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ABSTRACT

A s&stematic design procedure for a slotline-type frequency divider
has been developed. Thg'principle,of operation of these devices is
based on the design of a subharmonic resonator which is 1501ated'from
the input “pump" circuit. The resonator and the input circuit interact

only via the nonlinear reactances of two. varactor diodes.

A Computed-Aided Design (CAD) technique is used in this thesis in
order to develop a suitable output circuit. The same program (named
COMPACT) 1s used for analysis and optimization of the final divider

circuit.

The effectiveness of the design -procedure is tested by fabricating
two frequency divider circuits designed in the 3.5-8.0 GHz band. A
"two-signal" method for measuring "pumped" input and output impedances.
is then employed. The experimental evaluation of the halver {including
both performance and "pumped" impedance measureménts) is in good

agreement with the theory.
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CHAPTER 1
INTRODUCTION

1.1 Introduction

Microwave frequenéy halvers are used to translate very wide micro-
wave bands to Tower frequencies where either analog or digital signal
manipulation can be easily accomplished. They generally operate on the
principle of converting a pump (input) frequency to an output
frequency equal to half the input frequency, using two Qaractor diodes

which compose a subharmonic resonator.

The puﬁp and subharmonic circuits are isolated from each other and
they interact only via the nonlinear reactances imposed by the two
varactor diodes. Hence, the th diodes constitute a balanced structure
where the generated subhqrmonic signal, which exists as the difference
between the varactor voltages, is free of even-order harmonics of fo'

When the varactor-pair is pumped at the input frequency fin the devices

are excited equally both in magnitude and phase. If the input power level
is small, then frequency division will occur only over a rather narrow
bandwidth in the vicinity of the small-signal subharmonic resonance
frequency. However, for input power levels Targer than a threshold level

the bandwidth will expand considerably mainly towards the lower frequencies

of operation.

L )



S ]

Some of the many interesting properties and characteristics of tﬁe
microwave frequency halvers aré Tisted below [1]: |

(a) Ability to function without the need of a local oscillator;

(b) Accurate frequency—diQision by two; _

(c) Ability to cover octave bandwidths provided power is above threshold.
Typical applications include [1]:

(a) Frequency translation of microwave signals;

(b) High-quality microwave signal ééneration for communications;

(c) Incréase the effective moduiation index of a PLL when

direct FM modulation of the VCO is used;
(d) Indirect amplification.

(e) Down conversion in frequency counters.

1.2 Approach-Objective

In this thesis 4-8GHz slotline type frequenby halvers using'MIC
circuitry are built and measured. For this purpgﬁe, the 1nput'and output
circuits must be designgd in such a way as to ge£ the best possible

—/—matéﬁing to the impedanc;s presented by the two varactors. Hence the
input circuit consists of microstrip stepped transformer sections (tapered
transformers can a]soﬁbe used) that are used to matchthe 500 external
world to the parallel-connected pﬁmped varactor impedances. The resonator
is of slotline tybe and is located at the bottom side of the substrate
between the two diodes, and is designed to tune out the imaginary part of

the small signal impedance of the two varactors which are effectively

connected in series at fo' .After the’ resonator an output circuit is

-~
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designed in order both to match the load to the 500 output and to transform
it from the balanced output of the slotline resonator to an unbalanced

one in order to be connected to a 50 load,

As can be seen (Section 2.2) the resonance is not symmefrica] with
respect to frequency. The larger part of bandwidth increase with
signal level occurs at frequencies below the small=signal resonance fo'
This means that the resonator should be designed so that the required

higher output fregquency of the halver occurs at or ngér'the smaﬁ]-signa]

resonance frequency.

The basic characteristics of a slotline type frequency halver are

the following: ]

(1) An increase of the_bapdwidth of operation can be achieved withﬁ
proper design of input and output circuits using computer-aided
design (CAD) methods.

(2) Experimentally, optimization of the performance can be obtained
by var&ing the bias vo]taqe of the two varactor diodes and/or .

_by varying the lengths or widths of the various elements of inpyt
and output circuits including the resonator itself.

(3) The resonator must be designed to be asig;ort as possible (5°-20°)’
in oftder to achieve wideband operation,

The aims of this thesis are:
(i) To use a CAD method to optimize the input and output matching

circuits.

L 4

(i) To design and measure various usable output circuits such as to

be both suitable matching c¢ircuits and to act as balanced-to-

-
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_unbalanced transitions.

(i11) To employ a large-signal impedance measurement method to
obtain Z1n and Zout of the device while it is actua]]y
operating as a frequency halver. In this way one can use the
measured large-signal impedances to make a new design that

could give a better performance. 1

RENVREY

1.3 Thesis Organization

The subsequent chapters of this thesis are arranged as follows:
‘In the second chapter a suitable background theory is given. The basic
structure, characteristics and equivalent circuits of the varactor diode

are given as well as a brief:presentation of the frequency halving theory.

Finally, design equations of microstrip and slotline are presented briefly.
. W .

In Chapter 3, yarious'kind§ of output circuits are considered and
their ability to match a frequency-variable load is calculated and measured,
As well as providing matching, these circuits have to present good balance-
to-unbalance transformation characteristics. In particular, two different

kinds of slotline-to-coax transitions‘are_designed using CAD methods and

their experimental performance is given,

Chapter 4 deals with the overall frequency divider (FD) design using
computer-aided-design methods. Two circuits are designed in this way,
using slotline:to-coplahar waveguﬁde (CPW) transitions in the output.

Their experimental performance is given as well.

R o T T VL e
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In Chapter 5 a two-signal large signal impedance measurement
method is used in order to extract {input and 6utput 1ﬁpedance data

from the dévices tested in Chapter 4.

Finally, in éhapter 6, the conclusions of this thesis are given
v

as well as suggestions for further work.

fa
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_devices:

“frequencies of the form Nwp + .

B

CHAPTER 2

BACKGROUND THEORY

2.1 Varactors

2.1.1 Introduction

Experience in the last few decades has shown that the varactor

diode is one of the most useful of:the many kinds of semiconductor diqges.

The potential of microwave devices based on the variable capaciiance

‘ pfﬁncip1e was first described by Uhlir [2], in 1958. Uhlir predicted

that these diodes would be useful in the Tollowing kinds of microwave

<@

1)  Frequency multipliers (Harmonic generators)

Here the varactor is excited at a frequency W and power is delivered

hto a load at frequéncy 2&0 or 3wo or in general Nwo_for some integer N.

Harmonic generators are useful in frequency control and comparison systems,

and for generation of moderate Amounts of microwave power [3].

{

2) Parametric mixers (FFequency converters)

~.This kind of app]icationbrequfres'the interaction of three or more

fréqhencies., If a large current at frequency op and a small current at

frequency ws'are Simu]taneohs]y put through a varactor, sidebands with

s are generated. At one of these frequencies,

powe} flows to a load [3].

<



3) Subharmonic generators (divide by 2,3,...,n circufts)

These are similar to the previous case, but here the output

. frequency is lower than w.. The device investigated in this thesis

s
belongs to this category.
4) Switches and limiters

5) Parametric Amplifiers

Here the concept of negative resistance can be used as an
amplifying mechanism.
The semiconductors principally used for manufacturing varactors are

Si and GaAs; epitaxy is usually used to minimize series resistance.

2.1.2 Varactor Characteristics

Modern practical varactors are.made from semiconductor diodes. A1l
p-n junctions exhibit nonlinear barrier capacitance. If this effect
"predominates" in some sense, then the junction can be used to advantage
as a varactor diode. We have various kinds of diodes depending on the
nature of fhe junction: the abrupt-junction d%ode, the graded-junction

diode and the hyperabrupt-junction diode.

In the abrupt-junction diode the doping changes abruptly (Figure 2.1(a))
from an excess of doners to an excess of acceptors whereas in the graded- -
junction diode the doping changes gradually from p-type-to n-type
(Figure 2.1(b)). In practice, many varactors are neither exactly abrupt
nor exactly graded. At zero volts and low forward bias voltages, varacfors
can be better approximated by the abrupt junction model than.by the graded
one. The theory of the abrupt p-n junction gives the following charge-
voltage relationship [4]:.
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Figure 2.1 (a) Charge Density in_an Abrupt Junction
(b) Doping Density of a-Graded Junction
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(¢5-Y) L
Q(V) = Agfeee —v— (2.1)
= ) '

Q = total charge in either half of deplection layer

A = cross-sectional area of the junction

e = electron charge

e = permittivity

4y = thermal equilibrium potential barrier at the p-n junction
V= total external voltage across the p-p junction

NA = acceptor concentration on the p side of‘an abrupt junction
Ns = donor concentration on the n side of an abrupt junction
This relationship is presented graphically in Figure 2.2(a). A‘1argg_ ”
signal capacitance or an "equivalent large signal" capacitance cannot
be well defined because the varactor is fundamentally a device with a
ne#linear V-Q characteristic which means that its capacitance can oﬁIy
be defined as a small signal quantity. At a given bias voltage Vo the

junction capacitance can be defined as follows:

Gl = - (2.2)
» vor
From (2.2) and (2.1):
y A 2ee 1 |
C.(V.) = "/ . 2.3
KRR s e e 23
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(b)

Figure 2.2 (a) Varactor Q-V Characteristic
(b) Vvaractor C-V Characteristic
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The value given usually by the manufacturers is the junction capacitance

at zero bias voltage:

Cj(O) = %\[1%37 . ;i : . (2.4)
Ny "Ny o .

Hence (2.3) can be written as follows: ¥

C
C.(V.) = —J(—o)— : (2.5)
3 0 V

1 -~

to

Equation (2.5) is plotted in Figure 2.2(b).
The small-signal quality factor of Cj(v) in parallel Qith Gj(v) is given

by: .
wCs(V) stored energy
Q = G V) dissipated energy/cycle A (2.6)

J

whére Gj(V) is the small signal conductance shown in Figure 2.3(c). For
the linearly graded junction the Cj(V) expression corresponding to (2.5)
is: )

C; (o)

¢ (V) = —ly—y \ (2.7)

( -'4,—0')

Generally, the Cj(V) law may be written:
C.(o0) c

cy(v) = (_]_-Lm i (2.8

%0

[

Usually the abrupt-junction’varactor is the.preferred device in

most practical applications as mgntféned above.
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CJ(V) in (2.5), (2.7) and (2.8) {s the voltage- 7“7hdent capacitance
associated with the dep!et1on layer. This is the dominant nonlinearity
under reverse bias cond“ltions (v<0). However, the diffusion capacitance

dominates under forward bias. Using (2.1) and (2.4) Q(V) can be expressed

. in terms of Cj(o) and V:

Q) = 2 C5(0)y ¢, “/%—V ‘ (2.9)

2.1.3 Varactor equivalent circuit

Various varactor equivalent circuits are shown in Figures 2.3(a),

14

(b), (c), and (d). The simplest useful one is that of Figure 2.3(d).

In each case the voltage-dependent junction capacitance 1sif;presented
s is the series resitance. Lp is package inductancefyhile Cp

is the package,capacitance C1 in Figure 2.3(b) represents a voltage-
invariant capacitance between the metal (usua]ly gold) top_contacf to

the semiconductor chip, and the n' substrate. §j(v) is a voltage-dependent
conductance used for forward bias conditions (n;n11near Junction ;onductance).

In Figure 2.4(a) a typical varactor structure is shown while in Figure 2.4(b)

one can see the physical origin of the parasitic circuit elements.
! Q

The most important feaiure of the varactor diode, after the nonlinear
junction capacitance,‘is the series resistance re which js physicai]y due
to the bulk resistance -of the semiconductor and to the resistance of the
leads. The series resistance depends on the depletien-layer thickness
(because it is a function of the integral of semiconductor bulk resistivity'
over the region outside the depletion layer). Referring to

Figure 2.3(c), the elements associated with the junction itself are:
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#-— Cj(V)
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(d)

Figure 2.3 (a), (b), (c) & (d) Various Varactor Equiva]ét Circuits
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Figure 2.4 (a) A Typical p*nn+ Vafactpr Structure
«(b) A Typical Packaged Varactor and the
Physical Origin of its Parasitic Elements
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f
Gj(v) or Rj(V) and Cj(V) and the impedance of the varactor diode
is: .
' r []+(mC .) ] + R. - juC,R,
Zy = rg +R||Jw‘]: A (2.10)
This expression gives an overall quality.factor of:
2
wC, R
qy = —L (2.1)
r [1+(mC R ) ] + R
If Rj(V)«rs (forward bias) then (2.11) gives:
QF = “’C (V)R (V) W . (2.12)
J

If rs<<Rj(V) (reverse bias) the quality factor of Cj(V) and r, in

series dominates:

Qp(V) = ZFT%fTVT (2.13)

e d

Another parametef usually quoted by manufacturers is the varactor
"cutoff frequency". It is defined as that frequency at which the

capacitance reactance'wcj(V) becomes equal to %
£ (V) & 5] ‘ (2.14)
¢ "'Zﬂrs j v :

Usually it is defined at 0 volts: i

1
folo) & 777 ;07 (2.15)

-
‘But frequently V=-6 volts is used as the voltage at which fc is defined:

£ (-6 ] . 2.16) -
) & 7t (2.76)
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A generally useful relation is:
folV) = fQe(V) | (2.17)

This is particularly usefifl for measurement purposes. The cutoff
frequency fC(V) as defined above is an indicator of varactor loss under
small-signal conditions. The large-signal cutoff frequency Fc defined

below is a measure of varactor loss under large-signal conditions [3]:

] max min :
Fo dgm (870 - 5,1 (2.18)
s .
S N
wherg‘sj(V) = E;TVT junction elastance
min _ 1
Sj = 63157-(e1astance‘at 0 volts)
g Max . 1 S T 1+ XEB (elastance at reverse breakdown)
J C.(-Vgp) = C. (o) ¢ N
' 'BR J 0
Using (2.18) one can get: >

v .
BR
Fo = f.(o0) [V] + o 1] - . (2.9)

Considering now the simplest equivalent circuit for reverse bias, (package

capacitance Cp is neglected) the small-signal impedance of the varactor '

) R ZI_%VT (2.20)

J

is:

The cutoff frequency is:

f.(V) = TF TV (2.21)‘
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The d1ode series resonance will occur at a frequency:
1

Using (2.21) and (2.22), (2.20) gives:

¢
Z f (V) .
\J . _C f .42
r 1-§——0- (?EETVT) ] " (2.23)

Equation (2.23) shows that the varactor impedance is capacitive at
frequencies below the self-resonant frequency fSR(V), but that it

becomes inductive at higher freguencies. It should be noted that the
min 1

-selection S, = E_T_T'used for the definition of large signal cutoff

j 0

J
frequency ?C is somewhat arbitrary. One might choose

mn _ 1 for Si ) or

5" =

J Cj .oV

g min_ 1 for GaAs
{+1V)

J CJ v

depending on the semiconductor material and the application. ‘Penfield

-

and Rafuse [3] expgain that the choice of the numerator of Fc as in

(2.18) is the best that could be chosen among other possible quantities

max

expressing various numerical combinations of S and Smin like:

: 1
] » etC N
Smax Smin

max
)

Another group of quantities used for varactor characterization are the

modulation ratios [3]: .
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T

S (2.24)
kK  gmax _ cmin ; .
! th ; "
where Sk represents the k™ Fourier coefficient 9f the series
- Jkw t .
s(e)= £ s e P (2.25)

S(t) is the pumped elastance supposing that the pumping proceeds
at frequehcy vy anﬁ its harmonics. The large-signal cutoff frequency
FC is associated with another useful concepf characterizing varactor

quality under pumped conditions. This is called the pumped figure
1 )

N

of merit and is equal to S1- re The game quantity (Fc) is
useful in describing the fundamental 1imits of ]a}ge-sidna1 devices,
such as harmonic mu]tjpliers, harmonic dividers and large signal

frequency converters and amplifiers. Another quantity that appears

in formulas for pump power and power-handling capabilities of

large-sjgnal varactor devices is the normalization power Pnorm [3]:
. 2 N )

- (VB+¢) . . .
pnorm = ———;;—— : | . ?(2.26)

Py

The higher the normalization power (for a given cutoff frequency)

_the higher the power levels that the varactor is inherently capaﬁﬁe

of handling but conversely, the higher the power ﬁecessary to pump

the varactor.
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2.2 Frequency Dividers [5]

2.2.1 Introduction

Like other nonlinear reactances, varactors have the peculiar
property that they can, when pumped, generate power not only at
harmonics of the pumping frequency but also at subharmonics and at
rational fractions of the pumping frequency. When generating
subharmonics as in the-frequency halver wh%%h is the device of
interest in this thesis, varactors behave 1ike oscillators. A
brief presentation of frequency halver principles and equations
follows in the remaindef of this part of Chapter 2;,which comes .

from the Ph.D. thesis by -Harrison [5].

2.2.2 General Presentation and Evolution of Frequency Dividers

Frequency division, or subharmonic generation, can be obtained
when a capacitance is a continuous (of discontinuous) function of
time Considering the circuit of Figure 2. 5(a) the equation

character1st1c of it is the following [5]:

-

2

(=

L+ 2'[1-X" cos 2vt] = 0 | < (2.27)

y

,rl

s

where Z(1) = Z'(1) e"kr/z, Z = charge q normalized to an arbitrary

a

constant charge, v = w/w W, 1/a, T = wt, k = —T%-§-=damping term.
(' = Vo' t,a'=1 - 1/8 K5 X' = X/a).
This equation can have harmonic, fundamental, or 1/2-order subharmonic

solutions for v less than 1/2, v = 1/2 or v = 1 ‘respectively. The

exact conditions for oscillation depend oﬁ the pumpﬁng amplitude X
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i; _ q
+ iy
L
R qf— C{t) = C°(1 + X cos 24t) ' ~
\ : (a)
' | |
.pT8 L |
;‘*‘p. (C) ’ (d)
5 T T
] X
4}
3
2k har?/nic subharmonic oscillation
1} /////////, }//////// .
1 ' 1 1
0 . .25 5. : 75 1.0 125 15
, B ~ (b) ' v

Figure 2.5 (a), (c) and (d) Circuits Used to Analyze the Initial
Forms of Frequency Dividers
(b) Frequency Stabitity Chart for a Frequency Divider
in the (v-X) Plane [5]
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as well as the frequency v. The canonical form of this equation

is Mathieu's differential equation (D.E.):

2

-j—x% + (a-2p cos 2x) Z = 0 (2.28)
ax
where p = »= . : (2.28a)

In general there are two kinds of solution for this D.E., stable
and unstable. From the point of view of subharmonic generation,
the solution of interest is one of the 2 independent unstab¥g

solutions [5]:

7 = " [sin(x-o) + oy COS (3x-¢) + b3 sin(3x-0)

* ag cos (5x-0) + by sin (5x-0) + ...] (2.29)

where u > 0 or :

(1) = *¥" [sin(vt-o) + a5 €os (3vr-0) + b3 sin (3vt-o)

+ ag cos (S5vt-0) + b5 sin (Svt-o0) + ... ] (2.30)
o is a parameter taking a va]ue*between 0 and -n/2 and can be
calculated in terms of a and p.

~ The important point is that the first term of the above series
represents a frequency équa] to half the forcing function. The
frequency stability chart for the parametric frequency divider in the
(v,X)-plane [5] is as in Figure 2.5(b). .The region of interest is
the uhstab]e shaded region denoted "subharmonic oscillation" where

the fundamental component of the solution is at half the input

* C.. Hayashi, "Nonlinear Oscillations in Physical Systems",
McGraw-Hi1l, 1964, p.91.




frequency and the amplitude of the oscillation grows without 1imit

as time increases.

In a frequency halver the capacitance varjation 1s achieved
by pumping one or more varactor diodes. Practical low frequency
(10-20MHz) halvers that have been built and measured [5], showed
considerable disagreement between their (v,X) diagrams and the
corresponding apbropriate solution of the Mathieu equation. It
was found that the resemblance is only qua]itative: Some points
of disagreement are listed below: |
(1) The boundaries of the curve "bend the wrong way".

(2) The measured results show a region of hysteresis within
which the subharmonic oscillations may or may not exist.
This hystereiis behaviour is not predicted by any
solution of Mathieu's D.E.

(3) In practice it was found thaf although the amplitude of
the subharmonic output does increase exponentially ‘
initially, it soon saturates at a well-defined level.
This saturation is not accounted for by the Mathieu D, E.
representation. A11 this m;Ehs that a d{fferent approach,
through the formulation and solution of appropriate
nonlinear D.E.s, is needed in order to obtain a |

satisfactory explanation of the observed phenomena.

Figure 2.5(c) shows a topology of a circuit that can be used
to analyze parametric up-converters and down-converters employing

nonlinear capacitive reactance. It is possible for a divide-by-two
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circuit to Be constructed using this copfiguration. The two
circuits, simply, have to be tuned to w and w/2 as 1ndicated:
However, in practical applications of frequency halvers, this kind
of tun}ng is undesirable for the following réasons:

(a) The bandwidth of operation will necessarily be small
because hfgh-Q tuned circuits are needed to isolate the input and
output frequencies and, as is well known, the bandwidth is inversely
proportional to the Q factor (bw=x1/Q)

(b) The high energy storage of such tuned circuits will
Timit the rate at which the frequency halver can respond to RF

pulses.

‘In- order to avoid this kind of problem one can remove the two
1inear capacitbrs (as indicated in Figure 2.5(d)) and consider that-
L and the nonlinear (NL) capacitor are tuned to w and that L, and

the NL capacitor are resonant at w/2.

Although some of the non-essential energy-storing elements
have now been removed, their elimination means that a large number
of unwanted harmonics will appear because the filtering is now poor.

Further reduction of the number of energy-storing elements, results

in the circuits of Figure 2.6(a), —

Figure 2.6(b)~shbhs the output voltage waveform of the second

circqit»in‘Figure 2.6(a) for Vp(t)=Vp sin wt. It can be seen that

the output contains a lot of undesired frequencies in addition to the

desired 1/2th subharmonic. The problem of obtaining an output
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Figure 2.6 gag Single Tuned Unbalanced Frequency Halving Circuits
b) Output Waveform of the Series Single Tuned Circuits [5]
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