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ABSTRACT .

The mathematical ‘basis for the formu]atidn of the boundary e]eLgnLM\\
method is reviewed.i The method is thgn applied to certain elasticity \\,
problems such as_a disc wifh interna}-pressure and a circu]gr cavity
under internal Eressure in.an infinite medium. The results are compared

with known classical solutions.

-

¢

A combined boundary element - finite element method is then developed
to study the beha?iour of a beam on elastic half-space. The effect of
certafn parameters on the displacements of the beam and on’the

distribution of bending moments and shearing forces is studied.

It is noted that since the boundary element method involves

discretization of only the boundary, the time required to prepare input

data” for any analysis is'much less than would be required for a comparable

-

analysis by domain methods, e,g. the finite elements. The method also
provides a convenient way of modelling infinite domains without the

need for truncating it at an arbitrary distance away from the region of JY%

¢
interest. Another feature of the method is that the values of the £

function under consideration are calculated at only those internal . 4
points of the domain where they are needed.‘ Finﬁ]]&, the method can

be combined with the finite element method to deal with situations where
neither the boundary element method nor the finite element method is

appropriate by itself.
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CHAPTER 1
INTRODUCTION
1.1 General

4 In the past twenty years: various numerical techniqd%é have been
d;§:1oped for the solution of the differential or ingegral equations
encountered in many engipeg}ing problems of stress analysis. ‘These
numerical methods -can be categorized as domain or boundary Tethods,
depending on whether the numerical analysis involves a discretization

of the domain or of the boundary.

Domain type methods most cohmon]y used are fiﬁite element methods N
and the dinite difference methods. A brief description of these methods

follows.

The basic’Eoncept of the finite element method is the discretization
of the continuum into elements of finite size and the assumption of a
S~ displacenenfs or stresses distribution within each element expressed in
"terms of a set of unknown ﬁoda] values. The minimization of the global

$
potential energy {éﬁ]ds a set of linear algebraic equations whose

solution determines these unknown values. In regions where field
gradients are expected to change rapidly, either smaller elements or

" higher order elements are used [30.2].

The finite difference method replaces the govérning differential

equations by the corresponding difference equations. The solution proceeds
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by solving the resulting set of simultaneous equations, thereby
evaluating the unknown functions at specific internal and boundary
points. The number of equations involved ip the solution is proportional
to the number of nodes chosen for the approx;aétion of the function.

The choice of this number is governed by the fac% that the accuracy is

improved with the decrease in nodal spacing [24]J

Domain type methods give rise to a large nudLer of simu]taneous‘

equations because each node whether on the boundary or inside the domain‘
contributes one or more unknown values, and a sufficient number of such
nodes must be used for obtaining reasonably accurate results. However,

the resulting matrices are usually banded and contain many zero elements.
In some cases the domain methods prove to be inaccurate and/or unsuitable
technique® For example, problems involving infinite domains cannot be
dealt with efficiently by these methods. The finite e]emegt/method

also requires special care in the data preparation and errors are frequent.
On the other hand, complicated geometry cannot be dealt with easi]yt—isu

-

when the finite difference_method i%- used. These difficulties associated

AN
with domain type methods can be overcome in some situations by using the

o~ VW\\\$Boundary Element Method".

S

1.2 Boundary Element Method

The term “boundary eleménts" originated within the Civi]~Engineerin§
Department of Southampton University. It is used to indicate a method

whereby the external surface of a domain is divided into a series of



e nts over which the function under consideration can vary in

different ways, in much the same manner as it varies over the domain in
the finite element method [4]. The tractions and displacements over
the elements are represented in terms of unknown nodal values of these
quantities. For constant elements these nodes are taken to be in the
middle of each segment. As an alternative one can use linear elements
(i.e. elements for which the nodes are at the intersection of elements)
or curved elements such as quadratic and the cubic elements, as shown

in Figure 1.1.

-

When the body forces are taken into consideration the body volume
has to be divided into a series of internal cells as shown in Figure 2.7.
These cells resemble finite elements but are used only for the purpose
of evaluation of the volume integrals and do not introduce any internal

unknowns . Y

The boundary element methad offers the following advantages over the
domain type methods. Since the problem is tra;§formed from one over the
gomain to one over the boundary the dimension of- the problem is reduced
by one (e.g. in elasticity the solution of equation over the body is
replaced by the study of behaviour on the surface). This greatly
simplifies the development and Ring of computer pregrams especially in the ‘

specification of data and interpretation of results, and also reduces

the number of the system of simultaneous equations to be solved.

The boundary element method is also well suited to solve problems

with infinite domain such as those occuring in soil mechanics, hydraulics



and hydrodynamics, for which the classical "domain" methods are
unsuitable. Another impertant advantage of the boundary element method
is that the values of the functions under consideration are calculated

for internal points of the domain only where they are needed.

v

The boundary element also has a few disadvantages. Boundary element
matrices are usually fully populated. This may make the method
computationally less efficient than other methods in certain applications.
The boundary element method is also inefficient in handling problems

where the material is anisotropic or non-homogeneous.

The boundary element method can be combined with other methods
such as the finite element method to deal with situations where the
boundary element method are appropriate. This implies that the weakness
of one approach can be offset by the strengths of the other to form a
combination more powerful than either approach. This also applies to
the problem which involves sinfinite domain or non-homogeneous material

properties.

1.3 Review of Past Work

Historically, the integral methods are a development of the method
of Fredholm which consists of the application of potential theory in

conjunction with the theory of linear integral equations.

Fredholm was also the first to apply the method to elasticity [g ].
Affer this development, numerous publications on the application of Fredholm's

equations appeared, but today most of these are considered to be of no



interest, because only special problems were analysed, and the mathematical

treatment lacked rigor.

The early imp]ementatfb(? of the boundary element method by
Jaﬁson and Ponter [13] and Symm [25] were, inexplicably, not followed up
by further research until considerably later. Rizzo [22] and Cruse [ 7]
applied the method to problems of elasticity. These authors demonstrated
that the method could in many situations be more efficient than the finite
difference or finite element methods. They pointed out that by transforming
the partial differential equation to a boundary integral equation the

dimension of the problem was reduced by one.

Boissenot, Lachat and Watson [1 ] also applied the boundary element
method to plane elasticity problems. They defined the variation of
displacements and tractions by linear, quadratic or cubic shape functions.

The equations for unknown nodal displacements and tractions were constructed

LY

in non-dimensional form, to avoid possible numerical instability inherent
ih mixed systems. Brady and Bray [6 pplied the method.to determine

the stress distribution which would exist in a rock medium after
excavation of openings, and the displacements which would be introduced

by .excavation in the stressed medium. Cruse and Vanburen [8 ] applied the
ﬁjntegra] equation method to three dimensional analysis of a fractuwee
/specimen with an edge crack. In 1971, Syedlow and Cruse [26] presented

an é]astoplastic analysis for an isotropic compressible material subjected
to strain-hardening, but gave no numerjca] examples. In‘addition, they

did not present expressions for internal values of stress or strains,



which are of fundamental importance for the stepwise plasticity analysis.

Since then Mendelson{19] has presented analysis df the elastoplastic
problem, accompanied by numerical results, he also gives an expressign
for stress ahd strain for two and three dimensfonal problems, including
thermal strains. As pointed out by*Mukherjee E?UTT51 some of these
expressions are however, incorrect~due to the way in which Mendelson

considers the plain strain case.

J. C. F. Telles and C. A. Brebbia [27] have developed a complete
formulation for the boundary element method applied to two and three
dimensional plasticity probiems. The correct expressions for the internal

stresses are given including the derivatives of the singular integral.

The development WOrk on the Soundary element method was followed
by the use of a combination of the boundary element method with the
finite element mgthod. The idea of comb{:ihg both techniques can be
attributed to Wexiey [17],\who stqrted to use integral equation solutions-

to represent the unbounded field problem early in 1970.

- The first combination of the two methods for e\astostatics is
attributed to Osies[21], although he applied the methods to wave
propagﬁljon problems. A combination of th hods was used by Mei [18]
in 1975 who explained the procedure for combining the two methods by
using variational techniques. Brebbia and Georgiou [5] have applied
this technique on two models to i1lustrate how the combination can be

set up. To the author's knowledge this technique has not been applied



.

to study practical problems in soil-structure interaction, for example
to the case of a beam on elastic half-space. These problems have L

been studied in this thesis.

1.4 Scope of the Present Study

The main objectives of this thesis can be summarized as follows:

1. To review the mathematical basis and formulation of the boundary

element method; with particular reference to its application in
elastostatics.

2. To develop a céabuter program for the solution of two
dimensional elastostatic problems by the use of linear boundaiy element
method. Application of the program to the solution of certain problems.
in"elastostatics.

3. A review of the methods for the application of a combination
of boundary element methods and finite element methods.

4. Development of a procedure and a comeyter program to obtain
the behaviour of a beam on elastic ha]f—space; using a combination of

the boundary element methods and the finite element methods.

5. Parametric study of beams resting on half-space.

The basic formulation of the boundary element method and
significant amount of information on its applicgtion to elastostatic
problems éxist in the 1iteratqre. The author's contribution is 1n.the
study of the app]icétion of linear elements to certain problems 1ﬁ

elastostatics and comparison of the results obtained with these obtained



by constant boundary elements and the finite element method.

The above study forms tﬁe groundwork fof the gore important part
of this work namely the application of finite element-boundary element
methods to simple problems of soil-structure interaction. The study
on beams resting on half-space b{ the use of the above procedure is new

and demonstrates the feasibility of using the approach in such cases.

1.5 Format of the Thesis

The thesis has been divided into six chaptérs as follows:

Chapter 1 introduces the boundary element methods as a numerica]
technique and presents its advantagesﬂover the domain methods such as
the finite element and the finite- difference methods. The possible
disadvantages. of the method are also described. The Chapter then presents
the scope of the present study and the format of the thesis.

‘Chapter 2 deals with the mathematical basis of the formulation of
the boundary element method as applied to elasticity pfbb]ems. The
formulation is presented for both the constant and the linear

-~ -~

boundary elements.

Chapter 3 is devoted\ to the application of the boundary element
method in the solution of dhe following problems:
i) Finite domain problems
ji) Circular cavity under internal pressure in an infinite
 ‘medium.
~.
The results obtained for both the constant and the linear elemgnts

are compared with known classical solutions, The agreement of re5u1%s

. \

N

\



is found to be satisfactory.

Chapter 4, investigates two approaches for the combination of
the boundary element method with the finite element method. These
approacﬁes are: ' .

i)  Equivalent finite element approach

ii) Equivalent boundary element approach.

This investigation is followed by one application, which shows that
the results obtained by using the equivalent finite element approach are
in excellent agreement with the corresponding results obtained from the

boundary element method.

Chapter 5 is devoted to a study of the behaviour of beams on elastic
ha]f—épace. It starts by describing the solution of'beam problem by
using thd two approaches. A comparison between the results obtained
by the two approaches is found to be quite satisfactory. This is followed

by a parametric study of the beam behaviour in which the equivalent

W
finite elgyknt approach is used.

Chapter 6 contains a summary, conclusions of the predent study,

and recommendations for future work.
4 \
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CHAPTER 2

FORMULATION OF THE BOUNDARY ELEMENT METHOD

2.1 Introduction

The mathematical formulation of the bounq§ry element method is
developed in this chapter. The development presented here is based on
the following assumptions:

1. The material has a linear stress-strain relationship

2. The change in orientation of a body due to displacements is

negligible.

These assumptions lead to linear load-displacement relations and
also permit forming the equilibrium relations with reference to the

undeformed geometry.

E ]

Jwo types of formulationdﬁave been presented here:

1. Constant element formulation

2. Linear element formulation

In the constant element formulation the traction and displacement )
are assumed to be constant over the element, while in the linear element

they are considered to vary linearly along the element.

2.2 Linear Theory of Elasticity

The state of stress at a point (Figure 2.1) is completely defined by

specifying six components. These can be grouped together in a stress

tensor of the following form:

»
\
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where:

Y21 T Y20 Y31 T Y9330 932 T 93

9
These stress components must satisfy the equilibrium equations throughout

3

the interior of the body,

90. .
-3§J»+ b =0, i=1,23 j=123 (2.1)
J

where:
Oij are the components of the stress tensor,
bi are the body forces.

Equation 2.1 has been written in the indicial notation. In this
notation (used throughout the remainder of this chapter) repeated
occurrence of an index implies summation over the entire range of that
jndex. Thus equation 2.1 means:

0 -
1) _ Coo
{ ] =1 ij + bi =0 |, 1 1,2,3

[ o B V%)

Using the indical notation defined above, the tractions boundary

conditions can be written as,

p; = Gij'nj =P o i=1,2,3 (2.2)

where:
p; are the tractions on the boundary,
"j are the direction cosines of outward normal t® the boundary and

the bar indicates a known quantity
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The state of strain at a point is defined by the following strain

tensor:
() Y
‘11 "2 t13
21 fee  t23
“31 %32 "33
where ;

21 T M12 031 T 13 t32 T 23 e

The relations between the strain and the displacements can be

expressed as follows: ‘
) aui du .
i 7 3xX; ) 3X; ), = 1,2,3 j=1,2,3 (2.3)

The relationship between stress and strainis given by

%3 7 Bigke” ke KT L3 0= 1203 (2.4)

where coefficients Eijkz depend on material properties and are called

- rigidity coefficients.

-

It should be noted that Equation 2.4 has also been written in the
indicial form and implies summation over k and & for each set of values

of i and j.
There are 21 material constants for an elastic material.

The number of independent constants is reduced when the material
s tructure has\one or more planes of symmetry. If the material has three

A

orthogonal planes of symmetry it is said to be orthotropic, and the number

S
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-~
of independent constants reduces to 9. An isotropic material has only
two independent constants (Young's modulus and Poisson's ratio). - -

2.3 Basic Relationships

Referring to Figure 2.2 the boundary conditions of any problem can
be divided into two types: .

a) boundary on which displacements are prescribed, such as
<
b) boundary on which tractions are prescribed, such as p = p‘nn”rz

The total boundary is I = r] + rZ

Having defined the boundary conditions, the principle of virtual

displacements for a linearly elastic paterial can be written as:

](o . . +b.) U ds = .[ {p: - p:) uf dr (2.5)
Q 13,J i i r i i i )
2
where: -
( ).J=§‘g;l
J

+*
u, are the virtual displacements satisfying the homogeneous boundary

conditions,

1 .

SHE and bi are defined as in Equation 2.1 and Py and 51 are defined as in

Equation 2.2. ) .

o
*
If uy is interpreted as a weighting function which does ﬁotfr/,ﬂ‘J/ﬁ

) ]

/
L
~y
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identically satisfy the boundary conditions on F],'Equation 2.5

becomes:

* . - * - *
[(Gij,j +b,) uy da = j.(pi =Py uy dT o+ .[(u. - uy) py o di

1 1
Q r r .
2 ] +¥ (2.6)

* . *
% ”j are the surface tractions corresponding to the u,
system of displacements.

*
where Py =

©

Integration by parts of the left hand side of Equation 2.6 gives

L

*

O. . . N t . . O<.. N T+ .U

Q 19\] . v
(2.7)
* * M : * *
él(oij,j f bi) y; de = -‘foij UM da + j:pi .Uy dT o J’bi u; dn
2 Q
A
(2.8)
Now if the material properties are linear, the following equality
holds,
Joii et aa=fo e d - (2.9)
2 %13 S 9T %ty O SO
' x

Equation 2.8 therefore becomes:
* * * *
r{(oij,j+bi)ui dﬂz-fqij'u,i,j dn+fp1. u; dr o+ [bi‘ui da
) _Q 4 Q
. (2.10)
On integrating by parts tﬁe first integral on the right hand side,

Equafion 2.0 reduces to the following form
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// + j‘pi . u: dr‘t [ bi u: de

Thus the final form of the left hand side of Equation 2.6 is as below:

*

d * d * [ *
.. o0.. .da - .. u. dr + T '
uj O]J,J § fp1 u, I jp1 u1 ar + / bi U, ds

Substitution of this value in Equation 2.6 gives ~

* . * ; . * Es _ L* v
. 5[°ij,j .Uy da = f[ Py - Uy dr - ]' Py - U, dr + j'pi us dr - j‘pi us dr
> N T2 T2
- * * *
+ fu. p. dr - fu. p. dr - / b, u, do (2.11)
i1 171 i1 }
r r
1 1 Q
or
* - * - * ‘
f O.. . U, do = - j’ P: . uf dr - ]'p. u, dr + _[ u, p. dr
1J,J 1 T 1 1 r 1 r i P4
2 1 1
! ]
v fu phar - Jo. .o (2.12) ’
. i i i 3
1‘2 Q i

2.4 Fundamental Solution

*
So far nothing has been stated about the form of weighting function u .

If. this function is appropriately chosen, the domain integral on the left
hand side of Equation 2.12 can be eliminated. The equation is then reduced

/
to a form involving integrals only on the boundary with the exception of
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the integral containing the known body forces. The reduced equation
can be solved numerically by the discretization of the boundary into

elements. This is the basis of the boundary element method.

*
The particular u function which converts the domain problem into

a boundary problem is called the fundamental solution.
¥
The fundamental solution should satisfy the following equation [3]

* P _

553, + Aj =0 (2.13)
where A; is the Dirac delta function and represents a unit load at the
internal point (P) in the 'j' direction. This type of solution will

produce for each direction 'j' the following equation:

T

p - *
uj + r{’ui P; dr +

juip:dr=[biu:d9+
2 Q

where u? represents the displacement, of (P) in the 'j' direction. 1In
general one can write for point (P):
P * _ * *
uj + j.ui P dr = ] Py U; dr + j’bi us da (2.15)
r T Q
where u: and p: are the fundamental solutions, i.e. the displacements and

tractions due to a concentrated unit load at point (p) in the di?ection»'j'.

Equatioﬁ 2.15 apb]ies for each of the three values of j. In its

general form it can therefore be written as .

P * - * *
ug + Ff ug Py dr = rf py ujy dr ¢ bei us; do (Z.16)
i=1,2,3
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* *
where pji and uj represent the tractions and displacements in the 'j'

i
direction due to a unit force in the 'j' direction. Equation 2.16 is

valid for the particular point (P) where such a force is applied.

The fundamental solution for a three-dimensional isotropic body for
the plain strain case is available in the 1itera;ure and is known as the
Kelvin solution [16]. The Kelvin solution represents the effect of a point
load applied at any point of an infinite space on other points in the same

* *
space. It is represented in Figure 2.3. The resultant uji and pji values

are given by known formula [3].

The fundamental solution for a two-dimensional plain strain case [3]
is given by
*

S 1 _8r  Ar
Ui = Ena(ioey LT w8y e - axc

J 1
R B 1L ar _ar
pji T 4 (T-v)r [an t ZV)Aji te axi ’ axj !
ar or
~ (]—Z\J){ a—x"‘ . n’i - -BT . nJ} ]

3 i
(2.17)

where
n is the normal to the surface of the body,
Aji is the Kronecker delta (Aji = 1.0 when j = i and = 0 when j # i),
r is the distance from the point of application of the load (P) to the

point under consideration (Q),
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ar 14

3 x. r

x'l

G shear modulus,

Y Poisson's ratio,

Nis nj direction cosines of outward normal n.

The case of plane stress can be handled through the use of an
effective Poisson's ratio given by v = T%;rand a modified value of the
Young's modulus given by £ = E(l-vz).

If we neglect the effect of body forces, Equation 2.16 for the two

dimensional case becomes:

*
o fui ph. dr = fp. uh. dr (2.18)
j=1,2

Equation 2.18 relates the value of the function under consideration
'u’ in the direction 'j' at point (P) to its values on the boundary of the
domain. It can be seen thq§ the integrations contained in Equation 2.18

are to be carried out onTy/bn the boundary of the domain.
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2.5 Boundary Element Discretization

In order to evaluate the integral contained in Equation 2.18 it is
assumed that the boundary of the>domain is divided into N boundary elements
as shown in Figure 2.5. The points where the unknown values are considered
are called 'nodes'. The position of the nodes differs according to the
type of the boundary elements used. For constant elements the nodes are
taken to be at the middle of each element (Figure 2.5a); for linear elements

they are taken to be at intersections of the adjacent elements (Figure 2.5b).

The essence of the boundary-integral technique is to allow the internal

point P to pass to an‘arbitrary surface point 'z' as shown in Figure 2.6,
yielding a set of integral equations which can be solved for the unknown

boundary tractions and displacements.

It should be noted that the fundamental solutions exhibit sinQularities
as (P) approaches (Q) (Figure 2.4), so that the resulting set of integral
equations are singular, and that the values of the integral in Equation 2.18

are discontinuous as (P) passes through surface.

Details of the boundary element procedure for the following two types

of elements are described next.

1. Constant Boundary Elements.

2. Linear Boundary Elements.
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2.5.1 Constant Boundary Element

In this solution, the boundary is approximated by a number of
straight elements, over which the tractions and displacements are
assumed to be constant. The nodal points to which the constant values of
traction and displacement apply are located at the center of each element.
Thus a boundary point can be assumed to lie on a flat portions of the
boundary rather than at colners as shown ig Figure 2.6a.

To deal with the singularity in Equation 2.18, the surface T is
divided into two parts as shown in Figure 2.6a, one part is denoted by s*

and is a small portion of the surface surrounding point (P). The remaining

S .
surface is denoted by r-s*. Now, =
limit P _ z .
Pz Uj = Uj Jj=1,2
and as shown in Appendix A
[
. L3 * -I' 3 Y * d \-
L T [, vy ey \
r J I Mo rls O\ (2.19)
i=1,2
also ///; ’
h'mitf * Timit *
p. u,., dr = " _[ p. u,. dr Jj=1,2
ez 71 TS s's0 is 1]

s
-
Substituting Equation®2.19 in Equation 2.18 and taking the limiting value

b

?[ i

as s* shrinks to zero.
* *
uj py; df = [ piufar 5122 (2.20)
Ty
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The integrals in the above equation can be broken down into sum of
the integrals over each element. Then since the tractions and displacements

have been assumed to be constant on the boundary elements, Equation 2.20

becomes,
= N N
1.2 J - J *
gub e ool [l ) dar )= e [l i) e )
J=1 . J=1 r
T J
J
j=1,2 (2.21)
. @
where: -
N is the number of boundary elements (total number of nodes),

’FJ denotes the surface of the jth boundary element,

ug and pg are the values of the displacements and tractions

respectively in the direction "i" at point "J",

z2=1,2, 3........... N boundary segments.e

The following notations are now introduced:

,ﬁ.i (J,2) = f p.s (J.2) dr ()

J Jji
T
*
G.. (9,2) = IU-- (J,2) dr (9)
ji r J1
J
_ .z
uj(z) = U \
u; () = u;)
- J
\] = ~ )
p; () = py : : (2.22)



By using these notations, Equation 2.21 can be written in the

following matrix form:

-

' 1 q
-~ ] ~
y ' ]
/4
y 1
CHo o (NGN) + 30F Jus (N)
| Ji 2_“4;1 J
r : I
655 (1.1) 655 (1,2) p;(1)
6 (2,1) Gji (2,2) p;(2)
6 (NN e, (N)
L _| i j 2.23
It should be noted that the submatrices in Equation 2.23 are defined as
follows:
‘ 1
- Hyy (1,1) Hy, (1,1) 5 0
[Hji .(1’])\;%]: 1 12 + |2
- Hor (11D Hyp (111) 0 3

: G,y (1,1) Gy, (1,1)
G,; (1,1) = 1" ( 12

J1 :
Gy (1.1) - 6y (1)
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‘ Pa 1)

Thus Equation 2.23 represents an algebraic system of 2N 1{near
simultaneous equations in 4N tractions and displacements (2N displacements
and 2N tractions). Before Equation 2.23 can be solved one must specify
half of the total number of components of tractions and displacements;

the other half then become the unknowns to be solved.

Therefore in summary, Equation 2.23 represents a set of 2N linear

simultaneous equations in 2N unknowns( tractions and displacements).

2.5.1.1 Solution Technique

Equation 2.23 can be put in the following form:

(z [1] + [Alyu) = [6](p). or

[Hltw) = [61(p) where [H] = % [1] + [H]

and [I] is the identity matrix. By denoting the known surface tractions
and displacements as {pB} and {uB}, respectively, and the unknown

surface tractions and displacement as {pA} and 0«#}, respectively, the

above equation can be represented as:
A B
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A rearrangement of the terms gives

uA B

p
rrh-ch AP [68-1%1 (8

Thus all the unknowns having been transferred to the left hand side

and one can write:

[B] {X} = (F} (2.28)
. A A
where (X} is the vector of unknown Ug and Pe -
Once the values of ug and p, on the boundary are known one can calculate

the value of displacements and stresses at any interior point by using

Equation 2.16 as follows:

P ~ * * *
u, = ./ Pe Yok dr + J' bk Yok dQ - J’ U Pop dr (2.25)

jar
2
v

and in the absence of body forces as

* j * * .
P rj’ T dr - Uy ) Pok dr . (2.26)

P . )
where u, is the displacement in the direction of '2' at the internal
point (P).

According to Hooke's Law, the stress tensor O3 at any interior
-

point (P) is given in terms of displacement by:

u ou. U
= ZG\) '_&_ _._1 __l
%15 T T-2v %ij ax, * @ (axj ¥ axi) (2.27)

Using expression 2.25 for u, and carrying out the indicated differentiation
‘ «

one obtains,
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* * *
P 2Gv 'dugk :)u“( au.k
st [0 ey e 8 ) P
T
* * ] *
2Gy Yok Uy U4y
/ 02y %45 ax 6 0o * e )1 by du
£ J i
* * *
ap ap, ap.
26y ik Pik k
) If G5y Ay Tl G (axj s ~=de1_ )} uy dr (2.28)

Now if the following definitions are used

* * *
U au . JU .
D, .. = -2ov , ek o ik o Tk
kij 1-2v iJ 9x IX . IX .
2 j i
- * * *

s -2y Pak o Pik o Pk ]
kij 1-2v iJ oM axj X,

Equation2.27 can be expressed as

ojy = rf Dkijﬁf( dr - r] Skij u, dr + Q]Dkij b, da (2.29)

When the body forces are absent Equation 2.29 reduces to
o4 " J Dkij Py dr - rj Skij u, dr (2.30)

For a two dimensional case it can be proved that

] ar_ LA O L
Deij = mprmoyr ((1-29) D4y oy 0k axy T P axg
ar ar ar
+ 25— = (2.31)
axi axj Bxk




2G ar
Sei; ° ———= { 2 — [(1-2v)
///_’_/kxg 4”“_\))FZ an
aroy or_ 9r. ar
* Ajk X . ) IX, AX. T Oax
i i
//’"
{
ar ar
+ b . X )+ (]-Zv) (2nk
i k
- (1-4v) nk Aij)
where the derivatives are taken on

2.5.1.2 Body Forces

If body forces such as gravity

Equation 2.20 becomes

where uf and pg are the nodal displacement and traction in direction i

in the element ‘J'.

27

Jr

ar
i oax, vlAhy X

J

A

dPyy  OT
AX. T aX

]1+2 v(ni
J k

(2.32)

the boundary (Figure 2.4).

or centrifugal forces are present

(2.33)

T

Jo carry out the integral over the domain it is

convenient to define internal cells. These cells are used only for the

numerical integration of the body force terms and should not be confused

with finite elements.
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If there are m of these cells (Figure 2.7) than by using Gaussian ( -
Quadrature one can write

* m £ *
_/ u. . bi die = v { & (u..b.) w_} A = Db (2.34)
4 J 5=1] p=

where wp are the weighting coefficients for the numerical integration
\

and AS is the area of the element under consideration. By using the same -

short notation as in Equation 2.22, Equation 2.33 becomes -
N N
1 2z J J z
=.us + 5 H.. u; = I Gay + b 2.35
25T gy T T R T 23

This equation relates the value of u at mid-node 'z' with the values of

u's and p's at all the nodes on the boundary, including 'z'. The whole
set of equations for the n boundary nodes can be expressed in matrix
form as

Hu = GP + B (2.36)
Reordering the equations in thg same way as explained at the beginning
of section 2.5.1.1, i.e. with the unknowns transferred to the left hand
side one obtains .

Ax = F + B (2.37)

®

where x is the vector of unknowns.




2.5.1.3 Numerical Solution of the Integral Equation

General analytic solutions to the integral Equations 2.16 a;e not
available and it is therefore necessary to solve the equations numerically.
The inteéral equations are reduced to algebraic equations by
discretizing the boundary data. For the constant element method it is
assumed that on each element of the boundary the traction and displacement
are constant. Also each bounggry element is denoted by its centroidal
point, z or J, depending on whether the point is fixed or variable with

A Y

respect to the integration.

When the-boundary data is discretized in this way, the descretized
form ig given by Equation 2.21. When numerical integration is carried

s
out by*a 4 point Gaussian Quadrature [3], Equation 2.21 becomes:

' N 4 N 4
¥ oz, * J . ;

’

1 k=1

where L =3Mpigﬁt assigned to an integration point, and
*
(p*)k, (u )k are the values of the functions at the integration
point

When 'z' is concident with 'J' the following results apply,

. i=1,2 j=1,2
Gji‘ruj1dr 1', J-’

<
The four elements of G can be arranged in the matrix form

3
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With the definitions shown in Figuref?.sa and 2.8b the element of

the G matrix are given by
"

6y = ——(—MR]_V [ (3-4v)(1-1nR) + . ]

r,r
G2 = 6y AR - Ty ?

2
R r2
« G = A7G(1-v) [ .(3-4v){(1-1nR) + Z;? ]

Ry

(2.38)

" Detailed derivation is given in Appendix B.

The matrix Hj7\is given by -

g



»
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2.5.2 Linear Boundary Element

In many situations a more accurate solution could be expected if
(rather than remaining constant) displacements and tractions were
assumed to vary linearly on a boundary element. The advantage of this
approach lies in the ability to model non-uniform boundary conditions

more accurately.

In linear elements,.values of traction and displacement are
assigned to nodes located at the intersection of the boundary ‘segments
rather than to their center points. Continuity of disp]ac;ment is
assured since two adjacent elements share one common node. One
difficulty becomes immediately apparent. Since the nodes now lie at
intersections between elements, the possibility exists for nodes to
occur at corners rather than on flat portions of the boundary. This means

that the constant in Equation 2.21 may be different from % .

Suppose the iqterna] point (P) approaches a corner point of included '
angle o as illustrated schematically in Figure 2.9a. The individual

terms of Equation 2.18 are then given by:

limit p _ 2 -
Prz U5 T Y Jhe

Timit * z , limit * .
P>z fu1 . pji dr = - Cji u; + s*0 ]. u, p,. dr j=1,2
r
limit *
prz 2 Py - Ui 9T T se0 rlex Py Yy
' (2.39)
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The jump term is given in terms of the tensor Cji which is defined
as follows:

-0 3, - ofdpalats)

m

- - sinéZ,)sin(%)
‘12 2 ( 4n(1-v (2.40)

- a , cos{2y)sin(a)
Cpp = - 3 {1y ]

where o is the included angle of the corner and vy is the angle between

the bisector of o and the X3 coordinate axis as shown in Figure 2.9.

Detailed derivation of Equation 2.40 is given in Appendix C. If the
boundary is flat in the vicinity of a node Cij reduces to a diagonal
tensor with values of %—as in the case of a constant element and -cjiuf
becomes - %uj. Substitution of Equation 2.39 into Equation 2.19 yields

the boundary constraint equation for linear elements:

2 , * _ * _

The integral in the above can be broken down into sum of the integral

over each element (J):

Nseg. f
(655 - C5q) uf + / wl py; (9,2) dr() = z oY U (3,2) dr(v)
J=1 FJ

i=1,2 (2.42)

where rJ refers to the length of element 'y'. It will bg noted that ug

and pg terms have not been factored out of the integrals as they were in the
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case of Equation 2.21 for constant elements. Using the linear
representation of boundary displacement and traction given in Figure 2.10,

Equation 2.42 can be rewritten in the following form:

J)

N I4
A[ P (J,2) dr (9)} = = {[p;(B) - p,(A)] f uss (Jhz) ¢ (J) dr (J)
+ p;(A) f u;i (J,z) dr (J)} j=1,2 (2.43)
T

.

where ¢ has been defined in Figure 2.10.
Since the .reference is to values of displacement and traction at
the nodes, 1t is convenient to eliminate reference to segment 'J' before

putting Equat1on 2.43 in matrix form.

Referring to Figure 2.11, Equation 2.43 can be expanded and expressed

in the following form:

(a,: ~ C.y) u? + {[(ui(B) - ui(A)) j p;i . ¢ dr + ui(A) _f p;i dr
FBA r

F L) - w(B) S et e dr+u®) [ P s dr]
j i r Ji i r it
- mB MB

Ly (F) - uw)) [ Ty dn e gl fp ar
TMF

| - Upy(®) - p () [0l e ar v p ) [ Wl dr + (o (M)-p, (B)
i ™ 3 ron



[y e ar e por- [l ard o Ly (F) - py(H)
M

* *
Ji Wiy o dr o+ py (M J w9 ]
MFo MF

which reduces to

y NNode ,
*
(a,. - C..) TR u. (M) { '[ p.. (z,MB) ¢ dI - _[ pf. (z,MF) ¢ dr
bl ji i M= i r ji . ji
MB MF
NNode ’
* * - * i
+ f P (z,MF)dr} = = pi(M){ ] Ui (z,MB) ¢ dr _ f usj (z,MF)¢ dr
T M=1 v TuE
A
- x [
+ u,. (z,MF) dr : j=1,2 ‘
r J1
MF
. ¥
or to
NNode
2 f * : * ‘
(A.. - C..) us + ¢ u, (M) { P.. (z,MB)¢, dr + j’ p.. (z,MF)¢, dr
ji Ji T i r.é Ji 2 r Ji 1
MF
NNod
ode . .[ .
= I pi(M) { I U.]. (Z,MB)¢'2 dr + uj] (Z,MF)¢-I dr 2 .44
M=1 g ° T

whs)e NNode is the number of nodes
¢s =-% (1+€)
¢y = ]7 (1-£)

and ¢ = 2x/2 as shown in Figure 2.10.
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The following notétions are now introduced:
(7
\ .
B _ *
Hji(m,n) = rj’ Py (z,MB) 60 dr
B
F ' B *
HJ1 (m’n) - [ p‘]1 (29MF) ¢’] dr
"M
B N *
GJ-]- (myn) = Ff UJ-]' (z,M8) ¢2 dr
MB
F ) _ * :A'- - -
GJT (m,n) = FJ’F (uj'i (Z’MF) ¢] dr (2.45)

where superscripts F and B refer to the element preceeding and

following node M. » -

o
-

A

#e






