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-, . e use the martingale’ approach to study large deviations and laws of the iterated logarithm
= L

for certain multidimensional diffusion processes. The criteria for the validity of these properties are
- < .

expressed in terms of averaging properties of the coefficients of the infinitesimal genera‘tor. Next
we apply our (egults to diffusion processes With random coefficients. Doing so, we are led to study
L] .

=, ) - large deviatjons upper bounds for a class of stationary processes ’
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NOTATION :
» R? ...d-dimensional Euclidian space
d ) . s
<zy>= Loy 2T =(z1,.-.2a), ¥ =(n, -pa) ER’ ‘
1= ’ N ’
¢ lz} =< z,z >}, zcRI.
St: set of symmetric and strictly positive definite'd x d matrices . ' . . o
d bt . 4
|A] = sup EA,i; A € R .
xeR9 , ‘
" Ity '

o -

C&(IRY) ... space of infinitely differentiable real-valued fun’ctions.with compact. support

- C(T;R?): space of continuous functions from a closed set T' C {0, 0o} into IR? with the mp(;logy

of uniform convergence on compact subsets of 7. ™ ~

. Ba : Banach space of all f € C ([0,1];IR?) such that f(0) = 0 with the norm ||| = supe(o,1) 17 (1)]
& w .
B(X): Borel o-algebra on a topological space X.
. T - & - N
- - B(0,R) : closed ball of radius R jg JB°. . r
. Cy{X') : space of contindous and bounded real>valued functions on a topological space X .
. T 7 R class ofincrez;sing and unbounded functions A : [I,00) — [1,o0) such that - -
) . ) Yo L hm lan(ét)/A(t) > O for every 6 > 0.
T R={r € Riinf{6: [} f’—‘—"-’a:(oo}_xand l.m,_w;(;,i)l;l v5>o}
. ) <« ... absolute continuity. - . . ..

a
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¢ : INTRODUCTION ~ *

3 . e

In a recent article ({10]), G. Papanicolaou and S.R.S. Varadhan studied weak conver- ."

gence properties of diffusion processes z(-) with infinitesimal generator of the form

C d d ) ,
f‘i Lof(z) =3 ZZ a,,(z, e)%f(z), J € C(RY),

t=1 ;=1
* ( o
where a(r, e) (a,j(z,€)), ,4 ;] belongs to a “tlass of ergodlc statlonary processes on some -

probablhty spa.ce (E,M,p). They proved that for alrnost every € € € with respect
oo to u,:c,,f )/ converges weakly as - % to a nondegenerate Gaussian process on
C([0,1); RY), where z,(t) = z(st),s > 1,1 € [0, 1]. Their proof was essentially based on an

-

ergodic theorem for & fo z(u) e)du.

.Motivated by their result and certain properties of Gaussian probability measures on
Banach spaces, one can ask if we can prove “stronger” results concerning z(-), namely

™u

large deviations and/or laws of the iterated logar.ithm.

. . P
’ Lt I3

In this thesis, we find sufficient conditions which guarantee that for diffusion prosresses

y(-) with infinitesimal _genera.fors of the form

L4 4 ’
(VN ,Lf(z)“%zza.,(r)a Fa /(7). S € CEmR), oo

=1 =1

.

{y.(-)/\/’.-s_z\zs_)}'>l (consi_dered as C([0,1}; R4)-valued random ‘vari'ables) has a large devi-
’ ation property for some A € R and/or {y,.(-)/\,‘/r_zTn)}"21 (resp. {y‘(n)/\[r_zrnj}"el) is
relatively lcompa,ct in C([0,1);JR?) (resp. [RY) and the cluster set is a non-random compact
_convex subset of C([0,1};R¢) (resp. RY) for some A € R;. Next we try to prove that
these conditions are satisfied u almost surely when y( o')'is replaced by z(-) = z(-, ¢). Doing

80, we are led to study Jarge deviations for a class of stationary processes. -

To describe multidimensional diffusion processes, we will follo§ the martingale ap-
_proach initiated by D. Stroock and S.R.S. Varadhan and developped in [13].

T,

> -



Let a : IRY — ST be bounded and measurable. We say that the martingale problem
. ’ - ‘
for a[-) is well-posed if for every z € R9Y, there exists a unique probability measure P; on

*X = C([0,00);IRY) satisfying

i) P(z(-)e A;z(0)=2) = 1.
i} (z:(t) - fot Llf(::(u))du, Fi=o0{z(s);0<s< t}):>o is a/martinga.le with respect.o

LY

P, for every f € C§°(IR?), where Lf is defined as in (0.1).
Chapter One contains prelimary material on, weak ,convergence and propertnes of
solutions of martingale problems. We prove (Theorem 1.2. 6) that if the martingale problem
for a(-) is well-posed, where a(-) : IRY — S7 is bounded measurable and uniformly positive
(ie. < a(z)8,8 > > C|8)* for every z,8 € I}_lj’ and some positive constant C) then
{1’0 o(zn/\/m)” }n)l converges weakly as n — oo to the solution Wy g of the martingale - -

problem for A € S} whenever the following hypothesis is verified:

t .
%/ a(z(u))du — Al > (’,: 0 Ve>o.
0 .

In Chapter Two we study large deviations and laws of the iterated logarithm for solutions -

(Ho) : lim P (
. t—aQo

of martingale problems. Leta : R4 — ST be bounded, measurable and uniformly positive.
! : T
Suppose that the martingale problem for a(-) is well-posed and set P = Py. The hypotheses

we need to prove our results are

-

E=

t . . ‘
(Hy): - P(lim l/ a(z(u))du:A) =1 .
» {00 t 0 B .
and ) A
(Ha(A)): tl_l‘rgo BUp —— A(i) log P (l / a(r(u))du — | > 6) -0, Yé6>0,
where A € H.

Remark: Since a € S} is bounded and uniformly positive, A € St.

Before stating our main results, we need the following definitions: s -»

L

2



Ha: Hilbert space of f € Ba Which are absolutely continuous and which satisfy |f|% =

%f01°<< A’lf(t),fgt) > dt < oco, where - denotes the derivative; further let

L) =1l [€HA La(f)=+0o [€ BufHa.
Ka={f€Bsk(f)<1}and Ky ={z€ IR:’;-;- <A7'x,x >< 1}

The first result (Theorem 2.1.1) concerns large deviations; assuming that (H;) is verified

for some A € R, we can prove that

- -

lim sup R-(ls—)logP (J:_,(-)/\/.s,\(s) € C) <= }2{’1,4(1') for

B+ OO0

every closed subset C of By and

liminf—xl—logP (z,(-)/\/.qA(s.) €0)>- inf La(f) for

00 (3)‘

every open subset @ of By, where we have made the convention that infreq Ja(f) = +00.

The next results (Theorem 2.1.2 and Corallaries 2.1.3-4) concern laws of the iterated
logarithm (we have kept the term “law of the iterated logarithm™ even if the rate A € R,

is different from (¢(-)) € Ry, where £(1) ?mﬁx(l,l%t),t > 1).

Iy

Under (H,) we can prove

(0.2) P(nlimwd(z“/m,ICA) =0) =1, forevery A€ Ry

. . -

If (H;) is verified for somie A € Ry, then (H,) holds true and
(0.3) ’ | P(lim C (z,,/\/,m\(n);n > l) = KA) =1,

where d(z,y) = inf, ey p(z,y) for any subset Y of a metric space (X,p) and C'(ynin 2 1}

-

stands for the set of all limit points of a sequence {yn}n>1 in (X, p).

If in addition A(z) = a;(z)A; where A; € S} and a; : IR? — (0,00} is bounded,
mea.suratble and .uniformly postive, then (0.3) holds for every A € R,, if we only assume

that (H,) is verified. S -




tre

\ .
Furthermore,-under (H,), we have

P ("llngod(x(n)'/\/n/\(n),lx",q) =0) =

gnd .,
8

P (C (z(m)//mA(m)im 2'1) = Ky) = 1
,' .

for every A€ RJ} » 3

. o . .
'(‘ pter Three is devoted towthe app]icatiohs of the results of Chapter Two when a(-) is

ran&om We conmder,threo class o;dynamlcafsystemss = ({£.,p).B(£), {riz € IRd} 1),

1 = I1,1F ot 111 where (¥, ’)) is & cowplete and separable metric spa,ce {rs;z E R4} is
T o .
a group (70 r,, = Tr4y) of jointly - measurable mappmgs of £ onto £, and u is an invari;
ri

ant ergodic (with respect to {re;z € lﬁd}) probablbty mea.syre on (&, B(E)) with support

u= £. (,orre.spom;gng to the§e dy{;g\fca‘l systems, we deﬁne three classes M, = I, JI
&

or I11, of continuous bounded funcuons Vi€ - 5t wnth t!se property that the martin- K

. f
ga.le problem fpr V(- ,e) = V(r. e) is well-posed. Using a fesult of G. Papamcolaou and

S.R.S Varadhan [10] we can prove that (H#o) and (H,) are venﬁed ] a:lﬁnost surely when

P = P,o is the solufion of the maftmgaié problem for V(- e), V € M,,i= 1,11 or IIIJ

’

(Theorem 3.1.1).

« -
, A

~ Finally, in Chapter Four, we find sufficient conditions dependingon 5,,V(e M,),i =

»

I.11or 111 and A € R, for the validity c;f (H2) for, almost every e € £ with respect to u.
‘When S is of ﬁxg;t’t‘ype, we only study. the case whien £ is compact. Uzingar%ults of M.D.

Donsker and S.R.S. Va.rad.han. we prove (Corollary 4.1.3) that (H3) halds for;i:’very el
and A € R such t.hat lim; .., A(t)/t = O whenever there is a unique probabiliAty measure
on (6’.[3(8)) which js i‘nvariant with respect to the Markov semigroup S, on C{£), where
‘S,f(;) = EFeo (f(teeye), 1 2 0,f € Co(E),e € E. We also prove that the last condit®n is

satisfied when u is induced by a periodic function or u is induced by an afnost periodic,

function and V = v, V;, where V; € S} and v, € Cy(€) is uniformly positive. The case

when § is of type II or II] is studied in Section 2. In that case, we prove that when A

w—



increases sufficiently fa.st-(i.e.' )€ I;l; V8 > 0), we-only need to study upper bounds for
. t
limy oo yhylog W @ (I} JEV(z(u)),e)du ~ E,,(V)| > 6) where V € Cp(£). When the |

rate A is given by A(¢) = t, we prove that the “free energy”
1. | ~ L )
¢(A) = lim —log EW®* (exp (A/ V(:r(u),e)du))
t—oo t 0

exists for every A € IR and we find a necessary and sufficient condition for the differentia-

. s

bility of ¢(-) at 0, namely

lim\sup sup
al0yec, ecef

.where d

/ V(z,e)f*(z)dr~ E“(V)l =

Co = {fe cg°(md);/ f2(x)dx = 1 and ;/ Ig'ra.df )?dx < a} .
AR Rd

H

Therefore we expect that the phenomenon of phase transition occurs in almost every case

of interest. Since we are interested in negative upper bounds, we develop a method to

@ handle t'y case when 'l_i.m -(—)- = 0 (the method is also valid \_zhen A(t) = t). However,
7 this method is too crude to find very good upper bounds but we believe that we can

.

.use it to find “critical rates” at least when d = 1. The main results of the first part of .
Section 2 are Len'lm‘a. 4.2.7, Theorem 4.2.8, Corollary 4.2.9 and Theorem 4.2.14. The yest
of The section is devoted to the study of “ potentials™ of the form V(-) = v+ )» where
Uis umformly distributed over [0,1)? and is independent of the i.i.d random variables
{€&x;k € Z¥), whnch are assuined to be bounded. In that case, we prove that A(t) = ¢1/3

is a “critical rate” when d = 1 and we conjecture that A(t) = td/‘” is a “critical rate”

when d > 2 Fma.lly we also prove weak convergence theorems for some renorma.hzatlon

Fl

of fo V(z(u))du ' ’




CHAPTER ONE ‘ b

.

PRELIMINARIES

1.1 WEAK CONVERGENCE :
. &
Throughout this section, X is a Polish space, i.e. X is a complete and separable

w
[

metrizable space.

' J
DEFINITION 1‘1"1 Let { Pn}n>1, P be-probability measure on ( X\ B(>& )). We say that

Pn convergcs weakly toPasn — o (Whlth will be deneoted by P, = P) if for every
" f e Cy(X), , |
lim / f(z)Pp(dz) = / f(z)P(dz).

. Note: From now on, A!(X) stands for the space of probablht) ‘measures on (X, B(X))

Cwith t'he topology induced by weak convergence It is easy to see that M (X ) is«a Polish

]

'&pa,re and if X is compact then M(X) is. also cbmpao&

‘ THEOREM 1.1.2: A famnly P c M(X) is re]atwely compact lff’P 1% tlght i.e. for every

~s

¢ > 0 one can ﬁnd a compact"I\ C X ‘such that lnfpe'p P(K ) > 1 — . " .
) . ’ o . . . . ) ',“‘. o B > . ”f “v, “. '
Proof: see[m] o ' T s e
R T ‘ ‘ ‘ ‘ ) T v RS }: T
2! We will now restnct ouf dttention to the ca.se X C([O oo), IR") Usmg Arzela—Ascoh

theorem, st easy to pmve - , - Y “ .

THEOREM 1.1.3 Let {P Iz P € M(C([O oo),!Rd ) ‘Then }f = Piff {P }n>,
is tzght and the finite chmensnénal dxstnbuﬁbns of P, cbnverges wealdy to those of P as
*n — co. Morcover {P, },.;.1,[15 Mght lf hm lxmsl;pP (Iz(O)I >'A) = 0,, znd for. e‘Very €

_ , . and T >0 - , i ' X '
S : . | - nmhm supP (wq\(:: 6) > > c) =0, . LY
wuhere wr(z,8) = sup ]a:(t) - :r(.s)} w= w;. \
o . ‘ . o --.3: he N ‘-l : _ a y
» p -6 ¥ i s .
. . | ’
~ |7 : . ~




a

REMARK: One can easily prove that a sequence {Pa}ns1 in M (C([0,1];IRY)) is tight
it ” . :

<>

lxm lim supP (]z(0)] > A) =0,

A—=00 n_oo

and for every ¢ > 0,limsolimsup,_ o Pn(w(z,é) >¢) = 0.‘
. o

Tightness is usually hard to prove directly. The next theorem is very useful; its proof

can be found in {1].

THEOREM 1.1.4: Suppose that P, € C ([0,1);IR9) ,7n =717 If for every & € (0,1),

sup P, (Jz(t) = z(~ )!>A)< il |t |l+”, A >0,
g

where a'> 0,8 > 0 and h, isa bounded sequence independent af &, then one can, find a

I\’nc
(0

constant C = C(a, f3) so that Po(w(x,6) 2 ¢) < 8° ¢ > 0.

We close this section with a result proveg by C. Kipnis and S.R.S Varadhan {[9}).

THEOREM 1 1.5: Let Y(t ) be a Markov process, reversible with respect fo a prolmlnhlv
measure %, and let us suppose that the reversible stationary process P with r as invariant
measure is ergodic. Further let V be a function on the state space in Ly(7) satislying
JVdr = 0. Set X(t) = fo V(Y (8))ds. If lim }-E(Xz(t)) = 0° < oo, then letting

Xa(1) = X(nt) t E [0,1], we have Po(X,,/af) => W = standard Wiener measure
on C([0, 1‘];IR). ‘ -

f

-

1.2. MARTINGALE PROBLEMS..

Let X = C([0,00);RY), F = B(X), and let F; = v{z(s);0 < s < t}.

For a given a(-) : R% — S} which is bounded and measurable, we define

Lf(:r)——ZZa.,( )a a ](:c), f € CP(RY), xelRS

=1 =1

We wxll say that the martmga.le problem is well-posed n’ for each z G IR" there exists a

unique P; € M(X) satisfying




i) Pr(z(-)e A z(0)=z)=1.
i) (f(::(t)) - fO',Lf(z(u))du,fg)D‘o is a Pr-martingale (i.e. a martingale under P;) for
overy f € C(RY). ) “

'In what follows we state the l.)asic properties of solutions of martingale problems
needed in the proof of our results. For. more general and/or precise results, the reader
may consult [13]; the proofs of the Theorems 1.2.1-5 can also be found in [13].

THEOREM 1.2.1W Let a(-) : IR¥ — S¥ be bounded and measurable. Let P-€ M(Y') be

—

given. Then €he following are equivalent:"['

(2.1) (f(z(Pt)) - / Lf(:c(u))du,f,) % is'a P-martingale for every f € CZ(IRY).
. 0

120

H 1 t
(2.2) (exp(< @, z(t) — z(0) > —5/ < a(z(u))d.6 > du),f,) t>0
) . < Jo
isa P-martingale for every @ € 1IR9. - =
. T 1 [t
(2.3) (exp(i < 8,z(t) — z(0) > +§/ < a(z(u))d,8 > 'du),f,)
0 /7 t>0

is a P-martingale for every 6 € [R9. Moreover if any of the above equivalent relations

holds, then for each t > s > 0, and A > 0,

v

. /\2
2.4 P (u) — >A) <2 — ————— 1, wh :
(2.4) (‘ili;;'!z(u) z(s)| > ) < exp( 2Ad(t—3)) where
A= sup sup < a(:)0,0'> .
eeRe g

THEOREM 1.2.2: Suppose that a(-) : R¢"— S§ is bounded and continuous. Then
the martingale problem for a(-) is well-posed and the corresponding family of solutions

{Priz € RY} is measurable and has the strong Markov property,

REMARK: When a(z) = A € S}, Theorem 1.2.2 applies and the corresponding solu-
tions Wy ; are Gaussian; if A = I = I, W;,o is called the Wiener measure, and z(t), the.

(canonical) Wiener process. -



«*
THE'O“R.EI% 1.2.3: Let @ : IRY — S be bounded and measurable, and let ¢ : [0, 00] —

RY be bog{ndea and left (or right) continuous. Suppose that P € M(.V) satisfies (2.1)
(and (2.2), (2.3)), and define .

¢

3 -

, 1 . t -
R(1) = exp (/ < ¢c(u),dz, > —-;-/ < a(z(u))c(u), ctuy > du) !
. 0 1]

v
=

R(t).t >

U

Then there exists a unique Q € M(.V) such that Q € P on F, and %%

R Fq
0. Moreover (exp (< 8, r(t) > - lf(; < a(z{u))d,8 > du) f,) - is a Q-martingale for

every 8 E IRd and (2.4) holds for Q and z(-) replacmg P and z(-), where z(t) = r(t) ~-
[ alz(w))e(u)du, t > 0. “

The next theorem is very useful when we want to construct new solutions from existing

on's, T ‘ !

THEOREM 1.2.4: Let a(-) : R — S be bounded and continuous. Suppose that \
@) ; lR:’ — (0,00} is bounded, measurable and infrepad(z) > 0. Yor such a ¢(-),
define 74(t,2(+)) = ir;f{s > 0;-f0' 1/¢(§(1L));iu >4}, > 0, and let S4 : ¥ — X he the
map determined by S,z(t) = ‘r(m(t,r(-))). Then there is a one to one correspondence
between solutions P, for the martingale problem for a(-) starting fron‘l r and those for'-
#(-)a(-) starting from the*same point. This correspondnnro sends P, into P, 6 S;*.' In

particular the martingale problem for ¢(-)a(-) is well-posed and the f.mnly of solitions is

measurable and has the strong Markov property.

<

* Let H!?°(Ar,AR,6r) be the class of measurable a : IRg — SJ such that for every
R > 0 )\R|0|2 < <. a(z)8,0 > < ARgl|8?,6 € R4 x E B(0,R) and le(z) - a(y)] <
6n(|x -y Vz y-€ -B(0, R), for some c0nstants 0 < Ag € Ag < ~ aifd some non-

s increasing functlons ép:(0,00) — (0,00) satisfying lim, g én(c¢) = 0.

THEOREM 1.2.5 Let {an}n>:1,a € MY (Ar,Ar,bR). Then the martingale problem for
‘a,. (resp. a) is well-posed and if { P, ,;z € R?} (resp. {P.;z € IR4}) is the corresponding

family of solutions, then P, -(z(t) € -) (resp. Pr(z(t) € -)) has a strictly positive density

9




e

,{2.5) P (wT(x,,/\/;,T/n) > 3¢) < 2ndexp (—

s

palz . t,") (;'esp. p(‘:c, t,-)) with respect to Lebesgue measure for each ‘t > 0. Moreover if for .

every f € Cg&{IR?) we have lim / ax(z)f(z)dz = / a(z)f(z)dz, then z,, — z € R,
. n—oo fpna R¢

t, — .t >0 imply,Qat Pn ., => Prand lima_ o [ga |Pn(Zn,ta,¥) — p(z,t,y)ldy = 0.

In closing this chapter, we prove a weak convergencetheorem which’is complementary

to Theorem 1.2.5. ' .

THEOREM 1.2.6: Supposle that a(-) : IRY — S3 is bounded, measurable and

.

inf inf < a(z)8,8 > /|9|® > O;
© z€R9 seR4\ {0}

further suppose that the martingale problem is well-posed ahd let P be solution starting
from 0. :Sot ‘2,(t) = z(nt),n € IN,;t > 0. Then if A € §} and
1/
(Ho): lim P('—/ a(:c(u))du—-AI 26) =0 Vé > 0,
. t—oo t Jo ’

)

we have P o (r,//n)"' = Wy on X.

Proof: 1t follows from Theorem 1.1.3 that we only have to prove tightness and weak
. 4

. convergence of the finite dimensional distributions. We begin with tightness. Let 7' > 0

be given. Then for every n in IN and

. k
S € X FTAET/n) <3 max | sup () - J(TT) |

e ST AL qug it

Using the last inequality and (2.4) we get
' 2

€ .
EA—d—f) € > 0,.where

0 < A < oo is such that < a(z)8,8 >< A[8]* V4,z € R9. Clearly, (2.5) implies that

{Po(zntvm)}

- n>1
>

8, oo
is tight. Next let 8,...8,, € R4, 0 = to <) £+ <tm < % be given, m € IN. Since

W is Gaussian and z(t) has ipdependent increments Yinder W4 o we have

. .
Y < ABy 0k > (tx - zk;,)) 3
1

»

EWao (exp (IZ < B,z(tx) —- :c(tk_l.)->))‘== exp (—
n ”

~

o RO
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Therefore to complete the proof, we only need to show

¢
hY

'nli—omo-oEP (exp (IZ < B, z(nty) — z(nlk_l) > /\/1—1))
1

(2.6) m .
) 1
= exp (-—52 < A8, 0, > (1 — lk-l')) .
By repeated applicaiions of (2.3) we get. P
(2.7) .

P < b,z (nlk)——:c(ntk 1)> 11 Y\ _
E (exp ( 21: Tn + 2“2;‘ n S < a(z(u))bc, 8, > du = 1.
Since - ‘ -

. m 1 nt, m .
< - )65, du < 0|2 (ts — ti_
<35 [ e S AS Ot
and
: -
1

n s

nt P
—/ < a(z(u))8,8 > du B« 46,8 > (1 — 5) by (Ho), for every 6 € IR and  t > 5 > 0,
n x R .
(2.6) follows from (2.7) and the convergence in probability of

Z / :t(u )0k,0k>duto Z<A9k90k>(tk—lk-—l) asn — no. o}
(-




CHAPTER TWO

s

o

[ .
P < -

E Laws of the Iterated Logarithm and

“

. » Large Deviations N

2.0 Notations

-

Suppose that (B, || H)’,ist a separable Ba‘riich space (over the field R);ifr € Bye

-.g - f3,d(z,y) stands for Jg{ ||1'<- y!l;~'ii{zn}n2, is a sequence in B, &he;l C({zn}n>,) = the
. set of all limit points of {z,.;}n;,. Note that C{zn}nz1) = K <= d(zn, K} — 0 and”
r, € 0 i.ol for every O E‘O,»su\ch that 0’1 K # ¢ when O is a countabler basis for the

topology on 3. ‘ L T

r 2.1 Statément of results

L . ' ’ . > ‘
™ Let A € S} be given, and let H 4 be the real Hilbert space of all f € By which are

. 1
-’ absolutely continuous and / <G f(1), f(f) > dt < oo, with scalar product (f,g)a =
L4 Q . a

»

AN . . ] . e
' _j/ ‘< A7!f(1),4(t) > dt, where f stands for the derivative of f.
. -, :

_Suppose that a : R?Y — S} is bounded, measurable and uniform]y positive. Also

o
r

_ suppose that the martingale problems for a is well-posed and let {P.}_cp4 be the corre-
> ) ]

sponding family of solutions; set P = F.

We shall now make two hypotheses:

- ) - . t .
. . {(Hy) P(Iim l/ a(z(u))du = A) =1;
' . . t—oo t Jp

12
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i
" * ':‘ -
, I E AV
(H)) lim sup——=log P (|- [ a(z(u))du- A|>6] %= —00, &6>0,
il At). t Jo P :
- o
wlrere A € R. - .

Before stating the first result, we define T4(f) = {f|4 if f € Ha,[a(f) = +00. 7T €
BAH 4. L{et, Ka= {fE.Bd;[A’(f) <1} and Ky, = {z € IRd;l < A7 'x,x >< 1}. Since
)= F(o) < (2lt- SIAAU DT v Vf € Ha, 0< st < 1and f(0) = 0 VS € Ba,
‘nt follows frqm A;,ze]a Ascoh Theorem that {f € By4;J4{f) < z} is a non-empty compact
convex subset of B, for every z > 0 Il:l partxcular K 4 is a compact convex subset of By

Y

and K 4 is a compact convex subset of IR4.

Theorem 2.1.1 Suppose that (H;) is verified for A €' R. Then

(1.1) Jim sup, 37 log P (n/\/ugz) € C) < - ;”efg 14(/)
4 . - : ’ )
for every closed subset C of By; i
(12) . lim .nfmlogp(z,/,/zA(z )e0) > - inf 1401) )

for every open subset O of By

E

H d inf T4(f) =
ere we define }Iel‘t‘ A(f), +o00

Theorem 2.1.2 Suppose (H,} is verified. Then for every A € R,

(1.3) g P ( lim 4(:,,/%,(,‘) = 0) =

i (H,) is verified for some A € Rl, then (H,) holds true and

(1.4) ( ({z,,/\/m\(n },m) /c,.) =1

Corollary 2.1.3 I'fra is of the form a(z) = a;(z)A;, where a; : RY — IR is measurable,
0<c £aiz)<cz <0 -ZE€ IR? for some constants ¢;,¢; and A; € S}, and if in

addition (H,) is verified, then for every A € Ry, (1.3) and (1.4) hold true.

I

13 -
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) . 3
8 . i; - - ¢
Corollary 2.X.4 If (H,) is verified, then for every A€ Ry, - /
(1.5) P (uhrr;<> d(z(n)//nA(n), K4) = 0) =1, and

.

“ (1.6) - ~ ( ({x(n)/\/nz\(n }.,>.) = K ) = 1.

Before closmg th:s section, let us remark that if £(t) = max(l logt),t > 1, then Alt) =
(([(t)) e R,. For this paerticular A, the combma.tnon of (i 3) and (1.4} is usually ca.lled the

functienal law of the iterated loganthm while the combmataon of (1.5) and (1 6) is called

the law of the iterated Ioga.nthm. Ty

.

n'1!.2 Proof of the results

» 2
.
- - - »

>t . .
»

We begin by ‘proving four fundamental lemmas; the first one is an adaptation of a

-

result proved by J. Kuelbs [8]. i e

-

- .o

Lemma 2. 2 1 Let {2, M,P) be a probablhty space and let {Xn}n>1 be a sequence of
measurable functions from 2 into a separable Banach space (B ) th.h scalar ﬁe]d R.
Further let A 'bea nonempty compa.ct convex subset of B. S.uppose that the event A =

{{){,,},01 is relatively comipact in B} is mea.surable Then tke folywmg are equnva.lent

- " 3

Al

T (2.1) P( lim d(X,, K)= 0) = 1”;’{/ ”
“ : # ,
(2.2) P(A)=1 and P ( lim sup f(X,) < sup j(:)’) =1 VfeB*,
R i— 0O . = . €K -

¢

wl;efe B' is the strong dual of B.

a

Proof: (2.1) = (2.2) is obvious. So suppose that (2. 2) holds and let ¢ > 0 be given.
Since B is separable, K¢ = {z € B,d(=z, K) > €} = U“On,where each O, is open and
convex; therefore O,, is cenvex and O,.NK = ¢. Usmg (2.2) we get
(23)  PX;€ K io)=P(AN{Xn € K¢ :o})<ZP(X eo,, (0.0

k— @

»

14



) -
~— N

By the separatiop theorem, for ez’Lch k > 1, one can fird fi € B*, so that sup,ep fi(r) <

inf, 5, /x(z). Next (2.2) and (2.3) yield

Pd(X,,R) > ¢ i.o.)sZP(nﬁmocsupfk(X,,r)Z ian fk(x))zo Ve > 0
= - . TEO,

which proves (2.1). , o

\
Lemma 2.2.2 S’uppose all hypotheses of Lemma 2.2.1 are satisfied. If in addition there

exists a Hilbert space (H,(-, *)) C B such that the injection i : # — B is dense dl’ld

continuous, 1\ is the closed unit ball of H and A is compact in B, then . '
P'( lim d(X,,K) = 0) =1 and P(-lim sup f(X,) =sup }'(r)) =1 '
, n—oQ n—o0 IEK

for some f € B* together imply g

1]

P (lim inf || Xn i /1" Sl = 0) =1, wherei*B* — I

is defined by (i f,z) = f(z), feH", zeH.
- ) -

. Proof: Let us first note that f(1"f) = I.i‘fl2 and sup fz)=11"f], f€eE B .SetQ =
{w, hm d(Xn (w) K) =0} N {w; hm sup f(Xp(w)) = ]z fl}. Then ' € M, P(')= 1,
and for any w € €, there exists a subsequence {n,},>; (depending on w) such that

S(Xnj () = 1i* f] and | X5, (@)= 2(w)]| — Qfor some z(w) € K. Now [z(w)—i" /" f]|? =

’ 2 _ 2 _ .f
|z(w){* - 21.&_(_|)J. + 1 = ||z(w)]| 1 £ 0. Hence lam inf || X (w) - B H = 0 for every
w e . , ) o
Lemma 2.2, t X be a Polish space, {Q¢}:>1 be a family of prohability measutres on
* (X,B(X))\and A:[1,00) — [1,0¢) be increasing and unbounded.

a) If there exists a function  : X — [0, 00], 1 #'oc such that

hm sup Y7 )logQ (C)< — mf I(z) for every closed set ' C-X

N— o
15
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¥

then I_Lm sup mlog (/x A“”‘"Q:(dx)) < sup(f(x) - I(z))

for every continuous f : X' — IR which satisfies

(2.4) llm lim sup —— log / S eMVEQde) | = ~x
—o0 f=oo ’\(‘) {(mHx)>M)

b) Suppose F is a set of continuous functions f : X — IR so that every f € F satisfies
(2.4) and Jor cach f € F'. there exists a function /; :.IR — [0, 0], such that ]j};

20, ¢(f) = sup,enr(z — I7(2)) is finite and

. 1 -1 . ,
tl_l.ngosup-imlogQ, (f7HCY) S;—zngg 1/(z) for every closed C C IR

g

Then

. ! . < —
(2.5) ‘l-l.ﬂ;: Sup —— A(t) log Q.( k) < mf ](J:) for every compa,ct KNKcX,

where I{z) = max (0,sup 2e(f(z) — c(f))).
If in addition there exists a sequence of C(;mpact sets { K }n>) such that
_ < - >
l:m sup ,\“)logQ,(I\ o) n Vn2>1,

then (2.5) holds for every closed set C C X.

Proof: We first prove a). Suppose that f: X — IR is continuous and satisfies (2.4). Let

.my,my,n €IN be given. Then

[ 01 0Quaz) <
X -

_W,ml,,,+ Z ,\(,)L_:_z (f“’ ([£,k+ 1])) +/ ex(t)f(r)Q'(&I)_
n o n {z: f(x)>22tl)

k'——m)
. 1 NOH 0 “
Hence ‘l_{‘t{.losup ) log (/ Qi(dz) ) < Y
“max | - 2L max. - k+1_ inf I(z) ,A(m’+l) ,where
n -m < k< my n res-1([4.422)) A n
16
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. .
A(M) = lim sup ——1 / eI Qdry) . MelR.
t—o0 p/\(!) og( {5 /(21> M) e

k+1 1 1
Since - inf I(z <—+su r)—I{z)) = — + a, we get
n T eer(has) (z) R U - &

; 1 A S(2) ( m 1 m; + 1
,ILTOSUP »0) log (/‘\_e | Qi(dz) ) < ke +a, A - :

Therefore the result follows by letting, my,m; and n go to oc. We will now prove b). Let
. . . .
us first remark that a) implies . :

lxm sup —- /\“) log (/Y '\“”(I)Qr(dr)) <e(fy VfEe€F

Let A" be a compact subset of X. If K isAempty, (2.5} is obvious; so su;j»pusv that A
is nonempty, and set L = infe.x [(z). If L = 0 (2.5) is trivial so assume that L > 0
and choose 0 < Ly < L, L, finite. Then for each z € K, one can find f, € F so that
fr(z)—c(f) > Ly. Set O = {y € X; f:(y) —c(f) > Ly}. Clearly {O,};e x is an open
covering of K. Since K is compact, therc; exist 7y, -z, € K, such that A’ C up., 0,
It follows that

: 1 . - . 1
Jim sup m—)IOgQ:(A ) < \Bax (th_ggosuv T3 logQ:(Ozk)) .

Next for any open set O C X,

Qu0) < Qu (2 /(2) 2 jaf f5)) < e teeo 10 [ 200G,

Therefore ¢li.n§° supXEt—)iog Q:(0) < }2£ (c(j) - yxggf y)), if we take O = O, we get

. 1 . 1 ] '
!l_l‘xgosup-m—) log Qe(Os,) < =L;1,1 < k < m. Hence ‘l_l‘nolcsup A(t)IOSQ'”‘) < -L,. for
every 0 < L, < L which proves (2.5).

-

Next for every closed set C C X,CNK, is compact and inf ecnk, I{z) > inf e I(z).

Therefore ‘ '

lim sup m) log Qu(C) < inf max( n, - inf 1(:)) = — inf I(k)

-

17
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llmsu | (RE) < —-n,n> 1. . o
pa)OgQ )

Before stating the next Lemma®we need the following definition.

Definition 2.2.4 Suppose X iga Polish space and P;Q are two probability measures on

(X,B(X)). We define the entropy h(Q; P) of Q with respect to P as

- h(Q;P)— sup (/ f(2)Q(dzx) - log (/e/(.’)P(dr))),
JEBWX)

¥
where By( X'} is the set of bounded and measurable f : X — IR.

The next Lemma is due to M. Donsker and S.R.S. Varadhan [4].

Lemma 2.2.8 Suppose X is a Polish space and P,Q are two probability measures on

(X,B(X)). Then -

(2.6 0<h(QiP) < ocand h(Q;P) =0 iff P=@Q.

(2.7)  If £ = h(Q; P) < oo, then for every A € B(X),P(A)> e tif Q(A) =1

and P(A) > Q(A)e—l/Q(AHQ(A‘).iOs Q(A‘)./Q(A) if0< Q(A) <1

(2.8) h(Q; P)<oo iff Q(Pand / |log (1')|Q(d:t)<oo

Moreover h(Q P) flog 7(x)Q(dz) in the sense that :f one member is finite then the

other is ﬁmte and they are equal.

-

(2.9) AQiP)= sup (/XI(I)Q(dr)—log(/xe""l’(dz)))-

J€Cu(3)
Proof: Taking f = 0, we get h(Q; P) > 0. Hence 0 < H(Q; P) < 0. Clearly h{(P;P) = 0.
Now suppose that £ = h(Q;P) < oo. If A € B(X), then Al4 € By(X) for A > 0.

AQ(A)=t

— Therefore P(A) > b—ﬂ——l for every A > 0. If £ = 0, then letting A | 0 we get P(A) >

18
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Q(A) VA€ B(X)ie P =Q. This provesé'z.ﬁ). If P(A) = 0, then £ > AQ(A) VA >

0 = Q(A) = 0. Therefore h{Q:P) < o0 = Q < P. It follows from Lusin’s Theorem that
. 4

for every f € By(X), one can find a sequence of continuous functions g, with compact

support such that sup, sup,ex I9a(2) < supex [f(2)] and P(ziga(r) # f(1)) — 0.
Since Q <« P we also have Q(z;¢,(z) # f(z)) — 0. Hence (2.9) holds if h(@Q: F) < .

Since h(Q:i P) 2 sup jecyx) (fy f(3)Q(b1) —log ([, e/15)P(dx))) (2.9) follows. -
) .

—

We will now prove (2.7). If Q(A) = 1, then P(A) > f—r_—-ll for every A > 0. Letting
A1 0o we obtain P(A) > e~!. Next suppose that Q(A) € (0.1 ). Then -

A>0

by elementary calculus. This proves (2.7). Next let
dQ . . ] : .
glz) = E—};(z).r € X, and g,(z) = min (n.max (;.q(x))) MmEINz€EX.

‘Then log ¢, € By(X)and hm / lg(z)-gn(z)[P(dz) = 0. Thus lim sup/log g.(2)Q(dr) <
f < . Nom(log qn) T (log q) and (loggn)™ | (logg)™ as n — ~. Hy monotone con-

verfj.ence we have

. /flogqnj’(r)Q(dz)T/(logq)'(r)Q(;irK x
X . X

and
/Xlogqnﬁ(r)a(dzn/X(logqmz)o(dr)st+/x(’logq>-(z>0(dx.)<‘x. asn | .
i ., Lo ‘ .

which proves that whén : ' \

h(Q; P)<oo thenQ(P/ |]og—Q(:t |Q(dz) < »c and / log%(z)Q(dz)Sh(Q;!’).
. X

. . .
Next suppose that f'« P with density q(z) such that [|logq(z)|Q(dz) < ~x and set

{, = fx log q(£)Q{(dz). Forany f € B4(X),.

. ' C!(I) .
.  log (/Xe"”mdz)) > log U{ >0}(q(z)) q(z)P(:{z)) -
. ?

1 el(z) 4 5 ( ; 4 by . r
— s ine .t )
ey (5727) @40 2 [ He1tdn) 0 by sensens nequatiy
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Hence oo > &, > H(Q; P). This completes the proof of the Lemma.’/ . o

We are now ready to prove Theorems 2.1.1 and 2.1.2.

-

~

From now on’ we suppose that a : RY — SI is measurable and satisfies ( < 6,8 >
<<a(z)8,0> <€£<0,0> V(.z)eRIxIR? and some constants 0 < ¢ < £ < 0o; we

also suppose that {f’;}rem is thre unique solution of the martingale problem for a, where

'
we set P = Py ‘

‘

Let A € R be given and set a(t) = (1A(2))Y/2,t > 1.

, .

Proposition 2.2.8 Suppose/that A € R, and set A = {z,./a(n) is rel. compact in Bg}.
- ‘ . - R

Then A ig measurable and P(A4) = 1. Mquover for every ¢ > 0 one can find ¢; > 1 such

-

forevery 1 < ¢ € ey . ’ . i . )
‘ . -
- x I &
P [ lim su su R 4 <el=1.
(Je—. pck_—!gfgc' ”a(n) a(c*)'” - )

If F, = N, {f»E By;w(f,27%) < 3x 27%/? (2dnk£)l/2} then the closure K, of F, is

compact in By and <

(‘é.ll) hm sup-w-—logP(:z,/a(t) € K )< —-n for every n € IN'and A € R..

(1) _ V
Proof. By Arzela-Ascoli theorem, a sequence {fn}n>1 in By is'relatively compact

= l:gg hm supw(fn,é)—

.

Therefore A is measurable for any A € Rl; and P(A) = 1 if we can shoy that for every

¢ > 0, one can find m € IN so that

(2.12) P(w(zn,1/m) > ca(n) i.0)=0.

20
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{ By Borel-Cantelli Lemmé. {2.12) holds if we prove that for some’e » I and m € IN,

c = ¢{e),m = mfe) ’ /

-

‘r,‘- M ‘ . -%

(2.13) ZP( sup  w(&%n.l/m) >3m:((')"“‘)) < o A 0 i
Py cln—lsnsfk . -, . ‘ .. N - -
Now supa-icnces w(zn,1/m) < wlza,1/n). Recalling that for every f € By, ‘ .
w(f,1/m) €8 max  sup  (5(1) = f(j/m)

<18m~1 tefy/m.g+1/m)

s —

we get

-

E ]

: SR
P sup  w(zn,1/m) > Jea(cF )] <
k-l<n<ck . -

M

m—1 ) ‘ , " '
P sup |1'(c“i) —r(c"j/m)[ >'éa(ck—x) S"Zmdoxp{—’( m'/\(r )}
7=0 t€[3fm 341/ m} . 2dfc

®

by Theorem 1.2.1. Since

(B

¢ Zexp{ 01\((‘ }<oofor50m00>0andc>l 4:>/

dt<oo.
- .

we see that (2.13) holds if 2 2d£c > 1, for every A ¢ Ry. This proves that P(A) =
>' ‘— -

-

To prove (2.10), let us remark that ’ :

In

I < ¢

Ck—]:i)sch a(n) a(c")

, - [ za Coa(kh) ;
w(a(ck-*)"_l)+ (1" afck) )”0(0“ i

' < . ..
Since .

93t c 1/2
Plw| 2 — ! > ¢ to.) =0forevery ¢ > ﬂ we obtain
- a(ck=1)" m m
C!(Ck l)

liin_jgp (1 B a(c")‘) ”a(ck 1)” d 3(\/E - 1) (2d£)1/2 P.a.s.,

and 3

1/2 . '

x d . .

. lim sup w —C:—,c-l <6 o P.a.s., if1<c§m+],m2].
k—oo afck-1) m m

v

3
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Hence (2.10) holds if 1 < ¢ € B ;> my(e).

-

Next suppose that A ‘€-R. Then P (w(x,/a(i),?t‘k) > 3 x 2-k/2 (2dnk£)’/2) <

QK+ 1o~k MY) by Theorem 1.2.1. Hence

' ad
P(z¢/a(t) € KE) < = if e™(V > 2,

- l?"’\“) _

Therefore

tlim sup"—):% log P (z.:/a(t) € K;)< —-n VnelN,

which proves {2.11). ' o

Let B* = the set of all s'ign'ed measures on [0,1]. By Riesz’s Theorem, 87 can be
- identified with (B*)? in the sense that every v € (B*)? de.ﬁnes a unique A E By by
setling A'f =< f,v > so thz;t < :f,u >= f < f(t),;/(dt) >, and for e\)ery A € By,
there exists a unique v € (B‘)dv so that < f,v >= Af for every f € By. From now
on we set B = (B*)%. If A € Sh, tl,)en_‘the canonical injection i : H4 — By is dense
and continuous, and i* : By — “H4 is given by i*v(t) = 2A folu([u,l])du,t € [0,1],
and Hi*v]} = fol < Au.([u,l]),x:([u,l]) > du = [(sAt) < Av(ds),v(dl) >, where

rAy=min(zr,y),z,y€R.

L]

Proposition 227
a) If (H,) holds, then T

l /0” a(z(u))du — As

P ( lim sup

t—oc 4el0,1]

P (‘l_i‘lrgo%/ot < a(z(u))v ([-;i,l]) ,u({%‘-,l]) > éu = -;-.Ii'uli) =1

for every v € Bj. ) .

b) If (H,) holds for A € R, then

.
= 0) = 1. In particular, -

;-/0“ ~a(:l:(u))du ~ As

, | )
lim sup ——log P | su >é] =—-00 VYé>0.
t—o0 P Adt) 8 (JEIO‘.)” - )
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In particular -

-«

t < a(x(u)) [ ‘_1]) > du - %li'u[i‘

t

> b) = ~l\‘.

1
H )
‘hm Sup—-—-—,\(t) log F (

for every 8 > 0 and v € B}

e

c) If (H;) holds for some A € Ry. then (H;) holds.

Proof: a) and b) follows from supl% f(;"a(:(u))du - As| <

1 tk/n
t_-"*/ a(z(u))du — A
= Jo

every 6 € (0.1) and A € It (note that ( < 6.6 > << A8,0 >< E£<8.6> VOe R

L
2¢ max

n 1<k<n and ‘h_‘x‘llrlnf/\(M)/A(!) > 0 for

To prove c) we only need to show that for every 4 > 1,

1 '
ZP( ——/ a(r(u))du — A

— /}ﬂ)

> b) < x Vé >0,
since

sup 208 -1), 4>1.

[}m S!Sﬁmﬁl

1/ 1
' 7/ a(r(u))du - — a(x(u))du
[4] o

If (if5) holds for A € R;, then P (I-ﬁ-‘,-,,- Oﬁm a{x(u))du — A{ > b) < e~ for every

m > m;(8), which completes the proof. a

Lemma 2.2.8 Let v # 0 € B} be given, and set a(t) = (tA(t)3™2,1 > 1,7 € K.

(2.14) . Under (M), lim sup < (f("),u >< i'v] Pas. VA€ R,
- - n—ox n
If (Hz) holds for A€ R, then
(2.15 li L P(< wrz) <2 0 ’
¥ up — —_ - .
(2.15). 2P X OB a(t)”” R A

Proof: Using (2.10) we see that (2.14) holds true if under (H;)

(2.16) P(<

Tem > > tt.o.) =0 .Ve>1, Vz>|i"v|,A€R,.
a(e™) . ' ‘
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San(t,r):{(-—r—— v> 2> }and Cit.e) = {|Ye — £] > €},

where ¢ = Litvq and ¥, = } [ < a(r(u)) ([2.1]) v ([¥.1]) > du, 121

By Theorem 1.2.3, E{cxp {0 < Ig,v > "'22:!),‘}} =] V8elR, Vt>1.
) g2 | 92
Hence P(A(t.2YNC(Le) )< P (0 < Iy 0> —‘3-!)’, > fralt) — 71(( + ())
0‘2 1
< vxp{—ﬂrn(l) + -2—1(( +l)} , V8>0,r>0.t>1,¢>0.
r2A{(t)
20 + €)

Thus P(A(L2YNC(L€)) < exp{— } AE Rz >0.¢>0.

We will now prove (2.16). Under (H,), P(€C(c™,¢) t.o) =0 Ve > l.e> 0.) € R,.
Hence '

P(A(c™,r)io0)= P(A(c™,2)NC(c™, ) 1.0.) =0

if 02 > 2+ €) = 2+ |i"v]% since e M) < o, Ve > 1,8 >1 when A € R). Since

m

¢ is arbitrary, (2.16) halds.

If (#H,) holds for A € K, then lim sup ﬁlogl’((?(t.()) = —no Ve > 0 by Proposi-

2

-z
—_— Y . Lettj
] S TRy (‘>0,I>0 Letting

« | 0 we obtain (2.15). o

tion 2.2.7 b). Thus lim sup ——— ,\( log P(A(t.z)) <

Proof of (1.1}): Suppose that (/) holds for A € R. Set. Q= Po (x,/a(t))'l, where
a(t) = (l/\(t))l/:'. Applying (2.15) to v and —v,v € B3 we see that for any closed set

of IR,
| lim sup —— log Q, (AZ(C)) < - 2 Lz,
PP Xy o8 QAN < -
whe‘r(- A(f)=<fov> Vfe€ By Next
,, / eMOAAN O (df) <

{AL>M) ) -

‘ l 1/2
e~ MM p {exp {2 (-@) < Iy >}} <exp(~MA(t))exp {A(t)y(v))

A3

a3 24 P
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\}'here .

1 L
F(v) = 2{/ < v({u, 1)), v([u, 1]) > du.
0 ,

IS

2

Hence A, satisfies (2.4) Vv € By Moreovgr c(v) = sup,en (1' - F-IFF) = }li‘uPA. Next

Jalf) = sup < f,v > ——Ie vid.
A vebs

Clearly J4(f) 2 0 ¥f € Ba. If f € Ha then < fov > =Hitwly = [ - |52 - f12,.
Thus J4(f) = |fI%. Next Ja(f) > b

o

%Z < A_l(f.(tk)—f({k—l))*f(tk)_‘f(tk—l) > Vo <t.< l-< e <y S0
1

e — Lk -

It follows easily that J4(f) < oo iff f € M. Hence J4(f) = 14(f) Vf € By

Applying Lemma 2.2.3 to {Qt}t‘>1, F = Bjand {Kn.}n>; (as defined in Proposition
2.2.6), Weobta.m(ll)sg\ceJAz ~ o

Proof of (1.3): 1t follows from Proposition 2.2.6 and {2.14) that under (Hy)

{{Xn/\/nz\(n)}nZ, is rel. compact in Iid}

a

is measurable and has P-measure 1, and

»

- .
lim sup < c=— v >< sup < f,v> Pa.s.
e -\_/n’\(n) JEK 4

By Lemma 2.2.1 we can conclude that (1.3) holds i.e. .

(llm d( n/VnA(n ICA) = 0) = 1 for every-A € I;. ' o

Proof of (1.2): Suppose that (Hg) holds for A € R. Since 1*(B3) is dense in By, to prove

(1.2) we just have io show that for every ¢ > 0 and v € Bj, .

(2.17) lim mfrlogp (“z,/\/uu ) - il <) 2 ~lwl}
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Using Praposition 2.2.7 b) we see that (2.17) holds if

(2.18) . i .‘
oo 1 ) z(s) 2 [ WL . 12
—_ _—: =z - >0
VT (oi“.‘é. e =t ([ 7)) o] < ‘) 2=lvia
Ve,> 0, Vve B '
Set fl{u) = v([uft.1]),u > 0. We define a probablhty measure Q, on X by letting
P (2) = : :
F

1/2 , .
> exp {'2 (é-(tt—)) / < fi(u),dz, > - 2—” s < a(z(u)) fe(u), fi(u) > du} .
0 . '

/2,
Set z(s) = 7(8) = 2 (M) [ a(z(w)) flw)du
By Theorem 1.2.3 llm Q. (0<,<,(TI,\I(tt_))1|7 < e) =1 ¥e > 0: Since FQ,-,& ,

exp {2(3-('1)-) .[0‘ < fi(u),dz{u) > +2—(!—)- fo < alz(u))fe(u), fe(u) > du} @ as. and
fi{u) = 0,u > ¢, it follows from Lemma 2.2.5 that .

() =

hQu P) = E9 {2—*—‘,—’2/ < alz(3)fe(w), filu) > du}. < -
0 - .

5 . 1/2 t .
logE{exp{Q(:\LtQ) / < fe{u),dzy >}}? ‘
o - .
‘ A2 1
log E{ exp {2 (—t-—) < Ty > since < Iy,v >= < fi(y),dz, > P.a.s.
0

It follows front the proof of (2.1) that !]im sup ,\(t)h(Q" P) < |i” v|%. Using (2.7) we get
—00

_L . | g(S)l _ 1,02
llm inf T )logP (00(' P/ S c) > llm sup /\(t)h(Q"P) ‘2 [t"v|5

proving (2.18). , ‘ o

Before proviné (1.4) we need the following Proposition which is a consequence of the

convergence theorem for martingales.

Proposition 2.2.9 Suppose (2, F, P) is a probability space and let F,, be a non-decreasing
sequence of sub o-algebras of ¥. If A, € Fn VYV 2> 1, then

P(Amio)=P (Z P{Ami1|Fm) = +oo) ..
: m:1
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Proof of (1.4): Suppose that (H;) holds for A € R,. By Proposition 2.2.7 ¢), (H,) also
holds. Hence P(lim,_.o d (3%—)-,)(’,4) = 0) = 1, where aft) = (tA()%, ¢t > 1. Therefore

(1.4) holds if for ®very ¢ > 0, we can prove

2

—_‘f||<’< i.o.) =1 VfeHMalfla<l.

a(n)

(2.19) ‘ (ll

Since i(B3) is dense in H 4, we just have to show that(2.19) holds for every v € B3 such

that |i"v|% < 1. Clearly (2.19) holds if for every v € By, |i"v|% < 1

(2.20) Ve > 0,3m > 2, s.t. P (HGI )~ vl < ¢ 1.?.) _

By Proposmon 2.7 a) fo ‘a(x(u))f, u)du — i*p(s)

lnm,_oo SUPp< <y

/\

_0) -1,

“where fi(u) = v([u/t,1]), 0, > 1. Therefore (2. 20) holds true 1fV( > 0, 3m >2,mée€

IN so that 5 .

(2.21) P( sup ) - —2—-/ a{x(u))fm~(u)du| < ¢ 1.0.) = 1.
0<a<m™ a(m" -oom® J, .

Since lim,,_.ooa(m"”’)/a(m") = 7'; and (1.1) holds,. we see that for ew;ry « > 0, one

) <¢ P.a.s.

Hence (2.21) holds if for every € > 0, there exist m; € IN so that for every mi > nip,m € IN,

<f L().) = 1.

Let m € IN,m > | be given and set o : ¢

o).
}

can find m; € IN so that Ym > m,,

lim sup( sup Jz(s)] + sup

n—oo 0<agm=—r a(m™) * gc,cma-s

f—/'a(r(unfm-(u du
0

mn

(2.22) P ( sup

m-—ls.smn

z(s)-x(m"—l)__'z_/'

a(mn) mn

a(z(u))fm=(u)dz

mn-—1

_ n-1 ’
z{s8) — z(m )_2/ a(z(u)) fm=(u)du

a(m®)

A, = su;;
ml-ls‘sm-

then A,; € Fpeoand P (A,.

mna—1

m--x) = Py(ms-1y(Dy), where

z(s) ~ z(0)
a(mn)

~2 [ alx(u) fme (3 3 m~
(4] .

D, = sup
' 0<s<m»—{(m~1)
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Repeating the argumen't’sl we used to prove (1.2) we see that

1
/ lxm inf log Prymn-1y(Dn) 2 L.
) . A(m™) . \
1 )\(m") 1/2 /m"’(m—l) . .
— lim s - —_— me "), dz,, .
7llx_:'r;oxs.up ,\(mn)log}_?,(,,I 1){exp {2( — ) JA < foa(u4+m"" ), dr, >
Let us remark that the fact that Py(,,«-1) is random does not really’' matter for establishing ‘

the last inequality since

- 4
|z(s) = z(0) ) .
—_— < =1 Ve>0.
lim inf, Py (05:‘;. (ayr =)0 : :
Next for any M > 0,6 >/0 ' : ;

B4

P Primn-3) Shp "'"]—/ a(z(u))du — A (3 - —1—) I >6| > e~ MMmT) <
Lc,<1|m” Ja ‘ m )

) m®a
,,MA(m')p( sup —1-/ a(z(u))du-A(s—-!-)k 25) :
Aot M Jmas ™

By Proposition 2.2.7 a) the last term is bounded by e 2™} if n is large enough. It

follows that P.a.s.,

¢

» l(m l) ’
— < a(2(U)) (& + M), fome(u b M) > du

. ) 1

li .-

"rln_‘solip A(mn) log PI("’I 1) ( m

-l 1) ~o0, YmelNm>1, VkelN, wherel,,,=2/ (3At—-1-)<‘ Au(ds),u(d})
k lllm. 2 m

From the proof of (2.15) and Lemma 2.2.3, we can conclude that

» W'. =1 > =1.

- P ( lnn inf =—— A(n‘i") log P(An|Fpe-1) > L ) 1
¢

Since 3" #M™") = 400 if @ < 1, we see that

n=2

E P(ZP(A.,lfm---)= +oo) =1

' ift, < 1.Now lim £, = |i*v}%. Therefore if |i*v|% < 1, one can find m; € IN such that
Ly tade o) s ‘

- 5UPmsm, fm < 1.

S !
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s

E)

D)

) By Proposition 2.2.9, (2.22) holds if [i*v[4 < 1, and we may conclude that (1.4) holds

true. ) o

(4

Proof of Corollary 2.1.3: Suppdse that a{z) = a,(x)A;, who\re Ay € ST.ay: RY — R
is measurable and 0 < ¢; € a(z) € ¢; < © Vr € .I.R; assume that (]l;) holds and:
let A E‘Rl be given. Let Pl» be the soll;tion of the martingale prot;lom for A, such
that Pi(z(0) = 0) = 1. Clearly (H,) is satisfied far A (in fact for any A € R). so the

conclusions of The(?rem 2.1.2 are valid. Since Af‘(L fol ay(z(u))du — A P.a.s., we have

‘ A ::-Alag, ay € (0,00) and {fot ay(z(u))du = a; P.as. Withont loss of generality we

may suppose that a; = 1. By Theorem 1.2.4, Py = PoS~! where §r(t) = z(Ty(r)), t >0

and Ty(z) = inf{s > O;fo" al(x(y )du > t}. If we succeed in proving

(nt) - I(r nt)

(2.23) ’ P( sup TSTOLE

0<t<1

> (1.0.) =0, Ve>0,

then the proof will be completed since P; = PoS~! and the conclusions of Theorem 2.1.2

are valid for P;. So let us prove (‘2.23). Since [T, — T,| < e3|t — 8|, Vs, } 0 for some

constant c3, and 7} is the continuous inverse of L: a(z(u))du, it follows from-the proof of °

Proposition 2.2.7b) that

> . P( lim sup
n—00<¢<1

&_tlzo)zl_ )
n . v

Set :

B(n,d) :.- { stip

0<t<1

z’;-'i-z‘ga}.nem,wo.

Then . e
P(B(n,6)10)=0 V& >0,
Thus if ~ .
A(n,f):{ sup z(nt) - z(Tw) (},

o<i<i| (nA(m))1/?
T P(A(n,¢)i.0.)= P(A(n,e)N B(n,8) 1i.0).

we have

29
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=

Now

A(nt)N B(n,6) c {' sup z(nt) — z(ns) >(}

bt 1/2
ogesiga (n/\(-n) (

if 0 < & < 2 and the last set is included in - R

.

{w(z2n0,6/2) > d(nA(n))"/?}.

a
~

-

1/2 )
Sinco'(%ﬁ—?) — /2 and {r,,/\/n/\(n is relatively compact in By, we see that

P{A(n.c)N B(n, b)zo )=0if 6 is smal. Hence P(A(n,¢) 10.) =0 Ve > 0. 0

Proof of Corollary 2.1.4: Suppose that (H,) holds and let A € R, be given. Since (1.3)

holds, (1.5) follows readily. Since K 4 is separable, we just have to ﬁrove

z(n)
a(n)

-y <ce¢ i.o.):l Ye > 0, Y y €D, where

(2.24) P(

D is a dense subset of KA./ and a(t) = (tA(t))'/2,t > 1. Let & € TR?\{0} be given.
Since (1) holds P (limg_.oo';f(: < a(z(u))8,8 > du =< A8.0 >) = 1. Suppose that
<’A0,0 >= 1, and set Ty = inf{s > O;fo' < a(z(u))d,6 > du > t},t > 0. As before,

> ¢ i.o.) =

0 Ve > 0. Let P, be the solution of the martingale problem for a;(z) = 1,z € IR

nglt—ﬂrstl
a(n)

it is easy to see that P (lim,_,, I‘L =1) =1, and ;(SUPOSISI

such that Py(z(0) = 0) = 1. 1t follows from Theorem 1.2.4. that P, = P o S~1. where

5z(t) =< 8,z(Ty(z)) >,z(-) € X. We already know that the conclusions of Theorem 2.1.2

are valid for P;. Therefore P, ( limoo sup < n U >= ]i'ul) =1 Vve Bf. Hepce |
Ty

a(n)

P( lim sup <

v >= lijv| < A8,0 >1/2,) =1 VveB;, V8cRY

where ifu(t) = [sAtv(ds).t € [0,1]. In particular

t
P (nli.mwsup <8, "\’( j("") = (2]t — s| < A8, >)'/2) =1 VoeRd s telol)

Note that [i*(8v)|4 = lijv| < A8,6 >'/?, .v8 € RY,v € Bj.
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b]
R
Next define a : Re% Sf,, (resp. A :IRI*T — St ) by (a(z.9)), = (a(z)),,.
1 <1,7 <d (resp. fi., = A.:,.] <i, 3 £d)(a(x,8))d+1.d41 = 1, (a(z,3)),; = 0 otherwise

L3

(resp. /id+l.d+1 =1 and :i,, = 0 otherwise), where r € IRd,y € IR.

Clearly the martingale problem for‘a is well-posed and if P is the solution such that
Py((2(0),y(0)) = 0) = 1,

- then P, = P & Py. the product measure; moreover (/) holds and (1.3) holds with A’ ;.

Therefore

P ( Iim sup < M.(BU‘H) >= IJ‘(O"»N)IA) =1

n—00 a(n)
for every v.u € By.0 € R?, where 37(8v,p) = (17(8v).1jp) and {7(6v. )|% = liv(fu )% +°

la7u|?. The hypotheses of Lemma 2.2.2 are verified so we have

¥ (Jirl;infl]umyn) — 15 (Ov )12 (Br ) 4l = 0) = 1.

n(n:)
Hence .
P (lin‘ln_.minfﬂﬁ - (I|Iul7+‘l.l%:)l/)lf.)’”7 || = 0) =1 V8 e‘[Rd~ LV € B;.
In particular, t .
P(h’mn_.minf g(L',?,-— <—;-;§L;?7, :o) YA€ [0,1],0 € IRY, 8 # 0,
proving (2.2.4).‘ o]

Remark: Using\the same technique as above, Duncan [6] proved in an elementary way

-—

some laws of the iterated logarithm for Wiener processes in function spaces.
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‘CHAPTER THREF

2

Applications to diffusion processes with

random coefficients

~ \

3.0 Intraduction

.

Let (£.p) be a Polish space, {r,},en; a group of mappings from £ onto £ such that
(¢,x) — 7.€is measurable and r;4, = 7.7, a probability measure on £ which is invariant
and ergodic with respect to {7r},cra ie. por;! = pu ¥z e RY and if T.A = A Vr €
R4, A € B(£), then u(A) = 0or 1. Then we call § = ((£,p), B(E) {rr:z€ R} ,u) a

dynamical system.

In what follows we consider three different types of dynamical systems § and three
classes of functions from IR? x £ into S} for which the martingale problem is well posed,

obtaining a}family of probability measures { P} cs.

We shall prove that (Hg) and () are satisfied u a.s.

©

3.1 Diffusion with random coefficients '

Let $ = ((£.p),B(E),{rz:z € R4} ,u) be a dynamical system. We will say that § is
. ‘ )
- of type [ if

1) (z,e) — e is Vcontinuo{xs
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ii) V compact A C £,limg |, Sup,ep SUP..eno.r) P(T €, Tye) =0, VR > 0.
. fe—~yl<s

iii) £ = support of u.

Remark: (iii) is not a restriction since 7, is a homeomorphism, so support (x) is a closed

invariant set of u-measure one.

We will say th;xt' S is of type Il if i) and iii) holds. Finally S is of type III if
& = Q1 x T4, where Ty is the d-dimensional torus, Q is a Polish space, {rx},ez4 is a grou;;
of ho£neomorphismes of R onto 2,744, = ¢ - 7), where we define 7o (w,u) = (Mr4yw. v +
T —[u+z])w € Que€ Ty, where [z} = ([x1],....[z4]) and [ - ] is the integer part, and
i = p; @ U, where y; is invariant and ergodic with respect to {r:k € Z9) and U4 is
the uniform probability measure on Ty4. Next let M; = {V : £ — S}.V is continuous
and A2 € < V(e)8.8 > < A6, (e.8) € £ x R? for some 0 < A < A < ).
My ={V=vWv:6— [R* is continuous, 0 < inf.gr vie) < fUP,eg v(r) < o, and

V, € S‘I} JMp = My,

Let § = ((£,p),B(€),{rz.2 € R4}, ) be a dynamical system of type i and let V € M,
be given, i=I, Il or HIL Set V(z,e) = V(r.e). i =T or I, V(- e)satisfies the hypotheses
of Theorem 1.2.2 so the martingale problem is well-posed; if i = I/], then it follows from

- L/
Theorem 1.2.4 that the martingfle problem is well-posed.

Let P; be the unique solution of t}le martingale problem for V(-, €) such that l’;(::((_)) =

z)=1,and P* = Pf,e€£.

-

LEMMA 3.1.1 There exists a unique probability measure g on £ such that 4 iggixli;/alont

tou(ieu € pand g € p) and.

/‘{e; P* (fliorgo%/o V(T,(.‘)C)du = E‘;(I)) = 1} =1

Vf € Cg(£). In particular, for almost every e € £,(Hy) and (H,) holds for 7 = P* and
A = E;(V). Moreover if V € M, (and § is of type I) then the Markov process 7., ¢ has
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jt*as an ergodic invariant measure and the corresponding probability transition q(t,e, de’)

) gi\ge‘n by q(t,e, A) = P¢(1yye € A),A'é B(£),t > 0,e € £, is Feller continuous.

f

Proof Suppose first that ‘S is of type I and V € M;. It follows from ‘Theorem 1.2.5 that

Peozx(t)'is equrva]ent to the Lebesque measure if { > 0; let p{e, 1, -) beits dens:ty We will

prove that e — P*¢ from £ into M(X) is continuous and (e, t) — plet, -) from & x (0, oo)

“into l‘(IRd)lsccmtmuous Let en—+eandt -—»te,,,eéa‘,'and i,,,tE(O oc),n > 1. By..

———

rhoorom 1.2.5 we only need to prove — - 5 /

o lim/ f(z)V(r&e,.’)d:c=/ f(z)V(rec)dz, Vf € CZ(IRY)
, neco fRd . Rd T "" -

(1.2) < V(- en) and V(-J¢) € HY (Mg, AR.6r9, VR >0
T \

Clearly (1.1) holds. By the definitiofi*of M;, there exists 0 <-A < A <.00 50 that Alg)? <

V(e)8,8 >< AlB|? V(elg) €& x IR" In particular it is valid for Txe,,,-r,,e z € RY. Next |

let 6p(r) = sﬁp ~sup  |V(1z€n) - IV(ryen)l,r > 0,R > 0. Since e — € r|V(r,e) -
. le=yi<r
e, yEB(O R)

(rye)l < érl|z - y|) whenever z, v € B(O B(0,R). Hence (1.2) holds nf l:m,_,o bp(r) =

0 YR > 0. Let K = {e,,},.>1 U {e} Then A is compact m £. It follows from the

’j-oﬁnltxon of 5; ( (u)) that 6R(r) — O asr | 0. Hence (1.2) ho]ds

&7 -

Let f € Cy(E). Suppose that (e,,,t,.) € £ x[D,00)— (e,t) € £ x [0,00).

<

, Then | [ f(eatenstnsdet = [ S(eate,tde'y <
£ £ -

v o NET UTeen) = 2 (f(rene))] <

(13)° B (S (reltmlen) - f (re(e)) + [ B (f(a(t)) - E* (Fa(0)))]

N e RN

" where [.(z)'z f(rze) € Cy(R?). Since Pt~ =3 P*, the la’st term of (1.3‘.)""g'oes iE){O as "

n — oo. Next set

An(r,R) = {II’(tn)ILS R}n{|z(t)| < R} N {l=z(tn) —z(t)l} <rr>0R>0 n>1. B
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Then lim, o lim sup,, _ o E** (| f(7z(en)€n) = f (Tx¢)€) M an(r.r)) = 0 for every R > Q since

“fis continuous and Sy Satisﬁes (ii). Next

-

(n T, R) Fc' (lf(Tz(z..)un)—' F{Te(€) [T (r. R)) <

2s‘up LGN PP (An(r, RY) &

4dsn i[(e Y (e; {—“———ﬂ—-—q——} 1 i
P Pl Zadit, =1 f TP T 24ar, £ 0 T 2Aa )

where e)&p;‘{ —*‘(;}\‘:‘"Ogc > 0. by Theofem 1:2.1. Hence

Yz e

hm llmhm supp(n r, R) =0
R—o% Tl ”n—s no . . _,’

‘prgvi'ng thab'q(t‘f de') is Feller continuous.» Next let P(A) = I”"’i/i —y).A€EBA)yE
IR" ﬁxed Then P 1:(0) = y) P"""(.’t( ) = 0)‘2 1;if 6, H(‘i‘,‘?{‘ € Fp,and t > s > 0, we

N
7

BT B _ 1 { , -
£P {€<e.zm W < (\rj.u).fl),ﬂfvbdu“}

‘ o 1 [ Sy
R O

Since V(y + ztu)e) = V(z(u), 7ye), we see that .

o

l . N . L N
exp{< 8,z(t)y—y> —-2‘-’/ < V(z{u},e)8,8 > (lu}
’ ; fa 0 o ’ ‘.,.\,w.

is P-inartir‘;ga}e, and it follows that P™v¢ = P; Y(y,¢) € IRI x £. Next if f € Cp(E), we

" “have .

Steaf(e) =, /E Fles )t + 5,e,d€') = B (Freqene) = £ (g (o))

From the a.l;ové‘cairfulatinngs,‘
ES (f(72(9€)) = E™* (Ftun(r,e)) = Sif(rye).

P SH—lf(e) = E° (Sif (rz'(\l)e)) = S:(St/f)(f) ie. :S'H-; =50 ‘S'-
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for every s, > 0. Therefore T, ¢e is a Markov process with state space £. The exis-
tence and uniqueness of & with the preécribed properties now follow from results of G.

Papanicolaou and S.R.S. Varadhan [10}. &

.
-—
-

Let us now suppose that S is of type I1 (1II) and V € M,/ (M;n). Then V(e) =

v(e)Vy, where V) € SF,v € Cy(€) and 0 < ¢ < w(e) < ca < 00 Ve ¢ £ for some

_constants ¢y, ¢z It follows from Theorem 1.2.4 that P¢ = Py o RZ!, where 1 = Wy, and

I{,.r,(t.) = z(T.(z(-))), where

»
°

T e(x(0)) = in-f{s > 0;/ 1/v(z(u),e)du > l} JA>0,c€ €.
. 0

Thus ¢ — P is measurable. Now define ji(A) = fA c/v(e)u(de). 'where 1; = [ 1/v(e)pu(de),

and A C B(£). LcL’f € Cp(€) be given. The.n

P (hm —/ f(r,(u)e )du = ;,(f) =1 |iff

(hm / f(rere., du = ;,,(f)) =.] iff

) (hm 1/t10~—(v) (reweltu [ (5)‘(é)u<de>) )

Lo Mragerdu - J(emde)

Sm(’00<c| <ve)<cg<oo VeES (1.3) holds if

. 1 “ ,

\

i

where g, = f/v and gy = 1/v Clearly 1 ye is a Markov process (under- Py} and u is an

mmnant measure. It follows from the deﬁnmon of § that for any f € Lz(dp)

/ firee)fle)plde) = ] <Ay (dA)
£-- R4 -

for some finite (positive) measure vy and v, {0} = (E,,(f"))z. Therefote

E, (E (f(r,(,,e)f(e))) = E, (/. dwc“"”’”u,(d;\)) =
| /R e HVANy(d3) — vy (0} = (BN
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proving tb u is also an ergodic probability measure for ¢, Thus

- - .
;4{(‘; Py (tl_x‘rgo;/o J(rz(uye)du = Eu(f)) = ,i} =

for every f € (p(£), which in turn proves that {1.3) holds fof almost every ¢ with respect

tou. 7 o

N
COROLLARY 3.1.2 Suppose that § = ((£.p).B(€). {rr:r € 1R"},;4) is a dynamical
‘. system of type I, 11 or HLIf A € S:’ and P = Wy then e is a reversible Markov

process with transition probability g(e,t, B} = P(r e € D). B € B(E), e € .4 > 0, and

'l

Jt is an invariant ergodic measure for the process.

>

-

Having proved that (H,) Tolds for Pfu as., the next question is: does (1) hold for

some A € R,y a.s.? We will try to answer this difficult question in Chapter Four.

¢

For the moment we just state:

LY

PROPOSITION 3.1.3: Let i be as in Lemma 3.1.1 and set A = EL(V). For a fixed
A€ R, let 8 = inf {0 >0 Jr'x' '—-.,i‘—)-dt < oo} .If 8y < o, then for any & > 0

(llmsup —l——log P (I—/ V(z(u),e)du - A| > b) <8y + ])M)) =
’ {0 A( ) 0 /

where

' t
p(6) = ‘lliﬂ'] ll:rlsogp:\-(l!—)(/ '(!-tl-/o Viz(u), du—'/1}>6>[1(dl):).

o4 ' <4

In particular if X€ R, and

. .
llzlls;up A( ) log (/ (l-—/ (u),f)du - Al > b) [A(dr)) = -

for every 6 > 0, then

(hm sup ——

o

Proof The proof is similar to the proof of Lemma 4.2.1.

logP' (I—/ V(z(u),e)du — A| > 6) = -, Vb >0) =
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CHAPTER FOUR

The Hypothesis /1 when P = P*

]

4.0 Introduction

Rl -
. r

We have established condition for the validity of L.I.L. and L.D.P. for a class of
diffusion processes. What we want to do in this chapter is to find conditions which

guarantee that the results we have proved in Chapters Two and Three hold “almost
I

surely” for dynamical systems of the three types we introduced earlier.

-

let § = (5.3(5),{T,;I‘E R}, u) be a dynamical system of type I, I or IlI, and
suppose that V : & — ST € M;, My or M;;;. Then the L.D.P. holds for P¢ whenever

t :
%/ V(z(u), e)du ~ E;,(V)l > 6)’-: ~0a,V6 > 0X€ R,
0 N

1
o = 3 E,l —1 P*
cely, ={ee x:nsup 0 og (

-

where P is the solution of the martingale problem for V(- ¢) and Pe(z(0) =0) = 1. As

we said before, we want to find conditions which guarantee that (G, ) = 1.

Y

Clearly we just Have to find those a’s € R for which

t .
(0.1) lim sup —1-10g P* ( l/ V(z(u),e)du — E,“(V)l > 6) <0 4 a.s.
t—oo (1) t Jo :

X . _
for every 6 > 0. For if (0.1) holds for some a € R, then i(G,,) = 1 whenever

lim; .o a(t}/A(t) = 00, A € R.

’

When 5 is of type I and V € M,, we will only study the case a(t) = t and £ compact.

This will be done in Section 1.
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When S is of type I or III, and V = (1/v)l;,v € Cy(€), ilelf_t'(f‘) > 0, (0.1) is
equivalent to

t
{0.2) \'“T_‘So‘:p —O%Sk)gP (l%/o v(z(u),e)du — Eu(v)l > 6) <0 u as

for every 6 > 0, where P is the standard Wiener measure starting from 0 at time {.

REMARK: For sake of simplicity we will not consider the case V' = (1/v)A, A € ST,

since 1t is similar to the case®4 = [;.

In Section 2, we study large deviations for T(Lt')'f(; V(z(u),e)du where r(-) is a d-
dimensional Wiener process and V € Cy(£). We obtain sufficient conditions on A, V, i in

\

order that ) \

. ¢ s
lim sup —1-- log P& pu -1-/ Viz(u),e)du— E (V)| >8] <0 Vé&>0.
t—oo  A(t) t Jo ,

* —

We then apply our results to function of the form V(z,w,u) = v(w([r + 1){)). {w,u) € QAxTy

and {w(k)}ieze areii.d.

4.1 The Case £ is compact.

Throughtout this section, (£,B(£), {r:;z E,iRd},u) is of type I and £ is compact.
Let V € M, be given, and let P{ be the solution of the martin};a]e problem for V{-,¢)"

starting from z at time 0. - l .

The mapping z(t) — 7y4€¢ = e, induces a Markov family of p.’m.’ﬁ §Qe}eer on
C([0,00); £) with transition probability ¢(t, e,de’) given by ¢(t,, A) = P* (1., € A) Ae
B(£),t>0.- e i

’

We know that the Markov process e; is Feller continuous and that there exists a
unique g € M(&) which is equiva.le;lt to 4 and.is ergodic and invariant for the process ¢,.

For every A E\B(S),e(-) € C([0,00),€),and t > 0 let

Ly L:,,«)(A)‘:%/o La(e(u))du.

39




Then (1.1) defines a measurable mapping from C({0,00);£) into M(£). L. is called-the

occupation time measure. Set Ry = Q.o Ly}, t >0,e€ £.

In a series of papers, M.D. Donsker and S.R.S. Varadhan studied L.D.P. for occupation
time measures of Markov processes with the Feller property. In particular, we can apply

.

their results of [4] to R,.. . AN

THEOREM 4.1.1: Let L be the generator for the Markov. process e; and let T be its
_domain; further let D* be the subset of D consisting of functions u with Jr€1£ u(e) > 0.
. - . e N

Then for every closed set K'°C £

e

(1.2) , lixlr—l.sol:,p %log Elsx]g R;,e((\') < - "12’1; I(v), where‘ ‘ .
Iv) = - inlL / %(e)u(de). In particular(l.i) holds for A" = {v € M(E);|E.(V) - EL(V)]| > &}
HE ’ - .

Proof: Let A € B(M(£)) be given. If u € D*, then Lufu € Cp(£), so
(1'3) sup R!_C(A) S C-tinl,e,‘ E . (-Luju) - sup EQ¢ {e—foi Lu/u(e.)da.}

Using Feynman-Kac formula, we get
. B 4

(14) u(e) = EQ( {u(e’)e_fo Lu/u(el)d'} 2 ]nfu(e)EQ‘ {e— fO Lu’/u(c.)d.} ]

Therefore (1.3) together with (1.4) yield ) B
(1.5) lim sup llog sup R; .(A) <*~ sup inf E,,(-—L‘u/u). C
. t—oo e€f vEA .

ueD+

-

-

Since M (€] is compact and v — E,(Lu/u) is continuous for u € D*, (1.2) follows Lemma
2,2.3.b). . ) . o]
. REMARK: If £ is not compact, (1.2) still holds for compact subset of M(£): but to
have (1.2) hold for closed sets in M(€) requires additional conditions on g(t,e,de’) and we
don’t believe that these conditions are satisfied in general. This is why. we have restrictéd

our attention to compact spaces.

&
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Since I : M(E) — [0,00] is lower semicontinuous, the infimum of F over every closed

set (= compact set) is attained. Since we want that I(v) >0 Vé >0,

" inf
. v Eu (V)= Eg (V)26
we just have to prove that I{(v)=0iff v = 4.
fLe\t\ S:f(e) = [ f(e')q(t,e,de’), 2 > 0,f € Co(€) and let S¢v be the unique p.m. on
£ satisfying [ fdSiv = E(Stf), f € Cs(€). We will say that v € A(E) is invariant iff
- Sv=v, Vi 2 0. Recall that j is invariant. co

LEMMA 4.1.2: I(v) = 0 iff v is invariant.

Prt;of: Suppose first that u is invariant and lef™ P+ be giwfon. By Jensen’s inequality

. &4 . - .
(1.6) -:—];Eg (i;i) (e)v(de) > -;-7(5, — Iog u)(e)v(de) =0, Vi > 0.
. g + 1 Siu o
Since u € D7, —t-log - {e) converges pointwise and boundedly to Lu/u(e) as t — 0.

Using (1.6) we get E,(Lu/u) >0 Vu € D*. Hence I(v) = 0. Next m;pposo that I{v) = 0.
\ﬁince S5:DY C D, we have by bounded convergence

(L7) "%E., '(log (%3)) = E, (L{S:u)/Scu) 2 0, Vt2>0,u€eD*.

It follows from (1.7) and Jensen's inequality that

(1.8) . log (/ u(e)S,'u(de)) > /logu{e)u(de), Vu e D¥,t > 0.

Since D is dense in Cp(£) under pointwise convergence, (1.8) holds for every u € Cy(£)

-

such that inf u(e) > 0. Hence
ecé

3

(1.9) | log (/exp(u(e))S,‘u(de)) > E (u), Vue Cu€),t > 0.

In term of entropy of p.m.’s, (1.9) means h}at h(v;S;v) =0 V¥t > 0 (Lemma 2.2.5). But

h(visv2) =0 iff iy = v, Therefo‘re Siv=v VL2>0, that is v is invariant. o’

COROLLARY 4.1.3: Suppose that A € R,limy_.o A(t)/t = 0. If i is the only invariant
p.m. for S;, then G, , = £. In particular if for every e € £, there exists t = t(e) > 0 such

that g(t,e,de') € i (or u), then 4 is the only invariant p.m. for S,.

41




&

Proof: A]l we have to prove is the last statement. So let e € £ be given and let { > 0 be

such that g(t,e, de ) € ji. Then

N Y A S o 1 ' 4’y = 'E-
lim —/‘ S.f(€)du = .l_l_’ngc/ (;/o Su.f(e )du) g(t,e,de’) = E;(f)

4

by the ergodic theorem, for every f € Cy(£). Clearly this implies that z is the only

invariant p.m. for 5,. o

A3

Example: Let f € Cy(IR?) be periodic with period u = (uj,- -+, uq), u, > 0. Further let

#y be the uniform p.m. on U = [0,u;] X - - - [0,uq]. *

B

L 3

If €& ={r.f=Fflz+-)z€ U} with the topology of uniform convergence, and u is
sthe pm. on & ixnduoéd by pyu , then (£,B(€),{rs;z € R4}, u) is a dynamical system of
type I, £ is compact and for every V € My, q(t,e,de') € 4 Vit > 0,e € £. Let us prove
the last assertion. Supposeo that A~ B(€) is such that i(A) = 0. Then a(A) = 0 =
[ q(t,e, A)j(de), Vi 50. }{e;lce for every t > 0,3z € U so that q(t,r,f,A)‘z 0. But for

everyye€ U and t > 0,

(1.10) qt. 7y fLA) = Pyl (Toqyayf € A) = P/ ( r(t)f6 A).

Next, we know that for every y € U, PJ o(z(t))~? is equivalent to Lebesgue measure (The-
orem 1.2.5). Since g(t,7-f,A) = 0, (1.10) and the last remark imply that qg(t, 7, f,A) =
‘ 0 VyeUie. g(t,e,A) =0 Ve € £. Therefore g(t,e,de') is abéolutely continuous with
respect to ji, and in fact, ¢(¢,e,de’) is equiva.k;ﬂlt to ji. Belore closing this section, let us

give another w;rxa'mple where 4 is the only invariant p.m. for S,.

A function f € Cy(IRY) is called almost periodic (a.p. for short) if {7, f = flz+ )z €
™) ha.s compact closure Ky with respect to the topology of uniform convergence. It 1s
easy to see that A’ has a structure of compact Abelian group compatible with its topology

" Therefore there exists a unique invariant (with respect to {r; : z € IR?}) p.m. p, on K/,
the so-called Haar measure. Since {7, f;z € IRY} is dense in Ky, puy is ergodic. If we set

£ = Ksp = py, then (£,B(E),{rz;z € R}, p) is of type I. -
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The next Propositon is a well-known property of a.p. functions.

PROPOSITION 4.1.4 Any a.p. function f can be uniformly approximated by trigono-

N n

metric polynomials, i.e. functions of the form p(z) = ag + Y. (axcos < r,ex > +bysin <
k=1

z,ck >) where ax, by € R%, ¢, € IR4\{0}, 1<k < n,nelN.

Moreover pis a.p. and fK' e(0)up(de) = ao.

\ S
LEMMA 4.1.5: Suppose f is a.p., arid let V € Co(£),V > 0, and A € ST be given. lf" -
S¢ is the semigroup corresponding to (1/V)A, then i is the only invariant p.m. for Sy,

where difd,(e) = V(e)/E.(V),e € £.

Proof: Set T{ = inf{s > 0; fo z(u),e)du > t}, ¢ > 0,e€ . For every Il € ("y(£).

. : Te '
_~/ S;”{ekh'Z,EM“ (-'/. inm-v (r“” )du).
t 0 t 0 s

Hence lim; .o 4 N fo S,H(e)ds =F,(H) Veck&, V{l € Co(&)if

t— oo ecf

t Py 8
(1.11) lim sup EW4 ((%/0 H(Ty(u€)du — E,,(ﬂ)) ) =0, € (,(£).

. &
Since H (7€) is a.p. and {7, f;z € IR} is dense in £, (1.11) holds true if for overy a.p. g

H 2 .
(1.12) lim sup E4 ((%/ g(z(u) + z)du —/ é(O)ug(dc)) ) =0. L
1=o0 reRd 0 K, .

By Proposition 4.1.4, we only need to prove (1.12) for trigonometric polynomicals. So let

plz)=ap+ Y axcos <z, > + 3. besin < z,¢x >, where ai, b, € IR, ¢y € M*\{0},1 <
k=1 k=1
k < m.

Then

sup FWa (( / plz(u) + :z:)du) - ) < 4/12 (lakl + 191) sup |p{z) - agl,t > 0.

z€R® < Acg, e > reR?

- Since A € §} and ¢ # 0, 1< k < n, we gsee that (1.12) holds for every trigonometric

polynomijal. Hence

{-—00

hm% SuH(e)du = Ex(f) Vee £, H € CyE),
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which implies that j isrunique. ' o

1.2 Large deviations for 1 fo V(z(u),e)du

Throughout this section, § = (£,B(£).{r;;z € IR?},u) is a dynamical system of type
IMor lII, V € C,(€) and P, stands i"or the standard Wien.er measure starting from L€ R¢

at time 0, P’ = F,.

We begin with a lemmma which is fundamental in what follows.

LEMMA 4.2.1: Suppose that a € R and f% 2 < no, V8 > 09,680 € [0,). Then

for every closed set F' C IR,

. ! 1 [ . -
limsup log P { - V(z(u),e)due F) < ;
. { a0 O(t) 4 0
(2.1) | |
8o + hm limsup —-log P® u | - V(z(u),e)du € F* M. a.s. -

where F* = {z € IR;|x - y| < é for some y € F},6 > 0.

, Proof: Let & > 0 and a be given and choose 1 <c < 1+ m";—” Then

t
(llm sup )log P( / V(z(u),e)du € F) > a) <
t—oc o 0
‘i sup L logP( /gl V(z(u),e)du € F) >a to.| <
eVt ent? a(t) 0‘ )

(P (:ﬂ/ V(z(u),e)du € F") > ¢o(c™)e :.o.) since
0 .

sup < 2(e - DIV},

(-S‘Scl#l

for every e € £ and V € Cy(£).

t c”®
l/ V(z(u),e)du — -l—'/ V(z{u),e)du
t 0 cn 0

Choose I; > lim sup,_, o, 347 log PRu (} f(; V(z(u),e)du € F’) Then for n large enough
-

(2.2) H (P (;1;/ V(I(U),C’)duE F&) > eaa(c')) < e-(a-l‘))a(c.)'
0
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~8a(t)
Next $"e92(¢") < o0 for some ¢ > | iff/ " dt < o0,8 > 0. Using Borel-Cantelli
1

n

Lemma and (2.2) we get u (lim SUP¢— oo 5175 108 P (} Jo Viatu).e)du € 1~-) < a) = 1, when

ever a > 8o + s, for some 6 > 0. Letting 6 | 0, we obtain (2.1). o

LEMMA 4.2.2: Let F be the spectral measure corresponding to V—E(V)ie. E,(V (s} (0))
EXL(V(0)) = fﬁd e'<MI>P(dA),z € RI. If J A=Y F(d)A) < oc for some 3 > 0, then

t Crg
(2.3)  lim sup — log P( 1/ Viz(u).e)du — E (v)] > a) < _min(2.d)
‘ t O ] f t 0 - 2

Proof: First of all, logt ¢ R, but max{l.logt) € ;R and since they are equal for t > ¢, we

will work with logt. Now

t
P@u( %—l V(r{u).e)du — E, (V)] > b)s
. 2 . .
—FP®“ l/t V(z(u),e)du — E (‘“)) = '—2 /‘/ / (‘3}\“}‘((1/\)([!1(13«'.
82 t Jo g 6212 Jo Jo Jme

If 3> 2. then —y—g—fo fo f“d '%"\PF(d/\)dudt < + / rlp»F(dA Hence

t
lim sup —— Iog log P ®p(‘1/0 V(.r(u),e)du—h'“(l')' 26) < -1,

t—00

6-0 log t 1 ’ :
/ " dt = 7 <oa V8 >0, (2.3) follows from Lemma 4.2.1.
o

Next suppose that 3 € (0,2). Then

3 B /2
sup8°e~ %" = (—) e #12 y > 0.

6>0 * u

- Fdhduds < 2 BB BEdA),
6%1,/ / /R, Ftdhduds < & 3132 = B/2) /' "

t
lim sup*—P@p( 1/ V(z(u),e)du — EM(V)I < 6) < -
ogt t Jo

t—o00 l

By Lemma 4.2.1 we conclude that (2.3) holds true.
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REMARK: Let /] = L*(du) with scalar product < f,g >= E,(fg), and let,

212

. e~
Tif(e) = /m Wf(rxe)dr. f€eH.

Clearly (T, f.9) ={(Tg.f),f.g € H and
(T;f-f)=/ e~ $51 Fy(dz).
Jaa

where F is the spectral measure corresponding to f € H. Therefore ¢; = 7.,)¢ is a
rexersible ergodic Markov process with invariant measure y; its infinitesimal generator L

is self-adjoint and

domain of (- L)"/? = D((-L)"/?*) = {f € 11;/1z|-5r,(dz) < x)

2

(see Corollary 3.2.1),

It follows from Theorem 1.1.5 that for any f € I’((—L)’/"') j: fom f(Tz(u)€)du sat-

isfies a functional central limit theorem relative to P ® u with limiting variance o° =

4 [1z|7? Fydr).

In paflicular if V' € Cy(E) satisfles the hypothesis of Lemma 4.2.2 with 3 > 2, then

tn ’
(7’;/ V(z(u),e)du — t/nE (V) t € [0.1])
0

converges weakly as n — o to the Wiener process W,z on C([0,1];IR), where

(72 :4/!1’]—21?\/_5_(‘/)(611‘).

We will now develop some tools to find upper bounds for P®pu (1; fol V(z(u),e)du € F)

J
-

where F is a closed subset of IR.

Our approach is based on the following observations: Suppose that D C R? is a

bounded domain (a domain is an open and connected nonempty set) and let

A3

Tp = inf{t > 0,z(t) € D}. :
. . A

1



~

Further let p(t,F) = P @ u(< V, Ly >€ F), where < \/ L, >= 1_['0 z(u)e)du and

|Al = [, dz, A € B(R?). Then

p(t.F)=Eu( / Pr(< VL, >€ F)d.‘r)
. (] , .
";LH(ID"/L)P‘I(<"LI >€ ['.T[))l)dl')

1
+ E, (ﬁ/ P (<V. Ly >e F,T) < t)d:r) .
4D

]

= (1) + (2) say.

If G is open, G C D) and Gl > 0.

- . .
.

‘ . |G |) .
- 2) P T <t d - = t .
, Hence ’ —
ot Fy< Bly ( / Po(< VL€ F.Tp > [)}11)'
on) G 7 (o) S
‘ a ! [ Pt < )0 ’ '
’ tielJg ==Y
“e Similarly
EPou (efo' V(r(u).e)du) IDIE ( / E. (efo‘ Vistu.eldu, ,) d@)
s G157y Jp e e
. SV ‘ -
+ . P, (Tp < t)dz. -
Gl fG D £t)

For “nice” domains D, we know the asymptotic be;haviour of P, ((Tp < t). We will now
study the behaviour of JpP:(<V,.L¢>€ F,Tp > t)dz To this end, suppose that V :

RY — IR is bounded and measurable.

For any 8 € R,

-

/ 1 " -~ . .
/ P; (?/ V(z(u))du20,TD>t) dz < *
(2.6) b -Jo
inf (e'”"/ E, (e f Viz(u)du, T > t) d:). L
A>0 . D y R
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Let C(‘,"’(D) = {f € C{,”(IR"), support (f) ¢ D} . For every f. € C§°(D), we define
9S(2) = (g L(2).- - 5 (2)) and Lo () = 1);; £ f(z). Further let H}(D) be the
corrIpletion of C§°( D) with respect to the norm || f||; = fD{fZ(:r)Id:r +3/ | f(z)%dz)'"* .
As usual, L% D) .= L*(D,dz) is the real l‘filbert space with scdlar product (f,g) =

®
i ID f(z)g(z)dz, f,g € L*(D) (since we will be dealing with sel‘f-adjoi‘nt operators, we need
only to consider real-valued functions). -
Next we. define the Dirichlet Laplacian &p = A to be the unique self-adjoint operator
on L¥(D) satisfying
oo (1) &f = Do f V] € C5°(D); ‘
[ “ =~
i © (i) domain of (=A)V/? = H}(D).
b .. . We will write D(D) to designate the domain of A.

- ‘We now state some properties of A. For more details, we refer the reader to [12].
e B
PROPOSITION 4.2.3 Let D be a bounded domain and let V : IRY — IR be bpunded

* and measurable. Then

- “a)"A,+cV is self-adjoint with domain D(A); .
' b) ¥f € L?(pa,e'(mvu(zf E. (f(:r(t))ej Viz(u))du, TDC> z) ,z€D; ,
) {f € DIDKISl € LIS)+ (VS f) < a} is compact in L% D), where I(f) =
(=&AL NfP = ([, f), and a € R; i
d) V¢ > 0,e8+Y) maps L2(D)into Co(D)andif f > 0 a.e.,f# Oon D, e“°+V>j(a
o 0 VzreD; o )
e) &+ V has a discrete spectrum {A; k _>_‘]}, where A1 > Ay > ... > Ax, and there
exists a anique f € Cb(D)nD(D),f(zi >0 Vze Dand (A+V)f=Afon D.
~ ) A= sup (VL£f)-I(f)= sup (Vf,f)—I(f), where M(D) = {f € D(D);|f| =
: JeEM(D) J€C(D)
1} and C(D) = Cg°(D) N M(D).

rd

" 1t follows from (2.6) and Praposition 4.2.3 that

1 1 [t
D] /DP, (-t-/o V(z(u))du 2"0,,TD > t) < exp (—tz:;\l;g(/\a - c(/\))) ,
where c(A) = cy(A) = sup MV, f)-I(f).
JEM(D)
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Using Proposition 4.2.3 and perturbation theory, we can see that ¢ is convex, finite ands
everywhere differentiable with derivative ¢'(A) = (V' fa, f1), where (A + AV)f, = c(A)f\.

and f) satisfies e) of Proposition 4.2.3.

If we let Jo(€) = sup,,o(A8 — c(A)),0 € IR, then

1{ fo), 8 < '(0)

(), §=c'(AA>0 ,
“m,\roo ](f,\), 9=1im,\7mr'()\):0‘\. < o0
+00, . >0,

(2.8) Jo(0) =

Next défine J,(6) = inf I(f)‘.'where inf I(f) = +.
e ses

LEMMA 4.2.4. " Jo = J;.
Proof: Clearly JI(O)T_>_ Jo(é) VY6 € IR and (2.8) yields
J1(8) < Jo(0). V8 € IR\{0..}.

If Jo(8 )= +0oc we are done. So suppose that Jy(8,.) < oo. By Proposition 1.2.3 ¢) one

can find Ay, 1 oo so that fo, — f,f € M(D),(Vf,f) = 0 and I(f) € Jo(8~) Hence

J1(0) < I(f) < Jo(0.,) which completes the proof. As)a by-product of ou.r proof we ‘gm

(2.9) J(z):= sup(Az — c(A)) = eill(fm j(f)
rER (lVl.l)'l‘

REMARK: It follows from Proposition 4.2.3 f) that J is a decreasing function of D).

Next, combining (2.7) - (2.9) we obtain

t
0

(2.10) —1—/ P, (1/ V(z(u))du € F,Tp > z) dz < 2e~t™leer J(T) 4 5
|D| Jp ¢ *

M
(Vve.0)er

and Ilg{y.ltz) = {D) I(f), F closed

We will now return io Ve CB(E)., J as (jeﬁned by (2.9) depends on z and e.

PROPOSITION 4.2.5 J is jointly measurable in z and ¢.
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Proof: Since .}(e,z) = sup(Azr —c(e, A)), weonly need to show that c is jointly measura?)le.
r€R . ¢

This will be done if we prove

(2.11) c(e,A) = lim log( 1 /E (e*fo' """‘""“";Toﬁz) dx).
o, E » |

Since -—/ ( V(r(u) €)de. Tp > t) dr < '€ we have

1 Y u.e))du
lunbup - log (”)1 / E, (e'\fo Vztue)d iTp > t) dr) < c(e,A).
t—xr

Next let f € C(I)) be given and setl r = sup f*(z) < oc. Then
I

L 1 Vit .oy 1 LDV
S22, W Db,(c Tp >t lD[r( 51

By Jensen’s inequality, (2.12) yields

(213)  liminf - log (“‘)|/ f,,( Jg viste. ’) dr) > (Voo ) = 1)) ‘

Since (2.13) holds for every f € C(D). and ¢(e,A) = sup MV.f, f)=I(f). (2.11) follows
- rec(p)

by Proposition 4.2.3 f). g o

The proof of the next lemma follows closely the proof of the last proposition, so we
omit it; L.A. Pastur used it to find the asymptotic behaviour of some Wiener integrals

G
(see [11]).

LEMMA 4.2.8 If f € C°(RY) set k(f) = [|f(y)|dy - suptf{ap)|. For every V € Cy(E)
and feC={f€ C0°°(IR");ff2(X)dx =1}, '

Ehes (exp (/t V(r(u),e)du)) > k(lj) exp(—tI{f))E, (exp ( /V(J: e)fz(:r)d:r)) ,1> 0.
0

‘We are now in a position to prove

LEMMA 4.2.7- f V € Cy(£),

\

. , lim 1logE"®“ (exp (/tV(z(u),e)du)) =
(2.14) tmoo t 0

3

supsup {a;u(Vof, f) = I(f) > a) > Q} .
sec ,
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Proof: From Lemma 4.2.6

Ilmmf logEP®“(exp (/ Vex(u) e)du)) >

hmmf—logE (exp(t((fo)—l(f =
K <
§u.p{a:u(\/¢f‘f -I(f)>a)>0} VfeC.

Next, using (2.5) we get

v il
EFP®n (exp (/ Vi(z{u), e)du)) II(D: (e"“("”) + Cl(‘l / Pr(Ty, <t)dr.
» 4 " . 1 e

If we take, D = B(0,n),G = B(0,6n),6 € (0,1) then cnle, 1)1 qup(\,j IRENIVD a.nd
- Jec

N,

letting n goes to infinity and then letting 8 1 1, we obtain

-EP@“ (exp (/tl’(x(u),e)du)) < E, (exp (z (sup(v,f.f) —‘1(”))) =
0 Jec
e}p{!(sup(vef,f)—l(f))} u o oa.s.
J€c :

since u is ergodic and sup(V, f, f) — I(f) is measurable and invariant under{r,;r € IR*}.
‘ f€ec

Therefore, to prove (2.14) we only need to show that

v (2.15) sup(Vo f. f) = 1(f) <supsup(a w((Vef. )= I{f)y>a)>0),n a.s.
e J€c

Set £ = supsup(a;u((V.f, f) - I(f) > a) > 0). Suppose first that S is of type II. Then for
Jec
every f € C,u(e;(Vef,f) »I(f) <€)= 1. Since g — (V. f, f) is continuous {e; (V. f, [) -
I(f) < €} is closed and has u measure 1. Hence it is equal to £ for every f € C,1.r.
SJUXC)SUP(VI SJ)=1(f) < SUPSUP(a p((Vef.f) = 1([) > a)>0).
€C e€
Next supposeé that § is ¢. type IIIl. Then £ = Q x Ty, p = py & U and r.(w,u) =
(Tiz4uw> T+ v — [z + u]). Since [V (r(w,u))f*(z)dz = [V(rqw,z - [z])[*(z - u)dz, we
have sup(V,,w)f, f)~1([f) = sup(Viu0)f, /)~ 1(f) = sup sup (Vi_,.., [, f) - 1([). Morcover
Jec Jec JeC veT,

p((w,0);(Viwy S, £) = 1(f) > a) > O for some f € C <=
pi(w;(Mun [, f) = I(f) > a) > O for some uE Tgand some
f éC < p1(w;(Vwo)fr f) > a) > 0for some f € C.
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) Hence
) supsup(a;u((Vef, f) - I(f) > a) > 0)
Jec

r;tégsw(a;m (Vwor s )= 1(f)>a)>0)=¢

4

As before, {w € Q,(V(w,0)f,[)=I{f)< {f}isa closed set of yy-measure ! forevery f € C,

which implies that

sup sup (‘/(u,O)fsf) - 1([) S (.
J€C w€Q

Therefore we have proved that (2.15) holds and

(2.36)  supsup(Vef, f) = I(f) = supsup(a;u((Ve £. f) = I(f) > a) > 0) o
. JEC €€ Je€

THEOREM 4.2.8

(2.17) hm sup%]ogp(t,F) < —sup inf I{f), F closed.

- fec
S 630 L ((ver nreFy>o0
7 - Iy

If S is of type ‘il orifd =1 (and S is of type Il or 11I), then

1 t
(2.18) liminf—l—logl‘(l/ V(z(u),e)du € 0) > - ing I(f) p a.s.,0 open
. t=oo t Jo / W((Ves 560150

Proof: Let O open be given. C§°(D) being dense in H}(D),

jhilp A= df, 1)
(Ve t.4)EO (Vef.0)EO

Since }IEII I(f) = J(e,O) is the limit when D 1 IRY of the measurable functions
(Va1.1)€0

,Gia(fm 1(f),d(e,O) is measurable; moreover J(7,¢,0) = ,!_(e,‘O) vz € R, e € €.
{Ves.1)ED

By ergodicity J(e,O) = cte pu a.s and it is not difficult to see that in fact J(e,O) =

}teug I(f), p a.s. With this identification, (2.17) can be proved the same way

w{(Vef.1)EO)>0

we proved (2.14). . .

Under our hypotheses, we have from [3]

1

‘ N . \
lilrninf%IogP (-t-] V(z(u),e)du € O) > —l(e,0), e€E,Oopen.
—oo 0 .
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Since J(e,0) = }lslg I(f) pn a.s. (2.18) follows. o

u((Ves.1)EO)>O

COROLLARY 4.2.9 Suppose that the dynamical system is of type Il or suppose that
d=1. Then

!
U (limsupllogP(l%/ V(z(u),e)du — E“(V)‘ > 6) <0 V6> o) is
0

t— oo ¢

equal to 0 or 1 é&cording as lim sup sup [(V.f.f) — EL(V)} is greater than or equal to 0,
. al0 f€Ca e€E. |

where C; = {f € C:I(f) < a},a> 0.

)

Moreover

¢(A) = supsup A(Ve f. f) - I([)
fec e

is differentiable at O iff
lim sup sup{(Vef, f) - E, (V)] =0
8l0 fec, e

Proof: Without loss of generality we may suppose that E,(}) = 0. It follows from Lemma

4.2.1 and Theorem 4.2.8 that

t
p{ lim sup-l-logP l/ V(z(u),e)du
t—oo 4 t Jo

26)<0 V6>0)=00r1

»

according as
[

=

in
1€
11

I(f) = Ja(8)

podal

- ow(l(Ye

is equal to O for some 8§ > 0 or J(é6) >0 Vé > 0.

1>4)>0
‘ e ra

Now if Jo(8) > a > 0, then u(|(Vef, f)] < 8)=1 Vf€C.. From the proofof Lemma

4.2.7 we conclude that sup sup‘I(V,f,f)I <&é>0. Hence J3(8) >0 Vb > 0 implies
fEC e€l

I{43<e
12.19) lim sup sup |(V.f, )1 <6, V6>0 y
10 sec, e
Clearly (2.19) implies that J3(6) >0 V6 > 0. ~ : ,
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To complete the proof, we just have to show

(2.20) l;ig EA)/A = 1..'?3 /sgcpa sgp(V.f,f) y

for if (2.20) holds, it also holds for —V. Thus

(2.21) lim &(=2)/(=2) = lim inf inf(Vef, f) “

Hence ¢ is differentiable at 0 iff (2.20) and (2.21) are equal, which in turn is equivalent to

(2.19).

Since ¢ is convex and é(0) = 0, ﬂ,\ﬂ | €. Therefore if ¢ > 0 is given, one can find A > 0

so that (Vo f, )< I(f)/A+€+e¢, Vfel,Yee&. Thus

(2.22) lim sup sup(V.f, f) < € +¢, Ve>O0.
ol0 secs e

R .
On the other hand, for every ¢ > 0.3fn € C,e, € & such that (V,_f., fn) — nl(fn)) >

£ — ¢ VYn. Hence I(f,) < ﬂ!ﬂ%l‘_-‘_l‘ and (V,_[ﬂ,fn) > € —¢. Thus

(2.23) l;m sup sup(V [ify>2€-¢ VYe>0. ~

. 0 sec, c€f
Therefore (2.20) follows from (2.22) and (2.23). o
REMARK:

1) Corollary 4.2.9 suggests that for “random systems” S (in opposition to deterministic
systems), the rate A(t) = ¢ gives rise to phase transition.

2) When £ = Ky, f . a.p., it is easy to see that ¢ is differentiable at 0.

We will now find sufficient conditions which guarantee that tlim sup I(l_ﬁlog p(t, F) <
— o0
0, Fclosed, E,(V)€e F°, A€ R.

To this end we only need to consider F' = [0,00),8 > E,(V). Since we want to use
(2.4) to get upper bounds, we see that D must increase with ¢; a natural candidate is

a(t)D = {a(t)z;z € D}.
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So let D be a bounded domain, and take G = B(z,r), where B(z,2r) C D.x €

D,r > 0. Then for any a > 0.
. /‘P(T < t)dz 1 P (T <t/’)<2d“'5f‘“
A a > = T I S (¢} < € [
oGl Jog P Gl Jo 7" .

Let

oL . 1 1 o 1
(2.24) —-A(D) = ént; lim sup -!-log (TG—t/( PA(1Tp < ?)dr) .

G Oopeh, gpe T

Then A(D) > 0 and ii' we set a(t) = (tA(1))1/2, we get fram (2.4):

t
llmsup—]ochgJu (1 / Viz(u),e)du > 0) <
0

(2.25) max(—-A(D), l|m sup )\( ) log E,, (¢=*")) .\whoro
N Jo = inf{I(f); ‘feM(o(t)D),(Vef‘f)Bo}-
Next let
- : . 1 A(t)
(2.26) I,(a,8.D)= -limsup —=logu(J < a a>0
t—oc ’\“) t ’
" Then for every m,n € IN,E, (e7t) € !
m ot k-1 k - A(t)m
‘ —_— —_— — fe > R
Zl Ep ( A )J E n n + F . vJX = ln
] ‘ = A(()ﬁ‘.....’.l ’\(t)k —a(r)m
5/2 (Jt < =) +eTMO%.
Hence -

1 ) m 1 mir~| k
——'l —tJ, < —— — . —_
l'ﬁi‘ip/\() og E, (e )__ma.x( 0 lsksn(b(k/nH-n))

m 1
.<.. max (_;1-1; - ;I;%(I,\(Q,B,D)-‘-a)) .

Letting m and n go to infinity, it follows from the above and (2.25) that

«

: i or P (o erda s o
(2.27) lflli.lfp»\(t) g ®“( / (z(u),e)du > )

~ sup min (A({)),;x;%(a + IA(G,o,D)))
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where the sup is taken over bounded domains.
The next step consists in studying u (J, < i&ﬂa) ,a>0.

4

Suppose that V : IRY — IR is measurable and let D-be a bounded domain. Then

. . >
IGIE{D) I({f)<a <= fseujgd(lf f,fy> 6, where

Vig)2e
Ko ={f € M(D)I(f) < a}.
et 0 < A1 < Az £ A3 € --- be the eigenvalues of ~-A = —Ap, and let fi,- -, fi.---
be the corresponding eigenvectors. Further let N(A) = {A; A € A}, 1 > 0 and P, =

projection on the subspace generated by { fi; Ax < A}.

Since
(VLS = Ve, )l STIVHASI+ 191 f - gD, fig € LA(D),

~

and

If = Paf? <I(f)/A; fe€DD),

we goét

sup (VL,f)28=  sup (VS f)260-2V]|
!EK¢ !EP.,,?(KQ)

Now P,;i3(K,) is isometrically isomorphic to a compact subset of the closed unit ball of

mN(./c’)_

For any m € IN, let n(¢,m) be the minimal numbgrs of closed balls of radius ¢ required

to cover the closed unit ball in IR™. Then ;l—,,— < n{e,m) < (Utii)m € > O,mé IN.

It follows that P,;a(K,.) can be covered by n(e, N(a/e?)) closed balls of 'ra.di.us’3£
with centers in A'g; since C$°(D) is dense in }1(}(D), we see that for any a’ > a one.cgﬁ
find - “

fio- - SaeNGageny)s fo € C(D) and I(f.) < @', 5o that

LY

>0 hax Vi f)>8- .
fsu:?.(vf’f)’ =-"1s-'sn(r:n.?r’(ccﬂ/e’n( o) 2 6 = 9ellV]

Note thfit the choice of {f;} does not depend on V.
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~
Since {Ax/a’} are the eigenvalues of —&(,p), We obtain:

LEMMA 4.2.10: Let D be a domain and let a(?) = (tA(t))!/2. Then

N(\(t)a/e?)
" (J, SQM) < (“_*ﬁ) inf  sup  ples(Vof.S) 20— 9V,

t ¢ a'>a fectaln)N)
H(f)ga"

a,e >0, €R, A€ R.

DEFINITION 4.2.11 We will say that a bounded set A C RY is contented if for any
« > 0, one find two sets of disjoint sets {/c}7_,{Jx}7,, where cath I, Jy is of the form

(a,b],UT'Jx C A C UV, and D |1 < e + > |Jul.
1 1

2
LEMMA 4.2.12 {Weyl’s Lemma). If D is a contented domain,

sim Ny = LD 1‘(‘”2

-1
= )il 3 ) . where I'(-) is the

- ' ' df2
gamma function. Moreover for any bounded domain D), N(A} < |D|A?/? (;:-}) .
[

Proof: Let D be a bounded domain, and let 0 < A} < A; < ---, be the eigenvalues of

~Ap. By Proposition 4.2.3.

e'80 f(z) = Ex (f(z(t)iTp > 1), f € L*(d),z € D.

~ .
Since P,(z(t) € A,TK\> t) < P,(z(t) € A}z € D,A C D,A € B(IR?), we sec that
.

e'to f(z) = Ip f(y)Pp(t,z,y)dy, and Pp(t,z,y) < (2—“1)7776—1'-5‘1-'_! I,y E Dt > 0.

. 4 ‘
N = S et LB
It follows that/o e " VdN(A) Zk:e /DPDU,J:,J:)d:z S [myire > 0.
Hence N(X) < |DIA2 (5)*/ x> 0.

d - : -
Next suppose that D = [](ax,bx),ax < bx. Then it is easy to see that the cigenvalues
1

d .
are {";—: S 73/(be — ai)dx 2 1}-
1 ‘ .

d
Thus limejo 192 [ e~**dN(A) = I] ('z@r) = 2

1
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If D is also contented, for any ¢ > 0, one can find disjoint opén intervals {I;};_, such

n
that >[It 2 | D]~ ¢, Jx C D,1 £k <n. Now
1

x
/ r”“dN(A):/ Pp(t,z,r)dr > Z Pp(t,z,.z)dz > Z P (t,z,2)dz.

0 Ik Tk

D 5
1Dl - ¢ Since the last inequality holds for

- ey [ PRy
I'herefore lnp“l)nfl '/0 dN(’\) < (2r )4/2 - ‘

every ¢ > 0 and

. > 19
. d/2 - \!d\ I

Im:lzupt fo (A) < (27 )d/') .

we get

) o8 g [ s = DL

(2.28) I;H)lt /o~ e dN(A) = (27 )i if D is contented

flence )
i MO _ DL (d+2 -
| NS ,\“'/2 (27r)°’/2 2

follows from (2.28) and Karamata’s Theorem. , o

DEFINITION 4.2.13 If D is bounded domain of IR%,a > 0,8 > E,(V),A € R.and
a(t) = (1A(1))/2? let L

7\(a,8,.D) = - limsup log sup (e (Vef, f)>6)
) t—oc A(L)d 1€€(a(1)D)
Hyyga 2

and let xy(a,0,D) =

adl? ; -1
max [ 0, sup (sup (ma 6 9Vl D) - |13/12(r(d+2)) 1og(2“+2") |
0<o< tfpd \a'>o ’ 2) 2 «

The next Theorem follows directly from LLemma 4.2.10 and Lemma 4.2.12, so we omit the

proof.’

THEOREM 4.2.14 Let D be contented domain of R? and let V'€ Cy(€) be given.
Further let I, be defined as in (2.26). | \

/

Hd=1, I.(a,0,D) 2> kir(a,6,D), a>0,0>E.V).

Ifd>1, Z.(a,8,D)= 400 whenever x3(a,0,D) >0, a>0,8>E, (V).
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COROLLARY 4.2.1'5 Suppose that the hypotheses of Theorem 4.2.14 are satisfied. If
d=1 ' . .
" limsup — A( ) log P® u (1 / Vi(z(u),e)du > 0) <
0

f e 00

-

" sup min (A(D),inf(a + K\(0,8.D))) . 8> EL(1).
D a>0

Ifd>1,

t—oo

limsupA(t)logP(Qp(l/ Viglu c)du)G)
0

°
- supmin{(A(D).sup(a > 0:x\(a.6.D) > 0)), 6°< E, (V).
D

where we define x\(0,8,D) = +00, 8> E (V).
~ Proof: All these results are consequences of (2.27) and Theorem 4.2.14. o
Combining Corollary 4.2.15 and Lemma 4.2.1, we obtain

COROLLARY 4.2.18 Suppose that A € R, [ gt < oc Vr > oand V' € (&l

Then

t— 20

p -
H (c;limsup T )logP( / V(z(u),e)du > 0) <0 V8> E},(V)) = ]
0

if for every 8 > E,{(V'), one can find a contented domain £ (which may depend on 8) such

that xx(a,6,D) > 0 for some a > 0. \

REMARK: If we apply Corollary 4.2.15 to A(t) = t, we get (2.17).

At this point, we would like to know if our method is good enough to determine a

critical rate, where a critical rate is defined as follows: A € R is:a critical rate if

t
lim sup T )logP (l—l-/ Viz(u),e)du — E (V)

t o0 lt Jo
> 0)

20)<() Vg > 0

and if Ixm ——(—jlogPQp(l /V(I e)du — E (V)

for some 8 > O whenever a € R and lim,—, A(t)/a(l) =

-

We believe that when d = 1, our method gives a critical rate (when it exista), but

when d > 1, our method may fail. For tl;e rest of the section we will study the following
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model of dynamital system of type III: we will take 2 = {w: Z¢ — IR} (with the product
topology } rew(-) = wik + -),k € Z? and u such that the r.v.'s w(k) are i.i.d; moreover we

will suppose that V(w, u) = v(w(0)),¥w € Q,u € Ty, where v € Cy(IR).

Since no topology will be involved in our calculations there is no loss of genera.llty if we
consider instead that (2.5, u) is a probability space, {€x}ieze.U are random variables
defined on Q, {€x}xez¢ are i.i.d. bounded and independent from {’ which is uniformly
distributed over {0, 1)?; we will also assume that F(&) = O‘E(Ez) = 1. where F will

denote expectation with respect to P ¢ u. Finally set V(z) = {lr4y) T € R4, and & =

We begin with

PROPOSITION 4.2.17 Suppose that p= P(£ > 8) > 0,6 > 0 fixed. Then

- ! 1t d+2 1) /92
h‘u_a’:)rclf;mlogl’ :-;u(-t-'/o V(z(u))du > 8) > - (—-2—) xid/d+2 (log;) .

Proof Let m > be given. Then for every z € D,, = (-m.,m)q,

d

y i rk+m)_ _:%‘4}

Pe(Tp., > t) H S =€ fmlz),
Heance

l !
P u'(-{-/ V{z(u))du > 0) >
. o .
. 2

4 (.{1,] >8 VzeD,) ey / fm(z)dz,c m > 0.

- [o.1)4
Clearly

(€ > 6 V1€ Dp) 2 p(€ > 6™ o pamin?
d d d
2m (m+1) 2m .
d . dr = | — ” - — )~ — .
an /{0.”‘ frlz)dz ( - ) , (1 cos o ) ( - ) ,mluge

Taking m = 2¢'/9+2 g > 0, we get

- 1 1./t
l”ﬁ’nr td/d+2 log PO u ('{/ V(z(u))du > 0) > —;gg + a log )
2d/d+2
Since mf (—— + a%log ) (d; 2) x2d/d412 (log l) ’
P
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the proof is complete. . N a

-

2/d+2 ) L
REMARK: - (&) x2d/d+2 (log %) is not the best lower bound we can find (see

(5]). but it is sufficient for our purpose. After the last Proposition, we conjecture

Conjecture: 1%/9t2 is 3 critical rate. A

We will show below that our conjecture is true when d = 1.

For the moment. we will find upper bounds for u(tV' f, f) > §) 6 >0.f€C. To this end,
let $(A) = log E{¢*¢}, A € IR. Then

E(e)‘(vl'”) :/, E(exp(z A&/ fz(.t—u)dr))(lu
[0,1)4 [r]=k

kezd !

N
= exp P / filr - u)d.r)) fu
~[[O.l) (Z ( [z]=k ,' (

keZd ’

By Jensen’s inequality ¢ (A f[:] AR u)dz) < f(

ri=k

Af r — u))dr. Therefore

E(eMV1) < exp (/ FP(/\fz(z))dz) .

Notethat Jensen’s Inequality also gives

E(eMVINY 5

A Nz — u)dzr | du
(2.29) exp (/o~ k ( /[z]=kf (z — u) 1-) )
’ = Yy - d .
o ([ (3, e )

LEMMA 4.2.18 Let -
tp(0 inf sup (B0 - /<P(ﬁf2(z))dz) ,80>0.
1€C >0 i
Then ,
_ | o
(2.30) . (@) =a?? inf sup (/39 .-./ 6(‘3/’(:)):1:) ,8>0,a > 0.
REA TSN :

-
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e 1}

L}
" c

(2.31) ¥(8) > sup /9;9 —sup /@ (Bf(z)) d:r) 030 \ SQ ,
‘ g>0 1ec, . .

€ R

a3 - mgeup [ SR =lim s e @) -
. .
~(2.33) . ) sup.p((Vf,f) >60)< e~ Pwe) g >0,a >‘O.
o IE,C:\ N ‘ | ‘ o
Proof: For any f € C, set fo(z) = f(z/8)8%/2,8 > 0. Then fs € C and I(f3) = 1/6%I(f).
. \ é . /— )
Therefore ‘ " —

w(0) = jnf sup (90~ [ @ (3175513Y) dz)

= jinf sup (ﬂo - a?l? / & (/a2 f2(2)) d:c) = a%%4(8), 6> 0,a > 0.
. J€Ca g50 - ’

which proves (2.30).

Next let ¢(8) = supec, [ @ (ﬁ}z(z)) dz, 3 > 0. Clearly ¢(a?/2)/a%/? = sup .. _]'43 (f*(z)) dz.

.

Since ¢ is convex, and ¢(0) =.0 (2.32) follows easily. For every 8 > 0,8 > 0 and f € C;,

.4

(2.34) 08 — $(B) <88 - /@ (8f%*(z)) dz < gup (06 - /fb (Bf%(z)) dz) -
. >0
Therefore (2.31) Jollows by taking the sup on the left hand side of (2.34) and by taking

. \

\

the inf on the right hand side of (2.34).
S

To prove (2.33) note that for every f € Ca, a >£),0 >0,

B(VIS)2 0) < jul (e7) E (AVED)

< exp (— sup (ﬂﬂ —/ ¢ (ﬂf’(r)dx))) .-

. Thus (2.33) follows by taking the sup on both sides and by using (2.30). o

‘LEMMA 4.2.10  lim sup /@ (f*(z)) dz = o.
- . el0 sec. J. )
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-

Proof Set 8, = s;]p‘(a;';i(f > 8) > 0. By hypothesis 8, € (0, 0). Since 4’&)) =0.9'(0) =0

and ¢ is convex, ®(3)/f is increasing for 4 > 0 and lng](} ¢.(gd)/ﬁi =0, limge ®(4)/0 = 6,.
Hence l . §

&

.

/¢(f’(¢_))dz < ®(8)/8 + / @ (f(z)) dr < &)/ *Z‘l‘/f“"”‘”'

J3(r)28

if B,¢ > 0.and f € C; so it is sufficient to prove

(2.39) lim sup /f“‘(.t)d,r = 0 for sohe ¢ > 0. . (
N 010 jecd N B

Ifd=1and feC, fAz)= [ 2f(z)f(z)dz < (8a)'/%. Thus (2.35) holds with ¢ = 2.

-

When d > 1, (2.35) is a consequence of the next. Lemma. : o

-

. LEMMA '4.2.20 Suppose that f € C°(IR%),d > 1. Then for every p > 1.

a1 d/2 d/2
(/ |f(z)|'"*/““dz) s(ﬁ) oy ([ S -ar)
RY ' d R4 -

Proof Suppose that f),--- fg are positive and measurable functions.on IRY,f does not

depend on z,,1 < i< d and fnd—’ filz)dz < oo for every 1 < i < d.

£

m m w
Using the inequality | [] gx|r1(m) < [T l9kiLm(m) it is easy to see that
1 1

d . d 1/d-1
oy - 1/d~1 d> 1.
(2.36) ./nd Ill fi(z) dr$ Ill (/Ra—n f,(:r)‘alr) A5 1

. Neﬂxt for every f € C§°(RY) and p > 1,

)P < p /n 8.S NS (2P dz, where 0, = .

Applying (2.36) to fi(z) = [q 18, f(2)l|f(2)|*~' dz,, e find

. - 4 ., 1/d-1"
Jisretar < g T1( [ ostair-ren)
R4 , ¢ -

=]
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By Schwarz’s inequality

d

1/d=1
I(/, oSN d) <

1=1

d/2(d-1) d 1/2(d-1)
(/If(r)l"""’dr) (/ l@.f(;r)|2dr) .
_ -

=1
Since . [ m ~ \
1 < - t . m,-. IR
I:[]r|_(m‘;1z|) meIN,x, €

we obtain »

) d—1 d/2 ) d/? ’
( / If(r)l”d"‘"dr) < (E) 1) ( / |f(r)i2"’“’dz) , :
d ”

which is the desired in;:quality. o

THEOREM 4.2.21

lunsup Us]ogP@p(' / 20)<0 Ve > 0.

In particular't'/3 js a critical rate if d = 1.

Proof: It follows from (2.31) - (2.33) and Lemma 4.2.18-19 that

A()) 342 . .
7:(a,8,d) > a‘dﬁw(ﬂ) (llmmf _TE) Ya > 0,0 >0 and ¥(8)=0 < 0 =0.

.-

.When A(t) =2t'/3,k,(a,0,D) > 0if a is small enough, so the conglusion follows from

Corollary 4.2.15.
We have proyed in Propositioh 4.2.17 that when d = 1,
o 1 1 :
liminf —zlogP@u| - [ V(z(u))du >0) > —cg,cs € (0,00)
{—o0 tl/3 t 0
if 8 is small, 8 > 0. Hence z\(t) =i"3isa critical rate in dimension 1. o

» We conjectured that 14/4+2 ig a critical rate in dimension d. The next Proposition

supports our conjecture.
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PROPOSITION 4.2.11 For every € IR,
o 1 443 & ' vir(u)du
minf e £ (e' (£ Js vistuns )) > e(8).
where ¢(3) = sup (/Q (Bf*(z)) dr - 1(f)) .
sec ,
¢ is convex, ¢(0) = 0,c is differentiable at 0, and '(0) = 0.
Proof: For simplicity set A(t) = t%/9+2_ From Lemma 4.2.6

E (C“.”ﬁ J V(r(u))du) > k(lf)e_”mE (PMVIDY fe g,

where k(f) = sup, [f(y)|- [ |f(y)ldy. Using (2.29) we find

* At t
logE(e""lg/ V(I(u))du) >

0
(2.37)

—[ogk(f)—tl(f)-{r-/‘b (ﬂ/\(t)/[ , fz(.r—u)d:r) dr.
0, d

If we apply (2.37) to [ /sy, we get

t
log E (exp{’\-_(t’—)[i/‘ V(z(u))du}) >
0

(2.38) —log k(f) - A()I(f) .
¢\ 42 A(t)d+2/2 » ' \
+ (Tt)) . /(P (B__tdlz /m_n)df (z —u\‘/A(t,/t)du dr
since k(fg) = k(f) V6 > 0.

Now A(t) = (t//\(t))d/2 and A(t)“”ﬂ: t4/2. It follows from (2.38) that

. _
132.3?”1/;‘,”105:5 (exp{m-”d“/o V(q(u))du}) >
c(6) = sup ( [ #161*(2)yaz - ).

Jec

Clearly ¢ is convex and ¢(0) = 0. Set ¢ = limgg¢(8)/8 > 0. For any ¢ > 0, one can find
. | ( .

fa € C s0 that

/ ﬂi(fﬁ(z))d; -nl(fa)2n ( / ®( 1’/nf3.(z)) dz - 1(1,.)) >l
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Hence I(f,) — 0asn — 0o and {—¢ < limg o 5Up pec, J ®(f%(z))dz = 0 by Lemma 4.2.19.
Therefore limg,o ¢(8)/8 = 0. Since our proof is also valid for —V, we find limgo ¢(8)/8 =

0 = limg o c(3)/8.

Before closing this chapter, we will study weak convergence of 1/a, fom V(z(u))du,

where a, is a normalizing sequence.

THEOREM 4.2.23 Let {2, F, u) be a probability space, {€x}r¢z4 be i.i.d random vari-

ables with mean 0 and variance 1, U a random variable which is uniformly distributed
over [0,1)? = T, and independent of {£x; k € IR¢}. Further let P, be the Wiener measure
over X = C([0,00); R?) starting from z at time 0; we write B, to designate the canonical

Wiener process.

nt

Set V(z) = &40}, € IRY, Xa(t) = fo V(By)du,n € IN,t €[0,1]. Then under P®pu
a) Case d = 1: X,/n3/* = Z € C([0,1];IR) where Z has the following representation:

Z(t)

dimensional Wiener processes and £(-) is the local time of B i.e.

[ t(x)dZ(z) + f;° t(—z)dZy(x), where By,Zy,Z; are 3 independent I-

, ‘
/ 14(By)du = / t(z)dz, A € B(R),t > 0.
0 A

b) Cased=2: P®uo (Xn/\/plogn)—‘ = Wi,r on C([0,1];R)
) ' 4 ¢) Cased>3: P@uo(Xp/yn) ' = W,z on C([0,1];IR), where 0] = [g. ‘l;ﬂl'jd("z)dl
3 d
' and fq4(z) =[] (L’—g&ﬁ),zemd.
1=1 *
Proof: Let X(t) = f(; V(B.)du,t > 0, and let o%(t) = E (X?(1)), wl;ere E stands for the

. 4
expectation with respect to P ® u. Then

j t sa '
E(X(t)) =0 Vtando®(t) = 2/ / E(V(B,)V(B,))duds.
o Jo

E(V(z)V(y)) = E(V(O)V(y - 2)) = E (&objy-z44)) =

' / ljuj=0l|y ~z4u)=0du = ha{y - z) = / e'<'\"’">‘f¢(z)dz,
R4 Rd
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where
d
ha(z) =H(1-II-|)1{|: <1y, d 2> 1.

Therefore o(t) = / / / et <MB.=Bu>y f(MdMduds =
RS

2/0 /0 /merLi"“fd(,\)d,\duds.

Next lim—oo02(t)/t = +oo if d = 1,2 and limy—oy T = 02,03 = fyu ripfa( AN €
(0,00) when d > 3. Adapting Coroilary 3.1.3 and Theorem 1.1.5 in our setting we obtain

¢) (see the remark following Lemma 4.2.2).

Next a) follows from an adaptation of the results of H. Kesten and F. Spitzer [7], s0

we only indicate how to prove it.

Proof of a). By stationarity

(sr-rio ).
k+l-u 2
E (X,Z‘(It B sl)/n3/2 Z E n3/? (/ ("“-Jl(z)dr) <
ke€Z k~u

1
n3/2/ E{lzlt :|(I)) dz, .

-

where £,(-) is the local time of B.

From the scaling property of B, E (n~3/2£2,(z)) = &:E (E(z//n)),t > 0,z € R. Hence

E (((Xu(i) - Xa(8)) /n:’”) <E (/ﬂ(f,_,t(:c)dz) =t - sp’*E (/n lf(:)d:)

" It follows from Theorem 1.1.4 that {P® po (Xn/n:’/‘)_l Jn>1 is tight.

Next

k41 '
P@,u(sup/ ,,,(z+u)du>m )—-90 Yt € [0,1]).
k Jk

~
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It follows that forevery 0 =t <t} <---<t,<landa; - -,an, € IR:

HIHI;OE(exp{ Za_, - n(tj_, }/n3/4) =
(exp{—-—/ (Za,(t’g () - _,(z))}) dr)

which completes the proof.

Proof of b): Set a(t) = (tlogt)‘/z.t > 2, and let p,(k)l = fol lig, +u)=kds. Further
let 8(t) = 3 p?(k),t > 0. From now on we will write P and Y . instead of P ® yu and
k€22

Zkezz' ’
Assume

hm ol (t)/2%(t) =
and
Ay : lim E (6*(t)/a*(1)) = ;12- E (6%(1)) < t*a(1;, where

/
1 I :
@ is increasing and a(f) ~ Jx(logt)?, which means 1_131010 “Zé t))2 == Then

(2.39) {p c,()(ﬂ/a(n))"l}“>2 is tight (in C[0,1];IR))

and

n— oo

(240)  lim E(e'Za,(x;.(:,)— (alt- 1))/a(n)) D DA R
1=1 :

foranyO:!ogtl5~-§tmglanda,€m.

—

Clearly (2.39) and (2.40) are equivalent to b). So suppose that A, and Az hold. To

prove (2.39) we just have to prove

n— o0 0<Ci<tg
- 0313034

llfrghm sup P ( sup_ [ Xa(t) = Xn(s)] > 3\/-ca(n)) =0 Ve>0,
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2

A(n,(,ﬁ):{ P ka Pnl(L)vpvu(k)) <‘ ( )},"I:[i/b].
z sk

Let u > 0 be given and set £x,u = Exl{jeaicu}s Chu = &k — Exu. Since po(k) is increasing in

t for fixed k, ’ )
’ P(A(n,¢,6)) <

P(oiup z& Pﬂ(!+6](k)"Pna(k)) >62(12(1')) <

Z (Zfz pn(1+1)6(k) —pn_;b(k))z > (2“1(" )) .

w

By definition €} = £ , + ¢}, and E (fzm) < u?. Therefore

i

4u’
~ Setat(n)

2

P(A(n,¢,6)) < bera(n)

E(Bz(anv)) + 02(2716)1:’((;5.“). where

we have used the stationarity of §u 4 p,).. and C[L-HU,]‘,‘.
It follows from A; and A; that

llmhm sup P(A(n,e,8)) =

N 0O

limsup P(A(n,e,6)°) < 16u*6/e*n? + ;‘:_g.h‘(cg,u)

i —+ OO
for every § € [0,1] and u > 0.
Now suppose that 1 > 6 >t — s > 0. Then

P (Aln.,6)0 {[Xa(t) = Xnlo)] > VEca(m)}) <

k#;

P (Z Ekfj (pnt(k) - pna(k))(l’n((j) - Pru(j)) > £2a2(n)) <

—

k#;

2
;;141—("— (Z&f;(?m(k) Pm(k))(l’nz(])"ﬂm(]))) <

2

WE((”(nlt al)) ‘ ' S Cnand C, — 1/7%, by 4A,.




It follows from Theorem 1.1.4 that

limsup P (A(n,(,b) N { sup | Xn(8) = Xn(78) > ﬁ(a(n)}) < .I‘Téz
€

18Sa<(j+1)8

n—%

for some finite constant &'y (ind. from é and ¢). Combining the last inequality with

hmllmsup P(A(n,¢,6)° )— 0

n—og
we got (2.39).

We will now prove (2.40). Set ¥, = sup, pn(k) and ¢,(z) = 3-!- ‘L‘?'ILZ'. Clearly

P(Ya > €) < (ca(n JZE(pJ (k)) <
(ea(n))”™ ’]"/ /T) Q‘z(rz —z1)-- e, -1, 1( I] 1 )dzdt

where

o

Sn={0<t, <---<t, < n}.

Defing h(t,z) = fT qcby -—%l’t’iy, z € Tz,t > 0. By elementary calculus h(1,0) < h(t,z) <
h(t,z0) Vr € Ty, wherezo = (1,1). Therefore p(Yn > €) < (¢a(n))?j!n (fo h(tlzo)dt)j_l

Now h(t,zo) ~ 50 fo h(t, zo)dt ~ 5’;10&11. Choosing j = 3, we get lim, .o, P(Yn >

Z!rt

€)= 0 Ve > 0. Using this and p(k) < pa(k) VO <t < n,k € Z%, we can prove easily

that

lim |E (e'f‘s) - E(et 2 Z3“")| =0 where X, =

n—oo

Za, Xalty) = Xnlty-11) (k) = = o= 3o, (K = ot (),
=1 h

and 0 =tp <t <+ <tm £ 1,a, € IR are fixed. Therefore (2.40) will follow if we can

a(n)

prove that ‘

ZZ’(k)—.—Eaz(z, ti-1).

=1
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R

Suppose that ¢t > s > 0. By stationarity o?(t — s) = FE (( X(1) - _\-(,))?)‘ 0
E(X ipdk)ps(k)) = L{(a?(t)+0%(s)~ 0%t -s)) and it follows from 4; that
E(YX, pnt(K)pns(k)) ~ £a%(n). Thus |

a?(n)

1
0<E ( 2 (Pat, (k) = pat,, (K)) (pae, (k) - pm,_,(k))) -0
k

whenever j # £, and

m

, 1
;Z:(L)—-ﬁ ;Z(rj(l_, -1,_1)

=1

i

in probability since F ((?’%n_) Yok (paelk) - p,,,(k))l - i.(r - s))

tionarity, 0 < s < ¢ < 1, This completes the proofs of (2.29) and (2.40) assuming that A,

) — 0 by A, and sta.

and A, are verified.

Proof of Ay: Since o?(t) = 2 fo‘ fo h2(z)gu(z)dzduds, h; has compact support and ¢,(-) ~

Al

-2:—u uniformly on compacts, o%(t) ~ %logt follows easity.

Proof of A: Since §(t) does not depend n {£,} , let us suppose that £, is Gaussian with
mean 0 and variance 1. Then E(6%(1)) = LE(X4(1)) = 8(Cy(1) 4 C3(t) + C5(1)), where

Si={0<s <+ <5<t} and

Cl(t) = Z/ / q'lg—l](:r? - Il)qlg—lg(zﬂ + k - l:)(l'._.J(I‘ - Is)d—rd” ’
k 1 (TQ)‘ '

C'Z(t) = Z/ ,/(T o ‘Iag—n(zé + k ~ Il)Qu—u(IS -k - ?Iz)ih.—n(lq -k - I-;)dl‘d.'t
k ' 2

CS(t) = Z/ /’]‘) qlz—n(IZ + k- zl)qa;—lz(:3 - IZ)ql.—l;(I‘ - k - IS)d'rd"‘
k ) ( 2 4 .

Since
h(1,0) < h{t,z) < h(t,zp) t> 0,z € Ty,29 = (%,%) , we get

2 [ [t :
/ h(sy — 51,0)h(s4 — 83,0)ds < C(t) < 7 (/ h(d,-‘ro)dd)
S, ( : 0
and we can easily check that Ci(t) ~ 5-‘:1-(logt) and fot h(s,zg)ds ~ -};l,ogt.
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Using Cauchy-Schwarz inequality, we get

: 1/2°
Ca(t) £ / (Z/ Qa3 — k= Iz)dlzdl‘s) .
o Kk (Tl):

1/2
(Z/ Q::-a.(1'2+k-rl)dr|drz) .
r Z(T2)?

9

1/
Z/ N ¢ PR r;;)dz.d.ry)) ds.
=~ Jia)
1

N Ny + k — r)drdy = Hy)dy = ————. 1> 1.
owzk:/([npm(y+ r)drdy /Wq.(y)y et 12

By elementary calculations we obtain ((t) < tQC‘é for some constant ("} and similarly
1/2

(3(t) < C3t2dy(t), where da(t) = f<; (f(TzP qily - I)dzdy) ds ~ El;logt. Hence we

can conclude that £(6%(1)) ~ ;rly(tlog)2 and E(6%*(t)) < t*a(t) for some increasing a such

that a(t) ~ d(logt)? which proves A;. ‘ o

REMARK: 1° Since (2.39) and (2.40) depend only on A, and }12. and not on the
properties of Wiener process, and also A; and A, depend only on the behaviour of q,(-),
we see that we can replace {{x}iezs, U7 and By by {(x}kez. U’ = uniform on [0,1) and
r(t): symmetric Cauchy process, and we can easily prove that X'(t} = f(; ((z(n)+U)du
has the same limiting distribution as X (1) i.e. X'(nt)//nTogn converges toasome Wiener

process.

-

2°: Borodin [2] has proved a more general result than Theroem 4.2.23 where B, (resp

r(1)) is replaced by a symmetric random walk on Z? (resp ).
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