pees

rEEERE

E
EEE
FEEE

4

£

e
=
[ ]

==
5
(3
==
I=
=
B

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS
STANDARD REFERENCE MATERIAL 10108
(ANS! and iSO TEST CHART No 2)

s o L o )
RENVITNIEOSS: e oo A E T R

G e

LW

o h by

T SR

&
¥



Biblioth

National Lit
I*l otaCa?t:da ran du Canada

Ottawa, Canada
K1A ON4

NOTICE

The quality of this microform is heavily dependent upon the
quality of the original thesis submitted for microfilming.
Every effort has been made to ensure the highest quality of
reproduction possible.

If pages are missing, contact the university which granted
the degree.

Some pages may have indistinct print especially if the
original pages were typed with a poor typewriter ribbon or
if the university sent us an inferior photocopy.

Reproduction in full or in part of this microform is governed
by the Canadian Copyright Ac!, R.S.C. 1970, ¢. C-30, and
subsequent amendments.

@ nationale

Canadian Theses Service  Service des théses canadiennes

AVIS

La qualité de cette microforme dépend grandement de la
qualité de la thése soumise au microfilmage. Nous avons

:put fait pour assurer une qualilé supérieure de reproduc-
ion.

Sl manque des pages, veuillez communiquer avec
l'université qui a conféré le grade.

La qualité d'impression de certaines pages peut laisser A
désirer, surtout si les pages originales ont été dactylogra
phiées a 'aide d'un ruban usé ou si l'université nous a fai
parvenir une photocopie de qualité inférieure.

La reproduction, méme partielle, de celte microforme est
soumise A la Loi canadienne sur le droit d'auteur, SRC
1970, ¢. C-30, el ses amendements subséquents.

Canada




Rural School Bus Routing and Scheduling
by
Duncan John Forfar Chaundy

A thesis submitted to
the Faculiy of Graduate Studies and Rescarch
in partial fulfilment of
the requirements for the degree of

Master of Computer Science

School of Computer Science

Carleton University
Ottawa, Ontario
August 2, 1990

© Copyright
1990, Duncan John Forfar Chaundy




R oG wCanasa

Canadian Theses Service  Service des théses canadiennes

Ottawa, Canada
1A ON4

NOTICE

Thequality of this microformis heavily dependent upon the
quality of the original thesis submitted for microfiming.
Every effort has been made to ensure the highest quality of
reproduction possible.

i pages are missing, contact the university which granted
the degree.

Some pages may have indistinct print especially # the
original pages were typed with a poor typewriter ribbon or
i the unwversity sent us an inferior photccopy.

Reproduction in full or in part of this microform is governed
by the Canadian Copyright Act, R.S.C. 1970, ¢. C-30, and
subsequent amendments.

AVIS

La qualité de celte microforme dépend grandement de 1a
qualité de 1a thése soumise au microfilmage. Nous avons

tout fait pour assurer une Qualité supérieure de reproduc-
tion.

. §'il manque des pages. veuillez communiquer avec

tuniversité qui a contéré le grade.

La qualité dimpression de certaines pages peut laisser a
désirer, surlout siles pages originales ont été dactylogra-
phiées 4 raide d'un ruban usé ou si funiversité nous a tait
parvenir une photocopie ce qualité inférieure.

La reproduction, méme partielle, de cette microforme est
soumise a la Loi canadienne sur le droit d'auteur, SRC
1970, c. C-30, et ses amendements subséquents.

ISBN 0-315-60479-4

NL-329 (r. 8804) C

Canada




The undersigned recommend to
The Faculty of Graduate Studies and Research
acceptance of the thesis
Rural School Bus Routing and Scheduling
submitted by
Duncan John Forfar Chaundy
in partial fulfilment of the requirements for

the degree of Master of Computer Science

YR YIS

Thesis Supervisor

Dircctor, School of Computer Science

Carleton University
September 4, 1990

i




Abstract

The rural school bus routing and scheduling problem is an example of the vehicle
routing problem. Given are some stops where students are waiting to be picked
up, along with a network of roads where topographical features mean that not all
neighbouring nodes are connected and a fleet of school buses. There are also time
restrictions on travelling. This thesis presents a heuristic approach to solving this
problem, generating feasible routes to deliver the students to the school using the
smallest number of buses possible. Features of the algorithm include allowing more
than one bus to serve a stop, allowing buses to run two routes for one school and
allowing different bus speeds in different parts of the network. This algorithm is
implemented along with a graphically interactive user-interface which allows the

user to see the network, and to see an animated display of the resulting routes.

il




Acknowledgements

First I would like to most gratefully thank my supervisor Professor Frantisek
Fiala for his supervision of this thesis. I would also like to thank Professor Bill
Cunningham of the Department of Mathematics and Statistics for suggestions on
future shortest path tree algorithms. Finally I would like to thank those fellow
graduate students who shared their experience with Smalltalk and those who made

Lelpful suggestions for improvements to the interface.

iv




Contents

1 Introduction

1.1 Vehicle Routing and Scheduling
1.2 Problem Classification
1.3 Traveling Salesman Problem
1.4 Heuristic Approaches to Traveling Salesman
1.5 Classification of Solution Strategies in Vehicle Routing
1.6 Description of Some Routing and Scheduling Problems

1.7 School Bus Routing and Scheduling and Algorithms

1.7.1
1.7.2
1.7.3
1.74
1.7.5
1.7.6

1.8 Lindenberg and Fiala
1.9 Complexity
1.10 Objectives

.....................
..........................
.......................
..............
........
........

..........

Newton and Thomas

.......................

Angel, Caudle, Noonan and Whinston

.............

Bennett and Gazis

------------------------

Bodin and Berman

........................

School Bus Scheduling

Savelsbergh . . . ... ... ... ... .. ..

--------------------------------

...............................




2 School Bus Problem 30

2.1 Dataand Assumptions . . . . . .. .. ¢ . ittt 30
22 Algorithm . .. .. .. ... . e 34
2.2.1 Shortest PathTree . . ... ................... 35

222 lowerand UpperBounds . ................... 37

2.2.3 All Pairs Shortest Paths . . ... ... ............. 38

224 Route Generation . . . . ... ... ... ... ... ...... 10

2.2.5 Furthest Branching Point . ... ... ............. 41

226 IsolatedFork .. .... ... .. ... . .. ... ... ... 42

22.7 Knapsack Problem ... ..................... 42

228 Detourroutes . .. ... ... ... . 45

229 Inner District Routes . . . . ... ... ... .......... 48

23 Measuresof Quality . . . . . ... ... .. L o oo oo L. 49
24 AlgorithminSummary . . ... .. ... ... ... ... ... ... 31

3 Implementation and User Interface 53
3.1 Datalnput . .. .. .. ... ... e e 33
32 Network Display . . . ... ... .. . L i oo 37
3.3 Network Editing. .. .. ... ... ... o o oL 62
3.4 Algorithm Execution . . ... ... ... .. .. ... 0 L. 65
35 RouteDisplay . . . . .. .. ... i e 70
36 DataOutput . ... ... .. ... ... i 74

4 Computational Experience 76
4.1 Gerolstein Problem . . .. ... ... ... .. .. .. . ... ... 76
4.2 Lindenbergand Fiala . . . ... ... ... ... .. ... ... ... 78
43 St.MarkHigh School . . . . . . . .. .. 79

5 Summary 82




6 Future Work 85
Bibliography 920
A Code for Routing and Scheduling 94
B Inpui Data 2nd Timetables for Gerolstein Problem 107

B.1 Gerolstein Timetables .. .. ...................... 111

vii




List of Tables

1.1 Classification of Routing and Scheduling Problems . . . . . ... ... 4

1.2 Classification of Routing and Scheduling Problems - continued . . . . 3

viii




List of Figures

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

3.10 Window with Bus Statistics
3.11 Window with Arrival Inconvenience
3.12 ‘Clock’ Menu
3.13 Network Animation in Progress

3.14 Network Animation with all Students at the School
3.15 Generated Timetables

Solution to Symmetric Traveling Salesman Problem

..........

Initial tour and feasible 2-exchange

...................

Isolated Components of the Network
Isolated Forks

..................

...............................

Direct and Detour Routes

........................

Network Display . . . . . .. ... . ..
Network Display and *Map’ Menu

....................

Network with Distances, Node Demands and Node Names . ... ..

Network with Rectangle for Magnification
Magnified Network

...............

----------------------------

Network after User has selected to Remove a Node

..........

‘Execute’ Menu . . . . . . . v i i it e e e e e e e

Shortest Path Tree with Travel Times

Window with Results of Heuristic Algorithm Execution

..................
--------
.......................
...................
...............................
.....................
----------

-------------------------

ix




Chapter 1

Introduction

1.1 Vehicle Routing and Scheduling

The vehicle routing and scheduling problem arises because an organization wishes
to distribute some goods or people to a number of locations using a fleet of vehicles
and the associated crews, and wishes to do this in an optimal way. The general
problem has spawned many particular instances of the problem, not least because
distribution costs add hundreds of billions of dollars to the price of goods alone
[8]. For example, the annual distribution costs for a large distributor of propane
gas in the U.S.A. was $6 million in 1979. In 1974, the state of New York had a
budget of between $150 and $200 million annually for school bus transportation.
This budget was supplemented by funds from local school districts. The annua. cost
of leasing a school bus for 6 hours per day was approximctely $11 000 in 1974, rising
to approximately $20 000 in 1981. Also from {12] 18 806 students were transported
on 848 school bus routes with a total daily distance of 36 142 kilometres. The total

expenditure in 1988 was over $11.5 million for just one school board.

The main output of a routing and scheduling problem is to provide a route and
a schedule for each vehicle or for each driver. A route specifies the sequence of stops

to be visited and the schedule specifies the time at which an activity should be

1
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carried out at each stop. Thus there is a complete description of what tasks should

be carried out, at what location and at what time.

Useful reviews of the subject of vehicle routing and scheduling appear in (8], [20]
and (19]. Routing and scheduling is a much studied topic. The authors in {3] give

nearly 700 references to works o~ routing and scheduling.

1.2 Problem Classification

Vehicle routing and scheduling problems can be separated into three broad cate-
gories. These are the routing problem, the scheduling problem and the combined
routing and scheduling problem. In each of these problems there is a set of points
where a vehicle must make a delivery or pick-up. In the routing problem, the ve-
hicle must service each of these points but there are no time restrictions on when
the points must be serviced. The solution to the problem gives an ordered series of
points to be served by the vehicle. In the scheduling problem the time to service each
node is fixed in advance and the solution to the problem gives a set of nodes to be
serviced by the vehicle. In the combined routing and scheduling problem there are
some time restrictions on when the points can be serviced or certain points must be
serviced before others. The solution to the combined problem is to find the sequence

of points and the time that each point is serviced by the vehicle.

One example is the case of newspaper delivery. Here we have some goods to be
delivered to a number of locations using a fleet of vehicles based at a single depot.
There are nc a priori restrictions on the delivery times assuming that all the goods

can be delivered in a relatively short period of time. Then the problem becomes a

pure vehicle routing problem.

If there are time restrictions on when a location can be serviced then we have
a routing and scheduling problem. In the dial-a-ride problem, the user must he
picked up at one location and delivered to another location. The passenger must
be picked up before being dropped off so there is a precedence relationship hetween

these two stops. If the starting and ending time when a location can be serviced
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is specified exactly then the location is said to have definitive time for service. A
less restrictive constraint is that service must be within a ¢ime window. A two-sided
window (s, t] specifies the time that service may start and when it must end, for
example a warehouse may only accept deliveries between 9:00 a.m. and 4:00 p.m.,
giving a time window of [9:00, 16:00). In a one-sided window, either the starting
time or the ending time is unspecified, so that service must either finish by a certain
time or start after a certain time. This situation can occur in a dial-a-ride system.

Routing and scheduling problems can also be classified using the characteristics

shown in tables 1.1 and 1.2. This table is based on classifications from {8] and [7].
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Characteristics Possible Options

Size of Vehicle Fleet One vehicle

Multiple vehicles

Type of Vehicle Fleet Homogeneous (all vehicles are the same type)
Heterogeneous (vehicles are different)

Special types (e.g. compartmentalized)
Number of Depots One depot

Multiple depot

Demand Type Known demands
Probabilistic demands

Partial satisfaction of demands allowed

Demand Location Mostly at nodes

Mostly on arcs
Mixed

Underlying Network Undirected
Directed
Mixed

Euclidean

Vehicle Capacity Constraints | Imposed and all the same
Imposed and different

Not imposed

Maximum Route Times Imposed and all the same
Imposed and different

Not imposed

Vehicle Operations Pick-ups only
Drop-offs or deliveries only

Mixed pick-ups and drop-offs

Split deliveries allowed or disallowed

Table 1.1: Classification of Routing and Scheduling Problems
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Characteristics Possible Options
Costs Variable or routing costs

Fixed operating or vehicle acquisition costs

Common carrier costs for unserviced demands

Objectives Minimize total routing costs
Minimize sum of fixed and variable costs
Minimize number of vehicles required

Maximize service or convenience

Maximize customer priorities

——

Table 1.2: Classification of Routing and Scheduling Problems - continued

One example of a problem using this classification is the traveling salesman
problem. It has a single vehicle with unlimited capacity housed at one depot, known
demands on the nodes of an undirected network, with no restriction on the time
of the route, and an objective of minimizing the cost which is the total distance

traveled.

1.3 Traveling Salesman Problem

The traveling salesman problem is based on the problem of a salesman starting at
his home city and traveling to each city on his list exactly once and returning home,
and doing this so that the distance traveled in the tour is as small as possible. The
traveling salesman problem may be formulated mathematically as follows [8]: Let a
network G = [V, A, C] be defined with .V the set of nodes, A the set of branches or
arcs, and C = {¢;;] the matrix of costs. The cost of moving from node i to node j (the
distance) is ¢;;. The traveling salesman problem requires finding the Hamiltonian
cycle in G of minimal total cost — a Hamiltonian cycle is a cycle passing through
each node i € N exactly once. An example of a feasible solution to the symmetric
— costs are equal in both directions along the edge — traveling salesman problem

is shown in figure 1.1.
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Figure 1.1: Solution to Symmetric Traveling Salesman Problem

As with most vehicle routing type problems, approaches to the traveling salesman
problem are either optimal using mathematical programming or approximate using
heuristic procedures. An assignment formulation of the problem appears in [8]. It is
assumed that the costs are symmetric so ¢;; = ¢,; and ¢;; = 400 for ¢ = 1,2,...,n.
The objective is to form a tour over all the nodes starting and ending at node 1,
with the minimum tour cost. The decision variables are

1, if arc ¢ — J is in the tour
i = .
0, otherwise.
The solution to the assignment problem gives a matrix X = (z,,) of decision variables
so that exactly one ar: enters each node and exactly one arc leaves each node,
corresponding to a tour of the nodes. The objective function is to
n n
Minimize z Z CijZi;
i=1 =1
There are further restrictions imposed so that the solution corresponds to one

tour of the nodes and not two or more unconnected subtours.

1.4 Heuristic Approaches to Traveling Salesman

There are three main types of heuristic approaches to the traveling salesman prob-
lem. The first is tour construction where an approximately optimal tour is generated
from the distance matrix. The second is tour improvement where improvements are
attempted to an initial tour. The third is composite where tours are constructed by

a tour construction method and then improvements are attempted.
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One tour construction procedure is called the nearest neighbour [36]. This pro-
cedure constructs a tour by starting at a node, moving to its nearest neighbour, then
mcving to the nearest neighbour which has not yet been visited, of the last node
visited. This process is repeated until all nodes have been visited. The last step is
to return to the starting node, thus completing the tow.. The worst case behaviour

of the algorithm is

length of nearest neighbour tour < [log, n] 1
length of optimal tour - 2 2

where n is the number of nodes. The algorithm runs in time O(n?).

The Clarke and Wright Savings algorithm ([14] and [18]) again starts with a
node as the central depot called node 1. Initially n — 1 subtours are formed, one for
each node where each subtour consists of starting with node 1, visiting a node and
returning to node 1. Then calculate the savings s,, = c1i+¢1;—c;; fori,j = 2,3,...,n
and order the savings from largest to smallest. Starting with the largest savings the
existing subtours are extended by combining subtours and so forming larger subtours
by linking nodes ¢ and j. Repeat until a cornplete tour is formed. The worst case
behaviour for the cost of the tour is linear in logn. The computation requires time
O (n? logn).

Insertion procedures are also reviewed in [36]. An insertion procedure starts with
a subtour of k nodes at iteration & and finds the next node to insert in the subtour
and where it should be inserted. The nearest insertion starts with a subgraph
consisting of only node i. Find node k so that ¢ is minimal and then form the
subtour i-k-i. Then select node k not on the subtour closest to any node in the
subtour. Then insert node & in the subtour by finding the arc (¢, ;) in the subtour
which minimizes ¢z + ¢k, — ¢;; and insert the node between nodes ¢ and j. Repeat
the selection and insertion steps until there is a Hamiltonian cycle. In the worst
case behaviour of the algorithm, the length of the nearest insertion tour is twice
the length of the optimal tour. The nearest insestion algorithm requires U(n?)
computations.

The cheapest insertion procedure is the same as the nearest insertion except the

selection and insertion steps are replaced by a combined one. Find arc (i, ;) in the
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subtour and node k not in the subtour, so that ¢;x + cx; — ¢;; is minimal, and then
insert node k between i and j. This requires O (n? logn) computational steps.

In the arbitrary insertion, the node to be inserted is selected arbitrarily. The
worst case behaviour worsens to the tour being within [logn] + 1 of the optimal,
though the execution time improves to O(n?).

In the farthest insertion the selection step is changed to find the node farthest
from any node already in the tour. Also choose the initial k by finding the maximal
value of ¢;;.

In the nearest addition procedure, first pick any node as the starting circuit with
one node and zero edges. Then given a k-node circuit T, find the node z; not on T}
that is closest to a node, yi, on Ti. Let T4, be the (k + 1)-node circuit obtained
by inserting z, immediately in front of y, in T,. Repeat the selection and insertion
steps until a Hamiltonian circuit is formed.

There are also convex hull algorithms. If the costs ¢;; represent Euclidean dis-
tances and given the convex hull of the nodes in two-dimensional space, then the
order in which the nodes that lie on the boundary of the convex hull appear in the
optimal tour, follows the same order that they appear in the convex hull. For more
details see [15], [21] and [34].

There are also approaches based on a minimal spanning tree. Both assume that

the triangle inequality holds, i.e.
ce Lcjteiy Vi, kEN

where N is the set of nodes. The first is due to Kim {25]. First find the minimal
spanning tree T of the graph G. The minimal spanning tree on the nodes of G is
a connected graph on the same nodes which minimizes the sum of the edge costs.
Then double the edges in the minimal spanning tree so as to obtain an Eulerian
multigraph. Informally, a multigraph is a graph where an edge can occur more than
once. It is Eulerian if each vertex has even degree. From this multigraph we can
find a closed walk, that is a sequence of nodes where the first and last nodes are

the same, and there is an edge in the graph between each pair of nodes in the walk.
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This walk visits each edge of the multigraph at most once and each node at least
once. Then using the triangle inequality remove edges from the walk where nodes
have a degree greater than two, and add new edges which bypass nodes already
visited in an enumeration of the nodes of the cycle. This transforms the walk into
a Hamiltonian cycle. This procedure also gives a tour which is no worse than twice

the optimal tour in cost. It runs in time O(n?).

Another minimal spanning tree approach is by Christofides ([13]). First find the
minimal spanning tree T. In T, find the odd degree nodes, and solve a minimum
cost perfect matching with these nodes using the original cost matrix. Add these
edges to T to obtain an Eulerian multigraph where every node has even degree.
Again form an Eulerian walk and remove edges from the walk where nodes have

a degree greater than two to obtain a Hamiltonian cycle. This gives a worst case

behaviour of
length of Christofides’ tour
length of optimal tour

3
<3

The execution time is limited by the time to perform the minimum matching which is
O(n®), though usually the number of nodes with odd degree in the minimal spanning

tree is significantly less than n.

Branch exchange heuristics are tour improvement procedures, introduced by Lin
([28]) and furthered by Lin and Kernighan ([29]). The branch exchange heuristics
were initially 2-opt and 3-opt procedures then extended to the k-opt procedure.
First find an initial tour which is generally chosen randomly. Then improve the tour
using branch exchange heuristics until no more improvements can be made. This
procedure terminates at a local optimum. A k-exchange of a tour is defined as the
deletion of k branches in a tour and their replacement by k other branches forming
a new tour. A tour is k-optimal if it is not possible to improve the tour using a
k-exchange. The tour will generally terminate at a better local minimum the larger
the value of k that is used, so that an n-opt tour is an optimal tour to the original
problem. Figure 1.2 shows a 2-exchange. Note that in the example the costs must

be symmetric since the direction on arcs (B,C), (C,D) and (D,E) is reversed.
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Figure 1.2: Initial tour and feasible 2-exchange

A 3-opt procedure needs approximately n times the execution time that a 2-opt
procedure needs. To get a tour which is close to optimal using 3-opt exchange, one
should repeat the procedure for a number of starting tours and then choose the tour
with the best result [36). This means that the overall execution time can get fairly
long, so instead composite procedures are used which give the same accuracy as

repeated 3-opt procedures but at lower cost.

Composite procedures start by obtaining an initial tour using one of the tour
construction procedures. Then use the 2-opt procedure on this tour, and the 3-opt
procedure on the 2-opt result. This gives good results using an initially good solution
and hopefully some improvement to near-optimal using the branch exchange heuris-
tics. Variants on the composite procedure include bypassing the 2-opt procedure,
bypassing the 3-opt procedure, running the composite procedure several times using
different tour construction procedures, and running the tour construction procedure

several times using different starting nodes and then continuing with just the best

tour.

These traveling salesman heuristic procedures are for the symmetric traveling
salesman problem. Some algorithms have been designed specifically for the asym-
metric traveling salesman problem such as that by Akl [2] which is similar to that
by Christofides. It uses a minimal directed spanning graph which is a subgraph
spanning n nodes of a complete directed graph with a weight w;; on each arc. It

also has minimum weight and forms a tree when directions are ignored. In other
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words, when the directions on the arcs are ignored, the graph is a minimal spanning

tree with edge costs ¢,; = min{w;,, w;;}.

1.5 Classification of Solution Strategies in Vehi-

cle Routing

In the vehicle routing problem a set of delivery routes are needed from a central
depot to a number of nodes with demands. Each node has a service requirement.
The objective is to minimize the total distance covered by the entire fleet. The
vehicles in the fleet have capacities and may be limited to a maximum route time.
All the vehicles start and finish at the central depot. There are several approaches
to the problem and they can be classified as follows [8]: (1) cluster first-route sec-
ond; (2) route first-cluster second; (3) savings/insertion; (4) improvement/exchange;
(5) mathematical-programming-based; (6) interactive optimization; (7) exact f.o-
cedures. Approaches (1) to (4) and (7) have been used in the past, and (5) ana (6)
have been developed recently.

Cluster first-route second procedures group or cluster nodes or edges together
first and then form routes over the clusters as a second step. The route first-cluster
second procedures work in the reverse order. First a large tour is constructed which
includes all the demands though this tour is usually infeasible. Then the tour is
partitioned into a number of smaller but feasible routes. This approach has been
used by Newton and Thomas ([31,32,33]) and by Bodin and Berman ([6]) for the
routing of school buses. These will be discussed in later sections.

The savings or insertion heuristics compares the current configuration with an-
other configuration and chooses the one with either the largest savings in terms of
some function such as total cost, or the one with the least cost for inserting a new
demand entity. Both the current and the alternative configurations can be infeasible
up to the final step when a feasible configuration is found. Examples of this ap-
proach are described in [14] and [34], and has been used for the routing of airplanes

in [23]). Improvement and exchange heuristics include the branch exchange heuris-
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tics developed by Lin and Kernighan ([28,29]) and mentioned above. Here a feasible
solution is always maintained which is improved at each step with a reduced total
cost, until no further improvements are possible. A modification of this approach
has been used to schedule mini-buses for the subscriber dial-a-ride problem ([9)-
In interactive optimization, a high degree of human interaction is incorporated
into the procedure for obtaining a solution. Since the human has experience in the
problem he or she should be able to change parameters and evaluate the solution
on subjective criteria. One advantage of this approach is that the system is more

likely to be implemented and used. One example of this is [26].

1.6 Description of Some Routing and Scheduling

Problems

In combined routing and scheduling problems, which often occur in applications.
there are both task precedence relationships and time window constraints. Task
precedence relationships mean that one activity must precede another, such as a
pick-up occurring before a delivery and that these activities must be by the same
vehicle. Time window constraints restrict the times at which these activities can
occur. Some routing and scheduling problems are considered here besides the school
bus problem. These are the tractor-trailer routing and scheduling problem, the
routing and scheduling of street sweepers and household garbage collection vehicles,
and dial-a-ride routing and scheduling.

The tractor-trailer routing and scheduling problem has two versions, one where
the trailers have full loads and the other where the trailers have partial loads. The
full-load problem involves tractors picking up a full trailer and transporting it di-
rectly to the delivery point. The load is delivered to just one point and the tractor
can transport just one trailer. Thus a typical route involves lcaving the garage, pick-
ing up a trailer, delivering a trailer, deadheading to get to another pick-up point.
picking up another trailer, and delivering the trailer, and returning to the garage.

Deadheading means that the tractor travels from one node to another without a
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trailer. The demands in the problem are the number of trailers that have to be
transported between a particular pair of nodes. There are then two decision prob-
lems to solve. The first is to minimize the total cost of handling all the demands,
and the second is determine the optimal fleet size to service a subset of the demands,
given that the remaining demands can be satisfied by a common carrier, i.e. the
demands are satistied by another fleet of vehicles. This second problem involves
choosing which nodes should be part of the subset and which are the unprofitable

demands which can best be serviced by a common carrier.

The application studied by Ball et al. [4] did not have severely restrictive time
windows, but did have the following restrictions. (1) Certain pick-ups and deliveries
had to occur at specific times of the day. (2) Routes served by a two-driver crew
had a maximum of 120 hours of driving time and routes served by a single-driver
crew had a maximum of 60 hours of driving time. (3) If there are multiple trips
between the same pair of points, then these trips must be spread out over the week

and not all scheduled for the same day

In outline, the procedure to handle the problem starts by generating a single
large route, assuming a single vehicle of unlimited capacity, which covers all the
demands. This large route is then partitioned into smaller feasible routes which obey
the workrule constraints and the time windows. For the second problem of finding a
subset of nodes to be serviced, a route is constructed iteratively by inserting demand
arcs from the demand node pairs and using the ratio of the change in the route cost
to the change in the route time as a criterion as to whether an arc should be inserted

or not.

Where the tractor loads are partial loads, a tractor may be carrying a load from
more than one origin and heading to more than one destination at one time. Thus
a typical route may differ from the one for full loads because there may be more
than one pick-up or more than one delivery consecutively in the route. Otherwise

the constraints on the problem are similar to those for the full-load problem.

The problems of scheduling street sweepers and household garbage collection

vehicles are applications of the Chinese postman problem. This problem is an arc
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routing problem since all the arcs in the network must be covered while minimizing
the total distance travelled. Instead of considering the problem of visiting a number
of sites on one street this is simplified to traversing one arc. In the street sweeper and
garbage collection problems, a number of arcs need servicing and the problem is to
minimize the number of vehicles needed. For both problems there are no precedence
relationships between the arcs. For garbage collection there are no time windows
either. In the street sweeper problem there are time windows since there are certain
times when parking ‘s banned on the streets and it is only in these time windows
that the street sweeping can take place. It is only during these times that the street
sweeper can have access to the curb. The basic approaches to the problems use
either the route first-cluster second or cluster first-route second procedures.

In the dial-a-ride problem a customer calls a dispatcher requesting that the
vehicle come and pick him or her up and deliver him or her to a destination. A time
for pick-up or delivery may also be specified. There are two versions of the problen.
In the dynamic or real time dial-a-ride problem the customers need immediate service
so routing and scheduling is done in real time. In the subscriber or static dial-a-
ride problem the customers call before they need service so that all the demands are
known before the routing and scheduling is done. There are precedence relationships
in both cases since the customer must be picked up before being dropped oft. There
may also be time windows since either the pick-up time or delivery time is specified
and the time for the other service must be carried out within a certain interval of
the specified time. These two-sided windows may be too difficult or impossible to

handle so instead one-sided windows are used using only the one specified time.

1.7 School Bus Routing and Scheduling and Al-

gorithms
In the school bus routing and scheduling problem as normally described in the

literature, there is one or more schools, a number of bus stops with a number of

students assigned to each stop, and a fixed time window for the pick-up and delivery
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of the students. The mair objective is to minimize the transportation costs which
may be interpreted as minimizing the number of buses needed for a district, or as
minimizing the number of vehicles and the operating costs. The data upon which the
algorithms were tested was normally for densely populated suburban school districts.
The authors in both [6] and (8] say that the only work they know of for the mixed
loading rural problem is some unpublished work by ‘he Santa Clara (California)
County Center for Urban Analysis. (Mixed loading means that students from more

than one school are on board simultaneously.)

1.7.1 Newton and Thomas

The works by Newton and Thomas [32,31,33] consider two school bus problems: the
single school problem and the multi-school problem. In the single school problem we
are given the location of a single school, the bus stops and the number of students
to be picked up at each stop, a matrix of interstop travel times which is asymmetric
because of one-way streets and restricted turns, the capacity of a bus, and the time
it takes for students to board the bus. We are also given constraints which specify
the maximum allowable time that students may ride on the bus, and whether or not
students at one stop must be picked up by the same bus. It is assumed a bus cannot
be overloaded, that all buses have the same capacity and that all the routes start
and finish at the school. The objective is to find the minimum number of buses to

transport the students to and from school and to find the time schedules.

The solution strategy is route first-cluster second. The initial tour considering
just the stops is the solution to the traveling salesman problem using the nearest
neighbour approach. This traveling salesman tour is then improved using a kind of
3-exchange. In order to ensure that no arcs are traversed in the reverse direction
two consecutive arcs are replaced by one arc, and a single arc is replaced by two
consecutive arcs where this exchange results in a lower cost tour. This process is
repeated until no further improvement can be made. If the time matrix is symmetric
then the directions can be reversed without increasing the tour cost, so then there

is a further step of improving the tour by using 2-exchanges.
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This single tour is then partitioned into feasible bus routes using the data and
constraints from above. A bus route starts at the school and visits the bus stops
in the order determined by the traveling salesman tour. The bus traversing the
route continues to visit stops in tour order and picking up students until either the
bus is full or the maximum riding time is exceeded for the first student. The route
terminates by returning to the school. The next route starts at the school and
visits the node following in the traveling salesman tour, the last node visited by the
previous bus.

In the multi-school problem the authors extend the previous problem to consider
a school district with several schools. The starting times of the schools will be
staggered so that the buses can be used for more than one school. A bus only picks
up students for one school in any one route. These students are then delivered to the
school. If the bus makes a seco..d trip then it is to pick up students for a school with
a later starting time. Thus there are non-overlapping time periods during which a
school opens. The problem here is to determine for each time period, which school
a bus is assigned to and the stops it is to visit and the times to visit them. In
addition to the information needed for the single school problem, the number of
school-opening time periods, the initial location of each bus and the time period
in which a schooi must be served are also needed. Here students at one stop must
all be picked up by the same bus. Also the bus capacity can be specified for each
school since this may vary depending on the size of the students. The objective is
to minimize the total time for all routes in a given time period and to minimize the
number of routes for a particular school.

The solution strategy fixes the number of routes needed for each school and then
finds an assignment of stops to each route and their order that minimizes the total
travel time for all routes in a given time period. The overall routing problem consists
of sequential optimization from period to period. For each school in a time period,
the first step is to determine the number of routes needed to service the school. For

school S, a lower bound for the number of buses is given by:

number of students to be transported to S
Rsmin = -
bus capacity
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When this minimum cannot be attained because of the constraints, an allowance L,

1s made for the number of routes allowed, so that

Rsmax = Rsmin + L

The authors find that taking L to be one works best. If the following steps fail to

give a solution, then L is increased by one and the steps repeated.

The second step is to determine a lower bound to the average route travel time
from each origin to each school in the time period. This is found using the interstop
travel time matrix and assuming that each route must have at least one stop. Then
the origins of the bus routes are chosen. For the first time period the origins are the
bus garages and for the others they are the destinations of the previous routes. It is
assured that if the maximum number of routes allowed are used then it is possible
to visit all the nodes. Then for each school find the origin with the most routes and
call it the super-origin. If .V stops are allocated to a school, generate trial routes
using all V nodes. Each of the .V — 2 routes starts with the super-origin. Route ¢
of the .V — 2 routes has a second node of i + 1, where node 1 is the super-origin and
node .V is the school. The route continues using the nearest neighbour approach.

Find the route with the least cost.

Each of the possible tours, not just the one of least cost, is then partitioned into
routes using the same approach as for partitioning in the single school case. Each
route starts at the super-origin. If the aumber of routes is within Rsmax then try
to improve each route using exchange heuristics. Calculate the total travel time for
the set of routes. Using all the initial tours, find the set of routes with the least
total travel time. In addition the tour of least cost is also improved using exchange
heuristics and this is also partitioned into routes. Then using the best set of routes
found overall, allocate the actual routes using actual origins in such a way as to

minimize the additional travel time.
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1.7.2 Angel, Caudle, Noonan and Whinston

The authors of {3] have a similar objective of minimizing the number of routes while
keeping the mileage to a minimum. As well buses should not be overloaded and there
is a maximum time to traverse a route. The usual parameters are the numbers of
each capacity bus, the loading time per student and the extra time needed per stop.
Distance and travel time matrices are also needed. The time matrix is formed from

the distance matrix and bus speeds on the links.

The routing and scheduling algorithm has two components. First the stops are
clustered and then routes are formed from the clusters. The algorithm starts by
making a separate route for each node. Then for each pair of existing routes, a
measure of proximity, or association, is calculated for a savings type procedure.
This measure is calculated using the nearest nodes of the routes, the distance from
the school, the current load and the remaining time allowed for the route. Then
routes are merged starting with the pair with the greatest measure. When two
routes are merged a traveling salesman algorithm is used to find the shortest overall

route. This process is continued until no further merging can be done.

1.7.3 Bennett and Gazis

The bus routing procedure in (3] is based on the Clarke and Wright savings method.
They use this method to allow for asymmetries in the distance matrix. to allow for a
separate origin and destination of each bus, and to allow for the safety and comfort
of the students.

In the algorithm, first each bus stop is given its own route or routes if more than
one bus is needed. The routes are assumed to start at a common garage and then
proceed to the school. Pairs of routes are combined by forming a route starting at
the garage, covering the bus-stop part of the two routes and going to the school.
The savings function is similar to the Clarke and Wright function: the time from
the last node of the first route to the school plus the time from the garage to the

first node of the second route minus the time from the last node of the first route
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to the first node of the second route. The savings are found for each ordered pair of
nodes, (a,b), and ordered by the amount of savings. Ordered pairs are used since
the cost matrix is asymmetric. A pair of nodes is eligible when a is the last stop on
a route and b is the first stop on a route. However the authors also consider other
possibilities.

The first is that there may be increased savings if the order of the bus stops on
one of the routes is reversed. Also in order to increase safety and convenience, the
travel time should be kept low. For this purpose a modified objective function is
used: W = B + aS where B is the total bus travel time, S is the total student
travel time and « is a weighting factor. A modified savings takes into account the
fact that students from the original first route must now travel on the second route
before getting to school. The routes are combined as before but now the objective
is to maximize at each step, the decrease :n W. Once the routes are formed they
are then improved using a 3-opt algorithm so that routes are 3-optimal relative to
inversion and insertion. Inversion is the route produced by inverting all the arcs of

the route. This then takes the asymmetry into account as in the work by Newton

and Thomas.

1.7.4 Bodin and Berman

In [6] the objectives are again to minimize the transportation costs, the average
transportation time per student and to generate timetables for the school district.
The authors mention that where the transportation costs of a district are subsi-
dized by another level of government, the aid formulas may have factors besides the
number of students transported. This means that it may be more economical for
the local district to have more buses than that implied by a strictly minimum cost
solution. They assume that there is more than one school and that the times of
classes starting and finishing is fixed. Also that these times can be partitioned into
distinct time periods and that a bus only services one route in each period. Thus
to minimize the capital cost, the problem becomes one of minimizing the maximum

number of buses needed in any one time period. So no bus should be idle in the







