Parallel Voronoi Diagrams for VLSI design

by

Ryan Taylor

A thesis submitted to
the Faculty of Graduate Studies and Research
in partial fulfillment of

the requirements for the degree of
MASTER OF COMPUTER SCIENCE
School of Computer Science
at

Carleton University

Ottawa, Ontario

January, 2006

(© Copyright by Ryan Taylor, 2006

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Library and
Archives Canada

Bibliothéque et
* Archives Canada
Direction du
Patrimoine de I'édition

Published Heritage
Branch

395 Wellington Street

395, rue Wellington
Ottawa ON K1A ON4

Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 0-494-13460-7
Our file Notre référence
ISBN: 0-494-13460-7
NOTICE: AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des theses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette these.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
qguelques formulaires secondaires
ont été enlevés de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abstract

The Vorénoi diagram and its variants are widely used and studied in Compu-
tational Geometry. In particular, the Hausdorff Voronoi diagram has interesting
applications in analysing the geometry of circuits in VLSI manufacturing. Due to
the large size of VLSI circuits, it is natural to study these problems in a parallel
setting.

The CGM parallel computing model has proven to be a useful model for the
design of practical parallel algorithms. We present a novel parallel CGM algorithm
to construct Hausdorff Voronoi diagrams. We also discuss an initial implementa-
tion of this algorithm. It turns out that our results present an improved sequential

algorithm for non-crossing input sets.

ii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgements

I am grateful for the encouragement and support of my parents, Don and
Sandra, my sister, Krista, and especially my fiancée, Laura. It has been because
of them that this thesis was even possible.

Also, T remain indebted to Dr. Frank Dehne and Dr. Anil Maheshwari for
their financial and academic support. Thanks are also due to the thesis committee

members for their valuable feedback.

i

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Contents

1 Introduction

1.1 Organization of Thesis

2 Computational Geometry and Parallel Computing Review
2.1 Voronoi Diagrams of Points
2.1.1 Overview
2.1.2 Definition and Properties.
2.1.3 Sweepline Algorithm
2.1.4 Divide and Conquer Algorithm
2.2 Parallel Computing o
221 Overview
222 PRAMModel
223 CGMModel
2.2.4 Analysing CGM Algorithms
2.2.5 Basic CGM Algorithms
2.3 A CGM Algorithm for Voronoi Diagrams of Points
2.3.1 Voronoi Diagram CGM Algorithm
2.3.2 Voronoi Diagram CGM Merge Algorithm
233 Analysis

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

o~ -~ =

CONTENTS

2.4 CGM Segment Tree Algorithms 32
2.4.1 Parallel Next Element Search 32
2.4.2 Parallel Red-Blue Line Segment Intersection 36

3 Hausdorff Voronoi Diagram Review 47

3.1 Definition and Properties 47

3.2 Sweepline Algorithm 56
3.21 Overview e 56
3.2.2 Algorithm 61
3.23 Analysis 63

3.3 Divide and Conquer Algorithm 65
3.3.1 Algorithm 65
3.3.2 Correctmess 67
3.33 Analysis 73

3.4 VLSI Applications 74
3.4.1 Critical Area Problem 75
3.42 Shorts L 76
343 Breaks L 7
344 ViaBlocks.00 L 78

4 CGM Algorithm for Hausdorff Voronoi Diagrams 79

4.1 Introduction oL oo 79

4.2 Algorithm Overview 80

4.3 Point Locationo oL 84

4.4 Red-Blue Line Intersection 87

\4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CONTENTS

4.5 Creating the Merge Chains
46 Analysis
4.7 Extensions and Evaluation
4.7.1 Improved Sequential Algorithm
472 Speedup

5 Implementation and Performance Results

5.1 Overview
52 CodeDesign

5.2.1 Existing Libraries

5.2.2 Voronoi Diagram Data Structure

5.2.3 Major Modules

5.2.4 Robustness Issues
5.2.5 Input Generation
53 Results.

5.4 Interpretation

6 Conclusion and Future Work

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Tables

5.1 Percent of total running time in each merge sub-algorithm, P=16 112

vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

2.1 An example Voronoi diagram of Points 8
2.2 Sweepline Algorithm 12
2.3 Merging two subdiagramso 15
2.4 CGM Architecture 18
2.5 Example Distributed Segment Tree 34
2.6 Example Hereditary Segment Tree 38
2.7 Example Secondary Tree 39
2.8 Extension to the Hereditary Segment Tree Data Structure. 42
3.1 An example Hausdorff Voronoi diagram 48
3.2 Region is Essentially Star Shaped 52
3.3 Limiting Shape 53
3.4 Proof of Rear Limiting Shape 54
3.5 Handling a valid minimum priority event 59
3.6 Handling a valid furthest vertex event 60
3.7 Example Hausdorff hull 71
3.8 Summary of types of defects occurring a VLSI layer 76
4.1 An edge cannot cross the merge chain more than twice. 85
4.2 A Left edge with two close endpoints cannot contain crossings. . . 86
viii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF FIGURES

4.3
4.4
4.5
4.6

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8

Merge vertices on edges in E! may be found by Binary Search . . 89
Merge vertices on edges in E} may be found by Binary Search . . 89
Sorting to find Merge Chainedges 91
Example merge of two Hausdorft sub-diagrams 96
Small example of possible Hausdorff input 103
Running Time of (Sequential) H-Vor Sweepline 105
Parallel Speedup fixed N 106
Parallel Speedup (fixed P) oo L 107
Communication Overhead (16 procs) 108
Communication Overhead (1/3) 109
Communication Overhead (2/3) 110
Communication Overhead (3/3) 111
ix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF ALGORITHMS

List of Algorithms

O o I O

11
12
13
14
15
16
17
18
19
20
21
22

SWEEPLINE() . . .+« o oot 12
SITEEEVENT() . . oo ooo e 13
SPIKEEVENT() . . o oo 13
DIVIDE-AND-CONQUER(S) . « + .« o v oee e 14
MERGE(L,R) © o o oo e 15
CGMSORT() « v oo oo e 22
GROUPEDSORT() .+« o o o vee e 24
LOADBAL() .« oot 25
CGMBINSEARCH() . . . o oot 26
CGM-VORONOI() . . . o oo 28
CGM-MERGE() © . o oo oo e 30
PNTLOCSEGTREE.CONSTRUCT()« v oo e et 35
PNTLOCSEGTREE.QUERY()o .. 35
RBSEGTREE.SEQUENTIAL() oo .. 41
RB.SEGTREEBUILD()o, 44
RB.SEGTREESEARCH() oo oo 45
HAUSDORFFSWEEPLINE(), 61
INVALIDSSITE() .« « v o oot e e 62
HANDLEMINPRIORITY() . . . oo oo e 62
HANDLEMIXED_VERTEX()o oo 63
HANDLE_ FURTHEST_VERTEX() o v oo 63
HVOR-DIV-AND-CONQ() . .« v o e oo 65
X

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF ALGORITHMS

23
24
25
26
27
28
29

HVOR-MERGE() 67
Merge two Hausdorff hulls 71
CGM-HAUSDORFF() o oo 81
HAUSDORFF-CGM-MERGE() 82
HVOR-POINTLOC() e 84
HVOR-RBINTERSECT() o 87
HVOR-NOCROSS-MERGE() 93
xi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1

Introduction

We study the parallelisation of Hausdorff Voronoi diagram construction al-
gorithms. The Hausdorft Voronoi diagram is a generalisation of the Euclidean
Voronoi diagram of points, where sites are generalised to sets of points. The con-
struction of Hausdorff Voronoi diagrams has gained recent attention due to its
applicability to the computation of Critical Area, which is an important measure
in VLSI circuit manufacturing.

Parallel Computing is the study of algorithms and architectures for computers
with concurrent processing. Within this field, we focus on parallel algorithm de-
sign and analysis using the Coarse-Grained Multicomputer (CGM) model. This
model of parallel computing is not restricted to a particular parallel architecture.
Rather, the CGM model allows any architecture where the problem size is signifi-
cantly larger than the number of processors. Algorithms designed using the CGM
model can lead to implementations which perform well compared to sequential
versions on existing parallel hardware.

Computational geometry is the study of the design and analysis of algorithms

for geometric problems. The field contains a rich, diverse set of problems such

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

as line intersection, convex hull construction, point location, and triangulation.
Computational geometry also has many practical application areas, such as ge-
ographic information systems (GIS), very-large scale integrated (VLSI) circuits,
computer-aided design (CAD), computer graphics, and robotics.

One widely studied data structure in computational geometry is the Voronoi
diagram. In its canonical form, the Voronoi diagram is constructed for a set of
input points called sites. The plane is partitioned into a region for each site. Each
region defines the area closest to its associated site. Thus, the Voronoi diagram,
among many applications, presents a way to quickly determine an object’s closest
site by determining the region that the object is in. A sweepline algorithm and
a divide-and-conquer algorithm are among the methods used to compute Voronoi
diagrams.

The standard Voronoi diagram of points has been extensively studied, and the
diagram has been generalized in a variety of ways. For example, Voronoi diagrams
of higher dimensions provide interesting problems. Also, one may look at a vari-
ety of metrics other than the Euclidean metric, such as the more general class of
convex metrics. Examples of other metrics are the L., and L, metrics. Existing
Voronoi literature also studies such varieties as additive and multiplicative met-
rics. Research into generalized Voronoi diagrams has attempted to abstract from
specific metrics to algorithms that construct abstract Voronoi diagrams. A third
way to generalize Voronoi diagrams is to discuss different types of input sites. For
example, rather than just single points, a site may be generalized to comprise a
set of points. Such sites may be, for example, line segments.

We study the Hausdorff Voronoi diagram, which is a variety of Voronoi diagram

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

that generalises the input sites to point sets in the plane. The distance metric
is still essentially Euclidean. However, the distance measured to a site is the
distance to the farthest point in the site. Hence, a Hausdorff Voronoi diagram
may be considered as a Voronoi diagram of covering circles. The Voronoi diagram
determines the distance which would create a circle which completely covers at
least the closest input set. As the Hausdorff Voronoi diagram is a generalisation
of the Voronoi diagram of points, the methods for computing Hausdorff Voronoi
diagrams likewise tend to be generalisations of algorithms for Voronoi diagrams
of points.

The Hausdorft Voronoi diagram has an interesting application in VLSI man-
ufacturing. Engineering a new VLSI circuit layout is an expensive and time-
consuming task. Part of the design process for new chips is to determine how
resilient the chip’s circuit geometry will be to defects in the manufacturing pro-
cess. Rather than perform an experimental test production of a new VLSI design,
it is faster and cheaper to use reliable analytical methods to predict chip yield.
Yield is the fraction of chips produced without faults. A defect may occur on a
chip without causing a faulty chip. One type of fault is when a specific component
on the chip, a contact on the via layer, is disconnected. Since a block of redundant
contacts are placed in the via layer, to disconnect the contact, the defect must
entirely cover at least one via block. Preprocessing the Hausdorff Voronoi diagram
is very effective for this problem, since in each Hausdorff region of the diagram
we need only consider the farthest point of one set, rather than all points from all
sets, when determining whether a fault occurs for a circular defect at some point.

We analyse the current state of the art in sequential Hausdorff Voronoi diagram

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

construction and then proceed to the presentation of a novel CGM algorithm for
non-crossing Hausdorff Voronoi diagram construction. Although the literature
provides examples of parallel algorithms for Voronoi diagrams of points, no parallel
algorithm is known to exist for constructing Hausdorff Voronoi diagrams. Our
algorithm provides theoretical speedup of p and may be easily extrapolated to
a novel sequential algorithm which improves on previous known bounds for the
non-crossing case. Due to the size of the input data in VLSI applications, it may
be of direct practical relevance to provide a parallel algorithm which is faster than
conventional sequential algorithms and which can provide access to the additional
memory of a distributed memory multicomputer or cluster. To provide an initial
evaluation of the algorithm in practice, we also discuss the results of our prototype
implementation and its performance.

Our Hausdorff Voronoi diagram parallel algorithm for non-crossing input uses
the divide and conquer paradigm to merge subdiagrams sequentially computed
at each processor. This CGM algorithm performs the merge by locating the
endpoints of each subdiagram’s edges in the opposite subdiagram. These located
endpoints may then determine the subset of edges crossing the merge curve. For
the Hausdorff variant of the Voronoi diagram, the merge curve is interesting, since
it may be comprised of multiple, disjoint components that are not necessasrily y-
monotone. In fact, some of these merge components may even be cyclic. So
to determine the merge vertices of the merge curve, we make use of a parallel
algorithm that performs a search variant of the Red-Blue line intersection problem.
Line intersection is used to search for merge vertices on the edges which potentially

cross the merge curve.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.1. ORGANIZATION OF THESIS

Our primary contribution in this thesis is to develop the first parallel CGM
algorithm that computes the Hausdorff Voronoi diagram for non-crossing input,
using O(”—l‘fiﬂ) local computation for input of size n on a CGM machine with p
processors. As a second contribution, we perform an initial experimental study
of this parallel algorithm. Experimental work involves the implementation and
performance evaluation of our parallel algorithm and the sequential sweepline
algorithm for the Hausdorff Voronoi diagram problem. Our parallel algorithm also
results in a direct adaptation to a sequential algorithm which requires O(n log* n)
time. This new sequential algorithm improves on existing time bounds for the

non-crossing case.

1.1 Organization of Thesis

In Chapter 2 we review the relevant canonical literature in both computational
geometry and parallel algorithm design. This chapter presents an introduction to
the Voronoi diagram of points and a variety of sequential algorithms to construct
such diagrams. Chapter 2 then discusses parallel computing models, focusing at-
tention on the application of the CGM model to algorithm design. The chapter
concludes by discussing parallel geometry algorithms for the Voronoi diagram of
points and some algorithms using the segment tree data structure. Chapter 3
reviews the state of the art in the Hausdorff Voronoi diagram literature includ-
ing sweepline and divide-and-conquer algorithms, as well as the Hausdorff Voronoi
diagram’s application to VLSI manufacturing. Chapter 4 presents our novel paral-

lel CGM algorithm and our improved sequential algorithm for non-crossing input.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.1. ORGANIZATION OF THESIS

Chapter 5 presents our implementation of the parallel and sequential sweepline
algorithms and then discusses their performance. Finally, Chapter 6 concludes

the discussion of Hausdorff Voronoi diagrams.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2

Computational Geometry and Par-

allel Computing Review

Let us begin by reviewing the existing literature surrounding our fields of
study. From computational geometry, we discuss Voronoi diagrams and some
existing algorithms for their construction. We proceed to a discussion of parallel
computing models for parallel algorithm design. We conclude this chapter by
discussing the relevant literature surrounding parallel computational geometry
using the CGM model. This discussion includes CGM algorithms to solve batch

point location, red-blue line intersection, and Voronoi diagram construction.

2.1 Voronoi Diagrams of Points

2.1.1 Overview

Voronoi diagrams are a fundamental structure in Computational Geometry, and
have been studied for decades (e.g. [42]). In this Chapter, we review some im-

portant properties and algorithms for Voronoi diagrams of points. We review the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.1. VORONOI DIAGRAMS OF POINTS

Sweepline and Divide-and-Conquer algorithms for computing Voronoi diagrams,
and briefly describe an approach mapping the Voronoi diagram to 3D envelope
computation. There are other algorithms for Voronoi diagrams, including an
incremental approach and the computation of the dual Delaunay triangulation
structure. However, we do not discuss all of these algorithms as they are not
directly relevant to our parallel Hausdorfl Voronoi diagram algorithm and imple-
mentation. For the interested reader, a broader survey of Voronoi diagrams may

be found in, e.g., Aurenhammer [4], Okabe et al [30], or Fortune [21].

Figure 2.1: An example Voronoi diagram of Points

2.1.2 Definition and Properties

Informally, a Voronoi diagram partitions the plane so that, for each site, there is

a region comprising the space closest to the site. The Voronoi diagram of points

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.1. VORONOI DIAGRAMS OF POINTS

defines closest as minimal Euclidean distance. The Euclidean distance between

two points in the plane may be formally defined for two points, p = (pg,p,) and

q=(9z,qy):

Definition 1 (Euclidean Distance) The Euclidean distance between two points

pand q is d(p,q) = /(pe — ¢)2 + (py — q,)*-

Given some distance function, such as the Euclidean metric we just described,
we may define the concept of a bisector. Between two points, p and ¢, the bisector
is the perpendicular line to pg passing through the midpoint of pg. This is, more

precisely, the locus of points equidistant from p and ¢, thus:

Definition 2 (Bisector of two points) The bisector of two points p and q is

B(p,q) = {2|d(p, 2) = d(q, 2)}.

Note that we may use term bisector in a more general fashion, although it will
still mean the locus of equidistant points between two sets of geometric objects.
For example, we will make reference to a bisector between a point and a line, as
well as a merge bisector between two set of points, £ and R. The type of bisector
should be obvious from the context. Let us now define halfplanes, closely related

to bisectors:

Definition 3 (Halfplane of two points) The halfplane H(p,q), of two points

D, q, is the the set of points H(p,q) = z|d(z,p) < d(z, q).

Given these preliminary definitions, we may construct a formal definition of a

Voronoi diagram:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.1. VORONOI DIAGRAMS OF POINTS

Definition 4 (Voronoi Region reg(p),p € S) A Voronoi Region is the locus of

points closer to p than all g € S, q # p. By definition, reg(p) = (,cs H(p, 9)-

Definition 5 (Voronoi Edge, €¢) A Voronoi Edge, e, is the locus of points with

exactly two closest points p,q € S. By definition, e is a portion of B(p, q).

Definition 6 (Voronoi Vertex, v) A Voronoi Vertez, v, is a point with at least

three closest points in the input set S.

Since computing the Voronoi Regions amounts to determining the boundaries

of the regions, we define the whole Voronoi diagram accordingly:

Definition 7 (Voronoi diagram Vor(S)) Given a set S of input points (sites),
the Voronoi diagram of points, Vor(S), is the union of Voronoi Edges and Voronoi

Vertices of S.

Given the definition of the Voronoi diagram, it is now possible to describe how
to construct the diagram for a given input set, S. In Chapter 3, we discuss how
these methods can be extended to the more general Hausdorff metric.

Before discussing the sweepline and divide and conquer algorithms, let us
briefly describe how to compute Voronoi diagrams via 3D upper envelopes. We
lift all input sites from the plane (e.g. z = 0) onto a unit paraboloid, and create the
set P of planes tangent to the paraboloid at each lifted point. The key observation
is that the vertical distance from a point in the plane to an input site is equals
to the square root of the vertical distance between the lifted point and the input
site’s plane in P. It follows that the upper envelope of P encodes the pieces of

each plane in P that vertically map to a Voronoi region.

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.1. VORONOI DIAGRAMS OF POINTS

2.1.3 Sweepline Algorithm

Sweepline techniques form an important algorithmic paradigm in computational
geometry, and are useful for computing the Hausdorff Voronoi diagrams. Con-
ceptually, the sweepline paradigm involves a vertical line, L, moving from left to
right. Special points in the plane are denoted events. Events comprise the points
at which the topological structure of the geometric object in question changes. In
our case, the geometric structure is a Voronoi diagram, and the events come in
two types, spike events and site events. A site event occurs where an input site is
located, and it is where a new regions begins to be traced. A spike event is where
a Voronoi vertex occurs, and it is where a regions ends.

We must keep three data structures as the sweepline progresses. One is the
constructed portion of the Voronoi diagram. A second is the Beachline providing
an ordered sequence of partially finished Voronoi regions. The third is the Fvent
Queue that contains events which we have not yet processed, ordered from left to

right.

Algorithm Data Structures

Definition 8 (Event Queue) The Event Queue, Q, is a priority queue storing

events in left-to-right order.

Definition 9 (Beachline) Let S;, C S be the points to the left of the sweepline,
L. Let Vi, be the Voronoi diagram for the input sites Sp|J L. Then the Beachline,
T, stores the sequence of (parabolic) Voronoi Edges between L and points in V7.

Let these edges be called waves.

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.1. VORONOI DIAGRAMS OF POINTS

beachline

Figure 2.2: Sweepline Algorithm

Note that the waves in the beachfront form a y-monotone chain of parabolic

segments.

Outline of the Algorithm

Algorithm 1: SWEEPLINE()

1 For each p € S, add an event for p into the event queue, Q.
2 While @ is not empty, get the next event in the Queue. If it is a site event,
run SITE_EVENT(). Otherwise, the event is a spike event, so run

SPIKE_EVENT().

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.1. VORONOI DIAGRAMS OF POINTS

Algorithm 2: SITE_EVENT()

1 Locate the wave, w € T whose y-interval contains the new site, p.

2 Split w in two pieces separated by a new wave, w’, associated with p.

3 If w was involved in a spike event with its two neighbours, then delete this
event from Q).

4 Create a new edge in the Voronoi diagram associated with w’.

5 Check if any new spike events are induced by w’ with its neighbouring

waves, and if so, add them to the queue.

Algorithm 3: SPIKE_EVENT()

1 A Spike Event is associated with three adjacent waves. Determine the
middle wave, w. This wave has now degenerated to a Voronoi Vertex.

2 Delete w from the Beachfront, 7.

3 If there are any (other) events in @ that involve w then delete them.

4 There are three sites associated with the adjacent waves in the site event.

Create a Voronoi Vertex at the centre of the circle through these sites.

The sweepline algorithm for computing Voronoi diagrams was originally stud-
ied by Fortune [20]. The algorithm’s time complexity is bounded by O(nlogn).
For each of the O(n) events, we perform O(logn) computation in the beachfront,

assuming it is represented as a balanced binary tree.

2.1.4 Divide and Conquer Algorithm

Divide and Conquer is another technique frequently employed in solving computa-

tional geometry problems. The first worst-case optimal algorithm for constructing

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.1. VORONOI DIAGRAMS OF POINTS

Voronoi diagrams, presented by Hoey and Shamos in 1975 [42], uses this technique.
As usual, we are given a set of sites, S = {p1,pa,...,pn}. Each site, p; € S, is

a point in R? and is described by the coordinates p; = (z;, v:)-
Algorithm 4: DIVIDE-AND-CONQUER(S)

1 Before computing the Voronoi diagram, pre-sort S lexicographically, by z;.
2 Compute m, the median of the sites’ x-coordinates. Since S is sorted,
m=2In,.
2
3 Partition S into a left and a right set, £ and R, i.e. L= {p; : z; < m},
R=S5-L.
4 Recursively compute Vor(L) and Vor(R).
5 Vor(S) «— MERGE(Vor(L), Vor(R)).

The divide-and-conquer algorithm is straightforward. Dividing the problem
into roughly equal subproblems is satisfied simply by recursing on left and right
partitions of the input. Most of the computation is in the MERGE() sub-algorithm,
below. Between the subdiagrams of the Left and Right partitions, we have a y-
monotonic chain of Voronoi Edges. This merge chain forms B(L, R), the bisector
between £ and R. Merging the subdiagrams requires only finding the Voronoi
Edges of the merge chain, and removing the portion of £ (resp. R) to the right

(resp. left) of the merge chain.

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.1. VORONOI DIAGRAMS OF POINTS

Figure 2.3: Merging two subdiagrams

Algorithm 5: MERGE(L, R)

1 Using the convex hulls CH(L) and CH(R), compute the lower supporting
segment.

2 Starting from the bisector of the lower supporting segment, repeat this
process until reaching the bisector of the top supporting segment:

3 W.lo.g., assume the current merge edge, e, starts at the boundary of
some region reg(r) of Vor(R). Let this starting point be r,. Let r, be in
the Left Voronoi region reg(l). To find the endpoint of e,,, we scan the
edges bounding reg(r) counterclockwise, starting from r,, until we find the
intersection point 7. Scanning edges of reg(l) clockwise, we likewise find
an intersection point ;. See Figure 2.3 for an example.

4 From [, and 7}, we take point closest to r,, and update reg(r) or reg(l)
accordingly. In our next clockwise/counterclockwise edge scans, we start

scanning from [, and ry. 15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.2. PARALLEL COMPUTING

The first step of the merge determines the supporting segments of the Left
and Right convex hulls. The bisectors of these two supporting segments provide
the start and end of the merge chain. The remainder of the algorithm performs a
sequential walk along the edges of the merge chain. Since regions are convex, we
never need to rescan edges already scanned during our walk.

The running time of the DIVIDE-AND-CONQUER algorithm is easily anal-
ysed. When walking through regions intersected by the merge chain, edges are
visited at most once. Hence, the entire MERGE() algorithm runs in linear time.
The entire recursive DIVIDE-AND-CONQUER therefore has a worst-case running

time of O(nlogn).

2.2 Parallel Computing

2.2.1 Overview

Parallel computing offers the possibility of significantly increased performance
over conventional sequential computing. However, algorithm design and imple-
mentation is difficult in a parallel setting. Attempts have been made to create
a general, useful model for designing parallel algorithms. A parallel computing
model should simplify both algorithm design and code implementation by captur-
ing the similarities between the wide variety of target parallel architectures while
abstracting away unnecessary details of any particular architectural design. We

briefly review two such models.

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.2. PARALLEL COMPUTING

2.2.2 PRAM Model

One of the oldest and most popular models of parallel computation is the Parallel
RAM (PRAM) model, introduced by Fortune and Wyllie [22]. A PRAM machine
is a conceptual extension of the sequential RAM model of computation. A PRAM
has a set of processors sharing a global shared memory to which all processors may
simultaneously read or write. Many variations of the PRAM model exist. The
major variation in PRAM models concerns whether and how multiple, concurrent
memory reads and writes by processors to the same memory location may occur.

PRAM provides a platform for creating fine-grained parallel algorithms. Many
processors may be used (for example, O(n) processors for a problem of size n),
and frequent communication can occur through shared memory.

The PRAM model does provide a computational model well-suited to design-
ing algorithms. However, a large-scale parallel computer following the PRAM
model has not been created, and it is frequently asserted in the literature that
the model is unrealistic approximation of existing machines (e.g. [24]). One main
problem is that the PRAM model assumes a shared-memory machine. However,
to have a large number of processors, most existing machines make use of dis-
tributed memory, such as clusters. With a large-scale distributed architecture,
communication costs between nodes can become quite significant, but are not

accounted for in the PRAM model.

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.2. PARALLEL COMPUTING

2.2.3 CGM Model

The PRAM model may be powerful and theoretically useful, but is has been ac-
knowledged (e.g. [9, 14, 24]) to provide algorithms that are difficult to efficiently
implement on existing parallel architectures. There have also been many algo-
rithms designed for specific architectures (e.g. mesh, hypercube, fat tree, etc.).
Yet ideal algorithm design should provide an algorithm not limited to one spe-
cific architecture. The ideal parallel model should be general. This is an issue

addressed by Valiant in his classic paper [45].

L Interconnect 1

I

CPU CPU

CPU
Mem O(%j Wem O(ﬂ

Processor 1 Processor 2 Processor P

Figure 2.4: CGM Architecture

Valiant proposes the BSP model. This model is bulk-synchronous, which
means that an algorithm is composed of a series of supersteps. In each super-
step, processors run independently. The end of a superstep comprises a synchro-
nisation between the processors, after which completion of any communication
between processors from that superstep is guaranteed.

The CGM model, introduced by Dehne et al. [14] provides for a computa-

tional model similar to the BSP. The key features of the CGM model include

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.2. PARALLEL COMPUTING

its enforced granularity due to lower bounds on the ratio ;‘—) and its explicit mes-
sage packing between rounds to reduce the effect of communication latency costs.
Unlike the PRAM model, which is modelled using shared-memory, CGM uses
message-passing. Message-passing is realistic since communication is relatively
expensive on current hardware (compared to computation), and should be ac-
counted for. Also, CGM enforces a coarse grained computing model, so p < n,
contrasting with the fine-grained PRAM model where, often, p =~ n.

A CGM has p processors with arbitrary interconnect, each typically with O(%)
local memory. A CGM has the ability to realize an h-relation. An h-relation is an
operation that routes h data (usually A = O(%) on a CGM) data to and h data
from each processor. Algorithms implemented on a CGM consist of rounds com-
prised exclusively of local computation, separated by rounds of communication.

This type of coarse-grained model works particularly well on cluster machines,
such as a Beowulf. Clusters have a moderate number of quite powerful distributed
memory processors.

However, a CGM algorithm is quite general, and allows for various intercon-
nects by using the abstract notion of an h-relation. Analysis of the CGM model
on a particular parallel architecture only requires one to determine the time to
realize an h-relation on that architecture.

The CGM model encompasses a small number of critical parameters. Hence it
is a straightforward and easily used tool in designing parallel algorithms. More-

over, such algorithms should be transferable to efficient implementations on a

variety of architectures.

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.2. PARALLEL COMPUTING

2.2.4 Analysing CGM Algorithms

Algorithms designed for the CGM model may be analysed with three important
measurements which are commonly used in the literature (e.g. [6, 14]) to profile
the performance of algorithms. These measures are local computation, number of
communication rounds and scalability.

Local computation is a standard tool for algorithm analysis and applies equally
well to algorithms designed for a CGM. Each processor performs a certain amount
of computation throughout all of an algorithm’s computation rounds. The max-
imum of each processor’s computation time complexity is taken to be the local
computation of the parallel algorithm.

We can also derive another measurement from the local computation of a
parallel algorithm. Assume that we have an optimal sequential algorithm for our
particular problem, which has a running time of Ts. Then, if our algorithm has

local computation of T}, we can calculate speedup, S = L. Note that for a CGM

TP
algorithm, maximum possible speedup is p.

Our second measure is the number of communication rounds. Ideally we will
have O(1) rounds, which provides a constant upper bound on the total amount of
data communicated during the life-cycle of the algorithm. However, other efficient
algorithms have more rounds, for example O(logp) [6, 15]. While not ideal, we
note that for a coarse-grained algorithm p < n, i.e. in a typical multicomputer,
p is insignificant compared to n. For a particular machine, p tends to be fixed at

a constant size, while the problem size may vary and be quite large. Hence, on

such a coarse-grained machine, log p rounds may still be practical.

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.2. PARALLEL COMPUTING

Our other measure is slackness. Slackness is indicated by the required mini-
mum ratio of n to p. For example, % > p is common.

To illustrate the use of our CGM analysis techniques, we describe a few
well known algorithms. For example, let us discuss the computation of three-
dimensional convex hulls. An algorithm exists [13] to compute the three-dimensional
convex hull using the CGM model. To summarise the analysis of this algorithm, we
say that is uses O(&;’)g—") local computation and O(1) rounds, assuming n > p3*<,

Sorting may be one of the most fundamental techniques in algorithm design.
An algorithm appropriate for the CGM model was introduced by Goodrich [23]
that can sort using O(”—lopg—"-) local computation and O(1) rounds, for any scalability
p < n'~Y¢ ¢ > 1. Previous work on parallel sorting included the parallel sort by
regular sample, a straightforward and practical algorithm that requires n > p3,
as describe by Shi and Schaeffer [43]. An algorithm for the special case of sorting

bounded integers was given in [8] and requires O(n) time, O(1) rounds, if n > p2.

2.2.5 Basic CGM Algorithms

Before proceeding to discuss some existing CGM algorithms which are relevant
to our topic, we first present some basic algorithms which may serve as standard
tools when designing CGM algorithms. These algorithms include a form of load
balancing, global sorting, and global batch binary search.

Sorting and searching are fundamental techniques used in most algorithms,
including the algorithms we discuss. Although neither sorting nor searching are
difficult to understand, reviewing them provides a good starting point for our

discussion of CGM algorithms.

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.2. PARALLEL COMPUTING

Sorting

We discuss here a practical and easy to implement sort called the Parallel Sort by
Regular Sample [43]. We start with n elements arbitrarily distributed into groups
E; of O(%) elements for each processor P;, which we wish to sort globally. That is,
the concatenation of elements across processors Py, P4, ..., P, provides a globally

sorted sequence.
Algorithm 6: CGM_SORTY)

1 Each processor locally sorts its portion, E; of the input.

2 Each processor selects p regularly spaced samples from the sorted E;. All
samples are collected at the a root processor (e.g. Fp).

3 The root processor sorts the p sample sequences and then chooses p
regularly spaced global samples from this sorted sequence.

4 The root processor broadcasts the global sample sequence, (S, St, - .. Sp-1)
to all processors.

5 Each processor divides its sorted F; sequence into p subsequences,
Eik, 0 < k < p such that all elements in Ezk are between S, and Sy.1.

6 The kth processor, Py receives EF = P o EF from each processor P;.

Processor P, sorts this E*.

To analyse the correctness this sorting algorithm, we verify a key point; E* will
always be balanced, so that |E*| is O(3)- Recall that EF is the set of elements
between two global samples. By definition, there are p samples between two

global samples. Each group of z% samples in a processor’s S¥ will contain a local

sample. But since there can be no more than p such local samples present from

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.2. PARALLEL COMPUTING

all processors, the size of S* must be O(pZ) = O(%).

We note that the bound on local computation derives from the local sorts of
O(%) elements that requires O(ﬂ;’fﬂ) computation. There is a communication
round in Steps 2, 4, 6, and hence the overall algorithm requires O(1) rounds. For

the root processor to receive all samples in Step 2 and sort them in Step 3, the

algorithm requires n > p>.

Grouping

Another simple parallel technique is to sort a sequence of sets across processors,
where each set may be of size O(%). The sets are, in total, of size O(n). The
problem is to sort these sets while still maintaining the O(g) local memory bound
and not splitting sets across processors.

Although this is an almost trivial problem, we make use of this simple algo-
rithm in later, more interesting CGM algorithms, so we explain the technique
once here to simplify the presentation of future algorithms.

Each processor starts with some unsorted sets of total size O(%). Each set is

stored entirely at one processor.

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.2. PARALLEL COMPUTING

Algorithm 7: GROUPED_SORT()

1 Use global sort to rank each set (without sending the entire set).

2 For each element, perform global sort with set rank as primary key, and
element rank as secondary key.

3 Share each processor’s first and last elements’ set ranks with all other
processors.

4 Rebalance by sending a set split across processors to the first processor

that stores a portion of the set.

nlogn)

This algorithm clearly requires O(1) rounds, O(local computation, and

O(Z) memory with the restriction that n > p2.
p

Loadbalancing

To ensure that a CGM is being effectively used, it is often necessary to redistribute
the data held at each processor, so that each processor has about the same amount
of computation to perform. When designing an algorithm for the CGM model, we
may explicitly perform this loadbalancing. For the algorithms we discuss, there is
one particular form of loadbalancing which is very useful. To facilitate an abstract
discussion of this technique, we refer to a set S of n small items that are each
constant sized objects. We also discuss a set D of p large data structures, each
of size O(%). We assume each s is uniquely associate with one d, i.e. there is
some mapping id : S — D. The goal is to distribute the s € § and d € D such
that every s is locally stored with the correct d, while maintaining the O(%) local

memory bound of the CGM model. We assume that each data structure d is

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.2. PARALLEL COMPUTING

initially stored at processor P;, and each processor stores a O(2) subset of S.

v
Algorithm 8 LOADBAL()

1 For each d € D, each processor, P, locally determines C;(d), the number of
s that for which id(s) = d.

2 Each processor P; sends C;(d) to all other processors (for every d € D).

3 Each processor independently computes C(d) =), C;(d) for all d.

4 For every d, each processor determines the number ng = fc—f:ﬁp], which
determines the number of copies to make of each data structure d. Note
that each such copy will then have O(%) items of S associated with it.
Processor P; performs a segmented broadcast of its data structure, d, to ng
processors. There are at most 2p total copies made the d’s, so each
processor can receive at most 2 data structures.

5 Each processor determines where to send its local subset of S such that no
processor will receive more than O(%) of S, but each s € S is located at a
processor storing the d such that id(s) = d. The items s € S are distributed

accordingly.

This algorithm requires a constant number of rounds. If n > p® then the
algorithm will run on a CGM in local computation time O(%).

The correctness of the algorithm hinges on three points. First, every processor
has complete knowledge of every processors’ item counts, so that the computation
of Steps 4 and 5 can be computed at each processor independently, but coordinated
with all other processors. Second, enough copies of each d are made so that no
copy need be associated with more than O(Z) s objects. Third, the number of

n
P

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.2. PARALLEL COMPUTING

n

total copies of all d € D is bounded by >F_, ([Qﬁ%)p]) <4 (C(d)p + 1) < 2p.

Binary Search

A simple batch binary search of n queries in a sequence of n elements may now
be trivially described, using the previous load balancing. Let us assume that we
have a sequence (Sp, 81, ... 8,) that is globally sorted across processors, such that

each processor stores a portion S;. Each processor P; also stores a set of queries,

Qi-
Algorithm 9: CGM_BINSEARCH()

1 Each processor, P; sends the largest element in S; to all other processors.

2 Each processor then determines in which processor’s subsequence each
query q €); needs to be searched.

3 The queries and subsequences are loadbalanced (Algorithm 8).

4 Each processor locally performs sequential binary search for balanced

queries and subsequences.

This search algorithm, originally described by Devillers et al [19] is clearly

nlogn

») local computation, and a constant number of rounds,

possible using O(

given n > p>.

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.3. A CGM ALGORITHM FOR VORONOI DIAGRAMS OF POINTS

2.3 A CGM Algorithm for Voronoi Diagrams of

Points

Considering the long history and broad application of the Voronoi diagram, it
is not surprising that much attention has been given to finding efficient parallel
algorithms for constructing them. Many PRAM algorithms have been devised
(e.g. [12, 40, 46]). A CGM algorithm, introduced by Diallo et al. [15] also exists
for Voronoi diagrams of points. This CGM algorithm uses techniques devised by
Jeong and Lee [25, 26, 27| for a mesh Voronoi diagram algorithm.

As seen in Section 2.1.4, the divide-and-conquer approach divides Voronoi
diagrams into subproblems, and then merges the recursively computed results.
The dividing step may be trivially parallelised. The merge step requires the most
attention, since this is where the merge chain is traced. In the original sequential
algorithm, merge chain tracing is performed by sequentially walking up the merge
chain. In a parallel setting, the major objective is to avoid this sequential walk
and rather compute each Voronoi Edge in the merge chain independently of the

rest of the merge chain. Diallo et al’s algorithm does exactly that.

2.3.1 Voronoi Diagram CGM Algorithm

This section and the following section closely follow the results from [15], but also
incorporates some changes suggested by Singler [44]. An overview of this CGM

algorithm for computing Voronoi diagrams of points is given:

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.3. A CGM ALGORITHM FOR VORONOI DIAGRAMS OF POINTS

Algorithm 10: CGM-VORONOI()

1 Divide the O(n) input points into p vertical slabs., with O(3) points in
each slab. Each processor gets a slab.

2 Each processor independently computes the Voronoi diagram of its slab’s
O(%) input sites.

3 CGM-MERGE() (see below) combines £ diagrams into 5£; diagrams, such
that two adjacent subdiagrams, Vor(L) and Vor(R) merge to form

Vor(S). Repeat this O(log p) times, resulting in the final Voronoi diagram.

2.3.2 Voronoi Diagram CGM Merge Algorithm

An efficient CGM-MERGE() algorithm is critical for Algorithm 10. The merge
relies on a parallel Point Location algorithm, as well as standard Global Sort
operations. Here is a review of the merge algorithm.

In many divide-and-conquer Voronoi diagram algorithms, including Algorithm 10,
the important computation is that of the merge chain. Recall that we have al-
ready taken a point set S and partitioned it into a left half, £, and a right half, R.
We have computed Vor(£) and Vor(R). The vMerge procedure then computes
Vor(S) from these two sub-diagrams. The merge chain consists of the edges in
Vor(S) which border on both a site from £ and a site from R. These new edges
form a monotonic unbounded chain. The merge step determines the merge chain,
and then removes the portion of Vor(R) to the left of the merge chain, and the
portion of Vor(L) to the right of the merge chain.

This CGM algorithm takes a different approach from the classic sequential

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.3. A CGM ALGORITHM FOR VORONOI DIAGRAMS OF POINTS

divide-and-conquer algorithm (Section 2.1.4). Instead of walking up the merge
chain as it is calculated, the CGM algorithm instead independently determines
the subset of edges (from both Vor(L) and Vor(R)) intersected by the merge
chain and orders these. It is then trivial to perform smaller local walks at each
processor.

To determine the subset of edges intersected by the merge chain, we use parallel
point-location. The endpoints of an existing edge in (W.L.O.G.) Vor(L) may be
found in Voronoi Regions of Vor(R). After this point location, it is easy to
compute to which set (£ or R) each endpoint is closer to. Note that this is
equivalent to computing to which side of the merge chain each endpoint lies in.
Edges with endpoints on different sides of the merge chain must intersect the

merge chain at some point. The following algorithm uses this fact:

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.3. A CGM ALGORITHM FOR VORONOI DIAGRAMS OF POINTS

Algorithm 11: CGM-MERGE()

1 W.L.O.G., for the left Voronoi diagram, Vor(L£), partition edges of Vor(L)

into three sets (Lr, Lg, Rg), such that:

1. Ly contains edges whose two endpoints are both closer to £ than R. These

edges do not cross sides, so they remain intact.

2. Ly contains edges where one endpoint lies closer to £, and the other to R.

These edges cross the Merge Chain once.

3. Rp contains edges whose two endpoints are both closer to R than L.
These edges do one of two things. Either they do not cross sides, thus
being completely deleted in Vor(S), or else they cross the merge chain
twice.

If an edge crosses twice, then break it up into two pieces, such that each

piece crosses the edge once (i.e. create two pieces for the set Lg).

2 Repeat above, but now locating edges of Vor(R) in Vor(L).

3 Perform a Global Sort (on y-coordinates) of the complete set of intersecting
edges, ensuring that endpoints of edges with overlapping endpoints are
ordered appropriately. This gives O(%) adjacent edges at each processor.
Each processor can then do local “walking” to produce the complete merge
chain.

Remove every edge that is completely on the opposite side. The previous
step determined intersection points on edges that crossed the Merge Chain.
Remove the portion of these edge on the opposite side.

The merged Voronoi diagram is now computed, distributed across

30
Processors.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.3. A CGM ALGORITHM FOR VORONOI DIAGRAMS OF POINTS

2.3.3 Analysis

The CGM Voronoi diagram construction algorithm performs sequential Voronoi
diagram construction followed by merge steps. The merge algorithm uses point
location, a common geometric operation with complexity O(ﬁl%gﬂ). Since the
Voronoi diagram of points’ regions are always convex (a property which fails for
Hausdorff Voronoi diagrams), the algorithm’s authors [15] use the chain method
[28] and a series of load balancing steps to perform parallel point location.

Point location is used on the endpoints of edges in the two subdiagrams. These
located endpoints provide the merge chain and determine which subdiagram edges
to remove or to keep.

Onme critical observation for demonstrating the correctness of the merge is to
show that the case analysis on the located endpoints is correct. Since a Voronoi
region is connected, only one continuous piece of a subdiagram edge may be kept.
This implies that no more than two merge chain intersections occur on an edge.
As a result, an edge with endpoints closer to different subdiagrams (i.e. an edge
in Lg) will cross exactly once. An edge with endpoints closer to the opposite
subdiagram (i.e. an edge in Rg) may cross either zero or two times. Otherwise,
the endpoints are closer to the original subdiagram, and the entire edge will remain
in the final diagram. A more formal proof which has been extended to handle the
more general Hausdorff Voronoi diagram, is provided in Section 4.3.

There is another critical observation for demonstrating correctness of the merge

algorithm. Some subdiagram edges are determined to contain a merge vertex. We

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

24. CGM SEGMENT TREE ALGORITHMS

order these edges vertically. Unfortunately, achieving this is not quite as simple
as the method proposed in [15]. However, it is possible to use the original method
proposed in [27]. This method ensures that even edges whose y-intervals overlap
will be correctly ordered. Crucially, the merge chain of the Voronoi diagram
of points is y-monotonic, unlike the Hausdorff Voronoi diagram. Using this y-
monotonicity and the point located endpoints, we may determine the vertical
ordering of even overlapping edges. Using an exhaustive case analysis, Jeong and
Lee [27] demonstrate that for any given case, there is only one possible order that
ensures that both the merge chain is y-monotonic and that the endpoints lie closer

to the left and right subdiagram, as determined by point location.

Theorem 1 ([15]) The CGM algorithm for Voronoi diagrams of points con-
structs the Voronoi diagram of an input set S of size n in O(@—l"g;‘ﬂ) local

computation, with O(logp) rounds, given that n > p3.

2.4 CGM Segment Tree Algorithms

2.4.1 Parallel Next Element Search

Standard Segment Tree

Parallel point location in planar subdivisions is one subproblem which we make
use of in our parallel Hausdorff construction algorithm. The problem is as follows:
given an embedded planar graph of size n, determine the face in which each of
n query points reside. This problem is a specific application of the more general

next element search problem. This more general problem is to find, for each query

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

24. CGM SEGMENT TREE ALGORITHMS

in a O(n) set of query points, a segment directly above the query from a O(n) set
of non-intersecting segments.

A segment tree is a balanced binary tree. The segment tree is constructed for a
set L of n non-intersecting input segments (i.e. the segments forming the embed-
ded graph). The x-projections of the 2n segment endpoints creates a partitioning
of the x-axis into elementary x-intervals. There is one leaf for each elementary
x-interval. The x-interval for an internal node is the union of the node’s two
children x-intervals.

Each node is associated with a catalog. The catalogs are filled with references
to the input segments. A segment is placed in a node’s catalog exactly when the
line segment completely spans the node’s interval, but does not completely span
the interval of the node’s parent.

Constructing a standard segment tree is not difficult and is discussed in [39].
Querying the tree is also straightforward. A query point ¢ can traverse a path
from the root to a leaf such that all nodes along that path contain ¢ in their x-
intervals. At each of these log n nodes we may perform binary search in the node’s
catalog to determine O(logn) segments above g. A final scan of these elements
determines the segment directly above gq.

However, note that the query algorithm requires O(n log? n) time. We intro-
duce segment trees in order to present a parallel version. However, for solving
the next element search subproblems sequentially we may use a simple sweepline
algorithm running in O(nlogn) [39]. Recall that these segments are assumed to
be non-intersecting. The sweepline algorithm is not difficult but briefly, we create

sweepline events for each segment endpoint and query point. At endpoint events,

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

24. CGM SEGMENT TREE ALGORITHMS

we add/remove segments from an ordered sequence. At a query event, we search
the sequence for the segment directly above the query point.
Now, we turn to parallelising the standard segment tree using the CGM model

to give a parallel next element search algorithm.

CGM Algorithm

Figure 2.5: Example Distributed Segment Tree

Chan et al [9] present a CGM algorithm that solves the point location problem.
For this algorithm, a parallel segment tree must be constructed. This distributed
structure takes the first log p levels as subtree Ty. At the leaves of Tj are rooted
p subtrees, T4, ...T,. Each processor, P;, stores the tree (without catalogs) for Tj
and the complete tree, with catalogs, for T;.

The catalogs for Ty are distributed. Since the point location for subtree T; will

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

24. CGM SEGMENT TREE ALGORITHMS

be a sequential operation, we do not need to distributed its catalogs.

The segment tree is constructed as follows:
Algorithm 12: PNTLOC_SEGTREE_CONSTRUCT()

1 Sort endpoints of input segments by x coordinates. Each processor now has
its S; C S set of line segments and the z-interval of its 7Tj segment tree leaf.

2 Share globally the z-intervals of all Tj leaves, and let each processor
independently compute Tp (without catalogs).

3 Each processor computes the catalogs of Ty for its set of line segments, S;.

4 Globally sort the catalog segments using the catalog’s node as primary key,
and then as secondary key use the segment’s y-coordinate at the node’s left

interval boundary.

Once the parallel segment tree is constructed, we may perform a point location

query on a set @ of n points.
Algorithm 13: PNTLOC_SEGTREE_QUERY()

1 For each query g, create a copy destined for each of the O(logp) nodes of
T, which must be searched.

2 Perform binary search (Algorithm 9) on the query copies in the sorted
catalog list.

3 Determine how many queries are destined for each processor’s T; subtree
and load balance (Algorithm 8) the queries in the subtrees.

4 Each processor performs sequential next element search for its queries
received in the previous steps.

5 Gather queries from steps 3 and 5, using global sort by query and reduce to

find the final answer for each query.

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

24. CGM SEGMENT TREE ALGORITHMS

Let us briefly analyse this algorithm. Computing in O("—l‘;ﬁl—) time is sufficient
for the construction algorithm, noting that the sort in Step 4 may be completed
by an integer sort. The query algorithm is bounded by O(E—l%%ﬂ) where the
binary search of Step 2 performs a search for each of the O(nlogp) query copies

created in Step 1.

Theorem 2 ([9]) The Next Element Search problem can be solved on a CGM

with O(ﬁl—opﬁﬂ) global memory in O(ﬁﬂff%ﬁ) local computation time and O(1)

communication rounds, given n > p°.

2.4.2 Parallel Red-Blue Line Segment Intersection

Overview

Another subproblem useful for a CGM Hausdorff Voronoi algorithm is the red-
blue line intersection problem — given a set of non-intersecting lines (the “red”
set) and another set of non-intersecting lines (the “blue” set), the problem is to
find all the intersections between the red and blue line segments.

There exist two common variations of the red-blue line intersection problem.
The first is to only count the total number of intersections, while the second is
to explicitly report all of them. We require the use of something in between. For
each line, we must search its intersections to determine one intersection closest to
a certain point along the line, and only report this intersection. We will describe
our algorithm for this search variant of the problem. Although reporting all
intersections and then searching these would be correct, it may be time-consuming,

as its complexity is dependant on the number of intersections to report. There

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.4. CGM SEGMENT TREE ALGORITHMS

exist O(n?) intersections in the worst case, so we develop a faster method which
avoids the time to perform a complete reporting of all intersections between red

and blue segments.

Hereditary Segment Tree

Chazelle et al [11] describe a solution to the red-blue intersection problem with an
algorithm that uses a hereditary segment tree. The tree is explicitly constructed,
and by pre-sorting the segments, using fractional cascading, and using streaming,
good bounds are maintained [11]. Namely, the intersection counting algorithm
runs in O(nlogn) time in O(n) space. Palazzi and Snoeyink provide a more
practical algorithm in [31] which does not actually build the hereditary segment
tree explicitly. However, we do not discuss this algorithm, because for our search
variation of the problem we modify the algorithm of Chazelle et al. A hereditary
segment tree is similar to the standard segment tree used in point location. The
red and blue endpoints’ x-coordinates are ordered, forming a partitioning of x-
intervals. Each interval is associated, in order, with the leaves of a balanced tree,
and inner nodes are given the union of their two children’s x-intervals. Along with
the interval, each node stores four catalogs, two red and two blue.

A red segment is in a node n;’s long red catalog iff the segment completely
spans n;’s x-interval, but not the x-interval of n;’s parent. The same segment
is stored in the short red catalog of every node n; that is a proper ancestor of
n;. Long and short blue catalogs are populated similarly. Conceptually, each
node’s x-interval represents a vertical strip. A (e.g. red) long catalog may be

sorted vertically in such a strip, since one colour’s segments do not intersect. To

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

24. CGM SEGMENT TREE ALGORITHMS

Figure 2.6: Example Hereditary Segment Tree

find intersections, we compare, at each node, pairs of red and blue catalogs. We
compare a node’s two long catalogs, as well as a short with a long. Note that
we always compare with a long, which has a total ordering in the node’s vertical
strip.

We briefly describe how we may guarantee that each intersection uniquely
exists in these comparisons. Let us assume that there is an intersection between
some blue segment e, and red segment e,. Then this will occur in the vertical strip
of exactly one leaf, and we look at the nodes from this leaf to the root. There are
three possibilities. The intersection may occur in a node on this path where both
ep and e, are long, and we will not find it elsewhere. Otherwise, the two cases are
symmetrical; assume ey is long above the node in which e, is long. Then where e,

is long, e, will not be stored, so the intersection will not be counted there. Where

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

24. CGM SEGMENT TREE ALGORITHMS

ey is long, however, e, is short, and the intersection will be counted.

Secondary Tree Extension

Figure 2.7: Example Secondary Tree

We must now describe the algorithm to solve our intersection search problem.
Let the red segments be our queries. That is, for any red segment, e,., we wish
to search for some blue segment e, which intersects e, directly above some point.
The exact search criteria for two slightly different queries are given in a later
chapter. Here, we assume there is some total ordering on a red query segment’s
intersections that allow us to perform binary search.

We must search e, against the long blue catalog at nodes where e, is short.
We must also search e, against the long and short blue catalogs at nodes where
e, is long. Unfortunately, we cannot order a node’s short blue catalog, making
it difficult to efficiently search e, against a short blue catalog. However, we may

use a secondary structure to extend the hereditary segment tree, proposed by

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.4. CGM SEGMENT TREE ALGORITHMS

Chazelle et. al [11]. The purpose of the secondary structure is to arrange a node’s
catalog lists into pairs of sublists such that all red and blue segments in a pair
intersect. Specifically, we create this secondary structure for long red and short
blue segments at each node.

Taking the (vertically ordered) long red segments in the node’s vertical slab,
we construct another balanced tree where the long red segments are assigned, in
order, to the secondary tree’s leaves. Each inner node receives the union of its
subtree’s long red segments. These intervals of red segments are analogous to the
x-intervals of the main segment tree.

This secondary tree’s catalogs are populated with short blue segments. For
each blue segment, we locate its endpoints in the long red sequence, with which
we may determine the interval of nodes that the short blue segment intersects.
A short blue segment is placed in a secondary node, s;, exactly when the blue
segment intersects all of s;’s long red segments, but not all of s;’s parent. Note
that each blue segment is stored in at most O(log k) of the k£ nodes in the secondary
tree. Finally, once all short blue segments are stored, we may order the short blue

catalog at each node by the order in which they cross the long red segments.

Intersection Search Variant

To query the tree for some red segment, e., we traverse the segment tree, looking
at the O(logn) nodes where e, is stored in some red catalog. Regardless of whether
e, is short or long, we may locate its endpoints in the long blue list. When e,
is long, we also traverse the secondary structure, searching the secondary nodes’

blue catalogs along the path where e, is stored. For every ordered catalog of blue

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

24. CGM SEGMENT TREE ALGORITHMS

segments we find, we may perform a binary search.

Hence, the running time of the sequential red-blue intersection search problem
is dominated by the time to search the secondary trees. The secondary trees are
of total size O(nlog”n), so both the sorting and querying of the secondary trees’

short red catalog requires a total of O(nlog®n).
Algorithm 14: RB.SEGTREE_SEQUENTIAL()

1 Sort the x-coordinates of all red and blue segment endpoints. Create a
balanced binary tree on these elementary intervals

2 For each red and blue segments traverse the tree and insert the segment
into the appropriate long and short catalogs. Order the long catalogs

3 Search each short red catalog’s segments in the corresponding long blue
catalog

4 Search each long red catalog segment in the corresponding short blue
catalog

5 For each node, construct a secondary tree skeleton on the long red catalog,
and insert the short blue catalog segments. Order each secondary catalog.

6 For each secondary node, search the node’s long red segments in the shoft
blue catalog list.

7 Reduce the results from steps 3, 4, and 6 into a unique result for each red

segment.

Theorem 3 The red-blue line intersection search problem may be solved in O(nlog® n)

space and O(nlog’ n) time.

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.4. CGM SEGMENT TREE ALGORITHMS

CGM Search Algorithm

CGM algorithms for both the counting and reporting variants of the red-blue line
intersection problem are given by Devillers and Fabri [18]. Again, we require a
search variation, rather than the usual counting or reporting, and hence give ap-
propriate modifications. For the parallel algorithm, we make use of load balancing
techniques similar to those used by Devillers and Fabri, although we have a larger,

more complex data structure on which to operate.

Ty

pal

O
/\O%Z\OA

Figure 2.8: Extension to the Hereditary Segment Tree Data Structure.

To distribute this new data structure across processors, we divide the main
segment tree into a shared piece, Tj of the first O(log p) levels, and into P subtrees
(T1,...Tp). Figure 2.8 show an example data structure. For each node of Tj, we
may share the linear long blue catalogs using a global sort, similarly to the scheme
for the standard CGM segment tree of Section 2.4.1. We concentrate on describing

how to process and balance the root piece’s secondary trees. The secondary tree,

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.4. CGM SEGMENT TREE ALGORITHMS

S¢, for each segment tree node ¢ is also divided into a top portion, S§, of size p,
and a set of subtrees, S%,...S}.

Let us first discuss the top S§ secondary trees. These trees’ catalogs can
be concatenated into a global sequence, sorted by key (n;, si, e;), where n; is a
segment tree node, sj is a secondary node in n;’s secondary tree, and e; is a short
blue catalog entry at s.

Then we can determine for each long red segment e;, the O(log®p) secondary
catalogs (sk, in a segment tree at node n;) that need to be searched. A copy of
e; with the key (n;, sg,e;) may be created, and then we may perform the binary
search algorithm of Section 2.2.5 to perform the query for S} tree tops.

Each processor stores a set of the S¢ secondary subtrees. We may use the
loadbalancing algorithm (Algorithm 8) to balance out the subtrees and the short
blue segments destined for each subtree, and then solve each sequentially.

The main segment tree’s subtrees do not require loadbalancing, since the nodes’
intervals are based on red and blue segment endpoints. Hence, O(%) queries are

distributed to each T; subtree.

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.4. CGM SEGMENT TREE ALGORITHMS

Algorithm 15: RB.SEGTREE_BUILD()

1 Global Sort endpoints of input segments (both R (the red queries) and B)
by z coordinates. Each processor now has its R; C R and B; C B sets of
line segments and the z-interval of its Ty segment tree leaf.

2 Share globally the z-intervals of all T leaves, and let each processor
independently compute Ty (without catalogs).

3 Each processor computes the long and short, red and blue catalogs of T for
its line segments.

4 Global Sort long red catalogs, and locally construct S}, subtrees for the
catalog portions received at each processor

5 For each long red catalog, n;, share globally the S}, intervals (i.e. S} leaves),
and construct S§.

6 For each processor and at each node n;, insert the local short blue catalog

into Si. Globally sort the catalogs of all S.

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

24. CGM SEGMENT TREE ALGORITHMS

Algorithm 16: RB_.SEGTREE_SEARCH()

1 At each processor, traverse Ty and create a query (n;, r;) for each red
segment r; in the node n;’s short red catalog. Binary Search (Algorithm 9)
these queries in the global long blue catalog list.

2 At each processor, traverse Ty and create a query (n;, 7;) for each red
segment 7; in the node n;’s long red catalog. Binary Search (Algorithm 9)
these queries in the global long blue catalog list.

3 Taking the same set of queries as above, binary search (Algorithm 9) these
queries in the global short blue catalog list.

4 Determine in which secondary subtrees S}; each query r € R; must be
searched.

5 Perform loadbalancing (Algorithm 8) to group a constant number of S}
subtrees (i.e. the subtree’s set of blue segments) with a set of queries.

6 Perform sequential algorithm on each processor’s secondary subtrees and
queries received in the previous step. (Algorithm 14)

7 Perform sequential algorithm on each processor’s T; segment subtree.
(Algorithm 14)

8 Globally reduce the results from Steps 1,2,3,6,7 to a unique result for each

red query segment.

Analysis

The most complex portion of Ty is the secondary catalog querying. The upper

St portions of the secondary trees reduce to sequential batch binary search sub-

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.4. CGM SEGMENT TREE ALGORITHMS

problems of total size O("—l‘f—z—p), which require O(ilo—gi;m) local computation.

The lower S, portions of the secondary trees and the secondary trees in T reduce

n log2 n

>) per processor, which require

to sequential subproblems of total size O(

O(ﬂ—l";isﬁ) local computation. Hence,

Theorem 4 The red-blue line segment intersect search problem may be solved
on a CGM in O(@;—‘Z—@) space and O("—lc’:l)giﬂ) local computation time, with O(1)

rounds, and the restriction that n > p°.

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

