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Abstract

This thesis describes a series of 5 tests that were conducted at Carleton University
Fire Research Laboratory to assess the contribution of Cross Laminated Timber (CLT)
panels to the development, duration and intensity of room fires. The tests were conducted
in rooms constructed from 105 mm thick 3-Ply CLT panels and measured 3.5m wide by
4.5 m long by 2.5 m high. Propane and furniture fires were used with the CLT panels in
protected and unprotected configurations. Data was collected on Heat Release Rate
(HRR), room temperatures and charring rates. In protected configurations, no noticeable
contribution was observed from the CLT panels, however in unprotected configurations,
the CLT panels contributed to the fire load and increased fire growth rates and energy
release rates. When charring advanced to the interface between the CLT layers, the
polyurethane based adhesive failed resulting in delamination. Delaminated members
contributed to the fire load and exposed uncharred timber which increased the intensity
and duration of the fire. When delamination occurred, the fire in unprotected rooms
continued to burn at high intensity well after the combustibie contents in the room were
consumed by the fire. These fires were extinguished as they could have resulted in

structural failure of the test rooms.
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Chapter 1 : Introduction

The introduction of objective-based building codes in Canada in 2005 [1], and
elsewhere have allowed opportunities for designers to use new products where
prescriptive-based codes had previously incorporated a bias towards concrete and steel
construction. New methods, materials and systems can now be used in Canada provided
they are equivalent to ‘Acceptable Solutions’, which represent the minimum level of
performance that can satisfy the objectives of the National Building Code of Canada
(NBCC). For example, where the NBCC previously limited the use of combustible
construction materials, fire safety design, through the use of fire modelling and other
performance based techniques, can be used to demonstrate equivalency [2].

These changes provide flexibility for the designer and engineer to innovate to
match the changing needs of clients. With an increasing desire to use innovative products
which are sustainable and eco-friendly, the development and use of engineered wood
products has grown in popularity over recent decades. This trend developed in Europe
and is now spreading with interest and product development increasing in North America
and Oceania. Traditional ideas and construction limitations on the use of wood and
combustible materials are now being challenged and a demand for knowledge is driving
innovation. One of the products gaining popularity is Cross Laminated Timber (CLT)
panels.

1.1 Objectives

The research presented in this thesis is part of an NSERC Forest Sector R&D

initiative, a government and industry collaboration between the Natural Sciences and

Engineering Research Council of Canada (NSERC), FPInnovations and Natural



Resources Canada (NRCan). The NEWBuildS network, comprising researchers from
FPInnovations, National Research Council (NRC-IRC). the Canadian Wood Council and
11 Canadian universities is collaborating in the investigation and promotion of new
applications for the use of traditional and new engineered wood products. The Vision of
the network is:
e ‘To increase the use of wood products in mid-rise buildings for use in residential
and non-residential purposes in Canada and other markets’.

NEWBUildS research currently encompasses 4 themes. The research presented in
this thesis is part of Theme 3 — Building Systems, Project T3-3-C7 — Fire Behaviour of
Cross Laminated Timber (CLT) Panels. The objective of this research is to develop the
understanding of fire behaviour of CLT Panels by experiments and computer modelling.
Specifically, the objective of the research in this thesis was to conduct room tests to study
the contribution of CLT panels to the growth, duration and intensity of room fires.

1.2 Contribution of this study

This research aimed to develop specific knowledge of the fire performance
characteristics of CLT panels which will be used to develop and validate computer
models used to predict the performance of CLT panels when exposed to fires.

1.3 Research Methodology

A series of 5 tests was conducted at the Carleton University Fire Research
Laboratory where rooms were constructed from CLT panels and exposed to fire using
different fuels and different passive protection configurations. Data was collected on

temperature, Heat Release Rate (HRR), charring and other physical observations using



permanent and temporary installations at the laboratory. This thesis discusses the results
of those observations and the potential implications to future use of the product.
1.4 Cross Laminated Timber

CLT is an engineered wood product developed in Switzerland in the early 1990°s
and further developed in Austria and Germany. Since the early 2000°s interest and use in
construction has increased dramatically through a number of drivers including the green
building movement, changes in code and improved business initiatives. Interest in use of
the product has developed in North America with a number of manufacturing plants
already producing the product and mid-rise CLT buildings already constructed in Quebec
and British Columbia.

CLT is manufactured in layers using solid sawn wood members, 38 x 89 mm
members are commonly used however dimensions can vary depending on manufacturer
and application. The individual members in each of the layers are finger joined, where
necessary, to provide the required lengths for uninterrupted construction and layers are
stacked perpendicular to each other at a 90 degree offset which can be seen in Figure 1.

In construction, the members in each layer are pressed together and the faces of
the layers are then bonded, most commonly using an adhesive although it is possible to
use dowels or nails. Multiple layers are used to create thick panels of typically 3-9 layers.
Generally the structural characteristics of these layers are determined by one of the two
planes, for example calculations may use properties of the longitudinal direction and the
transverse layers are assumed to have no structural input. The transverse layers also tend

to use a lower grade of wood. Kiln dried wood which has a moisture content of less than



12% is used producing a product that is dimensionally stable minimizing shrinkage.

Figure 1 — CLT panel configuration [2]

Panels are constructed at the factory to high tolerance and size is generally limited
only by production and delivery capability. Nordic Engineered Wood for example, is
currently able to construct panels of up to 2.4 x 19.5 x 0.381 m thick. Any features such
as windows, doors and other penetrations are incorporated at the factory, shown in Figure
2, with the use of high precision computer numerical control routers helping to reduce the
time of onsite production. Depending on the application of the panel, the faces can be
finished in the factory or even have a cladding installed prior to delivery.

At the production site, the pre-fabricated panels are lifted into place as shown in
Figure 2 and generally fitted with dowel or bearing type mechanical fasteners. This
allows rapid and efficient construction with small crews and low equipment demands.
One example of this is the Graphite Apartments in London, UK which is a 9 story
building shown in Figure 3 that was constructed at a rate of 3 days per floor (873
sqft/day) with 4 carpenters [3]. The development of construction techniques continues to
improve with a building of 10 stories nearing completion in Australia [4] and some

projecting future wood buildings as high as 30 storeys [5].



Figure 3 - Graphite apartments - London, UK [2]



1.5 Thesis Organisation

This thesis is organized into 5 chapters.

e Chapter 1 gives an introduction to the research and discusses the objectives and
methodology.

e Chapter 2 provides a review of the theory used in development and analysis of the
test results for this research.

e Chapter 3 discusses the test parameters and preparation for this research.

e Chapter 4 presents the individual results of each of the 5 tests conducted.

e Chapter 5 discusses the overall observations from the series of tests and what the

implications may be.



Chapter 2 : Literature Review
2.1 Combustion

In its simplest definition, combustion is an exothermic reaction where fuel is
oxidized producing heat and combustion products. Most products in building fires are
hydrocarbons that release heat in the combustion process and form into H>O and CO,, an
example of which is represented simply by the chemical reaction for propane in Eq 1.

C,H, +50, = 3C0, +4H,0 + Heat Eql

In reality there is a far more complex set of intermediate reactions which occur, as
well as incomplete combustion, resulting in other products such as CO and C which can
appear as smoke. Combustion is called a chain reaction as heat acts as a catalyst but is
also a product [6]. There are two types of combustion that occur:

2.1.1 Flaming combustion

This occurs when the fuel is a gas, a liquid which has evaporated or a solid which
has pyrolyzed to produce a flammable vapor [6]. An external heat source is generally
required initially to start combustion; and
2.1.2 Smouldering combustion

This is a slower, lower temperature and flameless form of combustion which
occurs as oxygen directly reacts with the surface of condensed phase fuel [7] such as char
or a cigarette. This reaction can occur over many hours and can produce toxic gases
which may be particularly hazardous as they can occur without sufficient heat or noise to
wake sleeping occupants who may be overcome.

2.2 Heat transfer

During combustion, heat transfer occurs in 3 possible modes:



2.2.1 Conduction

This occurs in solid materials and depends on the material properties such as
density, specific heat and thermal conductivity. Some materials are good conductors
whilst others are not.
2.2.2 Convection

This involves heat transfer due to the movement of fluids which transfer heat
away from a source or heat transfer from a fluid to a solid surface [8]. The rate of heat
transfer between a fluid and a solid surface depends on the temperature difference
between the surface and the fluid or gas, and a heat transfer coefficient which can vary
depending on geometry, thickness and flow characteristics at the interface. In a fire
situation, the heat transfer is usually from the gas to the solid or liquid.
2.2.3 Radiation

This is the main mechanism of heat transfer from flames to a surface and is the
transfer of energy through electromagnetic waves [8]. This can occur through a vacuum
or a translucent solid, liquid or gas. This mode of heat transfer is largely influenced by
distance and relative orientation.
2.3 Burning of wood

Wood is a complex mixture of different polymers which can be broken down into
three main constituents when considering combustion. Their common compositions in
wood, by weight, are hemicellulose (25%), cellulose (50%) and lignin (25%) [9]. As
wood increases in temperature these constituents decompose at different temperatures

releasing volatiles in the ranges:



Hemicellulose - 200-260°C
Cellulose - 240-350°C
Lignin - 280-500°C

As wood burns, approximately 15-25% remains as a char, much of this from the
lignin of which only about 50% volatilizes [9]. The amount of the hemicellulose and
cellulose that remains as char varies.

The governing equation in order for decomposition to remain at a steady state is

given by Eq 2 [9].

rhﬂ = QI —QI, Eq 2
L

m" = rate of burning (kg s 'm™)

Where Q! = Heat flux supplied by the flame (AW m™)
Q! = heat flux lost through surface (kW m™)
L,. = Heat of gasification (kJ g™')

Research conducted by Tewarson and Pion [10] determined that for Douglas Fir

Q[" ~ Q;’ , where heat transfer from the flame is theoretically just sufficient to match the

heat losses from the sample [9], and Petrella [11] found that Q," <O for several species

of wood demonstrating that wood clearly requires the influence of an imposed heat flux
to burn [9] (This does not apply to thin pieces of wood which can continue to burn). As
char builds up at the surface it shields the wood below the char resulting in higher surface
temperatures of the char and increased losses from the surface.

A steep thermal gradient exists between the surface of the char and the unburned
wood. The exposed char is at roughly the temperature of the fire and the temperature at

the boundary of the char and wood is at approximately 300°C. Below the char, the layer
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of wood above 200°C is called the pyrolysis zone. Cracks in the char layer increase the
penetration of heat into the pyrolysis layer and a constant charring rate is commonly
assumed for timber structures in fire [12].

Eurocode 5 [13] specifies a charring rate of £, =0.65 mm/ minto be used in fire
design for one dimensional charring of unprotected members, shown by line 1 in Figure
4. In the cases where protection is in place, two scenarios are presented for charring
which includes periods of charring rates slower and faster than standard rates:

2.3.1 Charring which starts when protection falls off

This scenario assumes that no charring of the protected member occurs until a

time when the protection falls off entirely. The surface is protected by a cladding that

delays the start of charring until the protection falls off at time7, . Charring is assumed to

occur at twice the rate of the unprotected surface from ¢, , the increased rate of charring

is assumed until the timber develops a level of char which would be expected in initially

unprotected timber, for which the depth of 25 mm is adopted.

40
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Key:
I Relationship for members unprotected throughout the time of fire exposure for charring rate f, (or fi,).
2 Relationship for initially protected members after failure of the fire protection:

2a After the fire protection has fallen off at time f. charring starts at increased rate.

2b After char depth exceeds 25 mm at time ¢,. the charring rate reduces to the rate shown by curve 1.

Figure 4 — 1-dimensional charring rates for unprotected and protected timber
(charring occurs after protection falls off) [13]
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2.3.2 Charring which starts before protection falls off

The timber surface is protected by a layer that delays the start of charring until

time 7, . shown in Figure 5, and provides some protection for a period before falling off.

This results in a charring rate of 50% of that for unprotected wood until the protection

falls off completely at time ¢, . After this the charring occurs at twice the normal rate

until reaching a depth of 25mm when the charring rate reverts back to that for initially

unprotected timber.
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Key:
1 Relationship for members unprotected throughout the time of fire exposure for charring rate fi, (or fy).
2 Relationship for initially protected members where charring starts before failure of protection:

24 Charring starts al £, at a reduced rate when protection is still in place.

2b After protection has fallen off at time r. charring starts at increased rate.

2¢ After char depth exceeds 25 mm at time ¢, the charring rate reduces to the rate shown by cunve 1.

Figure 5 - 1 dimensional charring rates for unprotected and protected timber
(charring begins before protection falls off) [13]

Parametric design fires, which attempt to provide a realistic prediction of
temperature based on observations from previous tests, go through a period of continuous

heating before entering a decay period. In parametric fires, the charring rate is considered

constant until the start of the decay period at ¢, shown in Figure 6. After this, the

charring rate is assumed to decay linearly reaching zero at 3¢, .
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} to 2t,

Time

Figure 6 — Eurocode 5 [13] charring rate for parametric fires.
2.4 Heat Release Rate
Heat Release Rate (HRR) or Energy Release Rate has been described as the single
most important variable in characterizing, and the best predictor of, fire hazard [14]. It is
the rate at which combustion reactions produce heat [15] (measured in watts (W),
kilowatts (kW) or megawatts (MW)) and controls to a considerable extent the

environmental consequences of a fire [16].

The HRR (Q)can be calculated from the mass loss rate and is expressed as:
O = MLRAh, Eq3

Where MLR = mass loss rate (kg s )
Ah, = effective heat of combustion (kJ kg™ )

This is often expressed in terms of horizontal burning area where Eq 3 becomes:
Q= A" Ah, Eq 4

Where A, = Area of floor (mz)

" =mass loss per unit area (kg s"m'z)

















































































































































































































































































































































































































































































