Automatic Trace-Based Performance Evaluation Model
Building for Concurrent Distributed Systems

By

Ahmad Mizannojehdehi, MSc

A thesis submitted to the Faculty of Graduate and Postdoctoral Affairs

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
in

Electrical and Computer Engineering

Ottawa-Carleton Institute for Electrical and Computer Engineering (OCIECE)
Department of Systems and Computer Engineering
Carleton University
Ottawa, Ontario, Canada, K1S 5B6

© 2013
Ahmad Mizannojehdehi

Library and Archives Bibliothéque et

Canada Archives Canada
Published Heritage Direction du
Branch Patrimoine de I'édition

395 Wellington Street
Ottawa ON K1A ON4

395, rue Wellington
Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 978-0-494-94541-4
Our file Notre référence
ISBN: 978-0-494-94541-4
NOTICE: AVIS:

The author has granted a non-
exclusive license allowing Library and
Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distrbute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in this
thesis. Neither the thesis nor
substantial extracts from it may be
printed or otherwise reproduced
without the author's permission.

L'auteur a accordé une licence non exclusive
permettant a la Bibliothéque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'lInternet, préter,
distribuer et vendre des théses partout dans le
monde, a des fins commerciales ou autres, sur
support microforme, papier, électronique et/ou
autres formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protege cette thése. Ni
la thése ni des extraits substantiels de celle-ci
ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting forms
may have been removed from this
thesis.

While these forms may be included
in the document page count, their
removal does not represent any loss
of content from the thesis.

(Canada

Conformément a la loi canadienne sur la
protection de la vie privée, quelques
formulaires secondaires ont été enlevés de
cette thése.

Bien que ces formulaires aient inclus dans
la pagination, il n'y aura aucun contenu
manquant.

Abstract

Performance models can be used for analyzing and predicting performance
behaviours of software systems. This prediction allows designing high performance
software systems or locating performance bottlenecks of a deployed system. Despite its
benefits, the creation of a performance model is not a trivial task since it requires the
distillation of the performance related parameters of an application from its
documentation, source code, or running behaviours. The creation of a performance model
is even more difficult when the target is a distributed application where processing
resources are geographically distributed and their only means of interactions is through
passing of messages.

This research introduces WebTime which is a framework of tools, specifications and
methodologies to trace and instrument the events of a distributed application and to
automatically construct its layered queuing network (LQN) performance model.
WebTime uses a new logical clock, instead of a physical clock, to annotate the events in
order to recover the causal relationship between them. WebTime supports identification
of concurrent operations in the resources of a system which makes the resulting
framework appropriate for parallel distributed software systems. WebTime is scalable
and by definition its instrumentation specification has minimal effect on the performance

of a system.

i1

WebTime has been validated against three different systems including the prototype
of a building security system, the simulation of a distributed system and an open source

benchmark for bulletin board web applications.

v

Acknowledgement

I am extremely grateful to my thesis supervisor, Professor Roy Gregory Franks, for
his support, guidance, useful discussions and more importantly understanding and
friendship throughout this research. His deep insight and immense knowledge steered this
work to the right direction.

I would like to thank my wife, Dr. Nasrin Hojjat, for her moral support,
encouragement and patience, irrespective of her busy life, and my daughter, Sara, for
keeping up with a busy dad. This support has been my invaluable asset throughout these
years.

I would like to thank all the staffs at the department of Systems and Computer
Engineering of Carleton University for keeping everything up and running, one way or
another.

I would like to dedicate this thesis to my mother, Zahra, and to the spirit of my father
Mohammad-Karam.

Financial assistance provided by the National Science and Engineering Research

Canada (NSERC) and Carleton University.

Table of Contents

Abstract iii
Acknowledgement v
Table of Contents vi
List of Tables xii
List of Figures xiv
Glossary xviii
Chapter 1: Introduction 1
1.1 Performance evaluation and methodsc.cocoveiiiiiiininiiiicii e, 2
1.1.1 MEASUIEIMENL......oeceeieiieeeieieeeitee et e ettt et e s emse s s sabeesbe s sbae e ssaesasean 2
112 USING MOAEIS ...ttt et e 3

1.1.3 Comparing performance evaluation techniques.........ccccccovcreiiircinnceccnnieenn 4

1.2 Model creation challengesc..cevveiciinireeniiiiiee et r et e 5
1.2.1 Trace based model CONSIUCHION.cvivreriererieriririer e eeeteesrce e 6

1.2.2 Performance of concurrent distributed sSystems...........ccoeovvereviiiieeinieeniinnnnn. 7

1.2.3 Instrumentation side effectscoooiiiiiriiiiiiniiie e 8

1.3 WEDTIME. ...ttt ettt eaes et e st eesneetne st saeseas 8
1.4 Contribution of this reS€arch..........cocvveveiereiieeiieiccreete ettt 9
1.4.1 CONTIDULIONS.vieeeeeeeeiriiriit et cseie e ee s e ee e s eanessese e et e eesnae st 10

1.5 Document OULHNE.........coooueeiiiiiiiieeee ettt sv et e 11
Chapter 2: Background 12
2.1 Model based performance evaluation — SPEcccoiiiiiiiini 12
2.1.1 Performance integration into software modelsccooviriiiiiiiiiinnnin, 13

vi

2.1.2 Performance integration USING tTACESc..uuerruteeerrirrrrenraeeenneeeeerminraeesreeeesessasenas 14

2.2 DiStribUted SYSTEIMS ..cvvreieeneieeeeiieereerenienieees i rree s seereteeaeeesar e eeeees s rnrenaesssvnessessasasas 15
2.3 MONIOTINE «.veeeenrreiieeeireeiee it esenatsesaes s e e et e sbntaeasae s e enasesessbeneesateesenseseunens 16
2.4 Time in distributed SYSTEMScccouiiiiiiiiiieiirtiiire ettt s 20
2.4.1 SCAlAr ClOCKeeeiieiie ittt et cne st e e e 22
2.4.2 VECIOT-TIME ...c.eeriieiieeeeeeeiree st erettesce ettt et s vt e e e e e e e b e saes s sesneneneas 23
2.4.3 ProPer-TIMEc..eeeieieiiiiiiiiiiitecincccie s et s 25
2.5 Trace based approachescceeeueeeirnieereeiiiinnce et 27
2.5 1 SAME ..ottt ettt e she et sn s b b ee et et e et st e e 27
2.5.2 KOJAK, Vampire and TAU ...t eeeeee e 28
2.5.3 KIBKET .eeiiireitie ittt ertte ettt s e s rt e te e st et ene e s abat e eaar e s e sr e e s aeeeatsenen 29
2.5.4 Summary of trace-based approachesccccecvevriivenniiiiiiiniiiiccee. 30
2.6 LQN performance modelccoccceeeaeriirccniiinniiiiiiniciiin e 32
Chapter 3: WebTime, an overview 36
3.1 INrOQUCHION. .. .crtrieeeireeree e et ere et cete s sttt e s e s re e e e s eaabebe e s e e e sasateenns 36
3.2 WEDTIME. o ettt re s et ee s e e saer e s e s smbbeee e snenessanaeasss 37
3.3 Model CONSLIUCLION PIOCESS ..ceeovrereeruiereeieeeeeriitieceereerenrceenssessrstesssaressnsesesseossanasans 38
3.4 Phases and activity graph.......cccoeceeerriereririnrieeiteesiteneie oot eeee s s 42
3 SO P ettt ettt ebe e e s e s st s e e sebeeesaes s enane 42
Chapter 4: Execution graph 44
4.1 Characterization of an event in the execution graph...........cccceecvvverecverrnrecrcrnennne. 44
4.2 EVENt-Irace SITUCHUTEcooouiieieiiriiireinteeeenrcnnatsesienecssressesbs s s s enecesentesasnaessasssnnness 48
4.2.1 TIMESIAIMP....ccoeririririreeeerencte e iee et eererte e es e setreseebersesesestsaseesasansesaneesisans 48
4.2.2 Profile StUCLUTE.eoiiuiiiieiiiiiieteeetrinere et s s aae et srseeans 50
4.2.3 EVENE LYPES..oiiiiiiiiiiiieeciteirettee ettt e e s b e s s e st se s e eraans 51
4.3 Instrumentation MechaniSm..........ccoooeirriieircriiiiniie et 53
4.4 Event-traces to execution graph transformationc..cccecevveniiinciinnciienninnene, 57
4.4.1 Identification algorithm of the internal successor of an event..........c............. 57
4.4.2 Identification algorithm of the external successor of an event 59

vii

Chapter S: Event Interaction 61

5.1 INETOAUCHION ..ottt et e e ettt s e s e v s eessse e e e s sane e e e smneersnns 63
5.1.1 SINEIE ElL oottt st e e e s e ene 64

5. 1.2 CIustered ETooviiiiiiie ettt et e seree et s s s 66
5.1.3 Identification of Nested single EIs.........ccccocmiiiniiariniiinieniiinenceeeeeereeees 67
5.2 Identification of eg_threadsccoociieiiiiiiiiiiec e 68
5.3 EQ CONMECLOTS ...ccoveiiieereieiiiineinie et ettt e sm e s s s rae e e sae s sabee s srasannes 70
5.3.1 Characterization of an €g_CONNECIOTccccieircieriiiniireniinire e 72
5.3.2 Eg_connector identification algorithmccoccorvinniirniiiiiiis 75
5.3.3 Merging of tWO €2 CONNECIOTS ...ccovruveririmierrinienitreienteseeaieeeecterereessereesaaesnees 78
5.4 Eg transitions and SEZMENLSccccveerertiiniereiiinieiiincee e s eeersesntesinnessnseesanenss 79
5.4.1 Eg_transitions identification algorithm............ccccereveminmiiniiiiniinicccnens 82
5.5 TaSKS QNA ENIIIESceiiiiieeireiiiienereitee e ettt e e s e te st s mbe e re e saese s bees s sansasanes 85
S0 CPUS ...ttt ettt e r e e a e st s et ae et e st e e e e et st e s bt e et e nte st neens 87
5.7 Event Interactions (EIS)cceuiereeiiirreeeite ettt ee et ee e eeee s eseee e s neeenae s 87
5.7.1 EI CharacteriZationcceevieeeeiriniiieeseneiierceteereeaees s s eeeeesnsaneessaneessssnaesensnans 87
5.7.2 El-identification algorithm.......c.ccccoeceriiiiiiiiciiinieneeecne e 88
5.8 Identification of a forwarding EIcccooviiiiioiiiiiniiiice et 91
5.9 Identification of the phase of an El.....c...ccccociiiiiiiiii 92
5,10 SUITIMAIY ..ttt et te st s et eee s e s e sseees s ia s s meseesanesamrenessesesssasesensnnns 94
Chapter 6: Tasks Domain — LQN model construction 95
6.1 Characterization 0f @ TTcccoeeeieiverireiircereetette et st 98
6.1.1 VISIETALIO .eoveieiieieeciieeeceiee ettt e e sttt e s e e st e msae s sitessmesestessseebbeennenenen 99
O 2 B 53 F:1) o1 o1 SO RO 100
6.3 CPUSINE ..ottt ae et ste s s st et es e e e e saesensesnesernssnassnessssesans 104
6.3.1 Forming CPU-time vector of an eg_connector..........cc..cccocevevriiiiiniiiennnne 104
6.3.2 CPU-time vector of @ SEZMENt.......cc.ccevveieeiiiniiniiniincrc e 105
6.3.3 CPU-time vector of an Elcoooeiiiiiiiiiiiieneetcee e 105
6.3.4 CPU-time vector Of @n eNtryccecveeeeieiirineeriie ettt 106

6.3.5 Determination of the CPU-times of an entryccooeveeveeeeiicveecceineeeneene 107

6.4 Computational complexity of WebTimeccccccveeemiiiiiiciiic e 107
6.5 ScalabIlity .oveieiiiiiiieiieeceeece ettt e ere e eeaes 110
6.6 Computation SranuUlarityccocccveeierieiieiieiecrerescere e e s e e e rer e e e e ees 111
6.7 Constructing a model from sub-models........cc.cccoevurrnviiiriciieiicienecceeeeceeeeas 113
6.8 MOAE] CCUTACYcceiiiiiicciteeieenet et ee ettt e et e e sart e e e e e e s eesseessaseseaesrasesasesnenes 115
6.9 SUMIMATY ..cooviiiiiieiiee ettt ettt et e e et e e te e s et e eestesse s e aeessvasassaeassssesannessnnes 116
Chapter 7: Construction of an activity graph model 118
7.1 INrOQUCHIONiiiniiiiiieeeie ettt ettt ne s e s s e e e seesesaee e e sne e nreessens 119
7.2 Activity Graph Model......cccoociiiiiiiie e 119
7.2.1 Activity graph of a Synchronous interactionccceeeeeereiineceenieciiesiienenenns 121
7.2.2 Activity graph of an asynchronous interactioncccceeeeeceeevvenenevnncennnenns 122
7.2.3 Activity graph of an interaction with second phase............cceceeveinirnennneane 122
7.3 Automatic Activity-Graph Construction Processcccoceeveniviriveeecveecveeesneennen. 123
7.4 Pre-processing of the EZ CONNECLOTS.......cccvviivieirciiiireniieeiitcceeeeseseesae e cne e 125
7.4.1 ClasSTICAtION.coriieieeiiiretiee ettt e tee e e see s s eveeesaressaasernesessnesaseeas 125
TA2 FIETING ..o ettt sttt ettt e s s et et e e e st s e basera s ssarsnanssasaneenns 125
7.4.3 Filtering algorithm of task €g_cONNECtOrScccccvuvereeeieniienieeeecrenieree s 126

T 4.4 OTAETING ...ooonniieeiieiieeeere ettt et e e e erite e et ee s s stereestees s eabesessreaessreesseesessssessanns 129
7.5 Partial activity graph (PAG) cc.coooviiriiiriiiecereieeec ettt 130
7.5.1 PAG for an eg_connector with end event of type SEcccoeiriirninnennnnn. 132
7.5.2 PAG for an eg_connector with end event of type FA........cccoveviivirnnneanen. 133
7.5.3 PAG for an eg_connector with end event of type ENccccoeeviiviiniiennnnn. 134
7.5.4 PAG for an eg_connector with end event of type FScccoeiiiicinnccinnnen. 135
7.5.5 PAG for an eg_connector with end event of type SA.....ccococvevevennerniiiciennnn 135
7.5.6 PAG for an eg_connector with head event of type FS.......c.coccviinrieninnnn. 136
7.6 PAG construction algorithmcocoeiiiiiiiiiiiiiiiriie et 137
7.6.1 Specifying actiVity TEPIES......ceeririiieriiiereeerieere ettt see e sene e 138
7.6.2 Specifying activity TEQUESESc.c.eieeuiiriieeiiieriee e rre et 139
7.7 Activity graph CONSIIUCTION........cccviieiciieieieiteeesiteeeeerreee e e s ae e aseearee e e eesseeessseaeanns 139

7.7.1 Specifying the start activity of an entrycccceeveeeireeieeiicieceeeeeeees e
7.7.2 AIZOTItRIM Lottt ettt s et e e ee s aene e
7.7.3 Request rate determinationccccceevveerreeririeereeseneesieeanresssesessssessseeaesenses
7.8 Example: graph transformercooccevieiiieiiiieiiencierree et eneereeeee e
7.8.1 IMPIemMENtAtioNcccceriiiiiiiiiiiiiiii ettt ettt s ae e
T.8.2 RESUIS ..ottt ettt e e e e ear e st e eneeean
7.9 SUMIMATY ..eoiiiiiiiieiiieeriieeeeieeee ettt e e e e e eete e e e sesrabaress e baene e seeeeeenrsssnssbssessssasessas

Chapter 8: Parasol Case Study

8.4 EXPEIIMENL...cciriiriieeirieieeieesiieeeeeiressiteesiteeste e s e eeee s e saresnm e e sseesscessasesasseemaennes
8.5 RESUILS....uiiieiieciee e e et e

Chapter 9: Java BSS Case Study

9.1 Implementation 0f BSS ...t
9.2 MODIOTING SYSTEIMN ..cveuviveernrirreereeeeeieerrersrteestee e ereneteateees s seraesnessssssssasssssasssnae
9.3 SOftWare architeCUTEcveveeirereieieteirr et rceseee e e e tee e e e brecsesnaessneesane s
0.4 INSIIUMENTALIONuvviieiieiiiieeeeeeeeeiereeseiareeraeeeeeeetetessaessssnrensessessassaesesseseeannnsarnens
0.5 EXPETIIMIENLScoeereeiiieieeeerineeirerecienereeeeeretecsesssetecsasssnras s e maneesennneesssossnessesssnsosses
0.6 RESUILS ...uviiiiieiereeiiitreeieeeeeier e st r e e et eee s s arees e saee s s s ebaeaesnmne s ssbasseossnnnesssn

Chapter 10: RUBBoS Case study

JO.1 RUBBOS ...ttt ettt s st sa et sae st st n et s s nssa s eneae e
10.2 MESSAZING ..eovvienieriiieieeeeeieenieeereeseteaosteesstreessseesneesnrenseemaeesaessaessbsssssssssesssasnns
10.3 EXPErimental SEIUP......c.cevrverruirieireriiieeiereeieeemeeenteesresere s eeeesseesresesssssnsesanesssesanes
10.4 MONItOTING SYSLEIMIvevvveevereureeeeeeerireesreeesseeeeneenessemtenerentesasesaesssssessessnesnessns
10.5 INSLIUMENTALIONoevieiieeeeiireeieeeeenreeeeiesesre e sine st eetee s eareessaesnsnaeesrnsessaseesanenes
10.6 EXPETIMENLS ...ceeerenieiieeiiiiienie et eecc e s re s st s s s ae s s sn e nasssrneeens
107 RESUILS ..ottt ettt ettt e st e n bbbt st sb e sa e s sae e e sanesas e anennenseons

147

148
152
156
159
159

162

162
163
167
169
170
175

177

Chapter 11: Conclusion and future directions

11.1 Contributions of WebTime

...

11.2 FULUTE QITECHIOMIS vovvvneeeeeeeeimeseeeerneeeeueataessrnserssssssessssnssrasssesesnsssnssessssnnsessnsnnsesssanns

References

X1

List of Tables

Table 4-1 attributes of an event in the execution graph.......c..ccccceeviviiiiiiiiennciciienennnan. 46
Table 4-2 event types and their brief description..........c.cccooiiiiiiiiiiniinnnciieeee 51
Table 4-3 acceptable event type order between two internally ordered events 58
Table 4-4 acceptable event types between two externally ordered events 60
Table 5-1 event types and their brief description...........c.cceervievveeriiicininniineeecene 63
Table 5-2 start-events of the threads in Figure 5-10........cc.cocoviiiveiciiieriniiiiiirecieeeeeieen, 70
Table 5-3 potential event types for head and end events of a connector 71
Table 5-4 attributes 0f @ CONMMECLOTcoceeeiiiiriiieiiieieierte e e tesrce ettt sae e eas 72
Table 5-5 various eg_connector types in an eXecution graph.......ccccccevveereerecriieenncenenns 75
Table 5-6 attributes Of @ tranSItONcccccerivuiiiiiiiiiiiici et 79
Table 5-7 relation between the type of a transition and its head and end events.............. 30
Table 5-8 attributes 0f @ taSK......c.cociiiiiiireeeeete ettt et 85
Table 5-9 attributes of an eNtry........cooviiiiiiiiiee et 85
Table 5-10 attributes 0f @ CPUcoooiiiiiiiiitcctcceree et et 87
Table 5-11 attributes of a clustered El...........ccccoiiiiiiiiiiii et 88
Table 6-1 event types and their brief description...........c.cccovirieiniiiiniiinnreeeeees 97
Table 6-2 attributes 0f @ T1 ...c.ooiiiicieiieeeeee ettt ettt 98
Table 6-3 computation complexity of various processes of WebTimecccceeneeee. 110
Table 6-4 attributes of tasks, CPUs, entries and inte€ractioncccevvevereveeeeeeieereeiiinnns 114
Table 7-1 event types and their brief description............cccceevieceiiiiiiiiiiiniiiicicccceee 118
Table 7-2 the nomenclatures to ShOW aCtIVILIESc..ceeeviiiriirricreererereercreeeeeeeeeeeas 120
Table 7-3 the nomenclatures to show the connection between activitiescco.e...e. 120
Table 7-4 end interfaces of the PAGs of various connectors..........c.coevvcvecreernnenneenens 132
Table 8-1 request rates of the tasks involved in “door access control”c......... 149
Table 8-2 request rates of the tasks involved in Scenario “video control”.................... 151

xii

Table 8-3 monitoring functions and the events they monitor.............ccoceeeeveerveiecneecnnenne, 158

Table 9-1 Event methods and their correspondence with events types 168
Table 9-2 software and hardware utilization numbers of BSS tasks and CPUs............. 173
Table 9-3 total averages of response times obtained with measurement and modeling

INEHHOAS ...t e st e st e e e be e e e e s e et e e beenbeaeeaneenrenns 173
Table 9-4 software and hardware utilization numbers of BSS tasksc.cccccccvveunnnn, 174

Table 9-5 total averages of response times obtained with measurement and modeling

INETNOMAS ...ttt e st n e s e e et e e e s e e e sanae s e naete e e sreeesaanene 175
Table 10-1 mapping servlets of RUBBoS to entry identifiers of an LQN model........... 182
Table 10-2 Instrumentation methods and their correspondence with events types......... 192

Table 10-3 total averages of session periods obtained using measurement and modeling

methods of eXPEriment L.........oooiiiiiiiiiiinii ettt et eee e eaneerne e 196
Table 10-4 software and hardware utilization numbers of the RUBBoS resources 197
Table 10-5 user session periods for various number of USers........c.c.eevvvviverererenneennne. 199

Xiii

List of Figures

Figure 2-1 a distributed computing SYSteIm.......ccecvuirrriiereiieeeiriere e eeeteeerereeeee e eeseneeaees 16
Figure 2-2 a parallel COMPULING SYSEIMccoeiiiiriiiiereiiiieiece e e et eseee e e e enee 16
Figure 2-3 layered view of @ monitoring SYStemcccoeccevivreriieiereeerenneesieenieeerirenee e 18
Figure 2-4 a distributed SYStem MOMILOTceviueirriiriieentrerreeere e e ereeeeesereeseesseesseesneeens 19
Figure 2-5 LQN model of a three tier distributed System.......ccccceeerierrvrinrrniierienceneeenne 35
Figure 3-1 automated LQN model building process......c..cccccevvreeeemmierniennienricrseneeneeens 41
Figure 4-1 execution graph building process..........cccceeeiinniiiininniiiiiinicniniieceieeeceens 44
Figure 4-2 model of an event in the execution graphcccccccceiirmieiniineiinrieeneeereee 45

Figure 4-3 an execution graph — Task 2 and Task 3 perform second phase operations ... 47

Figure 4-4 a java program to modify the timestamp of an even of type “FS” or “FA”.... 54

Figure 4-5 a non-blocking vs. a blocking Service requestoccceueeeeeiveeierieniecineenieereenne 55
Figure 4-6 a reply with a second phase operation vs. a reply with no second phase........ 55
Figure 4-7 index of events following a fork event.........cc.cccoeoiveiiiiriiiiniiineceeee 56
Figure 4-8 Java listing for an event recOrdingcocccerveerroinicrininnieneesee e eaeneeeae 57
Figure 4-9 algorithm of determining if one event is internal successor of another.......... 58
Figure 4-10 identification of external successor of an event...........cccoccceevieniiciecnieneenne. 59
Figure 5-1 event interaction identification from execution graph diagram...................... 62
Figure 5-3 breaking of an execution graph into eg_connectors and eg_transitions 64
Figure 5-4 forming a segment from an eg_transition and an eg_connector 64
Figure 5-5a single Bl sttt e 65
Figure 5-6 anti-parallel segments.......ccccoorviiiiiiniii 65
Figure 5-7 matched and anti-parallel segmentsccccovviiiniiiiiiiiiiiiniiicces 66
Figure 5-8 a clustered El.........cc..cciiiiiiiiiiiiiienr et 66
Figure 5-9 transforming a nested El into a single EI................ii 68
Figure 5-10 specifying the threads of an execution graph...........cccccccnvniiiiinininnnnnn. 69

X1v

Figure 5-11 algorithm of finding the start-events of an execution graph 70

Figure 5-12 possible positions of an eg_connector in the execution graph...................... 72
Figure 5-13 transfer of an El-id to theeg_connectorwhich collapses it........c.ccccuuennen.... 73
Figure 5-14 naming of connectors in different sections of an EIccoccoviiniiniininnnnn, 74
Figure 5-15 eg_connector identification algorithmccccceeeveeieeiiiininincceiie e, 77
Figure 5-16 merging Of tWO CONMMNECIOTS...c..uviueireererientierieessenreseireesereeeresesste s ar e eenas 78
Figure 5-17 algorithm of merging tWo CONNECIOTScccceerriieriiercnnnirererieiie e 79
Figure 5-18 complete form of various SEZMENtsc.c.ceeeverruieiriecmiiieroeinereneneereneeeees 81
Figure 5-19 transition identification algorithm..........cccecceiiiiiiiiniiinie e, 84
Figure 5-20 algorithm of identifying a single EI..........ccccocccoiiiinminnniiiiiccne. 89
Figure 5-21 algorithm of merging consecutive single Els to form a clustered EI............ 90
Figure 5-22 algorithm of creating the bridging eg_connector of an EI............................ 90
Figure 5-23 a MUulti-SEZMENt........cocvivmiiiiiniiiiiiine et 91
Figure 5-24 construction of a forwarding EI from an initiating multi-segment and an

acknowledging SINGIE-SEZMENLc.cccciirmiiiiriiirieee ittt e e e re e s sbe e e 92
Figure 5-25 event patterns of a first and a second phase Els...........c.ccccoceinnininiinnne, 93
Figure 5-26 finding the phase in which an interaction has occurredccccceeeeennene. 93
Figure 6-1 construction of an LQN model from CPU, task, entry and EI vectors 95
Figure 6-2 mapping EIs to TIs and entries........c.ccceeveeeerenieriinienreeritensrcecnineeseeee e 101

Figure 6-3 mapping of reference, phase 1 and phase 2 EIs to their corresponding TI ... 103

Figure 6-4 algorithm of forming CPU-time vector of connectors of an execution graph

Figure 6-5 mapping CPU-times of two matching segments into their corresponding EI105
Figure 6-6 mapping CPU-times of phase 1 and phase 2 type Els into the entries of their

COrTESPONAING TL.. .ottt ettt ee e et see e e et e e e s esnes e 106
Figure 6-7 pre-processing of task events 10gS.........coovereemeiiiieciiiniecccrcceeene 112
Figure 6-8 construction of the final LQN model of sub-modelsccccocrninnninin. 113
Figure 6-9 parsing CPUs, tasks and entries data from a sub-modelccccoceeiiei 117
Figure 7-1 an RPC interaction and its activity graph......c..ccccoeeeeemiemriiiniiiiniececenenneenn. 121
Figure 7-2 an asynchronous RPC interaction and its activity graph..........cccceceeeiinnien. 122

XV

Figure 7-3 an RPC interaction with second phase and its activity graphcc.cccoen. 123

Figure 7-4 the activity graph construction overview diagramccccceevveceensneeeneenae 124
Figure 7-5 algorithm of filtering the connectors of a taskcc..cccccvniiiviiiiniiicnicnnnne. 126
Figure 7-6 a clustered EI between two taskscccceevviriinicieeniniiiiiecccecenessee 127
Figure 7-7 activity graph of the interaction in Figure 7-6c..ccccooiiiiiinninnnccnncnnn. 127
Figure 7-8 application of algorithm of filtering connectors of taskscccocevrveicnenne 128
Figure 7-9 structures of a normal and a bridging connector............cccocvevveerinicceeresneenane 130
Figure 7-10 the PAG of an eg_connector with SE typeend event ... 133
Figure 7-11 the PAG of an eg_connector with FA type end event............ccccccceceennnen. 134
Figure 7-12 the PAG of an eg_connector with EN type end eventccccocecevieiennnee. 134
Figure 7-13 the PAG of an eg_connector with FS type end eventc.ccccceevennnnnns 135
Figure 7-14 the PAG of an eg_connector with SA type end event..........cc.cceceeennnninn. 136
Figure 7-15 the PAG of an eg_connector with FS type head event............ccccceecenenne 137
Figure 7-16 algorithm of constructing the PAG of a connectorcceceiviiiiiincninnns 138
Figure 7-17 algorithm of construction the activity graph of a task........c.ccecconevvennnnn. 140
Figure 7-18 execution graph of the test Casec.ccecevviiiiiiiiiiiiiniiirccia, 142
Figure 7-19 activity graph of the graph transformer exampleccocoooviiiirinnninnn. 146
Figure 8-1 deployment diagram of a BSS........c.coooiii 148
Figure 8-2 Sequence diagram of the door access control scenariocccceeveeruveciinnenne 149
Figure 8-3 Sequence diagram of video control SCENAariocccceeeeevviievcneerconniennenenane 151
Figure 8-4 state diagram of a reference task.........ccccccciivviniinniiiiininiin 153
Figure 8-5 state diagram of a pure server task.........c.cocviviiiiniiniiiniinnicces 154
Figure 8-6 state diagram of an active server taskccoccoveiincieiiniiiiiiiiiiencenees 155

Figure 8-7 monitoring sensor locations of the tasks involved in “access control” scenario

Figure 8-8 a few event-traces of the simulated BSS........c.cccconniviinee 160
Figure 8-9 the reconstructed LQN model of BSS, created from the base model adopted

FTOM [73] oottt ree e e s e s bbb s s 161
Figure 9-1 deployment diagram of “video control” SCenariocceveevvesereneccnennnns 163
Figure 9-2 logger thread..........cccoooeriiiiiiiiiiiiie et 164

Figure 9-3 structure of a manager task implemented in Javacccccovcvieevinniiniieeennnen. 165

Figure 9-4 architecture of a worker threadcccoceriiiniiiiiieee e 166
Figure 9-5 a few number of event-tracescccoviiiiiiiiiiiiiiiiiiee e 170
Figure 9-6 distribution of event-traces of tasks to trace files of invocations.................. 171
Figure 9-7 the LQN model created for the video control scenario of BSS.................... 172
Figure 9-8 response times to cameras versus the number of cameras being serviced.... 175
Figure 10-1 A three-tier Java Enterprise EAition.....ccccccovevciiiniiiiiiniiiininicceene e, 178
Figure 10-2 architecture of the emulated web browsercccccoceiinivinninnncinennnnens 180
Figure 10-3 examplae of @ USEr SESSION ...ccueerruurriruieriiriieiniteecere et 181
Figure 10-4 architecture of the WEbSETVETcoocciiiiiiiiiiniiicccie e, 182
Figure 10-5 deployment diagram of RUBBOSc..ociiiiiiiiiniciiiniiiieniiccicns 184
Figure 10-6 the logger thread............cccoooiiiiiiiniiicrccr e, 186
Figure 10-7 the locations in a program where instrumentation methods are added 188
Figure 10-8 the overall LQN model of the first experiment..........ccccoecvveirvcnninnennnenns 195
Figure 10-9 predicted session periods versus numbers of users.........c.ccocoecvicincnnennnns 197
Figure 10-10 user session periods versus numbers Of USETSc..ceerecvvenicrnennincrininnene 198

xvii

Glossary

Event

Task

Entry

Wall clock

time

Distributed

systems

Parallel

systems

Concurrent

task

An event is a uniquely identifiable runtime instance of an atomic action

performed in a non-interleave manner by a single task (page 7).

The LQN formalism models a distributed application as tasks, their
concurrency level, queuing mechanism and the interaction between the

tasks (page 15, 32).
An entry identifies a particular service offered by a task in an LQN
model (page 32).

Conventional time (sometimes it is called physical time) (page 20).

A computer network with individual autonomous processors in which
each processor has its own disjoint local memory. These processors
may be physically distributed within some geographical area and their

only means of communication is through message passing (page 15)

Processors in a parallel system interact solely through shared memories

(page 15).

Multi-tasking in each single processor of a distributed application is

defined as concurrency within that processor (page 15).

XVvili

Execution

graph

Single-El

Clustered EI

Task

interaction (TI)

Eg transition

Eg_connector

Segment

Eg thread

LON

Phase/

A graph which directly presents the causal or independence relationship

between the events of a computation (page 38).

A Single Event Interaction (EI) represents an interaction between a
client task and a server task in which the server doesn’t make another

(nested) interaction with a third task (page 64).

A Clustered Event Interaction (EI) is a set of consecutive single Els in
which the end event of each single EI is the head event of the following

single EI (page 66).

When an interaction is specified by the entries of tasks involved in that

interaction, it is called a task interaction or TI (page 98).

An eg transition represents a directed arc between two events which

belong to two different tasks (page 63).

An eg connector represents a directed chain of links between the

events of one single task (page 63).

A transition and an eg_connector which share one event constitute a

segment (page 63).

An eg thread is a sequence of connected events in an execution graph
which can span tasks. It does not necessarily correspond to a real
thread of a computation (page 44).

Layered queuing network performance model (page 32).

The service provided by a server task may either occur in phase 1 or 2.

X1X

second phase

Activity graph

Partial activity
graph (PAG)

Internal
successor
&
External

Successor

Visit ratio

Interaction

The main processing of the server prior to a response is performed in
phase one. The server may continue to be busy after it sends an
asynchronous reply to the client. This is referred to as the “second
phase” of operation which is a common way of performance

optimization (page 32, 42).

An activity graph 1s an extended version of a layered queuing network
(LQN) model which allows modeling various parallelism techniques
employed by software designers to improve the performance of an

application (page 42, 118).

A partial activity graph is a subset of the final LQN model and is

constructed from an eg_connector (page 130).

An event in an execution graph may be preceded by one event and may
also be succeeded by one or two other events. The first succeeding
event, called the “internal successor”, represents an event in the same
eg_thread of this event. The second succeeding event, called the

“external successor”, represents an event in a different eg_thread (page
44).

The visit ratio is the ratio of the number of calls to the destination entry

over the number of calls to the source entry (Page 95).

A general term for a request and reply between two tasks. In a
distributed system, this is often implemented using a remote procedure

call.

XX

Activit An activity is the basic unit of behaviour in a layered queuing network.
y y q g
Activities are linked together by a directed graph to represent the

precedence, or causal relationship between events (page 118).

XX1

Chapter 1: Introduction

Performance of a computer system is defined as the response time and throughput of
that system. It is an essential quality attribute of computing systems which is affected by
everything from the low level hardware all the way up to the application software. Lack
of performance manifests itself as poor responsiveness, which is an unacceptable delay in
the responses received to service requests, and as a result, prevents a system from
meeting its objective performance expectations. From a business point of view, ignorance
of the performance requirements in the development cycle of a software system results in
lost income due to unplanned tuning cycles, reduced competitiveness, damaged customer
relations and even abandonment of the product [1]. As the field of computer systems
advances, the computer industry is becoming more competitive and it is now more
important than ever to ensure that the alternatives selected provide the best cost-
performance trade-off. As such service providers and designers of computers systems are
all interested in performance evaluation since their goal is to provide the highest
performance at the lowest cost. A computer system that has unjustified delays in the
response to a service request, unnecessarily wastes human time, increases cost and
squanders the principle resources of an organization.

The sections that follow describe briefly the challenges and the common
methodologies used for performance evaluation and introduce the solution provided by

this research and its contributions.

1.1 Performance evaluation and methods

Performance evaluation is an art. Like a work of art, successful evaluation cannot be
produced mechanically. Defining the real problem and converting it to a_form in which
established tools and techniques can be used and where time and other constraints can

be met is a major part of analysts’ art.

The art of computer systems performance analysis, Raj Jain [2]

In order to meet the performance requirements of a computing system, software
developers should be able to assess and understand the effects of various design decisions
on the performance of the resulting system throughout its design cycle. This is
particularly important at the early stages of the development cycle, where changes to the
design can be made easily and effectively. In other words the performance evaluation
should be integrated into the development cycle of a software system to allow for a
performance oriented design, which is the goal of the software performance engineering
(SPE) {3]. Adoption of SPE approach ensures that a high performance product will be
created at the end of the development cycle.

To evaluate the performance of a computing system at each stage, a designer has

essentially two options: measurement and modeling.

1.1.1 Measurement

Regardless of common belief, measurement alone may not give accurate results
simply because many of the environmental parameters, such as system configuration,
type of workload and time of measurement, may be unique to the experiment and may

not represent the range of variables found in a real situation. Measurement can be

3

performed when a working version of the software under development is available.
Identification and fixing the performance problems by using only measurement is costly
since it might require rearchitecting the design and the measurement, muitiple times, in
order to obtain an optimum design. Measurement provides a software designer with data
associated with one concrete structure. The data generated from this condition has limited
flexibility to allow one to effectively locate the source of design problems. For example it
would be challenging to isolate from the data, the application behaviour and the system
parameters [2]. This uncertainty would prevent one from extrapolating the results to

make an expert judgment on how to fix potential problems.

1.1.2 Using models

Modeling is the other way forward to evaluate the performance of a system. In this
method the system under test is modeled by a simulation system or by mathematical
expression, such as a queuing network (QN) [4], which is then used as a surrogate for the
real system. In general, modeling requires many simplifications and assumptions that can
modify the accuracy of the end result. Nevertheless modeling techniques are usually
extensively tested and their results are validated against the measurement to make sure
their predictions of the performance behaviour are often in an acceptable range.

Unlike measurement, models can be built and used at the earliest stages of the
development cycle, even when a system has not been constructed. By considering that
performance failures are most often due to fundamental architectural or design
deficiencies [3], modeling can be an effective means to identify fundamental design

pitfalls. Models are flexible for varying environmental conditions, design alternatives,

4

and system sizes. The alternatives to an architectural design, or even the performance
requirement set for a design, can be assessed by comparing those requirements with the

performance evaluated by models.

1.1.3 Comparing performance evaluation techniques

The selection of the right performance evaluation technique depends upon the time
and resources available to improve the performance of a system and the desired level of
accuracy. The goal of every performance study is either to compare different alternatives
or to find the optimal parameter values. Models, due to their ease of use and
modification, generally provide the best insight into the effect of various parameters and
different alternatives with the least amount of time and resources. Measurement is the
least desirable technique in this respect. It is not easy to tell if an improved performance
is a result of some random changes in environment or due to particular parameter
settings.

Scalability of the results is probably the key justification when considering the
expense and labor of measurement. Performance models are very scalable with minimal
effort and cost but most people don’t trust the results from the analytical models because
of a lack of understanding of the technique [2]. In fact the results from all the simulation
and analytical techniques which are applied to create a modeling formalism undergo
extensive validation against actual measurement.

The modeling approach has undeniable benefits especially when combined with the
measurement approach for evaluation of the performance of a system. For example the

measurement techniques, being susceptible to experimental errors and bugs, can be

5

validated using modeling. Likewise measurement can also be used to verify and validate
the results of the modeling. Alternatively, the modeling technique can be used to find the
appropriate range of system parameters for a required performance level. A measurement
technique can then be used to study the performance in a range which reduces the number

of measurement cycles and that can then use resources in a more productive manner.

1.2 Model creation challenges

Regardless of the attractive features of performance models creation of them is not a
trivial task. In a manual way, an analyst must obtain an accurate structural view of the
software system by reviewing the software documents or even using its source code. The
information, such as the system’s behaviour, the components involved and the
interactions among the components should be captured and incorporated into the
resulting models. This large amount of information is unwieldy even for a moderately
sized system and requires people who are highly skilled in this field which will add to
the time and cost of the performance model creation process. Because of likelihood of
human mistakes, improper handling of this information may also reduce the
representativeness of the resulting model which will result in a lack of prediction
accuracy. If the model creation process is used in a SPE approach, the required efforts are
multiplied further by the number of required iterations. Overall the cost, time and
expertise required to make the modeling approach an attractive way of performance
evaluation may offset its benefits and if this situation is not properly managed the whole

approach might be rendered not trustable, useless or very costly.

6

To make the model creation process more attractive an alternative method should be
used. This approach automatically generates the model from a software application itself.
This way the end result would be more accurate, less dependent on special expertise, less
prone to human mistakes, much less time consuming and less costly overall. Because of
its automatic feature, this approach will also leverage an analyst’s efforts to quickly build
performance models by introducing enough complexity to increase the accuracy of the

models and to making it representative of the real systems she/he models.

1.2.1 Trace based model construction

One way to obtain the initial information from which a model can be constructed is to
trace and record the execution of a running computing system then convert, in an
automated fashion, the resulting trace log into a model. At each instant during the run, the
internal operation of this system can be viewed as a number of customer objects
requesting services from server objects. This approach should be able to capture the
interactions between the objects of the system and determine the demands that customer
objects make on the other objects of the system, such as the average required CPU
processing time and the number of visits on each object to complete their requests. The
end result would be a high-level descriptive architecture of the system, and the
parameters which describe the expected demands on each object of the system.

A trace based performance model can be constructed throughout and in the early life
cycle of a software system product. This is due to the fact that modern software
engineering promotes releases that are often built in an incremental fashion so that the

most important functionality can be delivered as early as possible [S][5][5][6][7]. The

7

initial releases of an incremental approach allow for creation of early trace based
performance models of this system.

There are a variety of methods to extract the sequence of information, or path of
execution, such as instrumentation by virtual machines, operating systems or using
profilers such as “Quantify” [7]. This research has created methods to manually
instrument the source code of a system and suggests extensions of this approach towards

automating the instrumentation process.

1.2.2 Performance of concurrent distributed systems

Distributed systems are powerful computing systems that combine the processing
power and memory capacity of multiple heterogeneous computing systems which are
often geographically dispersed and might belong to different organizations. These
systems have attracted tremendous attention because they can solve intensive computing
problems within a specified time frame or under real time condition with processing
power that is available using simple inexpensive computing systems. The pre-dominant
programming model for the distributed system is message passing which may be
combined with concurrent program execution within each single computer. Achieving
satisfactory application performance in these systems is dependent upon the ability of
these systems to evenly distribute the processing load among their constituents [8][9].
This is a very difficult task and it requires the system to deal with a variety of problems
such as the heterogeneity of the computing systems, a hierarchy of varying bandwidths

and latencies in internal networks [10]. The estimation of the performance of these

