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Abstract

Performance models can be used for analyzing and predicting performance
behaviours of software systems. This prediction allows designing high performance
software systems or locating performance bottlenecks of a deployed system. Despite its
benefits, the creation of a performance model is not a trivial task since it requires the
distillation of the performance related parameters of an application from its
documentation, source code, or running behaviours. The creation of a performance model
is even more difficult when the target is a distributed application where processing
resources are geographically distributed and their only means of interactions is through
passing of messages.

This research introduces WebTime which is a framework of tools, specifications and
methodologies to trace and instrument the events of a distributed application and to
automatically construct its layered queuing network (LQN) performance model.
WebTime uses a new logical clock, instead of a physical clock, to annotate the events in
order to recover the causal relationship between them. WebTime supports identification
of concurrent operations in the resources of a system which makes the resulting
framework appropriate for parallel distributed software systems. WebTime is scalable
and by definition its instrumentation specification has minimal effect on the performance

of a system.
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WebTime has been validated against three different systems including the prototype
of a building security system, the simulation of a distributed system and an open source

benchmark for bulletin board web applications.
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Glossary

Event

Task

Entry

Wall clock

time

Distributed

systems

Parallel

systems

Concurrent

task

An event is a uniquely identifiable runtime instance of an atomic action

performed in a non-interleave manner by a single task (page 7).

The LQN formalism models a distributed application as tasks, their
concurrency level, queuing mechanism and the interaction between the

tasks (page 15, 32).
An entry identifies a particular service offered by a task in an LQN
model (page 32).

Conventional time (sometimes it is called physical time) (page 20).

A computer network with individual autonomous processors in which
each processor has its own disjoint local memory. These processors
may be physically distributed within some geographical area and their

only means of communication is through message passing (page 15)

Processors in a parallel system interact solely through shared memories

(page 15).

Multi-tasking in each single processor of a distributed application is

defined as concurrency within that processor (page 15).
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Execution

graph

Single-El

Clustered EI

Task

interaction (TI)

Eg transition

Eg_connector

Segment

Eg thread

LON

Phase/

A graph which directly presents the causal or independence relationship

between the events of a computation (page 38).

A Single Event Interaction (EI) represents an interaction between a
client task and a server task in which the server doesn’t make another

(nested) interaction with a third task (page 64).

A Clustered Event Interaction (EI) is a set of consecutive single Els in
which the end event of each single EI is the head event of the following

single EI (page 66).

When an interaction is specified by the entries of tasks involved in that

interaction, it is called a task interaction or TI (page 98).

An eg transition represents a directed arc between two events which

belong to two different tasks (page 63).

An eg connector represents a directed chain of links between the

events of one single task (page 63).

A transition and an eg_connector which share one event constitute a

segment (page 63).

An eg thread is a sequence of connected events in an execution graph
which can span tasks. It does not necessarily correspond to a real
thread of a computation (page 44).

Layered queuing network performance model (page 32).

The service provided by a server task may either occur in phase 1 or 2.
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second phase

Activity graph

Partial activity
graph (PAG)

Internal
successor
&
External

Successor

Visit ratio

Interaction

The main processing of the server prior to a response is performed in
phase one. The server may continue to be busy after it sends an
asynchronous reply to the client. This is referred to as the “second
phase” of operation which is a common way of performance

optimization (page 32, 42).

An activity graph 1s an extended version of a layered queuing network
(LQN) model which allows modeling various parallelism techniques
employed by software designers to improve the performance of an

application (page 42, 118).

A partial activity graph is a subset of the final LQN model and is

constructed from an eg_connector (page 130).

An event in an execution graph may be preceded by one event and may
also be succeeded by one or two other events. The first succeeding
event, called the “internal successor”, represents an event in the same
eg_thread of this event. The second succeeding event, called the

“external successor”, represents an event in a different eg_thread (page
44).

The visit ratio is the ratio of the number of calls to the destination entry

over the number of calls to the source entry (Page 95).

A general term for a request and reply between two tasks. In a
distributed system, this is often implemented using a remote procedure

call.
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Activit An activity is the basic unit of behaviour in a layered queuing network.
y y q g
Activities are linked together by a directed graph to represent the

precedence, or causal relationship between events (page 118).
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Chapter 1: Introduction

Performance of a computer system is defined as the response time and throughput of
that system. It is an essential quality attribute of computing systems which is affected by
everything from the low level hardware all the way up to the application software. Lack
of performance manifests itself as poor responsiveness, which is an unacceptable delay in
the responses received to service requests, and as a result, prevents a system from
meeting its objective performance expectations. From a business point of view, ignorance
of the performance requirements in the development cycle of a software system results in
lost income due to unplanned tuning cycles, reduced competitiveness, damaged customer
relations and even abandonment of the product [1]. As the field of computer systems
advances, the computer industry is becoming more competitive and it is now more
important than ever to ensure that the alternatives selected provide the best cost-
performance trade-off. As such service providers and designers of computers systems are
all interested in performance evaluation since their goal is to provide the highest
performance at the lowest cost. A computer system that has unjustified delays in the
response to a service request, unnecessarily wastes human time, increases cost and
squanders the principle resources of an organization.

The sections that follow describe briefly the challenges and the common
methodologies used for performance evaluation and introduce the solution provided by

this research and its contributions.



1.1 Performance evaluation and methods

Performance evaluation is an art. Like a work of art, successful evaluation cannot be
produced mechanically. Defining the real problem and converting it to a_form in which
established tools and techniques can be used and where time and other constraints can

be met is a major part of analysts’ art.

The art of computer systems performance analysis, Raj Jain [2]

In order to meet the performance requirements of a computing system, software
developers should be able to assess and understand the effects of various design decisions
on the performance of the resulting system throughout its design cycle. This is
particularly important at the early stages of the development cycle, where changes to the
design can be made easily and effectively. In other words the performance evaluation
should be integrated into the development cycle of a software system to allow for a
performance oriented design, which is the goal of the software performance engineering
(SPE) {3]. Adoption of SPE approach ensures that a high performance product will be
created at the end of the development cycle.

To evaluate the performance of a computing system at each stage, a designer has

essentially two options: measurement and modeling.

1.1.1 Measurement

Regardless of common belief, measurement alone may not give accurate results
simply because many of the environmental parameters, such as system configuration,
type of workload and time of measurement, may be unique to the experiment and may

not represent the range of variables found in a real situation. Measurement can be
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performed when a working version of the software under development is available.
Identification and fixing the performance problems by using only measurement is costly
since it might require rearchitecting the design and the measurement, muitiple times, in
order to obtain an optimum design. Measurement provides a software designer with data
associated with one concrete structure. The data generated from this condition has limited
flexibility to allow one to effectively locate the source of design problems. For example it
would be challenging to isolate from the data, the application behaviour and the system
parameters [2]. This uncertainty would prevent one from extrapolating the results to

make an expert judgment on how to fix potential problems.

1.1.2 Using models

Modeling is the other way forward to evaluate the performance of a system. In this
method the system under test is modeled by a simulation system or by mathematical
expression, such as a queuing network (QN) [4], which is then used as a surrogate for the
real system. In general, modeling requires many simplifications and assumptions that can
modify the accuracy of the end result. Nevertheless modeling techniques are usually
extensively tested and their results are validated against the measurement to make sure
their predictions of the performance behaviour are often in an acceptable range.

Unlike measurement, models can be built and used at the earliest stages of the
development cycle, even when a system has not been constructed. By considering that
performance failures are most often due to fundamental architectural or design
deficiencies [3], modeling can be an effective means to identify fundamental design

pitfalls. Models are flexible for varying environmental conditions, design alternatives,
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and system sizes. The alternatives to an architectural design, or even the performance
requirement set for a design, can be assessed by comparing those requirements with the

performance evaluated by models.

1.1.3 Comparing performance evaluation techniques

The selection of the right performance evaluation technique depends upon the time
and resources available to improve the performance of a system and the desired level of
accuracy. The goal of every performance study is either to compare different alternatives
or to find the optimal parameter values. Models, due to their ease of use and
modification, generally provide the best insight into the effect of various parameters and
different alternatives with the least amount of time and resources. Measurement is the
least desirable technique in this respect. It is not easy to tell if an improved performance
is a result of some random changes in environment or due to particular parameter
settings.

Scalability of the results is probably the key justification when considering the
expense and labor of measurement. Performance models are very scalable with minimal
effort and cost but most people don’t trust the results from the analytical models because
of a lack of understanding of the technique [2]. In fact the results from all the simulation
and analytical techniques which are applied to create a modeling formalism undergo
extensive validation against actual measurement.

The modeling approach has undeniable benefits especially when combined with the
measurement approach for evaluation of the performance of a system. For example the

measurement techniques, being susceptible to experimental errors and bugs, can be
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validated using modeling. Likewise measurement can also be used to verify and validate
the results of the modeling. Alternatively, the modeling technique can be used to find the
appropriate range of system parameters for a required performance level. A measurement
technique can then be used to study the performance in a range which reduces the number

of measurement cycles and that can then use resources in a more productive manner.

1.2 Model creation challenges

Regardless of the attractive features of performance models creation of them is not a
trivial task. In a manual way, an analyst must obtain an accurate structural view of the
software system by reviewing the software documents or even using its source code. The
information, such as the system’s behaviour, the components involved and the
interactions among the components should be captured and incorporated into the
resulting models. This large amount of information is unwieldy even for a moderately
sized system and requires people who are highly skilled in this field which will add to
the time and cost of the performance model creation process. Because of likelihood of
human mistakes, improper handling of this information may also reduce the
representativeness of the resulting model which will result in a lack of prediction
accuracy. If the model creation process is used in a SPE approach, the required efforts are
multiplied further by the number of required iterations. Overall the cost, time and
expertise required to make the modeling approach an attractive way of performance
evaluation may offset its benefits and if this situation is not properly managed the whole

approach might be rendered not trustable, useless or very costly.
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To make the model creation process more attractive an alternative method should be
used. This approach automatically generates the model from a software application itself.
This way the end result would be more accurate, less dependent on special expertise, less
prone to human mistakes, much less time consuming and less costly overall. Because of
its automatic feature, this approach will also leverage an analyst’s efforts to quickly build
performance models by introducing enough complexity to increase the accuracy of the

models and to making it representative of the real systems she/he models.

1.2.1 Trace based model construction

One way to obtain the initial information from which a model can be constructed is to
trace and record the execution of a running computing system then convert, in an
automated fashion, the resulting trace log into a model. At each instant during the run, the
internal operation of this system can be viewed as a number of customer objects
requesting services from server objects. This approach should be able to capture the
interactions between the objects of the system and determine the demands that customer
objects make on the other objects of the system, such as the average required CPU
processing time and the number of visits on each object to complete their requests. The
end result would be a high-level descriptive architecture of the system, and the
parameters which describe the expected demands on each object of the system.

A trace based performance model can be constructed throughout and in the early life
cycle of a software system product. This is due to the fact that modern software
engineering promotes releases that are often built in an incremental fashion so that the

most important functionality can be delivered as early as possible [S][5][5][6][7]. The
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initial releases of an incremental approach allow for creation of early trace based
performance models of this system.

There are a variety of methods to extract the sequence of information, or path of
execution, such as instrumentation by virtual machines, operating systems or using
profilers such as “Quantify” [7]. This research has created methods to manually
instrument the source code of a system and suggests extensions of this approach towards

automating the instrumentation process.

1.2.2 Performance of concurrent distributed systems

Distributed systems are powerful computing systems that combine the processing
power and memory capacity of multiple heterogeneous computing systems which are
often geographically dispersed and might belong to different organizations. These
systems have attracted tremendous attention because they can solve intensive computing
problems within a specified time frame or under real time condition with processing
power that is available using simple inexpensive computing systems. The pre-dominant
programming model for the distributed system is message passing which may be
combined with concurrent program execution within each single computer. Achieving
satisfactory application performance in these systems is dependent upon the ability of
these systems to evenly distribute the processing load among their constituents [8][9].
This is a very difficult task and it requires the system to deal with a variety of problems
such as the heterogeneity of the computing systems, a hierarchy of varying bandwidths

and latencies in internal networks [10]. The estimation of the performance of these








































































































































































































































































































































































































































































































































































































































































