their advantages and disadvantages to the best of
our knowledge. Table 2.1, Table 2.2, and Table 2.3, are a brief comparison of some

features and aspects from existing simulation systems that we will discuss in later

CHAPTER 2. BACKGROUND 8

Table 2.2: cont.. Comparison of some features and aspects of existing simulation
systems with the proposed DisJ Simulation System

SinAlgo DisASTer
Programming language Java Java
Distributed models Message Passing
Network environment wired and mobile wireless fixed wired
Environment configuration coding n/a
Topology any any
Topology creating import file and coding GUI
Communication type bi-directional bi-directional
Simulation playback yes yes with undo-redo execution
Replay yes n/a
Stats report coding required n/a
Adversary support n/a message queue modification

Table 2.3: cont.. Comparison of some features and aspects of existing simulation
systems with the proposed DisJ Simulation System

DAP DisJ
Programming language C++ Java
Distributed models Message Passing Message Passing, AW, AT
Network environment wired and fixed wireless fixed wired
Environment configuration basic scenario control GUI
Topology any any
Topology creating GUI and import XML GUI and import file
Communication type bi-directional uni-directional and bi-directional
Simulation playback yes yes
Replay n/a yes
Stats report yes yes

Adversary support n/a yes

CHAPTER 2. BACKGROUND 9

sections.

2.2 DAJ - Distributed Algorithms in Java

2.2.1 Introduction

DAJ is an interactive visual aid simulator framework designed by Mordechai Ben-
Ari of Weizmann Institute of Science in Israel, in 1997 and updated in 2006. The
main goal of the framework is to help the user understand various types of reactive
distributed algorithms in a Message Passing model. The simulator interacts with the
user in a step-by-step manner during an execution of the algorithm in discrete state
changes. The main purpose of the framework is for the user, particularly a student

to study, observe, and understand behaviors and characteristics of algorithms [5] [6].

2.2.2 Environment

DAJ is a simulator framework written in Java that enables the user to write reactive
distributed algorithms in Java. In this framework, the user has to implement both
the algorithm and the simulator as a single code set. This means that each simulator
simulates only one specific algorithm and cannot be reused for simulating another
algorithm. The framework offers a simulation environment: homogenous entities,
only complete network topology, only total reliable bi-directional connectivities, and

a very small network with no adversary support.

2.2.3 Visualization

The DAJ framework provides a basic graphical user interface (GUI) in the form of

a Java Applet that displays every entity in a simulation network. The framework

CHAPTER 2. BACKGROUND 10

ry -~

R, Jev singud?, Los sigudd. Wi ?
L
oo, Sulesiged?, Les stgus. Ve ?
Nty inioe
sontd, Bestoingad?, 2o minud?. Ve ?

A Joe cigud?, isv niguit. Wt
L
st T, M oiyuth, (00 ninmdd WA

ougA s inadd, 2 inedt. VDA

Sestioant®, Jobm WigRUR, Lo seinedd. WisR
L. 2 BT]
UMY, Juts it 3, Suslreinud?. Wie?

A, Jie rlnust, Smlrined?. Vet

woin| g || s || o || @] ssn| pn || g |20 ||]
e N N I —

Figure 2.1: The DAJ Simulation Control Screen Snapshot [6]

uses a GUI widget Textbox to represent an entity. The Textbox contains the entity
information and a set of option buttons, which allow the user to select how to process
an algorithm. The number of Textboxes is based on the number of entities in the
network and all are shown on screen at the same time in a grid format (this is the
reason why the size of the network is very small). The user is required to interact
with a simulator in a step-by-step order when processing an algorithm. However, the
simulator provides a recording mechanism so that the user can replay the simulation
execution over and over without altering the results from the original execution.
Figure 2.1 shows a snapshot of the DAJ simulation control during a simulation of an

algorithm.

2.2.4 Limitations

The DAJ framework has a number of limitations related to the simulation implemen-

tation and execution. The user must implement the framework presentation and the

CHAPTER 2. BACKGROUND 11

algorithm in a single pack of codes. The framework supports only a Message Passing
communication model in an asynchronous environment. A network topology can only
be a complete network structure connected with bi-directional links with total relia-
bility. The size of the simulation network is very small and requires user interaction
with an entity in every execution (e.g. sending a message). As a result, the com-
plex algorithm and the large amount of interactions prohibited the user from using
the system because the number of executions is too large. Furthermore, the frame-
work has no adversary support and neither provides algorithm execution statistics or

information.

2.3 T-DAJ - Toolkit for Distributed Algorithms in

Java

2.3.1 Introduction

T-DAJ is a Toolkit for Distributed Algorithms', which is written in Java, and was
designed by Wolfgang Schreiner of Hagenberg University of Applied Sciences in Aus-
tria in 1997. The toolkit provides a class library with a programming interface to use
in programming distributed algorithms and visualizing their dynamic behaviour [71].
T-DAJ allows users to develop distributed algorithms with a Message Passing commu-
nication model and execute it in three different modes, standalone with visualization,

standalone without visualization, and Java Applet embedded into a webpage.

IThe original name of T-DAJ Toolkit is DAJ, due to the confusion with another system with the
same goals, we give a temporary name in this thesis for the toolkit

CHAPTER 2. BACKGROUND 12

2.3.2 Environment

The T-DAJ toolkit provides a basic communication API library for a Message Pass-
ing model to be used in an algorithm. The implementation of a simulation in T-DAJ
is very straightforward: using their provided Java classes. First, a network topology
class - this Java class allows the user to define a network topology using bi-directional
links. Second, a protocol class - this Java class allows the user to define and code the
distributed algorithm to be simulated. Here the user explicitly codes the behaviour
of each entity and iterates through every entity in the network. Therefore, the en-
vironment can be non-homogenous because entities can execute different algorithms.
Finally, a message content class - this Class defines the content types of message that
will be used by an algorithm for communication. T-DAJ also provides a verification
mechanism at the coding level with assertion conditions to validate variable values,
and boolean outcomes within protocol codes. This means that the protocol codes
are mixed with both algorithm and verification, instead of separate algorithm and
verification parts. This validation mechanism validates correctness of coding, not

correctness of the algorithm.

2.3.3 Visualization

T-DAJ provides a Java class for the user to create network topology. The toolkit
provides a network topology view that displays current state of entities in the net-
work such as colouring on a link based on transmitting activities, displaying the
accumulated number of messages a node received, and colouring a basic predefined
state of a node. T-DAJ predefined three basic states of a node: Ready, Blocked, and
Terminated. A Ready state is denoted by a green colour where a node is ready for

execution. A Blocked state is denoted by a red colour where a node is blocked due

CHAPTER 2. BACKGROUND 13

to various reasons (i.e., sleeping, waiting for messages from other incoming links).
A Terminated state is denoted by a blue colour where a node has terminated from
executing a protocol. T-DAJ also predefined three colours to represent a link trans-
mitting activities: a gray colour represents that a link currently does not contain any
message, a green colour represents that a link currently contains at least one message,
and a red colour represents that a link currently does not contain any message but a
node is expecting a message. T-DAJ provides a basic playback for the user to control
the simulation that includes Run, Walk, Step, Reset, Interrupt, Quit, and Redraw.
Run function allows the user to start the simulation, Walk function allows the sim-
ulation to execute in slow mode, Step function allows the simulation to perform one
execution, Reset function reinitializes the visualization of the simulation, Interrupt
function allows the user to pause the simulation, Quit function terminates the simula-
tion, and Redraw function allows the simulation to update the visualization. Figure
2.2 shows a snapshot of the T-DAJ during the simulation of a protocol in a Java

Applet mode.

2.3.4 Limitations

The T- DAJ toolkit has some limitations with respect to coding, execution, and re-
play of an algorithm. A user must code a topology and a distributed algorithm in a
single package that cannot be separated. The toolkit supports only a Message Pass-
ing communication model and the execution of the algorithm cannot be replayed.
A network structure is limited to bi-directional links with total reliability. Further-
more, the toolkit has no adversary support and does not provide algorithm execution

statistics and information.

CHAPTER 2. BACKGROUND 14

" ' 10 x
" .
o -
-
e |
nterrupt)
Redaw
- Reost
< [»] Gum
Node 1 :3 running

Figure 2.2: The T-DAJ Screen Snapshot form Java Applet [72]
2.4 DAP - Distributed Algorithms Platform by

University of Patras, Greece

2.4.1 Introduction

DAP is a platform under development for simulating and developing distributed algo-
rithms in a homogenous environment for wired and wireless networks being designed
by the Computer Technology Institute of the University of Patras in Greece from 2000
to the present. DAP is a LEDA extension package written in C++ that provides a
topology editor to define network structures for simulation, a library for Message
Passing communication model, and statistical reports from simulation results [16].
The DAP platform itself can be physically distributed by executing the simulation in

one machine and observing results in another machine.

