INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI
films the text directly from the original or copy submitted. Thus, some
thesis and dissertation copies are in typewriter face, while others may be

from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indicate

the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and
continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in reduced

form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6” x 9” black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly to

order.

UMI

A Bell & Howell Information Company
300 North Zeeb Road, Ann Arbor MI 48106-1346 USA
313/761-4700 800/521-0600

NOTE TO USERS

This reproduction is the best copy available

UMI

Performance Analysis Based on
Operational Components in An
Object Oriented Framework
by

Bingjun Li

A thesis submitted to
the Faculty of Graduate Studies and Research

in partial fulfillment of the requirements for the degree of

Master of Science

Information and Systems Science

Department of Systems and Computer Engineering
Faculty of Engineering
Carleton University

Ottawa, Ontario, Canada, K1S 5B6

November 1998
©1998, Bingjun Li

il

National Library
of Canada

Acquisitions and
Bibliographic Services

395 Waellington Street
Ottawa ON K1A ON4

Bibliothéque nationale
du Canada

Acquisitions et)
services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
Ouwr file Notre référence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.
The author retains ownership of the L’auteur conserve la propriété du

copyright in this thesis. Neither the droit d’auteur qui protége cette thése.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

Canada

0-612-36941-2

The undersigned recommend to the Faculty of Graduate Studies
and Research acceptance of the thesis

Performance Analysis Based on Operational Components in
An Object Oriented Framework

submitted by Bingjun Li,

in partial fulfillment of the requirements for the degree of Master of Science

GV —

Chair, Department of Systems and Computer Engineering

Thesis Supervisor

Carleton University

December 25, 1998

Abstract

The thesis integrates the use case composition in OO design with resource demand
aggregation for performance analysis. New design concepts (operational component,
abstract MSC, and etc.) have been proposed for this integration. Extensions to message
sequence charts are proposed to include performance information which is necessary for
the performance analysis of object oriented design. Rules for use case composition for O-
O design are defined. Structural graph reduction rules are adopted for the creation of

operational components using composition approach in object oriented design.

A detailed case study for use case composition of application protocol design with a
known framework is conducted. Both decomposition and composition approaches have
been used in the design. Top-down decomposition is used for use case driven O-O design
for system architecture design, whereas composition is used for operational component
design and its performance analysis. The case study using operational component concept
has suggested that operational components can describe performance correctly for a
framework while traditional MSC can not; mapping from use cases to operational
components is straightforward. These results' shows that using (concrete and abstract)
operational component helps to fill the gap between use case design and object
orientation while performance information in operational components can be used for
performance .analysis. Performance measurement was done using Jprobe measurement

tocl.

ii

to my family....

Acknowledgments

The thesis is the result of a comprehensive study under the supervision of my thesis
supervisor, Prof. Dorina Petriu. Dr. Petriu’s unflagging enthusiasm, continuous moral and
practical support, persistent optimism, and wide practical experience in both object
oriented design and performance analysis have provided very strong influence on the

author to continue the study in the direction of practical application.

Mr. Mahad Ahmed helped to get the Jacob2 framework package from Prof. Pekka
Nikander, Faculty of Information Technology, Helsiniki University of Technology. Tero
Hasu at Telecommunication Software and Multimedia Laboratory of Helsiniki University
of Technology told me useful information about compile settings used for the Jacob

framework.

I thank my advisor Prof. J.A. Rolia for his helps when I selected my graduate courses. I
thank the Professors at the Department of Systems and Computer Engineering and the
School of Computer Science at Carleton University, and at the Department of Electrical
Engineering and the Department of Mathematics and Statistics at the University of

Ottawa for their great teachings.

Finally none of this work would have been possible without the support of the author’s

family.

Table of Contents

ABSIFACE ...ttt ettt et srer e e e eete e s e e s ee s nne s esee e aaean iii
ACknOWIedGMENLS.ocueecvicneiaieccreeeeeesetee e, v

Table Of CONENLScoueeeceircceiinieeirieeireeeeieneeeeereerniessstesseesnens %

LiSt Of FIGUFES ..ottt ettt x

List Of TaDIes........couueoueeeniiniiiiiiiiiciiiciiiectcctee s Xxiv
Chapter 1 Introduction 1
Chapter 2 Literature Review And Analysis 7
2.1 Composition in Object Oriented Design.........covveeeeeeceeneceannnne 5
22 Message Sequence Chartc.ccccviiivieiiininnconcntenenaeennieeennenn. 7
2.3 Performance Analysis Algorithms.........cccccevveeeecvieeeeecreecneennn. 10
24 Network Protocol Design.......cccovemeeeciereereneeesriereeeneneneeeeecanen 18

2.5 SUMIMATY ...cceciiiiiiiriiiteeeeeriecirenteecsetseseeaseeesseeesessseenssasssessnnases 32
Chapter 3 Use Case Composition Rules 34

vii

3.1

3.2

3.3

3.4

CONCEPLS....cvieintiiriricnrite ittt e et s et e s s bevaas e s ereeseeanens 34
3.1.1 Extension to Component and Interface Concepts.......... 34
3.1.2 Proposed Basic StruCtUres......ccccceeeeveveeervrvenveenrernseeennns 36

3.1.3 Extension Required for MSC and Performance

Analysis AlgOTIthmScocccervverrveenierestrerreeeeee e 41
Extension of Message Sequence Chart........cccceveeevecccerneennennns 42
3.2.1 Message Sequence IDccccceeviievennnneineeecrneeenieecsnennns 42

3.2.2 Add Performance Information for Alternation and Loop in MSC 46

3.2.3 Composition of Message Sequence Chart in a Design ..48

3.2.4 Abstract MSC and Abstract Operational Component....49

Performance Analysis Algorithms for Use Case Composition52

3.3.1 Rules for Sequential MSCcooomieerireccreeeeeeeneeens 53
3.3.2 Rules for Loop in MSC.....cccccoiiiiiiniiecceiirernrcieeieeenne 58
3.3.3 Rules for Alternation in MSC........cccccovermrrvecrvcvrcrenrrnnnns 59
3.3.4 Rules for AMSCeviiriieeeeeeeeeee e ceeeee e 60
SUIMMIATY ..ccevieriiniiniitrrenritererittieseereceseneessseessasssssssssssesssssanes 64

viii

Chapter 4 Case Study: Implementation of An Application Protocol

Using Java Conduit Framework 65
4.1 System and Architecture Design.......ccceeeeveeienecrernecienennenneennns 65
4.1.1 USE CaSES....ceceerrerireirieresiecrnrneeeseseeroeeressasnsesasasseransenns 65
4.1.2 Analysis and DeSigncccceeeeernereveeenienniinerernneeeesreesseneas 68
4.1.2.1 Mapping from Use Case to Operational Components
4.1.2.2 Mapping from Operational Components to Classes ..
4.2 Design of Operational Components: S€ssions........ccceeeeeueenenee. 77
4.2.1 COAESESSION...uuureirrerecnaereierecrneeescrssrnnrrearesasssensesssssasses 82
4.2.2 StIUCESESSION . ueeeearereeceenrrenerecteeetrsesnenteesssseeseansesssessnsen 89
4.2.3 Discussions about SESSIONcccvveeereerrerecneesenuenerenees 93
43 Design of Operational Components: Protocols........................ 94
4.3.1 Concrete Operational Components............cceceeevceeeeecnnne. 95

4.3.2 MSC in the Exact Java Implementation without
Operational Component Concept.......cccvveceveeeervnneennnens 101
4.4 Summary and DiSCUSSION.......cccccerrtrerernerrinceerraneersnnneressennes 104
Chapter 5. Performance Measurement 106

68

71

5.1 | BaTnge 6 L11o11 (o ¢ DUNRURR USRS U PR SR 106

5.2 Measurement AITangement.........ccceeeveeeerveersiverieenseessseenssnnnns 106

5.2.1 Problems to Use Jprobe for Framework Measurement1 06

5.2.2 Arrangement for Framework Measurement and Test Cases 107
5.3 Measurement Results.........covevviveinvieeceniiiiiiininceeenceieccnenens 113

5.3.1 CompositeCodeSessionFromNet..........cccccceevurrcvnnenenn. 113

5.3.2 CompositeStructSessionFromNet..........ccccevvveeeeeccnenee 115

5.3.3 CompositeAppProtocolFromNetcceccceervecricnnnn. 117

5.3.4 CompositeStructSessionToONEtcccceecvereveerennenenn. 119

5.3.5 CompositeCodeSessionToNEtccccceeeercerennrvanenenn. 121

5.3.6 CompositeAppProtocolToNet.........ccccoeeceerenvrerecnnnenn. 122

5.3.7 Summary of the Performance Data for Each Concrete
Operational Component.........ccccovmeveiinicierrrercreseeennn. 125

5.3.8 Summary of the Performance Data for Each Abstract

Operational Component........cccccevveveriiineerrenneeieseseenns 128
5.4 SUIMIMATY ...ouereerieneerienenereriseeisenteesenerersenssseesssasssessssensennes 130
Chapter 6. Conclusions 131

Appendix 1: Setup of AppProtocol 135

References 137

xi

List of Figures

Figure 2.1 Message Sequence Chart Ordering 12
Figure 2.2 Activity Diagram 16
Figure 2.3 Sequential Path Reduction Rule 19
Figure 2.4 Repetition-Path Reduction Rule 19
Figure 2.5 Condition-Path Reduction Rule 20

Figure 2.6 Class Diagram for Conduit (summarized from
Zweig and Johnson, 1990) 24
Figure 2.7 Double Dispatching Pattern in Conduit (summarized
from Zweig, 1991) 25
Figure 2.8 Visitor Pattern: MsgTransporter 27
Figure 2.9 Class Hierarchy and Relationship of Jacob2 Framework 29
Figure 3.1 Structure Definition of Basic Concepts 38
Figure 3.2 Collaboration Diagrams for Gate Connection 39
Figure 3.3 Message Sequence Chart Using Hierarchy Numbering Structure 44

Figure 3.4 Composition of MySubsystem with Hierarchy Numbering Scheme

45

Figure 3.5 Message Sequence Chart Using Simple Numbering 45

xii

Figure 3.6 Composition of MySubsystem with Simple Numbering Scheme 46

Figure 3.7 Performance Information in Alternation 47
Figure 3.8 Loop with n Repetitions 48
Figure 3.9 A Simple Abstract MSC 50
Figure 3.10 A Simple Concrete MSC 51
Figure 3.11 Simple Operational Component Composition Rule 54

Figure 3.12 Composition Rule: Operational Component within
Operational Component 57
Figure 3.13 Loop Operational Component Composition Rule 58

Figure 3.14 Alternation Operational Component Composition Rule 59

Figure 3.15 Class Hierarchy of An AMSC Example 61
Figure 3.16 AMSC for AMSCSubA 62
Figure 4.1 High Level use case for an application 66
Figure 4.2 Decomposed “Send Message” use case 67
Figure 4.3 Decomposed “Receive Message” use case 67
Figure 44 Combined use cases 69

Figure 4.5 Complete Picture of Message Flowing in Two Directions 70
Figure 4.6 Operational Components related to StructSession 72
Figure 4.7 Operational Components related to CodeSession 73

Figure 4.8 Operational Components related to AppProtocol 74

xiii

Figure 49 AppProtocol Conduit 75
Figure 4.10 Class Hierarchy and Relationship of AppConduit 76
Figure 4.11 The highest level of AMSC for Session based on Jacob2 77
Figure 4.12 Composed Abstract Operational Component CompositeSession 78
Figure 4.13 The AMSC for CodeSession 82

Figure 4.14 Composed Abstract Operational Component CompositeCodeSession

83

Figure 4.15 CodeSession to network 84
Figure 4.16 Composed Concrete Operational Component

CompositeCodeSessionToNet 84

Figure 4.17 CodeSession from network 88
Figure 4.18 Composed Concrete Operational Component

CompositeCodeSessionFromNet 88

Figure 4.19 The AMSC for StructSession 89
Figure 4.20 Composed Abstract Operational Component

CompositeStructSession 90

Figure 4.21 StructSession to network 91
Figure 4.22 Composed Concrete Operational Component

CompositeStructSessionToNet 91

Figure 4.23 StructSession from network 92

xiv

Figure 4.24

Figure 4.25
Figure 4.26
Figure 4.27
Figure 4.28
Figure 4.29
Figure 4.30

Figure 5.1

Figure Al.1

Composed Concrete Operational Component
CompositeStructSessionFromNet 93
Run in MessageTransporter 95
Composite AppProtocolFromNet 96
CompositeAppPtotocolToNet 97
Composed Operational Components 99
Information from network arrives at side B of AppProtocol

Information from network arrives at side A of AppProtocol
Exact Execution Path between accept and at in
CompositeCodeSession 108

MSC: Setup of AppProtocol 135

Xxv

102

103

Table 5.1

Table 5.2

Table 5.3

Table 5.4

Table 5.5

Table 5.6

List of Tables

Performance Measurement for
CompositeCodeSessionFromNet (unit: millisecond)
Performance Measurement for
CompositeStructSessionFromNet (unit: millisecond)
Performance Measurement for
CompositeAppProtocolFromNet (unit: millisecond)
Performance Measurement for
CompositeStructSessionToNet (unit: millisecond)
Performance Measurement for
CompositeCodeSessionToNet (unit: millisecond)
Performance Measurement for

Composite AppProtocolToNet (unit: millisecond)

114

116

118

120

121

124

Chapter 1 Introduction

As more and more software designers use object oriented design for real-time systems for
high reusability, the performance analysis for object oriented design becomes more and
more important especially for systems with strong performance requirements (such as the
network protocol stacks). But object-oriented methods typically defer consideration of
performance issues until detailed design or implementation (Rumbaugh, et al., 1991;
Booch, 1994). There is no attempt from the part of OO methodologists to integrate

performance engineering into the development process of object oriented design.

In the late 80s, Smith introduced the concept of Software Performance Engineering
(SPE), which promotes start early and continue throughout all stages of the software
development process in order to build performance into the products instead of trying to
fix the performance at the end, when the product is built and all the changes are very
expensive (Smith, 1990). The concept of Sofiware Performance Engineering (SPE) as a
systematic way to use quantitative methods to assess requirements, design and
implementation alternatives for software systems was introduced by Connie Smith in the
80s. SPE should start early in the life-cycle, while a wide range of options exists, and
continue throughout the whole life-cycle. The purpose is to design and build systems that
meet their performance objectives and to eliminate the need for late-fixing of
performance problems. SPE is applied in two big steps. Firstly, software execution

models (a kind of control-flow models) are built for a few typical, frequently executed

workload scenarios. The execution models specify the activities to be executed in
response to predefined events. Best-and-worst case hardware resource requirements for
each activity are estimated, and then total average requirements per resource for each
workload scenario are obtained. Secondly, the workload description obtained from the
software execution model is mapped onto a system execution model (typically a QN
model) representing the hardware resources for which the software modules are
competing. The system model solution produces performance metrics for device
residence times (including queueing delays), device utilization, overall response time,
throughput, etc. These values can be mapped back into the software domain, finding the

elapsed time, resource utilization, etc., for each software module.

SPE was mostly applied to software systems using a more traditional design approach
based on functional decomposition. It is natural to build flow-like software execution
models, as required by SPE, in the context of a traditional software development, where
the design starts with specifying the sequence of activities, then allocates the activities to
various software modules. Structural graph theory and execution model have been well
documented in the literature for performance analysis of structured design by Smith
(Smith, 1990). An object-oriented system is more complicated because of its intrinsic
features such as encapsulation and dynamic/late binding. The encapsulation makes it hard
to understand the collaboration among many different objects in the software, whereas
the polymorphism makes the execution path hard to trace. The thesis concentrates on

resource demand aggregation for OO designs.

Composition is an important approach for object oriented design especially for
component oriented design. Is it possible to apply the use case composition to
performance analysis? If yes, how and what extensions to the current use case
composition methodology are required? Also what extensions to the current performance

analysis algorithms are required? The thesis attempts to answer these questions.

During the research, we came across a paper of Smith et al. (Smith, et al.., 1997) which
manually translated message sequence charts into SPE execution graph (which are more
natural to use for structured design). The paper suggested that “Future research is aimed
at providing a smooth translation between CASE tools for OOD and SPE evaluation
tools”. Although there is more work on translating OO designs to execution graphs
(Williams, and Smith, 1998), there is little progress in the literature addressing a
performance analysis methodology tailored OO design. The thesis attempts to find a
solution to this problem by studying use-case composition and by introducing the concept

of operational component, which simplifies the task of performance analysis of OO

analysis.

1.1 Objectives of the Study

Use cases are essential to describe the runtime behaviour in object oriented designs. Use
case composition is an appropriate approach to easily view a big system at different levels
of abstraction. On the other hand, recursive Graph Reduction Rules have been available
for the structural design (Smith, 1990). The first objective of the thesis is to find out if it
is possible to combine the characteristics of use cases and graph reduction to provide an

appropriate method for the performance analysis of object oriented design.

To achieve this purpose, Message Sequence Charts (MSC) are chosen as the presentation
of use cases in the thesis [ITU-T, 1996]. Some essential concepts about runtime
components are developed from the composition of message sequence charts. Message
sequence charts have been widely used for design of OO and non-OO systems. The
second objective of the thesis it to propose extensions to current message sequence chart

to present necessary information for performance analysis.

The third objective is to apply the current graph reduction rules to operational

components with some modifications/extensions.

The use case composition approach helps to solve the difficulty arising from
encapsulation for performance analysis. How to address the polymorphism behaviour
(dynamic/late binding) of object oriented designs in use case composition is an important

aspect of the development for the above three objectives.

The fourth objective is to apply the results from the above three objectives to a detailed

case study to illustrate the proposed methodology.

1.2 Contribution of the Study

The study describes concepts about use case composition, proposes extensions to
message sequence charts, introduces graph reduction rules to use case composition, and

presents a case study with measurement results.

(1) Concepts for use case composition: propose operational component, abstract
operational component, and abstract message sequence chart concepts by using pre-

existing gate and message concepts with minor modifications.

(2) Add information necessary for performance analysis in the composition of message
sequence charts consisting of the sequence numbers and gate information (operational
component, interface, etc.). These extensions will make it possible for a CASE tool to
conduct the proposed use case composition approach for resource demand aggregation

which is necessary in the performance analysis process.

(3) With the extensions to message sequence chart, it is now possible to import the

existent graph reduction rules into the use case composition for object oriented design.

A case study is done for the implementation of an application protocol using a known

framework for network protocols, named Java Conduit Framework or Jacob [Nikander,

Parssinen, Sahlin, Hoglund, 1997]. The operational component concept and the

extensions are used in the design for performance analysis.

Measurements are done to show some real-time results and to illustrate the proposed

concepts.

1.3 Outline of the Thesis

In Chapter 2, a literature review and critical analysis for most issues related to the use

case composition for performance analysis in object oriented design is presented.

In Chapter 3, the essential concepts for use case composition in object oriented design,
the extensions to message sequence chart, and import of graph reduction rules to use case

composition with modifications are presented.

In Chapter 4, an application protocol is implemented using Java Conduit Framework
[Nikander, Parssinen, Sahlin, and Hoglund, 1997; Parssinen, 1997]. In the design, the
operational component concept is used for both use case composition and performance

analysis. Coding is done using VisualAge Java on Windows NT.

In Chapter 5, each concrete operational component from the previous chapter is designed
as a test case. Performance measurements are done for the application protocol

implemented in Chapter 4 on Windows NT.

Chapter 6 provides a summary of conclusions. Suggested activities for further research in

this field are also proposed.

Chapter 2 Literature Review And Analysis

It is important to have a complete picture about what has previously been presented in the

literature in order to understand the context of the thesis research and to address the needs

for future research.

In this chapter, the literature review and critical analysis are done on composition in
object oriented design, message sequence chart, performance analysis algorithms, and

network protocol design. The direction of the thesis research is also described.

2.1 Composition in Object Oriented Design

Use of Composition In Object Oriented Design

A lot of industrial O-O systems are build up on some reliable class/component libraries.
Reusable software components can be created based on the composition of other software
components. A system/component is the result of the composition of many components

at different levels.

Composition as a technique in object oriented design can be used to make and view a

design at different levels and helps to design reusable components.

Levels of Reuse:

Design patterns enforce reuse at design level, not at code level. Software components
insure reuse at code level. Also, frameworks insure code-level reuse and design patterns

are implemented in the frameworks.
Current Static Design pattern Composition Approach:

Keller and Schauer (Keller and Schauer, 1997) proposed static composition for design
patterns to create reusable components. It provides a way to create components if the user
wants to follow some specific patterns. The downside is that it does not provide a way to
predict the runtime behaviour of the generated components. More over, because of the

lack of runtime behaviour analysis, some better alternatives are not considered in the

design level.

Using proper design patterns is important for a good design. But according to some OO
methodologies [Jacobson, 1992] a design mostly starts with use case analysis, not with
the structural composition of design patterns as proposed by Keller and Schauer [1]. The
use case approach is especially suitable to real-time software, where run-time behaviour
and performance play an important role. For example, architecture design for network
protocols is very complex, and many alternative designs are possible. Good architecture
really depends on the application requirements and comes from an evolutionary process.
The evolution of Conduit{2], Conduit+[3,4], and Java based framework[5,6] shows that a
good design comes from continuous reuse and reassessment of available design patterns,
and evolve the design with new design patterns which redistribute proper responsibilities

to components in the architecture. The evolution goes hand in hand with careful use case

analysis, and is not based only on combining together available design patterns in a static

manmner.

A Possible Composition Approach with Use Case Design: A possible composition
approach is to start with small use case and adopt a spiral approach assuming that some
class library and/or 3rd-party components with some design patterns and/or framework

are available.

A use case, or a scenario, or a use case map [Buhr and Casselman, 1996] is normally
considered as a complete execution path through a software system. But doing use case
analysis for component based design is difficult due to many layered encapsulations and
the use of polymorphism. For performance analysis, bottom-up use case analysis is the

easiest way to trace the performance at different levels.

The term component is used in COM/Activex, CORBA, and Javabeans as static reusable
components. We distinguish between static components and operational (execution)
components. Whereas static component is a piece of code (e.g., classes), an operational
component represents the execution of an activity which provides a well defined
functionality with a clear interface. From our point of view, static software
components can be built by grouping a number of operational components which
correspond to different functionality performed by the same set of classes/objects.

This will be further described in Chapter 3.

2.2 Message Sequence Chart

Lots of work has been done in the literature for Message Sequence Chart leading to the
Z.120 standard of the Telecommunication Standardization Sector of International
Telecommunication Union (ITU-T, 1996). MSC was applied first to non-OO real-time
system, then was imported into the OO methodologies, and is named now sequence

diagram in UML[Fowler, et al., 1997].

According to Z.120, a Message Chart Sequence Chart (MSC) describes the sequences of
messages interchanged between instances (an instance of an entity is an object which has
the properties of this entity). Meta-language have been provided for textual grammar and
graphical grammar. Message, gate, ordering, condition, timer, action, instance

decomposition, loop, alternation are described in Z.120.

An MSC describes the communication between a number of system components, and
between these components and the rest of world, called environment. For each system
component covered by an MSC there is an instance axis. The communication between
system components is performed by means of messages. The sending and consumption of
messages are two asynchronous events. It is assumed that the environment of an MSC is
capable of receiving and sending messages from and to the Message Sequence Chart; no
ordering of message events within the environment is assumed. Although the behaviour
of the environment is non-deterministic, it is assumed to obey the constraints given by the

Message Sequence Chart.

10

There is no global time axis assumed for one Message Sequence Chart. Along each
instance axis the time is running from top to bottom. but a proper time scale is not
assumed. Total time ordering of events is assumed along each instance axis. Events of
different instances are ordered via messages - a message must first be sent before it is
consumed - or via the so called generalized ordering mechanism. A Message Sequence
Chart imposes a partial ordering on the set of events being contained. A binary relation
which is transitive, antisymmetric and reflexive is called partial order. This is illustrated

in Figure 2.1.

Gates represents the interface between the MSC and its environment [ITU-T, 1996].

Gates may have explicit or implicit names.

11

msc exec_order

TypeA : :TypeB TypeC

msg1

o B S

msg3

ﬂ;

msg4

Ordering: msg1, msg2, msg3, msg4.

Figure 2.1 Message Sequence Chart Ordering

The Message Sequence Chart defined in the ITU-T Z.120 standard is served for different
purposes:

(a) overview of a service as offered by several entities;

(b) statement of requirements specification;

(c) basis for elaboration of SDL specifications;

(d) basis for system simulation and validation,

(e) basis for selection and specification of test cases;

(f) specification of communication;

(g) interface specification;

12

(h) representation of use cases within object-oriented design and analysis.

We have to mention that some graphic syntax defined in UML is used in Figure 2.1. The
Sequence Diagram defined in UML (pp. 103-112, Fowler and etc., 1997) is the
standardization of the MSC for object oriented design. In a sequence diagram, the box at
the top of a dashed vertical line describes an object which is similar to Z.120 definition
except that a solid line is used in Z.120. The object’s lifeline is the vertical line which
represents the object’s life during the interaction. This follows the “interaction diagram”
used in OOSE (Jacobson, Christerson, Jonsson, and Overgaard, 1992). There are also
definitions for Iteration (using * as syntax) and Coﬁdition (using [myCondition ==

“TRUE”]). But they are not as clear as the loop and condition defined in Z.120.

The Sequence Diagram defined in UML does not define an object to be called by nobody
(Fowler and Scott, 1997). Traditionally object oriented system designers tend to use
sequence diagram to describe a use case from end to end. The operations msgl, msg2,
and msg4 in Figure 2.1 are called by other components which are unknown in the MSC.
This feature is defined in Z120 possibly for the purpose of communication interface
specification, but not defined in UML. We want to introduce this useful MSC feature to
object oriented design because we need to create a generic recursive composition
approach for both component oriented design and performance analysis. Modifications
are required especially for outgoing messages (e.g., if :TypeA calls other object(s) outside

of the msc exec_order after its msgl is called). In Chapter 3 we will further describe the

13

component concept and how to conduct the use case composition for performance

analysis.

Sequence diagram is the UML name for MSC. To avoid confusion, MSC is used in the

thesis.

In MSC, a condition is described as a state. A condition may be defined for an object. A
“shared condition” may be defined for a set of objects. A global condition referring to all

objects in a MSC may be defined by means of the keyword shared all.

Weakness of MSC in Z.120:

e In MSC in Z120, all invocations are concrete. Polymorphism is one of the main
key feature in object oriented design. It becomes extremely important when

design patterns and framework are used in a design.

e There is no Message Sequence ID. We need to identify the message sequence in a
MSC and an ID is straightforward to use and very useful in an analysis tool. (In

UML, sequence number is used for Collaboration Diagrams only.)

e No performance information (execution time, probability of choices, etc.) is

provided in a MSC.

From our point of view, a runtime component can be described by one or more Message
Sequence Charts (MSCs). But the above limitation of the current MSC prevent us from
efficiently using it for object oriented design (especially when design patterns and
framework are used) and for performance analysis. Extension of the MSC specification is

essential.

14

Use of HMSC/Activity Diagram

According to Fowler (1997) activity diagrams combine ideas from several techniques: the
event diagrams of Jim Odell, SDL state modelling techniques, and Petri nets. It is
particularly useful in connection with workflow and in describing behaviour that has a lot
of parallel processing. The great disadvantage of activity diagram is that they do not
make the links among actions and objects very clear. Some people feel that using activity

diagrams is not object-oriented and thus not good.

However with the concept of operational component and abstract operational component
in head, we can consider each activity as an operational component with gates. All the
operational components connected together with some special syntax’s which are defined
in UML, e.g., synchronization bars (fork and join), and decision activity can provide us

with a complete high level use case specification.

15

Decision Activity

Person

‘———9 FindBeverage [no coffee]

Synchronization Bar

\ [found coffee]

[no cola]

[found cola]

PrepareCoffee GetCups GetCanofCola
L
PourCoffee DrinkBeverage {.D
Figure 2.2 Activity Diagram

From this point of view we can consider an activity diagram as an extension of the high-
level MSC defined in Z.120. For example, synchronization bar is introduced for parallel
processing, decision activity syntax is used instead of a condition syntax. Figure 2.2
shows a higher level of activity diagram abstracted from an example described by Fowler

and Scott (1997).

Activity diagrams/HMSC can describe high-level use case and are very useful for
representing multiple use cases at a higher level of abstraction, for understanding
workflow across many use cases, and for dealing with concurrent processing. It was
suggested (Fowler and Scott, 1997) not to use activity diagram to try to see how objects

collaborate (an interaction diagram is recommended).

16

According to UML (Fowler and Scott, 1997), an activity is some task that needs to be
done whether by a human or a computer; it is also a method on a class. In our view, an
activity can be the result of multiple-object collaboration, especially when representing
high-level abstractions. Informally, we can define an operational component as an
activity with well defined interface. A more precise definition of operational component
is given in section 3.1.2. As the focus of this research is for the performance data
collection by use case composition for performance, we will concentrate on message
sequence chart and operational components. The focus of the thesis is to aggregate
performance measures (such as resource demands) at the level of each operational
component. The concurrency and parallelism between operational components as shown
in the activity diagram will be represented at the performance model level, and it is not

described in the thesis.

17

2.3 Performance Analysis Algorithms

Smith summarized the Software Execution Models for procedure oriented design (Smith,

Connie, 1990).

Execution graph notation and analysis algorithms are provided by Smith (1990).
Sequential path reduction rule, repetition-path reduction rule, conditional-path reduction
rule, copying rule, expanded node assignment rule, shortest and longest time computation
rule, shortest path conditional reduction rule, longest-path conditional rule, and variance

computation rules were proposed in her book (Smith, 1990).

2.3.1 Graph Analysis Algorithms

The basic structures of a control flow graph are sequence, loop, and case nodes. The
algorithms apply iteratively reduction rules to translate a graph into a single node; then
the average time, the maximum time, the minimum time, and variance for the original

execution graph is the resulting time for the reduced graph.

18

2.3.1.1 Average time reduction

Sequential-Path Reduction Rule:

t)f

t,}

tni

Figure 2.3 Sequential Path Reduction Rule

Repetition-Path Reduction Rule:

J/ —n 241

Figure 2.4 Repetition-Path Reduction Rule

19

Condition-Path Repetition:

P> tli
to!
P2 &' n
i+l __ i i
L=t + ijtj
J=1
Po to'

Figure 2.5 Condution-Path Reduction Rule

2.3.1.2 Shortest and longest -time reduction

The only rule to change is the conditional-path rule. Others are similar to the average time

reduction rule. il

1 =g+ mjm(t;)

The shortest-path condition rule:

i+l

=1+ m’ax(t;)

and the longest-path condition rule:

2.3.1.3 Variance reduction

Variance for Sequential-Path Reduction Rule:

20

I/] i+l — i I/J'
J=l
Variance for Repetition-Path Reduction Rule:
Vli+1 — nV]i + tlznv
where n is the loop repetition factor and n, is its variance.

Variance for Conditional-Path Reduction Rule:

Define n as the number of conditional paths; I is an index set consisting of all

combinations of the set for {1,2,3,..n} taken at a time. There are (;) such

combinations.
for n=1, Vit =V + V)
for n>2, VlM =K)i+ZPjVji+ ijpk(tj_tk)z
f=1 J.kel

2.3.2 Issues about using Smith’s work for performance analysis of object

oriented designs:

e The graph notation is for procedure oriented design. Although it is possible to

transfer an OO design to graph notation (Smith and Williams, 1997; Williams and

21

Smith, 1998), it is not natural and also not easy to do the translation from an

object oriented design.

e There is no polymorphism in the analysis algorithms. Polymorphism is one of the
main key feature in object oriented design. It becomes extremely important when
design patterns and framework are used in a design. The execution behaviour of
components in most object oriented systems is unknown until the complete
scenario or use case is build. The current graph analysis algorithms are for
concrete components (procedures). There is no concept of abstract components in

the current algorithms.

In this thesis, MSC will be used directly instead of Smith’s execution graph for analysis.
Also, abstract runtime components and algorithms will be proposed to provide analysis

algorithms for object oriented systems.

2.4 Network Protocol Design

Network protocols are complicated. A protocol stack is usually implemented with a
layered software architecture as a result of the OSI standard architecture [Stallings, 1994].
For example, IP layer sits on top of Ethernet, or ATM AAL layer; TCP and UDP are on
top of the IP layer. In the protocols, each layer is connected to the layer above and below
it. Information (packets for low-level protocols, and message or other user information
for high level protocols flows either from the user down to network or from the network

up to the user. Layered architecture is not difficult to build, but reusability is not easy to

22

address without O-O design. The key problem is to factor out the common structure and
behaviour from the protocol specific parts. The solution should be reusable software
components (framework) which can be reused in different protocol implementations

without modification of the framework.

Traditional procedural design has been successful for protocol implementation. It is easy
to do performance analysis using the current graph analysis algorithms described by
Smith (Smith, 1990). But reusability as the purpose of object oriented design and further
component oriented design make the system so complicated that the performance analysis

is very difficult.

2.4.1 Original Conduit Framework

The original “Conduit” framework was designed Zweig and Johnson (1990). That
framework is a white-box style framework which provide the basic structure of conduits.
In the Conduit framework, inheritance is heavily used for extension of a new protocol
implementation. The whole design is not as reusable as the next versions, as explained in

the following sections. These limitations results in more development and testing effort.

23

SystemObject

ConduitMessage

_control : integer

: _header : actet
_ —headerlength : Integer Conduit
o=data : octet . =Proto : ProtocollD
_ _link: ConduitMessage
_<<virtuab> connectTo(Canduit *}) i
~onduit *, F D)) i
b onduit '. D x)
. ConduitAddress | :«vlnual» disconnectFrom(Conduit *}()
U S— i Sonduit *})
—_— . -onduit *)0
| <<vinuab> insent *, Condu 20
.___._.____/7 - o " 0
[VitaCircutConduit 7
: | DatagramConduit | AdapterCondult
i |
7 |§
| TCPCorut | iPConduit | EthemetCandut [TetertConaun

Figure 2.6 Class Diagram for Conduit (summarized from Zweig and Johnson, 1990)

The double dispatching pattern is used in the Conduit (Figure 2.7).

| TCPConduit - IPConduit
connect'l"o
>

connectFromAbove(this,my_protocol)

connectFromBelow(this, _proto, his_handy, &my_handy)

i T

]

|
|
1

Figure 2.7 Double Dispatching Pattern in Conduit (summarized from Zweig, 1991)

24

The double-dispatching pattern ensures that each conduit has the opportunity to inspect

the protocol-ID of the other to check that the requested connection is valid.

2.4.2 C++ Conduit+ Framework

Huni, Johnson, and Engel (1995) extended the white-box Conduit framework to build the
black-box framework Conduits+. Conduit+ is a framework which employs a number of
different design patterns. It separates Mux from real Conduit which makes the multiplex
and demultiplex easier to implement; it adds ConduitFactory for dynamic allocation of
new Conduits to a mux; and Visitor pattern is used to allow a Visitor to travel over a
whole string of conduits before reaching its destination (conduit). Protocol implements a

finite state machine.
The patterns are summarized in the followings:

e State Pattern: Protocols are implemented using the State pattern (pp.305, Gamma,
Helm, Johnson, and Vlissides, 1995). Each state of the protocol is represented by
a separate object. A Protocol delegates its behaviour to its state object, thus letting
the protocol change its behaviour when its state changes. A protocol changes its
state by replacing its old state-object with a new one which may be created by its

old state (determined by the FSM).

25

Singleton Pattern: Each protocol requires a new State class hierarchy with a new

derived class for each state in the finite state machine. As there is at most one

instance required for each State class, the State is designed using Singleton pattern

(pp-127, Gamma, Helm, Johnson, and Vlissides, 1995).

Command pattern: A Messenger contains the information chunk and has the

apply() operation. It represents an event or an operation that is going to be

invoked on the FSM of Protocols that it encounters as it passed through the graph

of conduits. It is an example of Command pattern pp.233, Gamma, Helm,

Johnson, and Vlissides, 1995)..

Visitor

:Protocol

‘Msg
Transporter

accept(:MsgTransporter)

|

atProtécol(this.:State,:Conduit)
! i

Pattern:

:Messenger

i
:
i
{

Stte

:apply(:State,:Protocol)

|
|

stateSpecific()

Figure 2.8 Visitor Pattern: MsgTransporter

A visitor arrives at a conduit when the accept(:MsgTransporter) is invoked by a

previous conduit. The conduit then performs an operation atProtocol(:Protocol,

26

