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ABSTRACT
. o -
' -
v The work reported in this thesis represents a comprehensive

treatmént of the application of channel coding principles in the pro-
cessing of the outputs of many levels of differential det;ction of a
continuous phase modulated signal. The differential phase variables
of MSK are treated as the output of a convolutional encoder and feed-
back decoding is applied to perform symboi decisions. The MSK detec-
tor analysis makes use of this coding analogy to obtain a procedure
leading to the performance prediction. Simulation and analysis are
used to bptain the MSK performance on a static AWGN channel and on a

- slow fading mqltipgth channel. A link is established between the
channel pafﬁmeters and the statistics of the random variables con-
side;ed by the decoder?; An extension of the detection pfocedure to
other full response signals a§ well as partial response signals is

_ discussed briefly. A practical MSK implementation on a DSP chip is

presented and its performarce, as measured under laboratory condi-

tions, is compared to the analytical and simulated results. S
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CHAPTER 1

INTRODUCTION

1.1 INTRODUCTICN

In many applications for mobile radio and satellite communica-
tion systems, digital modulation schemes with efficient power spectra
are d¢sirable. This is due. to the limited availability of the radio
frequency spectrum.'_The transmitters«‘ﬁnd repeaters often 1include
nonlin?arities, whiéh make a constant envelope modulation scheme
desiréble in order to avoid spectral ;egrowth. In recent years, sig-
nalling techniques such as Minimum Shift Keying (MSK), Gaussian MSK
(GMS r Tamed Frequency Modulation (TFM), that exhibit the two
desirable characteristics, became popular. These three types of sig-
nalling are all members of a more general class of modulation known

\
as Continuous Phase Modulation (CPM). v

A CPM modulator can be modeled as a baseband filter with impulse

~N
response g(t) followed by a frequency modulator with a certain modu-
lation 1index. The constant envelope property is assured by the FM

modulator, while the phase behaviour is a function of the £requency

1




’

pulse g(t) which ultimately influences the spectralvcontent of the
output signal. Memory is introduced into the CPM signal by means of
the continuous phase. If g(t) is limited to one symbol ingerval. all
the memory is in the phase continuit&. This is referred to as full
response signalling [2]. Further memory can be built into the CPM

signal by choosing a pulse g(t) that spans more than oné symbol in-

terval. This is ﬁallea\partial response signalling [3],{43] or cor-

relative encoding df digital FM signals [44],[45].

]

Over the past decade, an important amount of work was generated

in the area of CPM signal detection [1-4],{6-23}. The next section

will consider some coherent and noncoherent detection methods pro-

v

posed in the past few years. In this thesis, a noncoherent deteéction
procedure that was proposed for differentially encoded modulations

such as MSK or differential PSK (DPSK) is examined in detail . Note

that MSK can be viewed as a differentially encoded two-dimensional

linear modulation scheme.

Y

Called "Nonredundant error correction" by some' authors [EQ,[S],

this detection procedure can be extended to full response CPM wignals

and, with certain modifications, to parcial response signals. ' A

«
method to consider and analyse the detection procedure using channel

coding principles 1is presented. Minimum Shift Keying is considered
»

in detail and previously published results are enlightened by this

¥




.

~work. New results concerning the detection procedure and channel

'\\ ;
effects are also presented.

1.2 DETECTION OF CPM SIGNALS

A brief review of the most important CPM detection procedures
described in the open literature is-_ presented in this section in
order to,put the material of this thesis in perspactive. A detailed

review of the same subject is given iﬁ chapter 2 and appendix D.

In the case of equiprobable modulating sequences on an.Additive

" White Gaussian Noise (AWGN) .channel, the receiver that minimizes the

probability of sequence error impleméents the Viterbi algorithm, and
suitable metric‘updates in a bank of matched filters which are

sampled every symbol interval (appendix D). This proces§ is known as

Mdaximum Likelihood Sequence Estimation (MLSE) (1].

N
’

There are several practical problems in implementing a receiver
based on MLSE principles. The main one is the exponential growth, in

the complexity, with signal memory. Suboptimum detectors using a re-

duced maximum likelihood approach were proposed, but they still ex-

-hibit & significantly high 1level of complexity {6],([7]. Optimum

‘detection assumes perfect phase synchronization at the receiver, Two °

types of suboptimum receivers also  assuming phase coherency were

<
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-

proposed for CPM signal with modulation index of 1/2. These are the
parallel MSK-type receiver and the serial MSK-type receiver. As im-

plied by their names, these detectors are derived from a similar ar-

chitecture applicable to MSK. In fact, both the parallel offset

quadrature receiver [8) and the serial MSK receiver {10], with proper
filte;s, achie;e a mnminimum probability of bit error.for MSK. Both
types of coherent detectors can be implemented for partial response
signals, with frequency pulses spanﬁing less than 5 symbol intervals,
and give performance degradation, from.MLSE, on the orfer of one dB

(11.(9].

F
Coherent }ecepgion is not always possible, especially on fading

9 ©L
‘channels. Noncoherent detection is therefore used in these cases,

where no attempt is made to recover the received signal phase. Op-
timum and suboptimum (in the minimum error rate sense) noncoherent
detection procedﬁres were proposed for CPM signals on an AWGN chan-
nel. Optimum noncoherent detection is “discussed in Ill],[lZ] and
[(13]. For CPFSK, where the phase change is linear over one bit in-
terval, it essentially consists of a bank of correlators a;d ampli-
tudé detectors, each oné feeding a zero order modified Béssel

function of the first kind, followed by a decision device. This type

of detector, to be practical, must span a limited memory and there- .

fore must be suboptimum [11].
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N
When h=1/2, from equations (2.14) and (2.17), we have !
[ O3 4
APp(n) = =n/2 E:an-i modulo 2n (2.20)
1:0
. -1
dnk - an.i - modulo 4. (2.21)

équation (2.20) indicates a rotation of *n/2 for any data bit.
This implies a £ four-point general constellation, subject to the
modulo-4 "aritbmetié of equation (2.21), But for any particular dnk,
the specific constellation contajns only 2 points, either at O and ‘x

’ »
‘or at n/2 and 3x/2. Therefore che.dnk's require only modulo-2 arith-

£
metic and a 2-element alphabet [O,l]?-hgquation (2.21) then becomnes
k o . ‘
d,, . bn.i modulo 2 ) (2.2%)
. ie
whc}'rg -

» by = l‘when aj = 1

b; = O.when aj = -1. ' .

The demodulator 1is simplifiedlsince the decisions are taken on
p ;
antipodal sighal constellations and modulo:2 arithmetic is wused in
3 { .

the syndrome calculation.
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1.3 THESIS OBJECTIVES ‘

4. I~
» >
For MSK, -the use of a second order of differential detection to

improve the error rate performance of a conventiomal d‘fferential

detector was proposed by Masamura et al. [4]. The authors show that

the quantized output of a 2-bit differential detector constitutes a

parity-check signal for the quantized output of the one-bit detector

-

and that these two signals can be processed to reduce the error rate.
The analysis performed is similar to the one done by Chow et al.[24]

for DPSK and assumes no intersymbol interference and noise correla-'
tion properties inherent to matched filter detection. This ;nalysis
is misleading since a filtgr matched to the basic MSK pulse does not
meet Nyqui$£ first criterion for ISI-free transmission. It shows, in
these artificial channel cgnditions, a modest improvement with the
additional detector. But it is noticed experimentaliy that the ée»

gradation caused by a band-limited channel (channel with memory) in

the one-bit detector is reduced significantly with the aid of the

two-bit detector. This fact is not explained by the analysis
‘presented. The same detection progedure is studied by simulation in

[18) where a few different receive filters; are considered. But
again, no explanation is given about the procedure called "ISI con-
- -

trol by nonredundant error correction".
|

.



The main geal of this thesis is to perforh ;he analysis of the
procedure proposed in [4] for MSK, taking iné& aécouht the filcter
characteristics and the interdependancy of the differential detector.
outputs. _An ipproved version of this detection procedure, for MSK,
that uses a three-bit detector is also given. Then an asymptotic
lower bound for aﬁ infinite number of aifferential\detectors is in-
tuitively derived. These results are extended, for the case of MSK,
to fading multipath channels. It is shown explicitly that the pro-

posed detectors are in fact syndrome feedback decoders id¢ntical to

those used in the cecoding of systematic convolutional codes.

Another contribution of this work is to show that this detection
method, based on di?ferential phase properties, can be extended to
many CPM signals. ’

Y

1.4 THESIS ORGANIZATION

This thesis is organized as follows;

Chapter 2 reviews the definition of binary CPM signals and dif-
ferential detection of CPM signals with modulétion index of 1/2 |is
discussed. Then the differential phase properties of binaty CPM sig-

nals are presented. -



e

Chapter 3 dis;usses‘the application of feedback decoding on the
differential phase variables of a minimum shift keying signal. The
feedback decoding principles are first reviewed and then are applied
in the decoding of a specific number of differential phase variables.
The performance of such a procedure is analysedband some techniques
are developed to obtain the performance on different types of chan-
nels. A performance lower bound is intuitively established, and a

procedure to obtain the statistics of the variabIggsszsidered by the

- '
decoder is presented.

Chapter & congiders the performance of phase feedback decoding
of MSK on 4§ static AGN channel and on a slow fading multipath cthan-
nel. Co&siéerations are given to the receive filter on the AGN chan-
nel. ‘A spegific‘filte{'is chosen and simulated performance results
are obtained for the two channels. The joint probability dens{ity of

the variables considered by the decoder is presented for different

channel parameters.

Chapter 5 briefly discusses the possible application of feedback
decoding on the differential phase variables of other types of CPM

signals.

Chapter 6 presents a practical implementation of phase feedback
decoding for MSK, as well as its pefformaﬂce, as measured under

laboratory conditions.



Chapter 7 is dedicated to conclusions and proposals for further

work in this area of research.




CHAPTER 2

BINARY CONTINUOUS PHASE MODULATION

2.1 DEFINITIONS

Continuous phase modulation refers to a modulation scheme where

the amplitude of the modulated signal_As constant and the derivative

of the phase trajectory is always finite. Using the definitions and

notation giveﬁlin [1]-{3]), this sub-section presents some general de-

finitions about binary CPM signals.

The transmitted signal expression is

s(t) = JZE/T cos[ 2xf,t

where T is the symbol duration, E {is
carrier frequency, a is the sequence
constant initial phase that can be

- generality.

10

+ &(t,a) + &, ] (2.1)
the energy per symbol, f, is the
of binary data aj=*1 and &, is a

assumed zero without any loss of



The transmitted information is contained in the phase
o)
®(t,a) = 2xh }:ai q(t-1iT) (2.2)

-

where h is ®he modulation index and

t
q(t) = J g(r) dr (2.3)
- -]
I g(t) dt = 1/2. ' C(2.6)

The function g(t) is defined as thebfrequency pulse shape and its in-

tegral gq(t) is the phase response. The shape of g(t) determines the

smoothness of the transmitted information carrying phase and may span

a finite time interval 0 = t < LT or may be time infinite. fhg rate
e
of change of the phase (or instantaneous frequency) is proportional

LB

to the modulation indéx h. The normalization of the pulse shape in

equation (2.4) means’ that.for schemes with'positive pulses of finite
length, the maximum phase change over one symbol interval 1is h=x.

Some of the most popular pulse shapes are given in table 2.1.

It 1is ponven?hnt to see CPM as a generalization of MSK, for
which g(t) is a rectangular pulse extending over one bit and the mod-

ulation index is 1/2.

L}



LSRC

GMSK

LREC

g(t) =

LT [ l - cos —/= ] OstSL?

0 otherwise

g(t) = 1/8 [a go(t-T) + b go(t) + a g, (t+T)]

Eo (L)

g(t)

g(t)

Q(t)

g(t)

Table 2.1 Definitions of the frequency pulse function g(t)

R

;a=1; b =2

1 2 - 2%t/T cot(at/T) - m2e?/T?

sin(nt/T) pure 24”t3/T2

1/LT . Sin(2rt/LT) | cos(f 2xt/LT)

0=8=<1
2xt /LT 1 - (Aﬁt/LT)z

121 | Q| 2#B, £3£2 | . q| 2xB, E3I£2
t Iln2 t Jjin2

1/[2x I e"z/2 dr
t

1/2LT ;0<t<LT

0 ;otherﬁise

(from [1]).

12



Memory 1is hgtroduced into the CPM signal by means of the con-
tinuous phase. Each information carrying phase function &(t,a) is
continuous at all times for all combinations of data symbols. _ Even
when the data symbols are uncorrelated, further memory can be built

into the CPM signal by choosing g(t) with L > 1. These schemes have

overlapping shaping pulses and constitute the partial response sig-

nalling schemes [3]. CPM signals with L=1 correspond to the full
response signalling formats [2]. In this case, all the memory is in
the continuous phaée. Full response signalé with a constant fre-

quengy pulse are referred to as Continuous Phase Frequency Shift Key-
ing (CPFSK). The phase ®(t,a), during interval nT =< t =< (n+l)T, can

be written

- . " n-L,
¢(t,a) = 2xh EZaiq(t-iT) + hnx }Zai modulo 2« (2.5)
i-ﬂ-L,.] R -3

For given h and g(t) and for any symbol interval n, the phase &(t,a)

is wuniquely defined by a,, by the correlative state - vector

_gn-(a;_l,an,é,..., 8,.1+1) and by the phase state 6,, where
n-b
- 6, = hr E:a{ modulo 2. . (2.6)
ja-ad

The total state vector S¢(n) is defined as thé combinatigh of the

-«

correlative state vector and the phqse state, i.e.

e

Se(n) = (8n.a5.1.8n.2, - -:80.141) - ' (2.7)



u

The phase difference between the nth

1
(n-k)Th interval 4s

symbol interval and the

AP (t) = $(t,a) - ®(t-kT,ay)

n-x k-1
- 2xh [Zaiq(t-il‘) - Zaiq(t-iT)] + hn Za.n_L_i (2.8)
izn-Let izneReLet Vip

[

Equation (2.8) is éomppsed of an intersymbol interference term Cy(t),
that is inherent to partial response schemes, and of an information

bearing term A6,

~

n n-x
C¢(t) - 2nh [ E:giq(t-iT) - }:aiq(t-iT)] (2.9)
fanelel lEn-K-Lel
K- X .
48n41 = hn EZan_L_i modulo 2n (2.10)

1e0
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2.2 DIFFERENTIAL DETECTION OF CPM SIGNALS WITH H=1/2

» . , -

This section presents some of the results that appeared in the

literature concerning differential detection of CPM signals with mod-

ulation index 1/2. The most popular schemes in this class are MSK,

GMSK and TFM. Results for the first two schemes are gjiven here.

Differential detection of GMSK, followed by bit-by-bit decision,
was proposed using either a delay of one bit interval or a delay of

two bit intervals {21]. The two systems are shown in figure 2.1.

In- order for the two-bit detector to be effective, differential
encoding must be performed onrn the modulating data stream. This 1is

illustrated in figure 2.2.

The one-bit detector contains a 90° phase shifter in the delay
branch. This forces the multiplier output signal to correspond to
the sine of the phase change in the received signal over a one-symbol
time interval. The two-bi; detector does not contﬁin_ such a phase
shifter and thus éhe multiplier output signal represents the cosine

Jpwe.

of the phase chaﬁze over a two-symbol interval.

-

These two detectors behave quite differently under severe fil-

tering conditions. Figure 2.3 i}lustrates the eye.diagrams for the



6

GMSK If LP demodulated
signal ] iter Niter f ™ dote
(8)
GMSK IF | LP | demoduleted -
signsl | Niter X Nniter: { ™ data ’
27
(b)

Figure 2.1 (a) A one-bit differential detector for GMSK
(b) A two-bit differential detector for-GMSK.

NRZ Gaussien FM GMSK
sequence—‘c)? , "1 LP filter modutetor anbl

5 E impulse . h=0S
' : . _respopse g(t)

Figure 2.2 A GMSK transmitter suited for two-bit differential
) detection.




T

Figure 2.3 (a) One-bit. detector eye diagrams; Gaussian
IF filter; B,T=1.25
(b) Two-bit detector eye diagrams; Gaussian
'IF filter; B, T=1.25 (_from‘[~21]«),u

-
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N 18

one-bit and two-bit differential detector outputs for GMSK with
B.T=0.25 and B,T=1.25 for a Gaussian receive filtef. Note that Be
and B, are the 3 dB bandwidths of the transmit and receive filters

respectively.

This figure shows a symmetrical eye pattern for omne-bit detec-
tion and an asymmetrical eye with larger opening for two-bit detec-
tion. This difference results from a different behaviour in the sine

and cosine functions. For one-bit detection, a certain sequence of

-bits corresponds to the sines of a certain sequence of phase changes.

If the input data sequence is complemehted, the phase sequence is
negated and so is the sine value. Thus a symmetrical eye diégram is
obtained. In the two-bit case, because of the differential encoder,

the received data pairs "0l1" and "10" correspond to a transmitted "1"

and the jreceived pairs "00" or "11" correspond to a transmitted "0".
I & ) ;

" Comparing the possible values of the cosine of the possible phase se-

quénceg fér non and'"l" sent,_we observe that they are not the com-
plément of'each othé}j fhe cosine functioﬁ can take different va}ues
for the same, transmitted data bit‘[211. This resulte in an asymmetr-
ical eye diagram. These. results are explained further in section

1
4.1.1.

Therefore, by using two-bit differential detection with a dc
(D

bias before decision (the DC bias takes into account the eye

asymmetry), performance attained with one-bit differenéia} detection

S




S
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g}

is exceeded. Figure 2.4 shows the performance of both detection

Y
schemes for various B.T profuer. Under severe filtering (B.T=0.25),

a very important jimprovement is obtained with‘wo-bit detection.

b 4

Since MS% caﬁ be thought of as a special case of GMSK (By=w),’
both typés of zszerential detection can be used in an MSK receiver.
The curves labelled « in figure 2.4 illustrate the performance of MSK
on an AWGN channel. In [22]. thé relation between the two perfor--
mance characteristics is given as

-

. Pelo.bit = Pell-bit - F(BT) . (2.11)

" where F(BT) refle?ts the improvement from one—ﬁit to two-bit detec-

tion® F(BT)z a‘ complicated. function of the BT product, the
signal-to-noise ratio and the type of filter used.

- Figure 2.5 gives a comparison of the bit error probabiiity of
one-bit énd two-bit diffeéential detection of MSK with a Gaussian re-
ceive filter. A; improvement of about 0.5 dB is obtained at Pe=10"3
for BT=1.0, For higher BT products, the advantage of two-bit detec-

4

tion is marginal.
. ' v
The sﬁanﬂu‘fbr the best receive filter characteristics for
4
one-bit diffafential detect{on of MSK was the object of many

investigations 1in - the la§t few years {18],[19],[29].. In [18] and
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Figure 2.4 Performance of one- and two-bit differential
detection of GMSK (from [21)).
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Figure 2.5 One-bit versus two-bit differential detection
of MSK with a Gaussian receive filter (from [22}).
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[19], the authors conclude that, within the class of  conventipnal
analog filters, the best receive filter is a 40 order Butterworth
f%lter with a BT product of 1.1.' The degradation from c;hereﬁt
detection, for this filter at a bit error rate of 5X10°%, is approx-
imately 2.9 dB. As a comparison, the Gaussian filter with BT=1 de-
* grades the performance by more than 3.5 dB, as.noted in figure 2.5.

Reference (18] also investig:ted ghe performance of a detection
procedure making use of a two-bit differential detector, in addition
to the coﬁventional one-bit'detectort It was shown in [4] and [24)
that the phase difference between alternate signalling intervals, Ias
obt&ined in the two-bit detector, provides a p;rity‘cbeck for two

~ 2 '

. TN
succesive outputs of the one-bit detector. This observation leads to

PR A
L.

a single error correction (SEC) circuit 'that improve the overall bit

error rate. The SEC circuit is given in figure 2.6 and will be con-

. ) R
sidered in great details in chapter 3.

o

v

With a 4th order Butterworth wlteive filter, this detection pro-
cedure improves the performance of the basic one-bit deteccor' by
"about 1 dB on an AWGN channel [18}. Such a procedure proved to be
particularly well suitea on bandliﬁited channels where it was claimed
that it has an "ISI control” effegF [4]. \However, the mechanisﬁ by

which tﬁe ISI is controlled is not clearly explained by the authors

[a].
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By adding a third differential detector, with a 3-bit delay, a

)

detection procedure exploiting more thoroughly the phase properties
of MSK on a band-limited channel is obtained [30]. This procedure
provides an extra 0.5 dB of gain, which places it at 1.5 dB from

coherent detection and at only 0.5 dB: from ideal DPSK.

. ¥ .
In the next section, the basic differential phase properties of

-

CPM signals that can be exploited in a noncoherent receiver are in-

1y

troduced.

2.3 DIFFERENTIAL PHASE PROPERTIES

The‘ipbase difference between the nth symbol interval and the
(n—k)th interval was defined in equation (2.8). A@k(t) is gixgn by
a ' “‘

-

AP (t) = ¢(t,a) - ®(t-KT,ay)

s~ n "k %=1 ' L
] = 2xh [ Zaiq(C'iT) - Xaiq(t-iT)] + hn Za.n;L_i (28)
ian-L+l FONERY . 130

In order to have a single random variable.that represents the phase“
variations from one bit transition to the other, the phase difference
AP (t) 1is gamgled at t=(n+1)T and becomes the "differential phase of

order k" Ady(n): .
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-n n-x k-1
4%y (n) = 2rxh [ E:éiq((“+1‘i)T) - E:aiq((n+1-i)T )] + hn }:an:L-i'
. izn-Getl Tan-be-gel 120

(2.12)

The " attention 1is focused, for the -time being, oh the full

response case, (i.e. 1-1).

2.3.1 FULL RCSPONSE SIGNALLING

A

For full response signalling, L=1, and thus the differential

phase is
. . k-1
A¢k(n)hF1 = 2rxh [ a,q(T) - an-kq((k+1)T)] + hi‘i:an_l_i. . (2.13)
. 120

e

Because of equations (2.3) and (2.4), q(T)=q((k+1)T)=1/2 and the dif-
ferential phase becones “ B -
K- 1

82 (n) | L1 S Zan,i modulo 2= 2 (2.14)
120 .

\
The differential phase.is therefore rotated by *xh radians for

each new input data bit aj. In fact, A@(n)klh_l represents the
behaviour of the continuous phase G(C,g) during the last k signalling

intervals. For a rational modulation index, h=q/p with q and p ¢ N,






