ABSTRACT

Mapping at 1:2000 scale of the immediate Cobalt area provided initial data for a detailed interpretation of the glaciogenic deposystem during deposition of the basal 180 m of the Coleman Member of the Gowganda Formation. At Cobalt, deposition occurred on the subsiding inner shelf of the Huronian Supergroup passive margin. The unconformity surface that separates subhorizontal Coleman Member lithofacies from underlying, subvertical Archean strata exhibits a gentle paleotopography with less than 100 m relief. Evidence of plucking, lee-side quarrying and shaping of this surface support southerly movement of a grounded continental-scale ice sheet. Massive basal diamicrites were deposited subglacially both as an extensive, primary basal till and restricted, lee-side tills that infilled paleotopographic lows and covered preglacial regolith.

Coarsening-upward rhythmite/sandstone/clast-supported diamicrite associations were deposited as prograding subaqueous outwash fans in front of a slowly retreating, wet-based, tidewater ice sheet grounded in 50-300 m of water. Rhythmite characteristics indicate a distal change from underflow to interflow/overflow sediment transport, supporting an ice-contact marine basin interpretation. Interfan areas received sediment from distal meltwater activity, and from abundant sediment gravity flows off oversteepened fan slopes and collapsing ice-marginal banks. An upper diamicrite association contains dropstone diamicrite, poorly laminated mudstones, diamicrite with random clast orientations, and thick successions of diamicrite characteristic of deposition from sediment gravity flows. These features suggest that a change from a grounded to a partially floating ice sheet occurred before deposition of the uppermost strata of the Coleman Member preserved at Cobalt.
NOTICE

The quality of this microfiche is heavily dependent upon the quality of the original thesis submitted for microfilming. Every effort has been made to ensure the highest quality of reproduction possible.

If pages are missing, contact the university which granted the degree.

Some pages may have indistinct print especially if the original pages were typed with a poor typewriter ribbon or if the university sent us an inferior photocopy.

Previously copyrighted materials (journal articles, published tests, etc.) are not filmed.

Reproduction in full or in part of this film is governed by the Canadian Copyright Act, R.S.C 1970, c. C-30.

THIS DISSERTATION HAS BEEN MICROFILMED EXACTLY AS RECEIVED
SEDIMENTOLOGY OF THE LOWER GOIWANDA FORMATION

COLEMAN MEMBER (EARLY PROTEROZOIC)

AT COBALT, ONTARIO

by

PETER STEELE MUSTARD, B.Sc.

A thesis submitted to

the Faculty of Graduate Studies and Research

in partial fulfilment of

the requirements for the degree of

Master of Science

Department of Geology

Carleton University

Ottawa, Ontario

November, 1985

© copyright

1985, Peter S. Mustard
Permission has been granted to the National Library of Canada to microfilm this thesis and to lend or sell copies of the film.

The author (copyright owner) has reserved other publication rights, and neither the thesis nor extensive extracts from it may be printed or otherwise reproduced without his/her written permission.

L'autorisation a été accordée à la Bibliothèque nationale du Canada de microfilm er cette thèse et de prêter ou de vendre des exemplaires du film.

L'auteur (titulaire du droit d'auteur) se réserve les autres droits de publication; ni la thèse ni de longs extraits de celle-ci ne doivent être imprimés ou autrement reproduits sans son autorisation écrite.
The undersigned recommend to the Faculty of Graduate Studies and Research acceptance of the thesis

SEDIMENTOLOGY OF THE LOWER GOWGANDA FORMATION COLEMAN MEMBER (EARLY PROTEROZOIC) AT COBALT, ONTARIO

submitted by Peter Steele Mustard, B.Sc.

in partial fulfilment of the requirements for the degree of Master of Sciences

Thesis Supervisor

Chairman, Department of Geology

Carleton University
ABSTRACT

Mapping at 1:2000 scale of the immediate Cobalt area provided initial data for a detailed interpretation of the glaciogenic deposystem during deposition of the basal 180 m of the Coleman Member of the Gowganda Formation. At Cobalt, deposition occurred on the subsiding inner shelf of the Huronian Supergroup passive margin. The unconformity surface that separates subhorizontal Coleman Member lithofacies from underlying, subvertical Archean strata exhibits a gentle paleotopography with less than 100 m relief. Evidence of plucking, lee-side quarrying and shaping of this surface support southerly movement of a grounded continental-scale ice sheet. Massive basal diamicrites were deposited subglacially both as an extensive, primary basal till and restricted, lee-side tills that infilled paleotopographic lows and covered preglacial regolith. Coarsening-upward rhythmite/sandstone/clast-supported diamicrite associations were deposited as prograding subaqueous outwash fans in front of a slowly retreating, wet-based, tidewater ice sheet grounded in 50-300 m of water. Rhythmite characteristics indicate a distal change from underflow to interflow/overflow sediment transport, supporting an ice-contact marine basin interpretation. Interfan areas received sediment from distal meltwater activity, and from abundant sediment gravity flows off oversteepened fan slopes and collapsing ice-marginal banks. An upper diamicrite association contains dropstone diamicrite, poorly laminated mudstones, diamicrite with random clast orientations, and thick successions of diamicrite characteristic of deposition from sediment gravity flows. These features suggest that a change from a grounded to a partially floating ice sheet occurred before deposition of the uppermost strata of the Coleman Member preserved at Cobalt.
ACKNOWLEDGEMENTS

Funding for this study was supplied by grants to Dr. J.A. Donaldson from the Ontario Geological Survey (Geoscience Research Grant #173) and the National Science and Engineering Research Council (Grant A5536). Dr. Donaldson provided the initial proposal and was an excellent source of advice, support and final editing. His supervision is greatly appreciated. Jean Richardson spent many hours helping with initial editing, computer programming, and in general discussions on format, style, etc. In addition she kept me debatably sane and relatively relaxed. Discussions with my Cobalt cohorts: Rob Scammell, Rob Rainbird and Brad Wilson proved invaluable. They also made the summers enjoyable experiences. Field assistance by Z. Arias, D. Bethune, E. Dodd, and A. Wong is gratefully acknowledged. At Cobalt the cheerful assistance of Karen Larable of the O.G.S. Resident Geologist's Office made the search of assessment files and other old reports a pleasure rather than a task. Thanks also to Leo Owsiaacki for his help. Field trip discussions with D. Long, R. Powell, B. Rust, D. Sharp, J. Shaw; W. Shilts and G. Young greatly improved my interpretations, as did course work supervised by J.A. Donaldson, W. Shilts, and B. Rust. R. Scammell gave permission to reproduce photographs from his 1984 B.Sc. thesis (Plates 2F; 3C,D,F,G; 4H; 6B). The sample in Plate 4A was kindly loaned by Dr. D. H. Watkinson. Special thanks to the many friends I have made in the Ottawa–Carleton Geoscience Centre during the past two years and to the faculty and staff of the Centre. Their good spirits, advice and know-how made my work hours both more efficient and enjoyable.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCEPTANCE SHEET</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>iv</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>v</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>vi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF PHOTOGRAPHIC PLATES</td>
<td>ix</td>
</tr>
<tr>
<td>CHAPTER I. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Regional Setting of the Huronian Supergroup</td>
<td>6</td>
</tr>
<tr>
<td>1.2 Local Geologic Setting</td>
<td>9</td>
</tr>
<tr>
<td>1.3 Structure and Paleotopography of the study area</td>
<td>10</td>
</tr>
<tr>
<td>CHAPTER II. UNCONFORMITY SURFACE FEATURES AND BRECCIA</td>
<td>13</td>
</tr>
<tr>
<td>CHAPTER III. LITHOFACIES DESCRIPTIONS</td>
<td>19</td>
</tr>
<tr>
<td>3.1 Basal Diamictite Association (bdmm)</td>
<td>19</td>
</tr>
<tr>
<td>3.2 Fine-grained Lithofacies (F)</td>
<td>24</td>
</tr>
<tr>
<td>Well-laminated Units (Fr, Frd, Frd-Shd, minor Fl)</td>
<td>24</td>
</tr>
<tr>
<td>Poorly-laminated Units (Fl, Fm, Fl-Sh)</td>
<td>30</td>
</tr>
<tr>
<td>3.3 Sandstone Lithofacies (S)</td>
<td>31</td>
</tr>
<tr>
<td>3.4 Clast-supported Diamictite (Dc)</td>
<td>35</td>
</tr>
<tr>
<td>3.5 Heterolithic Diamictite Complex</td>
<td>38</td>
</tr>
<tr>
<td>Lower Stratigraphic Assemblage</td>
<td>39</td>
</tr>
<tr>
<td>Upper Stratigraphic Assemblage</td>
<td>43</td>
</tr>
<tr>
<td>CHAPTER IV. LITHOFACIES INTERPRETATIONS</td>
<td>47</td>
</tr>
<tr>
<td>4.1 Basal Diamictite</td>
<td>47</td>
</tr>
<tr>
<td>4.2 Subaqueous Outwash Fans</td>
<td>53</td>
</tr>
<tr>
<td>4.3 Lower Assemblage - Heterolithic Diamictite Complex</td>
<td>61</td>
</tr>
<tr>
<td>4.4 Upper Assemblage - Heterolithic Diamictite Complex</td>
<td>72</td>
</tr>
<tr>
<td>CHAPTER V. CHARACTERISTICS AND SUMMARY OF THE GLACIOGENIC PALEOENVIRONMENT AT COBALT</td>
<td>76</td>
</tr>
<tr>
<td>5.1 Regional Glacial Setting</td>
<td>76</td>
</tr>
<tr>
<td>5.2 Glaciomarine vs. Glaciolastrine Deposition</td>
<td>77</td>
</tr>
<tr>
<td>5.3 Ice Sheet Characteristics - Lower Stratigraphic Units</td>
<td>79</td>
</tr>
<tr>
<td>Grounded vs Floating Ice Sheet Models</td>
<td>79</td>
</tr>
<tr>
<td>Retreat Rate of Ice Sheet</td>
<td>82</td>
</tr>
<tr>
<td>Basal Thermal Regime</td>
<td>82</td>
</tr>
<tr>
<td>5.4 Ice Sheet Characteristics - Upper Assemblage of the Heterolithic Diamictite Complex</td>
<td>83</td>
</tr>
<tr>
<td>5.5 Summary of Depositional Sequence at Cobalt</td>
<td>85</td>
</tr>
<tr>
<td>PHOTOGRAPHIC PLATES</td>
<td>89</td>
</tr>
<tr>
<td>APPENDIX 1: Measured Sections</td>
<td>105</td>
</tr>
<tr>
<td>APPENDIX 2: Methods of Measurement and Statistical Analysis of Diamictite Clast Orientations</td>
<td>118</td>
</tr>
<tr>
<td>APPENDIX 3: Paleoplacer Gold Potential at Cobalt</td>
<td>121</td>
</tr>
<tr>
<td>APPENDIX 4: Locality Maps for Data Collection Sites</td>
<td>124</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>130</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE</th>
<th>DESCRIPTION</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Lithofacies Code used for Mapping and Section Measurement</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>Sediment Gravity Flow Classification Schemes</td>
<td>63</td>
</tr>
</tbody>
</table>

APPENDICES

<table>
<thead>
<tr>
<th>TABLE</th>
<th>DESCRIPTION</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Measured Sections - Legend</td>
<td>107</td>
</tr>
<tr>
<td>4</td>
<td>Formulae used in the Statistical Analysis of Two-dimensional Orientation Data</td>
<td>119</td>
</tr>
<tr>
<td>5</td>
<td>BASIC Programs for Statistical Analysis of Two-dimensional Orientation Data using Formulae in Table IV</td>
<td>120</td>
</tr>
<tr>
<td>6</td>
<td>Gold Assays from the Study Area</td>
<td>123</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A. Regional Extent of the Huronian Supergroup and Location of Study Area</td>
</tr>
<tr>
<td>1</td>
<td>B. Study Area Showing Major Geological Features</td>
</tr>
<tr>
<td>2</td>
<td>Generalised Stratigraphy of Huronian Supergroup</td>
</tr>
<tr>
<td>3</td>
<td>Lee-side Plucking of the Unconformity Surface</td>
</tr>
<tr>
<td>4</td>
<td>Clast Apparent Long-axis Orientations for Diamictites of the Basal Diamictite Association</td>
</tr>
<tr>
<td>5</td>
<td>Contact Relationships of Dropstones in the Study Area</td>
</tr>
<tr>
<td>6</td>
<td>Paleocurrent Rose Diagrams from Sandstone Units Within the Study Area</td>
</tr>
<tr>
<td>7</td>
<td>Clast Apparent Long-axis Orientations for Diamictites of Fan and Interfan Associations</td>
</tr>
<tr>
<td>8</td>
<td>Clast Apparent Long-axis Orientations for Diamictites of the Upper Diamictite Complex</td>
</tr>
<tr>
<td>9</td>
<td>Model for Sub-glacial Deposition in a Lee-side Cavity</td>
</tr>
<tr>
<td>10</td>
<td>Model for Deposition of Lower Stratigraphy at Cobalt</td>
</tr>
<tr>
<td>11</td>
<td>Model for Deposition of Upper Stratigraphy at Cobalt</td>
</tr>
</tbody>
</table>

APPENDICES

<p>| 12 | Measured Sections in the Study Area |
| 13 | Sample Sites - Clast Apparent Long-axis Orientations for Basal Diamictite Association Diamictites |
| 14 | Sample Sites - Paleocurrent Measurements of Figure 6A-D |
| 15 | Sample Sites - Clast Apparent Long-axis Orientations for Fan and Interfan Diamictites |
| 16 | Sample Sites - Clast Apparent Long-axis Orientations for Upper Diamictite Complex Diamictites |
| 17 | Sample Sites - Gold Assays |</p>
<table>
<thead>
<tr>
<th>Page</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>Geologic Map of Cobalt Study Area - North Sheet</td>
</tr>
<tr>
<td>19</td>
<td>Geologic Map of Cobalt Study Area - South Sheet</td>
</tr>
<tr>
<td>20</td>
<td>Geological Cross-Sections Through North Sheet of Geologic Map</td>
</tr>
<tr>
<td>21</td>
<td>Geological Cross-Sections Through South Sheet of Geologic Map</td>
</tr>
<tr>
<td>22</td>
<td>Lithofacies Code and Measured Section Legend</td>
</tr>
<tr>
<td>23</td>
<td>Locality Map for Photographs</td>
</tr>
</tbody>
</table>
LIST OF PHOTOGRAPHIC PLATES

<table>
<thead>
<tr>
<th>PLATE</th>
<th>DESCRIPTION</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Unconformity Surface and Basal Breccia</td>
<td>91</td>
</tr>
<tr>
<td>2</td>
<td>Basal Diamictite Association</td>
<td>93</td>
</tr>
<tr>
<td>3</td>
<td>Fan Association: Rhythmite and Sandstone Units</td>
<td>95</td>
</tr>
<tr>
<td>4</td>
<td>Fan Association: Rhythmite and Sandstone Units</td>
<td>97</td>
</tr>
<tr>
<td>5</td>
<td>Fan Association: Sandstones and Clast-supported Diamictites</td>
<td>99</td>
</tr>
<tr>
<td>6</td>
<td>Heterolithic Diamictite Complex - Lower Stratigraphic Assemblage (Interfan Association)</td>
<td>101</td>
</tr>
<tr>
<td>7</td>
<td>Heterolithic Diamictite Complex - Lower and Upper Stratigraphic Assemblages</td>
<td>103</td>
</tr>
</tbody>
</table>
CHAPTER I
INTRODUCTION

Significant advances in the understanding of the processes of glacial geology, especially glaciomarine sedimentology, have resulted from recent research (for summaries see Andrews and Matsch 1983; Eyles and Miall 1984; Molina 1983; Powell 1984). The interpretation of ancient glacial deposits has benefited greatly from this increased understanding. (see for example Anderson 1983; Andrews and Matsch 1983; Boulton and Deynoux 1972, 1981; Driemanis 1983; Hambrey and Harland 1981). Incorporating these new ideas and models, this thesis presents a reinterpretation of the lower part of the Gowganda Formation in the Cobalt area, Ontario, Canada.

The extensive early Proterozoic Gowganda Formation (Figure 1A) has been recognized to be the result of glacial deposition since Coleman (1907, 1908) described faceted and striated "bowlders" in massive greywackes. The Gowganda Formation has been tentatively correlated with glacial deposits over a wide area in North America (Young 1973), Finland and the U.S.S.R. (Mamo and Ojakangas 1984). This vast extent suggests deposition by ice sheets during at least one or more major periods of Precambrian glaciation.

Early regional studies (Lindsey 1966; 1967, 1969, 1971; Ovenshine 1965) led to suggestions of terrestrial glacial deposition of the lower Gowganda Formation (except near Lake Huron where a glaciomarine environment was postulated). Recent studies in the Lake Huron and Elliott Lake areas (Young 1985; Miall 1985) confirm the glaciomarine (probably continental slope) interpretation previously suggested for southern exposures of the Gowganda Formation. Recent interpretations of
the northern part of the Gowganda Formation have been based on limited
data (Miall 1983) or regional observations (Long and Leslie 1985).
Although they agree that deposition was subaqueous, they differ on
whether it occurred in deep marine water from a floating ice sheet
(Miall), or in a relatively shallow lacustrine environment from a
grounded ice sheet (Long and Leslie).

At Cobalt, Ontario (Figure 1A), the lower part of the Gowganda
Formation (Coleman Member) is particularly suited for detailed study. In
this area silver exploration and mining during the early 1900's resulted
in extensive stripping of outcrops and creation of vertical walls in
now-abandoned vein cuts and open pits. The work of Legun (1984)
suggested that a more detailed sedimentological study was appropriate.
Detailed mapping (1:2000 scale) of a nine km^2 area including the town of
Cobalt (Figure 1B) was combined with section measurements, fabric
studies and petrographic examination of representative lithologies.
This work provided the basis for the interpretations presented here.

A lithofacies classification scheme based on that of Eyles et al.
(1983) was used for mapping and section measurement (Table 1). As per
Eyles et al., the non-genetic term diamictite is used in preference to
conglomerate or tillite for rocks composed of poorly sorted or non-
sorted gravel/sand/mud mixtures. Some minor modifications to the code
based on field observation and features of the study area have been
introduced here. The prefix "b" indicates a basal diamictite unit which
could be mapped independently of other units. The prefix "p" for pebbly
sandstones was also appropriate. Subdivision of nonbasal diamictites
into clast-supported (Dcm or Dcs) and matrix-supported (Dm) map units
proved to be feasible. Some of the clast-supported diamictites would be
termed gravels (Gm, Gt etc.) according to other lithofacies codes
Figure 1 A. Regional Extent of the Huronian Supergroup and Location of Study Area. The extent of the Gowganda Formation is the same as that of the Huronian Supergroup. To the north of the dashed line, the Gowganda Formation directly overlies Archean rocks (approximate, based on Young 1985).

B. Study Area Showing Major Geological Features
COLEMAN MEMBER LITHOFACIES

Diamictite, (D): Lithified, poorly sorted: mud-sand-gravel

Dm	matrix supported
Dc	clast supported
D-m	massive (<10% laminations)
D-s	stratified
D--gn	normally graded
D--gr	reverse graded
D---(r)	resedimented

bD---- basal: directly overlying Archean unconformity

Sandstone, (S):

pS	pebbly (>5% gravel)
Sm	massive
Sh	horiz. lam./bedding
Sr	rippled
St	trough crossbedded
Sp	planar crossbedded
S-gn	graded, normal
S-gr	graded, reverse
S-d	dropstones

Fine-grained, (F): Mudstone, minor very fine-grained sandstone

Fr	rhythmically laminated
Fl	laminated (non-rhythmic)
Fm	massive (<10% laminations)
F-d	dropstones

Breccia, (Bx): Angular fragments of subjacent Archean rocks

| Bx(r) | resedimented small occurrence |

OTHER LITHOLOGIES

| N | Nipissing Diabase (Proterozoic) |
| L | Mafic/ultramafic rocks of Archean age |

A	Archean, undifferentiated
Ap	mafic volc. rock - pillowed
Am	mafic volc. rock - massive
Af	felsic volcanic rock
Al	interflow sedimentary rock

Table 1: Lithofacies code for maps and sections (based on Eyles et al., 1983).
(Powell 1984; McCabe et al. 1984; Domack 1983). Because evidence of traction-current sedimentation is commonly lacking at Cobalt, the non-interpretative form (diamictite) was maintained. Further modifications include recognition of rhythmic layering in the fine-grained lithofacies \(\text{Fr}_\) and slightly different letter codes for some sedimentary structures (for example, _gn and _gr for normal and reverse grading).

1.1 **Regional Setting of the Huronian Supergroup**

The Huronian Supergroup is an early Proterozoic (early Apehebian) sequence of siliclastic and minor volcanic rocks subdivided into four groups, each comprising an overall fining-upwards sequence (stratigraphy and formation nomenclature is summarized in Figure 2). The Huronian Supergroup occurs over an extensive area of northeastern Ontario (Figure 1) where only the Cobalt Group is present, unconformably overlying Archean rocks of the Superior Province. It also comprises most of the Southern Province near Lake Huron. Thicknesses generally increase southward to a cumulative maximum of over 10 km (Card et al. 1972). Radiometric dating of the underlying Archean granites and the cross-cutting Nipissing Diabase indicate that the sediments of the Huronian Supergroup were deposited between 2.6–2.5 and 2.1 Ga. (Fairbairn et al. 1969; Card and Pattison 1972). A whole-rock Rb-Sr age of approximately 2.3 Ga. has been obtained for quartzites and argillites of the Gowganda Formation near the town of Gowganda (Fairbairn et al. 1969).

The Huronian sediments appear to have been deposited on a continental margin, thought by Sims et al. (1980) and Zolnai et al. (1984) to resemble a divergent Atlantic-type plate margin. Young (1983) interpreted the lower Huronian sequences (those predating the Gowganda Formation) to have been deposited in an easterly-trending, fault-bounded
trough, whereas the more widespread upper Huronian strata were inferred to represent deposition during broad marginal downwarping. Slightly different tectonic settings have been proposed (see Young 1983 for a summary), but all have an ocean basin that opened to the south or southeast, with northern areas (including Cobalt) representing an inner shelf tectonic setting.

The Gowganda Formation, the basal unit of the upper Huronian Cobalt Group, is much more extensive than underlying Huronian strata (see Figure 2). It generally thickens southward, with the maximum thickness increases from 1300 m in the northwest to 1700 m near Lake Huron (Young 1981b). Thomson (1957) proposed subdividing the northern Gowganda Formation into upper Firstbrook and basal Coleman Formations. Subsequently, however, these names have been used to designate members only, a practice continued in this report. The Firstbrook Member appears to be stratigraphically equivalent to the southern Upper Gowganda Formation of Young (1981a,b, 1985), termed the La Cloche Formation by Lindsey (1967, 1969, 1971). The Coleman Member is equivalent to the Lower Gowganda Formation of Young (1981a, b), termed simply the Gowganda Formation by Lindsey (1967, 1969, 1971).

The Firstbrook Member consists of a coarsening-upward sequence of laminated mudstones, siltstones and minor sandstones. This sequence, over 500 m thick in some areas, in most places conformably overlies the Coleman Member. The Firstbrook Formation is interpreted as a basin/prodelta/delta-slope transition, deposited in a nonglacial, probably marine environment (Rainbird, 1985).

3.2 Local Geologic Setting

In the Cobalt area Archean volcanic, sedimentary and minor
intrusive rocks of the Abitibi Greenstone Belt comprise the basement. A pronounced angular unconformity separates the subvertical Archean rocks from the overlying horizontal to shallowly dipping Coleman Member. The Firstbrook Member and Lorrain Formation crop out short distances to the east and west of the area. The Huronian rocks are at lower greenschist metamorphic grade. East of Cobalt, Archean and Huronian rocks are crosscut by the Nipissing Diabase. This diabase is a sheet-like intrusion, approximately 330 m thick, dipping gently to the east (Jambor 1971b). Economic concentrations of silver occur in steeply dipping veins which crosscut Archean, Huronian and Nipissing rocks. Berry (1971), Owsiacki and Lovell (1984) and Goodz (1985) have provided detailed discussions of the silver veins and related economic geology of the Cobalt area.

1.3 Structure and Paleotopography of Study Area

Knight (1924) attempted the only major structural study of the Cobalt region. Within the study area, the only faults which significantly displace stratigraphy are the Cobalt Lake and Valley faults (Figures 1B, 18-21). Both are high-angle reverse faults which shallow at depth. Dip-separation displacements vary from a maximum of 170 m at the south end of Cobalt Lake, and decrease to the northeast and southwest (Knight 1924). The Valley Fault is subparallel to the Cobalt Lake Fault and may join it to the northeast. Displacement of 20 m has been documented in the northern part of the study area (Knight 1924). This displacement decreases southward, the fault is not present south of the Cobalt townsite. These major faults predate intrusion of the Nipissing Diabase (Knight 1924; Jambor 1971a), but evidence is lacking in the study area for faulting during deposition of the Coleman Member.
Minor faults and shear zones trending northeast, southeast, or east were mapped or have been reported (Wilson in prep.; Knight 1924; Thomson 1964a,b,c). None has a displacement of more than a few metres.

The dip of the Archean unconformity surface ranges from horizontal to approximately 30° and rarely exceeds 20°. Coleman Member strata are subparallel or slightly shallower dipping. Knight (1924) suggested that tectonic folding might account for some of the dip variations. This idea is supported by a paleomagnetic study of the Nipissing Diabase which concluded that broad, northeast-trending folds are superimposed on the gentle basin and dome emplacement configuration of the diabase (Symons 1970). Recent workers (Wood 1980; Kim 1979; Legun 1984) proposed that differential compaction over Archean paleotopographic highs accounts for changes in dip attitudes. In their model, present attitudes of the unconformity surface reflect the pre-Coleman Member topography with no subsequent folding. A maximum paleorelief exceeding 200 m is apparent from examination of cross sections (Kim 1979; this study) and structure contour maps (Thomson 1961; Legun 1984).

The cross sections accompanying this study show that some lower units of the Coleman Member pinch-out against the Archean unconformity (figures 20, 21). Thickening of lower units in apparent lows and thinning over highs on the unconformity surface is also documented. These observations support the supratenuous folding models.

However, the upper units of the Coleman Member roughly parallel the Archean unconformity surface across areas of high and low topography. This suggests that some tectonic folding of the unconformity surface and the Coleman Member has occurred. When the effects of this folding are considered, the paleorelief in the Cobalt area is estimated to be < 100 m (generally tens of metres). The
paleotopography is envisioned as a series of broad, shallow troughs separated by low rises. Two major troughs, trending northeast, are recognized (see cross sections, Figures 20, 21). One is centred approximately over the present position of the Cobalt Lake Fault. The other is beneath Cart and Peterson Lakes. Minor east-to-southeast-trending troughs connect the more extensive troughs in two places (cross sections B-B' and D-D', Figures 20, 21).

Although overall paleotopography of the unconformity is gentle, locally the surface is irregular and rugged. Slopes of 40-50° with ten to fifteen metres of relief were defined during mapping. These steep slopes delineate small-scale paleotopographic features, slight scarps and depressions rather than major ridges and cliffs.

Slightly higher relief probably existed southeast of the study area (Thomson 1957; Legun 1984), although the effects of later folding have not been estimated. Mountainous terrain as postulated by Schenk (1965a,b) for the Lake Temagami Area to the southwest did not exist at Cobalt.
CHAPTER II

UNCONFORMITY SURFACE FEATURES AND BRECCIA

The Archean-Proterozoic unconformity surface is well exposed in the study area. It was closely examined for evidence of erosion by a Huronian ice body. Glacial striae have been reported in two other localities (Cooke 1922; Schenk 1965a,b), but were not observed in the study area. However, the unusual conditions required to preserve an exposed, striated paleosurface (such as protection by overhanging strata of the Coleman Member) were not encountered in the Cobalt area. Three previously unreported features suggesting the presence of grounded ice were discovered.

1. Angular, block-like depressions

Steep-sided angular depressions are common on the unconformity surface (Plate 1A), the sharply defined edges paralleling Archean joint sets. These depressions, less than one metre on their longest surface dimension, are infilled by unsorted, massive Coleman Member diamicite (Dmm or Dcm). The upper tens-of-centimetres of Archean rock and the unconformity surface are generally extensively jointed and fractured relative to typical Archean rock (Plate 1C). Ice-plucking of blocks from the highly fractured bedrock is the likely origin of the depressions.

2. Stepped unconformity contact

Several step-like contacts were observed in vertical exposures of the unconformity surface (Plate 1B). The steps are centimetres to tens-of-centimetres high and face approximately south. As for the plucked depressions, the vertical and horizontal contacts appear to be joint-controlled. These features probably originated by lee-side quarrying at the base of a moving ice mass.
3. Shaped stoss and lee feature

A stoss and lee feature three metres long and one metre high was discovered during the 1984 field season (Figure 3). Developed on Archean volcanic rocks, it displays a streamlined stoss (north) side (smoothed and striated by Quaternary glaciation) that rises southward to a jagged, vertical, south-facing step-like contact with Coleman Member diamictite. On the lee side of this structure, the diamictite contains large angular clasts of the Archean volcanic rock, many of which can be visually restored to the unconformity surface. As for the stepped unconformity contacts, lee-side quarrying by moving ice is inferred, perhaps with some stoss-side shaping.

These features provide strong evidence for the presence of a grounded ice mass during at least initial deposition of the lower Gowganda Formation. Ice movement in a southerly direction is indicated.

Except in rare areas where special conditions existed, the unconformity surface was swept clean of any regolith which may have been present. This has resulted in the sharp Archean-Proterozoic contact commonly observed (Plate 1D) or occasional ice-plucked or stoss and lee structures with related fragments.

Occasionally, breccia derived from underlying or subjacent bedrock occurs at the unconformity. Most occurrences are thin (<20 cm) and rarely persist laterally for more than a few metres. Most occurrences of these breccias can be related to stoss and lee features discussed above (as in Plate 1B), or are preserved in slight lows on the irregular unconformity surface. The matrix of these breccias is similar to the matrix of the basal Coleman Member diamictite (Plate 1E).

Two rare examples of more extensive basal breccias are shown on
Figure 3. Leeside plucking of the unconformity surface.

Southward (away from viewer) movement of the Pleistocene ice sheet has shaped this outcrop into a smoothed and plucked roche moutonée that contains a segment of the Coleman-Archean contact. The Archean basement of felsic volcanic rock is stippled in the line drawing; Coleman Member diamictite is unpatterned, except for a few of the largest Archean clasts. The relationship of the irregular unconformity to these felsic clasts reveals that most of them were derived from the adjacent bedrock. At least one metre of paleorelief is apparent between the highest and lowest portions of the extensively jointed unconformity surface, indicating a southwesterly facing paleoscarp. In conjunction with the evidence for glacial deposition of the Coleman Member presented elsewhere in this thesis, an interpretation of joint-controlled, leeside ice-plucking by an approximately southwest-moving grounded ice sheet is indicated for the illustrated relationship.
cross section D-D' (Figure 20). Both are lensoid bodies which are preserved in paleotopographic lows and thin up the Archean paleoslopes. The northern occurrence (previously studied by Rainbird 1980) consists of a continuous, upward gradation from fractured, but in situ Archean basement, to breccia of slightly rotated fragments, to increasingly displaced fragments which contain a higher matrix content (Plate 1F). A gradational contact with Coleman Member diamicite caps the sequence. Occasional exotic clasts are observed in the upper portion of the breccia (both in framework and matrix). Breccia fragments show little evidence of transport, except for a slight apparently northward movement of ultramafic dyke fragments near the base.

The southern breccia lens consists of angular fragments of felsic volcanic rock (70%) with exotic granitoid clasts (30%) (Plate 1G). It overlies Archean mafic volcanic rocks in a steep-sided paleodepression. A small, discontinuous lens of faintly-stratified Coleman Member diamicite (Dms) is also present beneath the breccia in one location. The southern breccia thins up a steep paleoslope where it is in contact with the parent felsic volcanic basement rock. The breccia matrix contains abundant (up to 30%) silt- and sand-sized quartz and feldspar grains identical to those in the Coleman Member basal diamicite matrix. However, most of the matrix in both breccias is extremely fine-grained chlorite and sericite.

Most previous studies have suggested a paleoregolith interpretation for breccia at Cobalt (Patterson 1979; Rainbird 1980; Donaldson and Munro 1982). A subglacial origin was postulated by Legun (1984). The southern occurrence was interpreted by Scammell (1984) as re皆edimented paleotalus.

The detailed work of this study suggests that most of the small,
isolated breccia occurrences preserved outside paleotopographic lows are related to ice-plucked or stoss and lee structures. The matrix appears to be composed of Coleman Member detritus. Sericite and chlorite is much less common than in the large breccia lenses. Such features suggest a subglacial origin for these breccias.

However, a paleoregolith interpretation does appear valid for the large breccia lenses. The in situ nature and preservation only in paleotopographic lows supports a pre-Coleman Member origin. The high percentage of fine-grained sericite and chlorite in the matrix may reflect a high original clay content. Frost heaving may have separated blocks to allow later Coleman Member sediments to infiltrate upper regions of the breccias. Slight solifluxion could explain the northern movement of fragments at the base of the north breccia (Donaldson and Munro 1982). Much of the south breccia occurs north of its only possible bedrock source and must have moved downslope as Scammell (1984) suggested. However, this must have occurred during an early period of Coleman Member deposition, because the flow breccia rests on diamicrite, and has incorporated matrix and framework material of Coleman Member origin.

The preservation of these breccias in depressions and the flow of the south breccia when the area was covered by an ice mass suggests that subglacial cavities existed at these sites. This interpretation is supported by the presence of a unique clast-supported diamicrite overlying these breccias. Features and interpretation of this diamicrite are presented in chapters 3 and 4 of this thesis.
CHAPTER III

LITHOFACIES DESCRIPTIONS

The following descriptions are composite summaries of the major features of the lithofacies. Detailed descriptions of individual units accompany the measured sections in Appendix I. The framework-matrix boundary for diamictite descriptions was set at 2 mm; the classification proposed by Dott (1964) has been followed for both diamictite matrix and sandstones.

Low-grade metamorphism has resulted in a common grey-green coloration of both fresh and weathered surfaces. For this reason colour is not included in descriptions of the lithologies. Most of the rocks contain dark, grey-green chlorite-rich 1-5 mm "spots" which resemble detrital clasts in photographs. These are contact-metamorphic alteration products related to intrusion of the Nipissing Diabase (Jambor 1971c), and have no relevance to Coleman Member deposition.

3.1 Basal Diamictite Association (bDmm)

An extensive basal diamictite is present throughout most of the study area. The observed thickness ranges from 1 to 12 m and averages 2-4 m, with a general thickening in the broad paleotopographic lows and thinning across paleohighs (see cross-sections, Figures 20, 21, back-pocket).

The diamictite consists of 5-50% unsorted granule- to boulder-sized clasts dispersed in a feldspathic wacke matrix (Plate 2A). The framework consists of angular to subrounded clasts of varying composition. Exotic granitoid clasts generally predominate (40-80%); other components are mafic volcanic clasts (10-50%) and minor amounts of felsic volcanic, metamorphic, sedimentary and rare massive sulphide
clasts. Exposures are planar and two-dimensional due to Quaternary glacial smoothing. Within this restriction, the clasts display a diversity of shapes: granitoid clasts tend to have a higher apparent sphericity and tend to be more rounded than the volcanic clasts, which generally are angular to subangular. Pentagonal outlines were observed in this and other diamicrites (Plate 2B). Coleman (1907, 1908) described and illustrated faceted and striated (in two or more directions) pebbles and cobbles recovered from underground mine workings at Cobalt. From his descriptions, it appears that at least some of these clasts were located in the basal diamicrite unit. Altered clast margins are locally abundant, and have been interpreted as predepositional weathering rinds (Kurt 1973).

Thin-sections reveal that the diamicrite matrix is an immature, very poorly sorted, feldspathic wacke. Subequal amounts (30-40%) of subangular, commonly broken grains of quartz and feldspar with less abundant (10-25%) lithic clasts (mostly volcanic) are randomly dispersed in a chlorite-sericite matrix (Plate 2C). Silt-sized quartz and feldspar is common (10-20%). Most silt and sand-sized clasts appear to have been unaltered at the time of deposition, but some feldspar and rock fragments have been partially altered to chlorite and lesser amounts of sericite (Plate 2D). Diffuse Ti-oxide minerals also occur in the matrix as alteration products.

The bedding-parallel orientations of the apparent long-axes of elongate clasts were measured where feasible for this and other diamicrites in the study area. Surfaces parallel to bedding planes (defined by adjacent stratification) were used and gravel-sized clasts with apparent axial ratios exceeding 2:1 were measured at each site. A
more detailed discussion of methods and statistical analysis is given in Appendix 2. Apparent long-axes of basal diamicite clasts are preferentially oriented approximately in a south-southwest azimuth (Figure 48-J).

The diamicite generally appears massive in outcrops, polished slabs and thin-sections. Rare, thin, poorly sorted, massive sandstone lenses occur in upper sections of the diamicite (Plate 2E). These lenses are less than three cm thick and are traceable for a few metres at most. They are slightly irregular with diffuse contacts. Where the diamicite is overlain by a sandstone or finer-grained lithofacies, the upper contact commonly is gradational, with a faint, irregular lamination apparent in the upper 10-30 cm (Plate 2F).

Lateral variations in the basal diamicite are not apparent except for thickness changes and clast percent variations. However, different lithotypes occasionally are associated with the basal diamicite. Moderately-sorted, clast-supported diamicites (Dcs), in places interbedded with pebbly, graded sandstones (pSgn), occur rarely as isolated, channelized lenses at the base of, or cutting the massive diamicite.

In the two extensive breccia occurrences described previously (Chapter 2), the breccias are partially or completely overlain by an unusual clast-supported diamicite (Dcm) (Plate 2G,H). It appears to fill the remaining portion of the Archean depressions and rapidly pinches-out beyond these depressions (cross-section D-D', Figure 20, back-pocket). It is an unsorted massive composite of angular to subrounded volcanic clasts (50-70%) and subrounded granitoid clasts (20-30%) with a feldspathic wacke matrix (Rainbird 1980). Apparent long-axes of clasts in this diamicite are randomly oriented (Figure 4A).
Figure 4 Apparent long-axis orientations of diamictite clasts in the Basal Diamictite Association. Rose diagram A is for an unusual clast-supported diamictite which infills a paleodepression containing breccia. All other diagrams are for the bDmm unit which generally is the basal lithology of the Coleman Member in the study area. Sample sites are shown in Figure 13, Appendix 4.
BASAL DIADECITITE

EXPLANATION

vector mean
and magnitude
for 15° interval
213° = total vector mean
180°

N = number of measurements
L = vector magnitude
S = Rayleigh significance
This diamicomite is gradationally overlain by the matrix-supported basal diamicomite.

The basal diamicomite is absent in a few places, where any of the other lithofacies rest directly on the Archean basement. The most common basal unit where the basal diamicomite is absent is a fine-grained lithofacies (F). In the western portion of the study area a stratified diamicomite (Dms) similar to some stratigraphically higher diamicmites is exposed near the unexposed unconformity.

3.2 **Fine-grained Lithofacies (F)**

Fine-grained units vary greatly in thickness, lateral extent, texture and internal structure. The most extensive and thickest (up to 19 m) are well-laminated and spatially associated with the basal diamicomite and/or current-sorted sandstones. These have a maximum lateral extent of more than 1000 metres (refer to Figures 18-21, back-pocket). Thinner, less extensive units occur stratigraphically higher, commonly in association with the heterolithic diamicomite complex.

A regular, repetitive alteration of siltstone-claystone or fine-grained sandstone-mudstone couplets is discernable in many places (Plate 3A). By using the term rhythmite (Fr) for these units, the seasonal or time connotation associated with previously-used terms such as varve-like argillite (Lindsey 1967) is avoided. Well-laminated, but not obviously rhythmically interlaminated mudstones also occur as lateral equivalents of the rhythmites. Rare, irregularly laminated mudstones are discussed separately.

Well-laminated Units (Fr, Frd, Frd-Shd, minor F1)

Rhythmites are most abundant in the lower portion of the Coleman Member, and commonly overlie the basal diamicomite directly. Where this
occurs, the lower contact is sharp-to-gradational and the top 10-20 cm of the underlying diamictite also may be faintly laminated (Plate 2F). Most of these rhythmites are the basal component of coarsening-upward sequences that consist of a vertical rhythmite/sandstone/clast-supported diamictite transition. Reverse-order, fining-upward sequences also occur, but are less common and of smaller areal extent. Examination of the maps and cross-sections (Figures 18-21) reveals that these associations occur as fan-shaped bodies which individually cover a maximum area of a few square kilometres and are up to 40 m thick. This fan shape is readily apparent in mid portions of cross-sections A-A' and B-B' (Figure 21) and in cross-section D-D' (Figure 22). The surface expression of these examples (Figures 18, 19) allows an approximation of the areal extent of each fan (based on the extent of sandstone lithofacies of each sequence). For simplicity these sequences are subsequently termed fan associations.

Rhythmite lithofacies range in thickness to a approximate maximum of 19 m. Typically, the basal section consists of silt-clay couplets—
—with a thicker clay component (up to 5 mm). The coarse- to fine-grained quartz-feldspar-silt component is sharp-based and normally graded or massive throughout. Micro-loading into the underlying clay is rare. The clay component generally has a sharp lower contact, but normally-graded fine silt is diffused through the lower half. The upper half usually appears massive. Gradational silt-clay contacts also occur. The clay is partially altered to a chlorite-sericite/Ti-oxide mass. Occasional microlaminations (one silt grain thick) occur within the clay (Plate 3B).

Silt laminations increase in abundance and thickness upwards.

Higher in the sequence, composite graded silt layers are separated by thinner clay-silt layers. Sharp loaded basal contacts and complex internal grading patterns are common (e.g., reverse-to-massive-to-
microlaminations. Fine-grained sand laminae (rarely thin beds), rare in the lower part of the sequence, are more common in mid-rhythmite sections. Many are discontinuous, with a lenticular to wavy (starved ripple) form (Plate 3D). Some contain faint cross-laminations and basal, deformed microflames, indicating southerly-directed flow.

In the upper part of the rhythmite section, the silt layers are thicker (up to 1 cm) and coarser grained. Sand-silt couplets are increasingly common and the clay component decreases in frequency and thickness. Clay layers are generally less than 5 mm thick and contain fine silt throughout, with a normally-graded silty base (Plate 3E).

Near the top of the rhythmite units, one to three cm thick, normally-graded, fine-grained sand to coarse-grained silt beds become common. Ripples and occasional climbing-ripple sets (A, B, and more abundant sinusoidal types of Jopling and Walker, 1968) are present (Plate 3F). Increasingly frequent fine-grained sand interbeds grade upward into a sandstone unit with no discrete clay laminae. Relatively thick (up to 30 cm), very fine- to fine-grained, massive to faintly laminated sandstones are interbedded in the upper 2-3 m of the rhythmites. These beds are deeply loaded into the rhythmites with associated rhythmite flames deformed and locally thrust to the south (Plate 3G,H). Dish and pillar dewatering structures occur in some of the massive sandstone interbeds (Plate 3I).

In the western part of the study area, the lower rhythmite units (cross-section E-E', west side, Figure 20) are unusually coarse-grained (FrD-Shd). The normal bottom component of the couplets is medium- to fine-grained sandstone grading into coarse siltstone. Many of the coarse layers comprise multiple laminations (both normal- and reverse-
graded), with microlaminated silt-clay units forming the upper component of the couplets. Much of this section contains composite subunits, although the upper clay-rich section is predominantly massive. Rarely, fragments of the underlying silt-clay laminae occur immediately above the sharp, loaded basal contact, indicating erosion during transport (Plate 4A).

Lonestones occur in all of the fine-grained lithofacies, but are most prevalent in the rhythmites. They range from sand-size to 80 cm in diameter. All lithologies that occur in the diamicrites are represented. Surrounding laminae are depressed below, draped over, and/or pierced by the clasts (Plate 4B). The pierced laminae are typically contorted and thickened near the clasts. The contact relationships documented for Pliocene dropstones (Thomas and Donnell 1985, fig. 2) were observed (Figure 5) and a dropstone origin for these clasts is inferred. In general, they are rare in the silt-clay rhythmites and common in the coarse-grained rhythmites. The coarse rhythmites in the west section of the study area contain an unusually high number of dropstones, (up to 10%). Some are concentrated in patches or small lenses parallel to the laminations, but the usual occurrence is as lonestones.

Suboval, sand-sized wacke clasts also occur, and are most abundant in the coarse, dropstone-rich rhythmites (Plate 3B,C). They exhibit diffuse margins, elongation parallel to the laminations and compositions similar to the matrix of the diamicrites. These appear identical to the pelletoidal greywacke clasts described by Lindsey (1970). He proposed an origin as till pellets, partially consolidated by englacial ice pressure, freed by melting, deposited by ice-rafting and compacted into an ovoid form with elongation parallel to the enclosing laminae.
Figure 5. Contact relationships of dropstones in the study area.

[The terminology for dropstone contacts of Thomas and Connell (1985) are used here.]

A. (see also Plate 4b) Slight bending of laminae below clast accompanied by extreme thinning of subjacent laminae. Piercing of laminae and simple rucking (sharp, upward folding) of sediment against clast edges indicates initial penetration of approximately 3cm. Onlap of lamina above rucking is well-defined.

B. Extreme penetration of approximately 30-40cm by an unusually large clast. Displacement of sediment has caused pronounced rucking and convolute folding of individual strata. Sand beds are thickened on edges of clast due to lateral displacement, but the competency of individual strata was sufficient to prevent breakup.

C. Relatively sharp piercement accompanied by only minor rucking at clast edges and thinning below clast. May reflect greater competence of the clay-rich layers pierced as opposed to silt/sand layers of D.

D. Total penetration of layers by largest clast has caused rupture above the final position of the clast with some laminae extensively distorted (This may indicate a relatively water-rich sediment at the time of clast emplacement, in contrast to 5B,C.

E. Large clast has penetrated numerous laminae. Extreme rupture, convolute folding at clast edges, and break-up of some laminae may be the result of shock and displacement effects in a water-rich sediment.

F. A possible pseudo-dropstone: thinning beneath clast is minimal, downwarp of pierced laminae is limited to one side, rucking is not evident, and clast is not oversized with respect to the overlying layer. This pseudo-dropstone may have been transported as bedload, with later compaction resulting in piercement of lamina.
Deformation structures are evident in some of the rhythmtes. The
loaded bases of the massive sandstone interbeds rarely show evidence of
extreme deformation, with sections of the underlying rhythmtes
decoupled and thrust southward several tens-of-centimetres (Plate 3H).
In other areas, thin, short-displacement (<10 cm) thrusts of underlying
laminae into the overlying (generally coarser) laminae also occur (Plate
4C). A few examples of convolutedly deformed sets of laminae (<1 cm - 40
cm thick) bounded by undeformed lamina were also observed. This style
of deformation is not spatially associated with anomalous lithotypes, as
is the first. Two clastic dykes of massive sand which cross-cut and
deform the edges of rhythmite units were also discovered (Plate 4D).

Paleocurrents were estimated on the basis of cross-laminations in
ripples, climbing ripple drift, asymmetry of ripple crests and
deformation of flame structures. Exact measurements rarely could be
obtained, because the best exposures occur on vertical faces, and three-
dimensional exposures are rare. The paleocurrent directions generally
range from southeast to southwest throughout the rhythmite sequences.
In the middle to upper sections through the rhythmtes, a few northerly
directions were observed.

Poorly-laminated Units (F1, Fm, F1-Sh)

Massive fine-grained lithofacies are absent in the study area, but
rare, thin units of faintly and irregularly laminated mudstones occur in
higher stratigraphic positions and as the lateral equivalents of the
well-laminated units. For both, a close spatial association with
current-sorted sandstones is absent.

These units are composed of wavy to discontinuous silt and clay
laminae of variable thickness (most laminae <2 mm thick) (Plates 4E).
Contacts are generally diffuse and gradational. The silt-rich laminations are typically massive, but some are normally graded with disrupted packing. The silt matrix and clay laminae consist of chlorite, minor sericite and patchy carbonate alteration. Discontinuous, wavy, parallel, fine-grained sand laminations (0.5-1 cm thick usually) are occasionally present. In one exposure, numerous isolated, fine-grained sandstone "clasts" from less than 1 cm to more than 30 cm diameter, "float" in irregularly laminated mudstone (Plate 4F). These irregularly shaped pseudonodules display convoluted laminations.

3.3 **Sandstone Lithofacies (S)**

Sandstones within the study area can be separated into two major subdivisions. Thickest and most extensive are sandstones of fan associations. Relatively thin sandstone sheets or lenses generally associated with the heterolithic diamictite complex are less extensive and will be described in the section dealing with this complex.

Units of sandstone in coarsening-upward sequences range in thickness from less than two metres to over nine metres. Their areal extent is less than the underlying rhythmites, but greater than the clast-supported diamictite that typically caps them (see cross-sections, Figures 20, 21, back-pocket). The lower contact of the sandstones is transitional with the previously described interbedded sandstone/coarse-grained rhythmite. A sharp, erosive contact is generally apparent at the base of a thicker continuous sandstone unit that overlies this interbedded zone. This was selected as the base of the sandstone for mapping and descriptive purposes. Rarely, sandstone directly overlies the basal diamictite (as in the northern portion of cross section D-D').
Figure 20). The contact is sharp and slightly erosive.

The sandstones are moderately-sorted feldspathic arenites or wackes with 10 to 40% matrix. The framework mineralogy consists of quartz and feldspar in subequal amounts and 10 to 25% lithic fragments, mostly volcanic. Packing ranges from condensed with numerous sutured grain contacts to dispersed with subangular to subrounded clasts. Clast alteration is limited to slight grain boundary alteration and incipient feldspar sericitization. The matrix consists of silt-sized clasts, abundant chlorite, minor amounts of sericite and Ti-oxide aggregates (sphene?) and rare patchy carbonate alteration. Plate 4G illustrates many of the above features. Kürt (1973) conducted a more detailed petrographic study of three of these sandstones.

In a typical sandstone unit, the basal, thin-bedded, fine- to medium-grained portion contains ripples or small-scale planar crossbedding. This coarsens upwards into medium- to coarse-grained tabular beds (10-50 cm thick), some of which exhibit low-angle planar crossbedding (Plate 4H). In other places, the beds comprise fining-upward coarse- to medium-grained cycles with rare pebbles at the base. Above this, trough crossbedding is occasionally present with overlapping, normally-graded, erosional trough sets containing pebbly lenses at the base. The troughs tend to be 1-2 metres long and less than 25 cm deep as seen in vertical exposures (Plate 5A). Above this, or where trough crossbedding is absent, the upper parts of the sandstone units are very coarse-grained, thin to medium bedded (<5-20 cm) graded cycles of small pebble/granule to coarse-grained sands (Plate 5B, C). Normal, reverse or inverse-to-normal grading is present. Most cycles are normally graded with an unstratified pebble-granule component grading into a faintly laminated (rarely cross-laminated) coarse-grained
sand. In most areas these cycles are sharply overlain by a clast-supported diamictite.

Sandstones also occur in fining-upward sequences with units overlying clast-supported diamictites (Dcs, Dcm) and in places are overlain by rhythmites. These sequences are thinner and less extensive than the coarsening-upwards fan associations. The sandstones observed tend to be less than five metres thick. A gradational lower contact consists of sharp-based beds (up to 70 cm thick) of pebble-granule diamictite grading up into coarse-grained sandstones. In general the structures and textures are similar to those of the coarsening-upwards sequences, except for a lack of trough crossbedding.

Sharply bounded beds (30-60 cm thick) of massive to faintly-stratified, pebbled-sized, clast-supported diamictite (Dcm) occur rarely in the mid to upper portions of the sandstones. Rare lonestones up to 50 cm in diameter occur within these otherwise moderately-sorted sandstones (Plate 5D).

Paleocurrent measurement was hampered by the high induration and lack of three-dimensional exposures of relevant structures. However, a southeast to southwest trend similar to that of most rhythmite paleocurrents is apparent (Figure 6).

3.4 Clast-supported Diamictites (Dc)

Diamictites consisting of an intact framework of gravel-sized clasts (Dc) occur in three different facies relationships. Most are units within the fan association, but a few units occur as thin, isolated lenses within other lithofacies. Extensive tabular bodies of this lithofacies also form part of the heterolithic diamictite complex (discussed in the following section).
Figure 6. Paleocurrent rose diagrams from sandstone units within the study area. A-D are from individual sample sites, shown in Figure 14, Appendix 4. The lithofacies type is shown in the upper right corner (see Table 1 for lithofacies code). Diagram E is compiled from all paleocurrent data obtained during the study, including measurements not part of diagrams A-D. Statistical methods are as for diamictite apparent long-axis orientations, discussed in Appendix 2.
Clast-supported diamicrites are the areally least-extensive unit of the fan association (see cross-sections, Figures 20, 21, back-pocket). Diamictite thicknesses exceed 20 m in some coarsening-upwards sequences, but more commonly are less than 15 m. The basal contact may be sharp and erosional, but is commonly gradational with respect to the underlying sandstone. Where the diamictite directly overlies a rhythmite unit, the base is sharp, erosional and loaded.

The diamictite consists of a poorly-sorted, intact framework of 70-90% gravel-sized clasts (Plate 5E). Most are small-pebble to small-cobble size, but large cobbles and boulder clasts are common in some of the occurrences. Clast lithologies are diverse with volcanic (mafic > felsic) and graditic rocks accounting for over 90% of the total. Sedimentary, metamorphic and rarely sulphide clasts are also present. Clasts range from subangular to subrounded, with volcanic clasts more rounded than the igneous clasts in the planar, two-dimensional exposures examined. Most shapes appear to be equant to slightly ovoid.

The sand fraction of these diamicrites is a moderately- to poorly-sorted, medium- to very coarse-grained feldspathic arenite (rarely a wacke). Sand and matrix characteristics are similar to those described previously. Many of the quartz and feldspar clasts appear to be derived from plutonic sources, a contrast to the high percentage of volcanic clasts in the gravel-sized fraction.

In a few places, a thick (up to 15 m) basal subunit can be differentiated within the diamicrites of the coarsening-upwards associations. It appears massive and unsorted on most weathered surfaces and generally was mapped as Dcm or Dcm-Dcs (see maps, Figures 18, 19, back-pocket). A crude stratification is apparent in good
exposures and in some cut slabs. In some exposures inverse grading can be seen in the lowest 20-50 cm. Above this (or where it is not present), a weak horizontal alignment of clast long-axes and poorly-developed graded cycles were commonly apparent (Plate 5F). Bedding could not be precisely defined. Rarely, thin (<15 cm), discontinuous pebbly-sandstone lenses occur in the upper portions. Apparent long-axes of clasts are preferentially oriented along south or southwest azimuths (Figure 7G-J). This is parallel to paleocurrent directions determined in the underlying sandstones (Figure 6A-D).

A moderately-sorted, obviously stratified diamictite (Dcs) occurs where this subunit is not present. It can also overlie this unit with a sharp or gradational contact. It usually consists of poorly defined, normally-graded beds tens-of-centimetres thick with pebble/cobble bases and granule- to coarse-grained sandstone tops (Plate 5G). In some areas, this upper subunit is well defined, with distinct graded cycles and faint planar (to trough?) cross-stratification visible in the pebbly-sandstone upper portion (Plate 5H). Rarely, a cycle grades up into asymmetrically-rippled fine-grained sandstone with a thin (<1 cm), laminated, siltstone top.

Clast-supported diamictites in fining-upward associations closely resemble the previous subunit. Poorly defined beds are up to 50 cm thick. The lower 10-30 cm consists of moderately-sorted, faintly graded pebble-to-small-pebble clasts. This grades sharply into a coarse-grained, pebbly-sandstone which also fines upward slightly (Plate 6A). In a few places a lower subunit of diamictite similar to the poorly-stratified lower unit described previously is also present. Apparent long-axes of clasts in these units are randomly oriented on bedding surfaces (Figure 7K,L).
Figure 7. Clast apparent long-axis orientations for diamictites of Fan and Interfan Associations. Sample sites are shown in Figure 15, Appendix 4. The lithofacies is shown in the upper right corner of each diagram (see Table 1 for lithofacies' code). Explanation of symbols as for Figure 4.
Rarely, clast-supported diamictites occur as small, discontinuous bodies within the other lithofacies. These channelized, lens-like units decrease in thickness from a central few metres, pinching-out on both sides within tens of metres. They have a sharp, erosive base with the lithofacies containing them (most often Frd-Shd, bDmm, or Dms). Most consist of a moderately-sorted, small-cobble to small-pebble layer which grades into a thin sandstone. Some comprise repetitive beds of normally-graded, gravel- to sand-sized clasts. Faint horizontal bedding/lamination or rarely, planar cross-stratification are present in the sand-sized portion.

3.5 *Heterolithic Diamictite Complex*

This association comprises diamictites complexly intercalated with sandstones and fine-grained lithofacies. Lithotypes do not occur as stratigraphically confined units, as does the basal diamictite, or as members of a well-defined sequence of changing lithofacies as for fan associations. The prefix "upper" was used during mapping to distinguish this association from the basal diamictite.

This complex can be subdivided into units that occur at approximately the same stratigraphic position as the fan associations and overlying units that form the stratigraphically highest lithologies in the study area. The higher assemblage is approximately restricted to the area bounded by the Valley Fault on the west and the Cobalt Lake Fault on the east, plus the highest units west and north of the Valley Fault (Figure 46 and cross-sections C-C', E-E', F-F'; Figures 20,21, back-pocket).

Lower Stratigraphic Assemblage

Lithologies of this assemblage generally overlie fine-grained or
sandstone lithofacies of the fan associations. Occasionally, this
diamictite complex directly overlies the basal diamictite or the
unconformity surface, making distinction of a Dmm unit difficult or
impossible (eg. northwest side of cross-section C-C', Figure 20, back-
pocket).

The most common lithology is matrix-supported diamictite, either
stratified (Dms) or massive (Dmm). The former consists of units 0.5 -
15 m thick. The thick sections actually may be composite units, because
contacts between separate Dms subunits are generally not distinguishable
unless another lithology is interbedded (Plate 6B). Gravel-sized clasts
typically form 10-70% of a unit and consist of angular to rounded
granules to boulders (largest observed: 140 cm). Some of these clasts
appear faceted (Plate 6D). Framework clasts are dispersed in a very
poorly sorted, feldspathic wacke similar to that of the basal
diamictite, but with occasional faint stratification at thin-section
scale. This consists of a subparallel alignment of elongate sand-sized
clasts and rarely, the presence of faint, wavy laminations. A crude
stratification is also apparent at outcrop scale, consisting of wavy
laminations and/or a rough subhorizontal alignment of elongate, gravel-
sized clasts. Rarely, a poorly-developed imbrication is apparent. Some
clasts have deformed and/or pierced the faint, wavy laminae, suggesting
a dropstone origin.

This lithology occurs interbedded with other diamictite, sandstone
and fine-grained lithofacies. Where discernible, the lower contacts are
sharp and in places erosive into the lower unit. This is especially
noticeable where underlying laminated fine-grained units occur (Plate
6D). Upper contacts are generally indistinct with overlying diamictites,
and sharp with non-diamictite. Rarely, dewatering has caused
intermixing of sands and diamicton, disrupting the contacts. Projecting clasts are occasionally present at the top contact.

Some diamictites appear to be massive (Dmm). These generally contain fewer gravel-sized clasts (<30%), but are otherwise identical to the stratified diamictites. Thin, discontinuous, contorted sandstone lenses are rarely present. The massive diamictite units can be thick (up to 15 m), but recognition of subunit contacts is difficult unless another lithology is interbedded.

The lateral extent of the matrix-supported diamictites is difficult to ascertain due to the subtle contacts between coincident units. In many areas, no definite change in diamictite type is apparent over hundreds of metres of exposure, suggesting relatively extensive sheets, although a composite of multiple, virtually identical subunits is suspected. In some places, thin discontinuous lenses of this diamictite can be mapped.

Unusual structures observed in the matrix-supported diamictites include a grooved surface on the top of a Dms unit. At the largest exposure (Plate 6E), linear, parallel grooves (2-20 mm amplitudes and 5-10 mm wavelength) are oriented in a direction (135°) which roughly coincides with the local paleoslope. The grooves disappear beneath another Dms unit and have a thin, patchy, siltstone drape, eliminating the possibility of Pleistocene origin.

Two unusual sedimentary boulders were found in Dms units. Both consist of pebbles and cobbles with a wacke matrix and appear identical to Coleman Member clast-supported diamictites (Plate 6F). The irregular clast boundary is defined by complete, projecting cobbles or pebbles, supporting a synsedimentary source. The example in Plate 6F occurs in
faintly- to well-stratified transitional Dms-Frd. It both depresses and pierces faint laminations. This observation, supported by orientation of the boulder with its largest cobbles at the bottom, suggests final deposition as a dropstone.

A third unusual feature is the rare occurrence of isolated gravel-sized, intact-framework clusters (Dcm) in the generally dispersed-framework Dms units. These clusters tend to be ovoid in sections approximately parallel to bedding and are up to several metres in maximum diameter.

Other lithologies are interbedded with the matrix-supported diamictites. Clast-supported diamictites (Dcm or Dcs) occur as sheets or lenses, usually <2 m thick (rarely up to 5 m). Most of the lensoid units are channelized, moderately-sorted, and fining-upward as previously described (page 38). Sheet-like Dcm units are generally massive, with a sharp, slightly loaded, non-erosive lower contact, although erosional contacts were rarely observed (Plate 6G). These poorly-sorted units exhibit a wide range of grading patterns. Some are nongraded or have a crudely-defined, coarse central portion with nongraded, unsorted top and bottom sections. Some show vague normal grading, with projecting clasts at the top surface (Plate 6H). A thin, finer-grained, laminated or, rippled bed drapes some of these units (Plate 7A). Inverse- to normal-graded sequences also occur.

An unusual Dcm unit of variable thickness (2-5 m) occurs in the southeastern part of the map area (cross-section A'-A', east side, Figure 21). It consists of an unsorted framework of gravel-sized clasts with an unusually large boulder fraction (>20%; largest: 2.7 m). Some of the large boulders are broken and the fragments are slightly separated (Plate 7B,C). The spaces between the fragments have been infilled by
the enclosing diamicrite. Most of the broken fragments are not significantly dispersed, reflecting in situ fracturing of the clasts. The top contact of this unit is irregular, with some clasts projecting more than 10 cm. An overlying F1-Sh unit covers and infills between the projecting clasts. Compaction may have accentuated, or even caused, such draping of the laminated unit around the uppermost clasts.

Apparent long-axis orientations of clasts in these diamicrites (both massive and clast-supported) are preferentially oriented along a southeast to southwest azimuth (Figure 7A-P).

Sandstones occur as discontinuous sheets or lenses. These are generally coarse- to medium-grained feldspathic arenites or wackes; less than 2m thick and ten's to a few hundred metres in extent where this could be determined. Most have sharp, loaded or erosive bases with underlying matrix-supported diamicrites and conformable, draping contacts with clast-supported diamicrites. Usually they consist of a single bed which is apparently massive or graded. Inverse to normal grading is common (Plate 7E), although normally-graded sequences also occur, some with a thin overlying faintly-laminated and locally rippled mudstone or fine-grained sandstone.

Two fine-grained lithofacies are associated with the lower portion of the diamicrite complex. The most extensive are part of the fan association and occur below or are laterally transitional to the diamicrite complex. Where a lateral progression from coarse-grained Frd-Shd lithofacies to stratified diamicrites is observed, complex and abrupt lithologic variations are typical. A less abrupt and sharply intercalated lateral transition also occurs. In one area (cut by cross-section C-C', east side; Figure 2, back-pocket), a gradational
southward transition from Dms to Frd occurs over a few hundred metres. To the north, 10-15% pebble- to boulder-sized clasts are dispersed in a faintly and irregularly laminated fine-grained wacke which directly overlies the basal diamicite (see MS-5, Appendix 1). Southward, the matrix size decreases, laminations become more regular and gravel-sized clast percentage decreases. The stratigraphically equivalent unit to the south is a well-laminated rhythmite (Frd) that contains rare dropstones (Plate 3A). This rhythmite unit contains a thick (thinning from 7 m to 2 m over 200 m, shown on cross-section B-B' east side; Addition 4, back-pocket), tapered sheet of massive, clast-supported diamicite composed mostly of large pebbles, cobbles and sparse boulders. It occurs within the Frd unit with a sharp, loaded, lower contact and an irregular upper contact with projecting boulders, draped by Frd (similar to Plate 7D). Irregularly laminated mudstones also occur in the lower stratigraphic assemblage. They are not obvious components of fan association sequences, although their stratigraphic position suggests that many are laterally equivalent to the rhythmites of other areas. These poorly-laminated units were described in detail in the previous section (Fine-grained Lithofacies).

Upper Stratigraphic Assemblage

The highest stratigraphic units in the study area consist of a complex series of diamicite bodies with minor occurrences of other lithologies. This portion of the Coleman Member at Cobalt is preserved in a relatively small area, and most exposures are restricted to isolated occurrences, with the exception of the ridge where a detailed section (MS-4) was measured (Appendix 1).

Matrix-supported diamicrites within this upper portion occur as
thick (up to 10 m) tabular sheets, although, as for the lower assemblage, it is difficult to distinguish contacts between multiple Dms or Dmm units. Units include massive, unsorted Dmm with 10-50% granule- to boulder-sized clasts, most subangular to subrounded, dispersed in feldspathic wacke. Some Dm units are faintly stratified with irregular thin sandstone lenses. Others contain a wavy, nonrhythmically-laminated matrix of fine-grained sandstone and mudstone (Plate 7F). Apparent long-axes of clasts within these diamicrites are randomly oriented (Figure 8A-D).

Clast-supported diamicrites also occur. Some appear massive but have a reverse-graded base (up to 50 cm thick) that rests on a surface slightly eroded into the underlying unit (Plate 7G). A few discontinuous (<5 m), thin (<10 cm), Fl lenses appear to be interbedded with these thick (up to 17 m) units, suggesting that they actually consist of multiple subunits. Above these Fl interbeds a thin, reverse-graded zone is locally apparent. Rare stratified, clast-supported diamicrite typically consist of a crudely stratified, poorly-sorted, intact-framework of granule- to boulder-sized clasts with a feldspathic wacke matrix. Stratification consists of a subhorizontal alignment of elongate clasts, a crude bedding defined by poorly developed size-sorting (poor normal- or reverse-graded cycles) and the rare occurrence of discontinuous pebbly-sandstone interbeds which show a poorly developed normal-grading. Apparent long-axes of clasts strongly trend along a southwest azimuth (Figure 8E-G).

Fine-grained units within the higher diamicrite package tend to be nonrhythmic, poorly laminated mudstones similar to those described for the lower stratigraphic assemblage. Most occurrences are not associated with coarser-grained, stratified sequences as in the lower stratigraphic
Figure 8. Clast apparent long-axis orientations for diamicites of the Upper Diamictite Complex. Samples sites are shown in Figure 16, Appendix 4. The lithofacies is shown in the upper right corner of each diagram (see Table 1 for lithofacies code). Explanation of symbols as for Figure 4.
packages. In thin section, the nonrhythmic nature of the laminations and diffuse contacts between laminae are readily apparent (Plate 7H). A more regularly laminated and continuous, but nonrhythmic, unit exists in a few places. Diamictite lenses with erosional bases (Plate 7I), lonestones, and discontinuous beds of gravel-sized clasts, are present in a few places within these units.
CHAPTER IV

LITHOFACIES INTERPRETATIONS

4.1 Basal Diamictite Association

The characteristics and facies associations of the basal diamictite suggest an origin as a subglacially deposited, primary basal till (as defined by Boulton and Deinoux 1981; equivalent to the subglacial orthotill of Dreimanis 1983). Although definitions of till (and tillite, the lithified equivalent) vary, most authors agree that original transport and deposition by or from glacier ice is fundamental (see review in Dreimanis 1983). However, there is considerable disagreement on the amount of subsequent water-working or resedimentation a till can undergo and still be classified as a till. Opinions range from allowing no subsequent resedimentation (Lawson 1981), to minor resedimentation without disaggregation (Boulton 1972), or even significant penecontemporaneous resedimentation, including settling through a water column (Dreimanis 1979, 1983; Gravenor et al. 1984). For this study, the relatively restrictive definition of Boulton (1972) is used. The many diamictite units in the study area show a great range of features and facies associations, suggesting a complex depositional history. The discrimination of a tillite in the restrictive sense is regarded as more useful than inclusion of possible tillites that also display resedimentation features compatible with alternate modes of deposition.

Recent papers which summarize criteria for the identification of tillites vs. diamictites of non-till origin include Boulton and Deinoux (1981), Anderson (1983), Dreimanis (1983), and Gravenor et al. (1984). All of these authors stress that no one criterion uniquely
differentiates tillite. Only the association of several characteristics can be regarded as a reliable indication of till origin (sensu stricto).

The stratigraphic position of the basal diamicrite and its relationship to other facies supports a subglacial tillite interpretation. It directly and sharply overlies a glacially scoured and shaped basement or, rarely, another diamicrite which is interpreted to be a subglacial, lee-side tillite. The basal diamicrite is sharply or gradationally overlain by dropstone-bearing rhythmites or other glacially-derived lithofacies. It is laterally persistent, occurring on paleotopographic slopes, highs and lows.

Lithologic characteristics of the basal diamicrite also are typical of basal tills. It incorporates the immediate substratum (lee-side derived breccia). It also contains both far-travelled clasts (plutonics and high-grade metamorphics) and volcanic clasts similar to local lithologies (although most volcanic clasts are not diagnostic of distance of travel, because massive and pillowed volcanics are common throughout the Abitibi Subprovince). The apparent shapes of gravel-sized clasts correspond well to those shown by Boulton (1978) to indicate basal or low-englacial transport paths. The highly spherical and commonly subrounded granitoid clasts are the expected end-member of extensive transport in the basal traction zone of the glacier. Faceted clasts, an intermediate form according to Boulton, are relatively scarce at Cobalt; this may reflect extensive basal transport and/or the difficulty in recognizing this form in two-dimensional lithified exposures. The latter suggestion is supported by Coleman's (1907, 1908) description of faceted and striated (in two or more directions) pebbles and cobbles recovered from underground mine workings at Cobalt.

Both framework and matrix of the basal diamicrite exhibit textural
features that are common to tills. The lack of sorting and the mineralogical immaturity (i.e., "fresh" feldspars and high lithic grain content) are typical of till matrix (Anderson 1983). The high percentage of silt-sized clasts and the subangular, broken appearance of many silt- and sand-sized clasts may reflect comminution in the basal traction zone (as described by Boulton 1978).

The generally massive nature of the basal diamictite is common in basal tills (Boulton and Deynoux 1981, Anderson 1983, Dreimanis 1983, Gravenor et al. 1984). The sporadically distributed and irregularly laminated, upper zone may represent englacially layered sediment. Such deposits have been observed in recent tills by Boulton 1970 and Lawson, 1981, but are rarely preserved within Pleistocene tills (Boulton 1970). A more likely explanation is reworking during deposition of the overlying lithofacies (usually rhythmites). The discontinuous sandstone lenses rarely observed in the basal diamictite also have a counterpart in Pleistocene and recent tills. Kruger (1979) cites thin, distorted, discontinuous sandstone lenses as indicative of basal till, and suggests an origin from local and temporary meltwater concentrations.

The apparent long axis orientations of large clasts within the basal diamictite show a strong northeast-southwest trend. This conforms with the dominant southwest direction of ice movement deduced from stoss and lee structures and derived breccia; similar ice movement has been proposed in other studies (Cooke 1922, Schenk 1965a, b, Lindsey 1967). Orientations of clast long axes parallel to the direction of ice movement is typical of subglacially derived tills (Holmes 1941; Boulton 1971; reviews by Andrews 1971; Domack and Lawson 1985). Up-ice imbrication of clasts is also common in basal tills (Boulton, 1978), but
the exposure type and high induration at Cobalt precludes this type of
fabric study.

Rare discontinuous intrabeds of stratified, pebbly sandstone and
clast-supported diamictite which occur at the lower contact, or within
the basal diamictite, also have parallels in Pleistocene basal tills.
Shaw (1977) describes similar units in a thick sequence of melt-out
till, and interprets the stratified lenses as the accumulation from
small subglacial and englacial melt-out channels. A similar origin is
proposed for the stratified intrabeds of the basal diamictite.

The several lines of evidence presented above strongly support a
till origin in the restricted sense and, more specifically, an
interpretation as a subglacial, primary till. Primary till is commonly
subdivided into two major types: lodgement and melt-out (Boulton and
Deynoux, 1971; Dreimanis, 1983; Ashley et al. 1985). Lee-side till is a
special type of lodgement till according to Boulton 1978. Many of the
principal distinguishing criteria for lodgement till (reviewed by Eyles
et al. 1982) are lacking in the basal diamictite, including fissility,
shear lamination ("smudges" of Kruger 1979) and a systematic jointing
pattern. However, it seems unlikely that these features would be
 preserved in the highly indurated, metamorphosed, post-lithification-
 jointed, basal diamictite. Most other criteria for the recognition of
lodgement till also apply to basal melt-out till (clast orientation and
shape for example). Although the presence of stratified intrabeds and
thin discontinuous sandstone lenses in the basal diamictite supports a
melt-out genesis, the basal diamictite lacks sufficient features to
conclusively select the appropriate subdivision.

The unusual clast-supported diamictite which overlies the
unconformity surface regolith in two paleodepressions also appears to be
a subglacial deposit. The massive, non-sorted nature and occurrence
directly below the basal tillite suggests a tillite interpretation.
However, preservation of the regolith in paleodepressions and restricted
occurrence of the Dcm in paleodepressions suggests a unique mode of
subglacial deposition in which subglacial cavities formed at a south-
facing scarp. The unusual diamicrite overlying these breccias is
interpreted as a subglacial, lee-side deposit in these cavities.
Boulton (1971), Eyles and Menzies (1983) and Hillefors (1973) discussed
possible mechanisms of deposition in lee-side cavities. Boulton (1978)
termed these deposits lee-side tills. A possible model for the Cobalt
occurrences is shown in Figure 9. Basal debris, much of it locally
derived, is expelled from the overriding ice due to pressure-release and
collects in the cavity. The random orientation of clast long-axes in
this diamicrite (Figure 4A) may reflect such subglacial expulsion of
clasts into a cavity. Lack of stratification and sorting in the clast-
supported diamicrites or reworking of the north breccia implies that
little meltwater was present. This suggests flow of the south breccia
downslope may have been a slow, slope-creep event rather than a rapid
water-saturated mass flow. The faintly stratified, matrix-supported
diamicrite lens below the south breccia suggests some early subglacial
meltwater activity.
Figure 9. Model for subglacial deposition in a lee-side cavity based on Hillefors 1971; Boulton 1971; Eyles and Menzies 1983).
4.2 Subaqueous Outwash Fans

The coarsening-upward fan associations are interpreted as deposits of subaqueous outwash fans as defined by Rust and Romanelli (1975), termed subaqueous esker-deltas by Thomas (1984). Many features suggest that deposition occurred in a subaqueous environment: sandstones within the fan associations contain dropstones; the fan lithofacies are at the same stratigraphic level as, and overlain by, diamictite-rhythmite-sandstone lithologies that also contain dropstones; sedimentary structures indicative of subaerial exposures are completely lacking from all lithofacies within the study area; regionally, the Copleman Member is conformably overlain by nonglacial, marine, prodeltaic mudstones deposited below wavebase (Rainbird 1985).

Rhythmites and the nonrhythmic, fine-grained lithofacies are interpreted as lower-fan and fan-distal deposits. Paleocurrent indicators and the lithologic distributions suggest that the southerly-directed meltwater discharges were the only significant current-source in this part of the basin. Laterally equivalent poorly-laminated mudstones may represent distal areas where the direct effects of this meltwater input were rarely felt. Similar types of deposits are described from glaciolacustrine lakes by Smith (1978) and Gustavson (1975). Alternatively, if the basin was marine, the poorly-laminated mudstones could reflect normal marine sedimentation in relatively distal areas where the high sediment concentrations and lowered salinity due to high meltwater discharge do not strongly affect the sedimentation patterns (Mackiewicz and Powell 1982; Domack, 1984).

The thin, basal silt-clay rhythmites are interpreted as distal-fan deposits. Whereas a marine environment is possible (discussed in Chapter 5), the characteristics of these sediments are very similar to distal
rhythmites/varves described from glaciolacustrine lakes (Ashley 1975; Gustavson et al. 1975; Gustavson 1975; Ashley et al. 1985). The sharp, non-erosive couplet contacts, lack of current-structures, thicker clay than silt layers, and generally sharp silt-clay contacts are similar to features described from rhythmites formed by sediment-rich interflow/overflows (Ashley et al. 1985; Ashley 1975). These correspond to the distal varves of Bannerjee (1973), lake varves of Gustavson et al. (1975), and Group I varves of Ashley (1975). Ashley et al. (1985) provided a review of known processes of interflow/overflow formation and resultant deposits. They concluded that the differentiation of interflow from overflow deposition is impossible on the basis of sedimentary characteristics alone.

Some couplets in the lower rhythmites are continuous, normally-graded sequences without distinct silt-clay contacts. This is more typical of density-driven, turbid underflow deposits (Kuenen 1951; Bannerjee 1973; Ashley 1975), which can be a result of quasi-continuous distal meltwater underflows or short-lived, slump-generated surge-currents (Ashley 1975; Shaw and Archer 1977). The scarcity of microlaminae in the couplet layers and the transitional silt-clay contact is more consistent with single sudden-event deposition rather than irregular, long-term deposition from meltwater underflow (see discussion in Ashley et al. 1985; p. 197).

The intermediate rhythmites show an increase in multiple silt lamina, complex grading patterns and more evidence for basal currents (deformed flames, rare cross-lamination) in comparison to their distal equivalents. These features suggest deposition predominantly by density underflows as proposed for the Group II varves of Ashley (1975) or
intermediate varves of Bannerjee (1973). Sharp silt-clay contacts are still relatively common, and the silt layer microtextures (laminae, multiple grading) indicate underflow rather than overflow/interflow conditions in many cases. Multiple graded silt laminae within similar Pleistocene and recent rhythmites are commonly attributed to the unsteady nature of the quasi-continuous meltwater underflow or fluctuations in sediment content of the meltwater stream (Ashley 1975; Shaw 1975; Gustavson et al. 1975; Smith 1978). Flow types were probably combined with underflows becoming increasingly important closer to the meltwater influx point, changing to overflows/interflows in more distal areas. Slump-generated surge currents also occurred. They best explain rare starved-ripple sequences and single, anomalously-coarse laminae or thin beds of sandstone or coarse siltstone, rarely cross-laminated.

Thicker rhythmites of the upper rhythmite sequences are interpreted as proximal basin deposits or fan bottomsets (delta varves of Gustavson et al. 1975; Group III varves of Ashley 1975). Underflows appear to have been the dominant sediment transporting agent, as suggested by the presence of ripple cross-bedding, multiple normally-graded fine sand and silt lamina and local erosion of underlying rhythmites (producing scours and rip-ups). As with the intermediate rhythmites, the multiple coarse-grained laminae probably indicate velocity pulses in the quasi-continuous underflow. Fluctuating discharge velocities and sediment concentrations are well-documented in modern glacial meltwater currents (Smith 1978; Gustavson 1975). Rare, thin clay laminae within multiple sand-silt lamina may indicate pauses in the overall discharge pattern (Ashley et al. 1985). Thicker (up to 5 mm), normally-graded, silt-rich clay laminae are thought to represent periods of low sediment input, an interpretation proposed for similar Pleistocene sequences (Gustavson et
al 1975; Ashley 1975; Ashley et al 1985), These major discharge
fluctuations could be seasonal, but the presence of other controls on
discharge rates in modern environments makes such a conclusion tentative
(see Smith 1978 for discussion). The grading and silt content of these
clay laminae may indicate a lack of flocculation as has been proposed by
Ashley (1975) for similar clays in her Group III varves.

The massive to faintly laminated sandstone beds which occur within
upper rhythmite sections are interpreted as sediment gravity flows off
prograding mid- to upper fan regions. The generally massive beds,
occasional dish and pillar structures and lack of basal erosion are
indicative of transitional grain flow/fluidized flow (Middleton and
The main grain support method for these flows was probably a combination
of dispersive pressure and escaping pore fluid. Loading of these beds
into the underlying rhythmites suggests that the entire bed flowed en
masse onto the water-saturated muds. These sand accumulations are
associated with some of the deformation features in the rhythmites. For
example, thrusting of rhythmite layers into the sands (Plate 3H). Where
thrusting has not occurred, the basal sandstone contact is deeply loaded
with large asymmetric flames of rhythmite showing southward transport.
This load and flame deformation of the water-saturated rhythmites was
followed in some areas by the decoupling of flame structures on the
south edge and downslope thrusting of rhythmite sections. Shear stress
caused by the rapid deposition of the sand flow is thought to account
for this deformation. Similar but less extensive downcurrent
deformation occurs in other subaqueous fans, and was also related to
loading by sediment flows (Rust and Romanelli 1975).
Minor, short-displacement, downslope thrusts of rhythmite laminae (Plate 4C) appear to be a result of downslope shear stress. Rare, convolutedly deformed packages of laminae seem to fit the generally postulated origin of liquefaction deformation as discussed by Lowe (1975), and Mills (1983). Convoluted bedding and thrust faulting in rhythmites have been interpreted to be indicators of overriding by advancing/readvancing glaciers (Hansen et al. 1961; Moran 1971). However, relative rarity and localized occurrence of these features at Cobalt suggests that they instead reflect minor deformation, probably from downslope drag forces generated by slumps, sediment flows, sudden sediment loading, or normal compaction effects on a slope (as suggested for similar types of deformation by Mills 1983; Vissor et al. 1984). Rare clastic dykes of massive sandstone that cut the rhythmites are considered to be dewatering structures where fluidized sands were injected upwards from underlying, overpressured sand units, a process discussed by Lowe (1975). The above methods also can trigger clastic intrusions (Lowe 1975).

A few isolated high-angle normal and reverse faults are probably due to compaction, as suggested for similar structures in the Dwyka Formation in South Africa (Visser et al. 1984). These do not resemble the paired high-angle fault systems seen in Pleistocene sequences and interpreted to be the result of the melting of buried ice blocks (McDonald and Shilts 1975; Boulton 1972; Shaw 1977). No features suggestive of buried ice masses were observed in the study area.

The transitional contact of rhythmite-sandstone units reflects the continuous distal to proximal variations in grain-size and sedimentary structures due to increased velocity and coarser sediment load closer to the site of meltwater influx. A proximal-distal pattern of sedimentary
structures and grain-size variations is a common characteristic of delta or fan deposition, both in glacial and nonglacial environments (Gustavson et al. 1975; Church and Gilbert 1975; Walker 1984).

The thinly-bedded, graded, fine-grained sandstones of the sandstone-rhythmite transition and the lower portions of the continuous sandstone bodies are interpreted to be more proximal equivalents of the finer-grained rhythmites. Deposition is again thought to have resulted from quasi-continuous underflows. The fluctuating nature of these flows is reflected in the grading, occasional ripple forms and small-scale planar cross-laminations that are preserved within these beds. Climbing-ripple sequences are not abundant in the rhythmite-sandstone transition, in contrast to many Pleistocene and Recent deposits (Gustavson et al. 1975; Jopling and Walker 1968; Ashley et al. 1985). Where poorly-developed climbing-ripple sequences are developed, the sinsusoidal lamination form of Jopling and Walker (1968), termed draped lamination by Gustavson et al. (1975), are most abundant. Flume studies suggest that this structure results from suspension settling during the waning stages of short-period, lower-flow-regime pulses (Ashley et al. 1982). The relative scarcity of climbing-ripple structures at Cobalt must reflect flow strength and/or sediment concentration levels that preclude the formation of this structure.

Planar cross-bedded and occasional trough-crossbedded sandstone and pebbly sandstones of the upper sandstone bodies reflect higher current velocities in increasingly proximal areas. Graded cycles of pebble-granule-coarse sand beds reflect temporal flow fluctuations. Bannerjee and McDonald (1975) interpreted similar gravel-sand cycles in Pleistocene esker-delta as representing annual flow variations. An
annual periodicity is possible for the Cobalt examples, but existence of non-seasonal controls on meltwater discharge rates makes such a specific interpretation impossible. Rare, isolated beds of massive to faintly stratified, non-graded, clast-supported pebble diamictite within the pebbly sandstones are interpreted to be debris flows from an apex diamictites. These coarse flows may initiate, or be proximal equivalents of, surge-current deposits and other sediment flows seen in the more distal facies.

Variations in the overall coarsening-upward sandstone-pebbly sandstone trend occur. An example is the sudden upward transition in MS-7 (Appendix 1) from coarse-grained sandstone to graded, gravel-pebbly sandstone, then to cross-bedded sandstones. This and similar sequences may reflect migration of discharge currents across mid- to upper-fan areas.

The clast-supported pebble-cobble-boulder diamictites which commonly cap the sandstone units are thought to be deposits at the fan apex, which roughly corresponds to the subglacial meltwater influx site. The proximal gravel facies of other subaqueous outwash fans have similar characteristics (Rust and Romanelli 1975; Rust 1977; Cheel and Rust 1982; Thomas 1984). The poor sorting, crude stratification and poorly-developed grading patterns suggest rapid deposition from meltwater streams suddenly exiting from confined subglacial/englacial tunnels. This interpretation is supported by the parallel-to-flow clast long-axis orientations characteristic of some of these diamictites (Figure 7C-J). These orientations can be due to saltation transport of high gravel concentrations near the bed (Rust 1977; Walker 1984). The high energy conditions required for saltation transport of cobbles and boulders is dissipated after exit of the meltwater from the tunnel into an unrestricted basin. Some bedload rolling of clasts is indicated by
the slight transverse-to-flow orientations. A lack of observed channels is common to the Cobalt deposits and to those of Rust and Romanelli (1975), a feature Rust (1977) felt could be due to the difficulty in distinguishing such forms in the very coarse-grained material.

In some sequences, cyclic, normally-graded pebble-granule-coarse-grained sand beds occur above the thick, crudely-stratified, clast-supported diamictite. Textures and sedimentary structures are similar to those in the graded cycles occurring below the diamictites. They could be due to lateral migration or waning flood-stage currents of the main meltwater flow in proximal areas of the fan, or might reflect a rapid retreat of the ice-front, causing overlap of more distal upper fan facies onto the fan apex gravels. Possible ice-front controls on sedimentation are discussed in more detail in Chapter 5.

The thinner, less extensive, fining-upward fan associations usually contain lithologies and sedimentary structures similar to those of the coarsening-upward fans. Similar overall, proximal-distal trends are observed, but with a reverse order of vertical sequences. In the best exposed example (base of MS-1, Appendix 1); the crudely-stratified proximal gravels of the larger fans are not present. The lowest unit consists of cyclic, normally-graded clast-supported diamictite, pebbly-sandstone beds which grade vertically into thinly-bedded, dropstone-rich, proximal rhythmites. Fluctuation in flow strength of meltwater underflows again appears to be responsible for these cyclic deposits. The relative thinness of these associations and their fining-upward trends, suggest deposition during short periods of high meltwater activity, combined with rapid retreat of the ice front (discussed in Chapter 5). The random orientation of clast apparent long-axes in these
beds is unexpected. Possibly it reflects saltation and bedload rolling transport in a small channel combined with fluctuating (waning overall) currents. This could cause preferred orientations both parallel and perpendicular to the flow direction, in this case giving a seemingly random overall pattern. The possible bimodal trend of Figure 7L supports this hypothesis.

4.3 Lower Assemblage - Heterolithic Diamictite Complex

The diamictites, sandstones and minor fine-grained lithofacies of this assemblage occur in interfan areas where meltwater currents were not dominant depositional agents. Most of these lithologies are interpreted to be the deposits of sediment gravity flows, originating from prograding fans, ice-marginal banks or perhaps from flows off the ice sheet itself.

Sediment gravity flow (also called sediment flow or mass flow) is sediment transport in which movement parallel to the bed is due to gravity (Middleton and Hampton 1976). It encompasses a wide range of flow types and resultant depositional sequences. The classification scheme and nomenclature of Lowe (1979, 1982), used here, is based on the nature of the dominant sediment-support mechanism and the flow behaviour (plastic or fluid), and differs slightly from the Middleton and Hampton (1976) classification as shown in Table 2.

Rhyolitic units are common at the base of, and intercalated within this heterolithic complex. These were interpreted earlier as distal fan interflow/overflow deposits. Poorly-laminated mudstones were interpreted as deposits in the most distal areas from the meltwater influx sites, but not necessarily distal with respect to the ice front.

Whereas most diamictites of the interfan complex overlie sandstones
or rhythmites of fan associations, some occur directly on basal diamictite or the unconformity surface. These matrix-supported units resemble the basal diamictite, but are irregularly-stratified with a faint, sometimes distorted lamination or bedding. Long-axis orientations of gravel-sized clasts within these stratified diamictites show a slight reorientation with respect to the basal diamictite (Figure 7E,F). The adjacent stratigraphic association and similarities in texture and composition to the basal diamictite suggests a similar till origin. However, the presence of distorted stratification and the pebble-fabric trends indicate that resedimentation has occurred. The poor sorting, lack of grading, non-erosive contacts and homogeneous appearance of these diamictites suggests debris flow transport. Their stratigraphic position and facies association supports an origin as ice-marginal debris, most likely as small morainal banks similar to those described by Powell (1981, 1984) that form at the margin of subaequously-grounded ice sheets. These banks form from englacial and subglacial melt-out of debris, with debris possibly added from meltwater currents or flows off nearby fans. A slowly retreating or quasi-stable grounding line is implied, possibly coupled with minor (perhaps winter) advances of the ice sheet causing the push moraines described by Powell (1981, 1984) and May (1977). Clast shapes are similar to those of the basal diamictite, suggesting subglacial-englacial transport with little included supraglacial debris, based on studies of boulder-shape and ice-transport paths (Boulton 1978; Dowdeswell et al. 1985). This supports an origin as banks formed at the ice-sheet grounding line since englacial layers are not thought to be significantly deformed or sheared upward in the front of large, subaequously grounded ice sheets (Powell
<table>
<thead>
<tr>
<th>Flow Type</th>
<th>Sediment Support Mechanism</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turbidity Current</td>
<td>Fluid Turbulence</td>
</tr>
<tr>
<td>Fluidized Flow</td>
<td>Escaping Pore Fluid</td>
</tr>
<tr>
<td>Grain Flow</td>
<td>Dispersive Pressure</td>
</tr>
<tr>
<td>Debris Flow</td>
<td>Matrix Strength</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Flow Behaviour</th>
<th>Flow Type</th>
<th>Sediment Support Mechanism</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluidal Flow</td>
<td>High Density Turbidity Current</td>
<td>Fluid Turbulence</td>
</tr>
<tr>
<td></td>
<td>Low Density Fluidized Flow</td>
<td>Escaping Pore Fluid (Full Support)</td>
</tr>
<tr>
<td>FLUID</td>
<td></td>
<td>Escaping Pore Fluid (Partial Support)</td>
</tr>
<tr>
<td></td>
<td>Debris Flow (Bingham)</td>
<td>Dispersive Pressure</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pressure</td>
</tr>
<tr>
<td></td>
<td>Mudflow or Cohesive Debris Flow</td>
<td>Matrix Strength and Matrix Density</td>
</tr>
</tbody>
</table>

Table 2. Sediment gravity flow classification schemes of Middleton and Hampton 1976 (Top); and Lowe 1979 (Bottom).
1984; Anderson et al. 1984). These banks are highly unstable, with flows off the bank-slopes common and complete collapse possible when a previously stationary grounding-line retreats (Powell, 1984). Shock waves from ice-calving may also initiate flows off the unstable slopes of these banks and from the outwash fans (Rust 1977; Powell 1984). At Cobalt, these banks are interpreted to have collapsed by a series of debris flows. This term is used in the general sense of Lowe (1979) for plastically behaving flows with the sediment supported by a combination of dispersive pressures, matrix strength and minor escaping pore fluids.

The clast orientations at both sites show a weak secondary trend parallel to the underlying basal diamictite. This weak trend may reflect the original till orientation, with the main trend due to reorientation of clasts during mass flow off the banks. Lawson (1979, 1981) documented preferred orientations both parallel and perpendicular to flow in sediment flows of water-saturated tills in Alaska. Similar orientations were predicted by May (1977) and reported by Evenson et al. (1977) for subaqueously resedimented diamictites.

Similar remobilized subaqueous tills have been documented in Pleistocene or pre-Pleistocene deposits and termed flow tills (Evenson et al. 1977; Dreimanis 1982), lacustritill (May 1977) or ice-marginal debris flows (De Jong and Rappol 1983; Vissor 1983). Facies associations and stratigraphic positions are major elements supporting a till origin. In isolation, features of these units reflect debris flow transport, but not necessarily a till origin. For this reason the terms "flow till" or "lacustritill" are rejected in favour of subaqueous debris flow deposits (a convention supported by Gravenor et al. 1984; and Powell 1984).

Matrix-supported diamictites interbedded in higher levels of the
interfan complex are also interpreted as debris flows. These massive, poorly-sorted diamicrites show a lack of lateral continuity, non-erosive basal contacts, and interbedding with other sediment gravity flows, indicating that these units are not tills deposited by readvances of the ice sheet. Instead, these features are typical of cohesive debris flows which travel downslope with grain support from matrix strength and density. They are deposited by mass emplacement when the gravity-caused shear stress drops below the yield strength of the moving material (Lowe 1982).

Rose diagrams for two of these units (Figure 7A,D) show strongly preferred orientations (NNE-SSW). Evidence for flow directions were not observed in these specific diamicrites. Studies by Enos (1979), Lindsey (1968), Middleton and Hampton (1976) suggest that parallel to flow orientations of clasts might occur within debris flows. However, Lawson (1979, 1982) and Evenson et al. (1977) showed that both parallel- and transverse-to-flow orientations can be developed in water-saturated debris flows originating from glacier debris. Thus the use of fabric as the only means of flow direction indicator is not warranted. The strong central tendency of clast apparent long-axes in these diamicrites argues against a dropstone diamicrite interpretation with ice-rafting as the major source of the clasts. Domack (1983) and Domack and Lawson (1985) showed that ice-rafted diamictons have a very weak or random horizontal orientation of clasts. Anderson (1983) suggested that bottom currents might slightly realign ice-rafted clasts after deposition. The strength of the fabric patterns for these diamicrites seems greater than could be attributed to bottom currents alone.

Crudely-stratified, rarely poorly-imbricated diamicrites within the
interfan complex contain features similar to those of the massive diamicrite, again suggesting debris flow transportation. However, the poor imbrication, slightly erosive lower contacts, and evidence of dewatering at upper contacts in some units suggests that grain-support mechanisms also included fluid effects and slight turbulence (Lowe 1976b, 1979; Middleton and Hampton 1976). Similar features have been interpreted as the result of density-modified grain flows of gravels (Lowe 1982; Lash 1984), a transitional debris flow—high-density turbidity flow process (Lowe 1979). Enos (1977) showed that erosive turbulence can occur in initial stages of debris flow. This may account for the slightly erosive contacts in places observed at Cobalt. As initial flow velocities decrease, the turbulence changes quickly to more typical laminar conditions at the boundaries of the debris flow (Enos 1977; Middleton and Hampton 1976; Lowe 1979, 1982). Laminar conditions could cause the preferred clast-orientations noted on horizontal surfaces of some of these diamicrites, as well as the observed subhorizontal orientation of many clasts in vertical sections. Similar orientations were predicted by Lindsey (1968) for debris flows and documented by Lash (1984) in gravelly, density-modified grain flows.

Dropstones within these flows indicate that ice-calving was occurring penecontemporaneously. Rare clusters of intact-framework gravel-sized clasts may also be related to ice-calving. Melt-out debris commonly accumulates on recent iceberg surfaces and, with overturning, a gravel mixture is deposited on the basin floor in localized concentrations (Powell 1981; Ovenshine 1970). Pleistocene occurrences of these dump structures were reported by Thomas and Connell (1985). The clast concentrations at Cobalt are exposed on smoothed horizontal surfaces, and thus the conical mound shape expected for these
structures could not be documented. The downslope oriented grooves uniquely preserved between two flows probably are due to clasts sliding at the base of the upper debris flow. This is a feature that Lowe (1979) suggested could be common at the base of debris flows. Middleton and Hampton (1976) interpreted similar bedding-plane grooves as slide marks formed when blocks of debris produced by tensile separation slid rigidly ahead of the main debris flow.

Clast-supported diamicrites within the interfan areas are interpreted as high-density sediment gravity flows, probably originating from upper-fan meltwater deposits. Channelized, stratified diamicrites could have originated as erosive high-density turbidity currents. Similar, discontinuous units were described by Walker (1984) and Hein (1982) as pebbly-sandstones and were related to suspension-sedimentation of gravels as turbulent flow begins to wane. Sandy upper layers form during continued deceleration of the flow. This is similar to the process proposed for the graded-stratified conglomerate model of Walker (1975). In cases where the channelized sequence contains multiple beds of graded clast-supported diamicite and pebbly sandstone, surging flows are suggested. Surging flows show an oscillating decline of velocity, competence and capacity. Each surge exhibits an abrupt velocity increase followed by a gradual deceleration, resulting in repetitive grading and structure divisions (cf. Lowe 1982).

These channelized sequences can resemble the cyclic, graded, gravel-to-pebbly sandstone beds in the upper fan areas. They may represent channels in lower fan areas which were formed by unusually strong meltwater underflow currents flowing down the fan slope. Such an underflow is technically not a sediment gravity flow, because the
sediment is being transported by the moving fluid. The scarcity of these sequences, and their association with other deposits of sediment gravity flow origin, supports the first interpretation presented.

More extensive clast-supported diamictites of interfan areas contain features typical of resedimented conglomerates as outlined by Walker (1975, 1984). The massive, non-graded, non-erosive, poorly-sorted lithotypes correspond to the disorganized-bed unit of Walker, and an origin as cohesive debris flows is suggested. Rodine and Johnson (1976) and Hampton (1979) demonstrated experimentally that, when clast densities are high (up to 95%), the matrix strength of the flow is unchanged, but the greatly increased buoyancy allows support of isolated large boulders for great distances on very low slopes. This may explain the irregular upper surface of some of these units, in which large clasts commonly project in to, and are draped by, the overlying unit. Projecting clasts have been cited as evidence for cohesive debris flows (Middleton and Hampton 1976; Lowe 1979, 1982; Nemec and Štefaj 1984).

Some massive diamictites have a vaguely-defined, coarser-grained central portion. This corresponds to the rigid plug zone thought to be a common feature of cohesive debris flows (Middleton and Hampton 1976). Enos (1977), Hampton (1975) and Middleton and Hampton (1976), demonstrated that in subaqueous debris flows, zones of shearing occur at the bottom and top of the flow, but the inner zone acts as a rigid plug. Hampton (1975) showed that competence is significantly greater in the rigid inner plug, and thus grain sizes should be coarser in this zone. Because the rigid plug migrates during flow, sharp intraflow boundaries are unlikely to form (Middleton and Hampton 1976).

Figure 7B shows the apparent long axis orientations of clasts in a clast-rich (partially clast-supported), diamictite which was deposited
over a slightly eroded sandstone (shown in Plate 6G). A poorly defined, nonsorted, internal plug of larger clasts, clasts projecting at the top, and its general lack of sorting all suggest a debris flow origin (cf. Middleton and Hampton 1976; Lowe 1982). The erosive lower contact is not typical of debris flows, and suggests some turbidity flow in initial stages at the base of the otherwise non-turbulent flow. The nature of the lower erosive contact, geometry of the diamicomite body, and estimates of the local paleoslope all suggest that flow was roughly to the northwest. The strong preferred orientation thus is transverse to flow, probably reflecting clast-clast interactions or rolling of lower clasts as bedload. A slight parallel-to-flow orientation is also apparent, perhaps the result of laminar flow at flow edges during late stages of flow (Lindsey 1968).

The massive, clast-supported diamicomite that contains fractured boulders (described in detail on pages 41-42) also appears to have formed as a cohesive debris flow. The massive nature, lack of sorting or grading, and presence of clasts projecting from an irregular upper surface, are, as discussed above, typical of cohesive debris flows. Although fractured boulders within cohesive debris flows are rare, Johnson (1970) documents recent cases of boulders fractured prior to flow, transported passively within subaerial debris flows and emplaced with the pieces only slightly separated. A similar (but subaqueous) origin is suggested for the fractured boulders at Cobalt. The original fracturing may have been a freeze-thaw or pressure effect related to subglacial or englacial transport. Alternatively, clast interactions within the flow could have caused the final separation of partially fractured boulders. The matrix density and strength of a cohesive debris flow could keep the pieces from separating widely, especially if
they were transported in a rigid plug zone. Infilling of the slight separations could occur either during flow or in the last stages of mass emplacement, perhaps due to a slight kinetic sieving mechanism similar to that proposed by Naylor (1980).

Inverse- to normally-graded and normally graded units, both with slightly erosive and/or loaded bases, are interpreted as high-density flows of the type described by Walker (1975) and Lowe (1982). The grading types suggest sediment-support mechanisms in addition to matrix strength and density. Bouyancy forces and dispersive pressure probably are major additional support mechanisms in these types of flows (Lowe 1976a, 1982; Lash 1984), termed density-modified grain flows. This is a type of flow transitional between cohesive debris flows and high-density turbidity flows as defined by Lowe (1976a, 1982; see Table 2). Inverse grading at the base of some units may reflect a sieving mechanism in which smaller grains displace larger grains upwards (Naylor 1980). Alternatively, a traction carpet layer can deposit a basal inversely-graded zone when intergranular dispersive pressure at the base of a slightly turbulent flow rapidly "freezes" as the velocity drops below the minimum necessary to maintain dispersive pressure (Lowe 1976a, 1982).

Occasionally observed inverse- to normally-graded sequences at Cobalt are interpreted according to the models of Walker (1975) and Lowe (1982). Inverse grading is formed from a highly-concentrated traction carpet layer, and normal grading represents direct suspension-sedimentation of coarser suspended gravel. In other units, extreme flow unsteadiness resulted in direct suspension-sedimentation without the development of a traction carpet, depositing a normally graded clast-supported diamicite. The last two diamicite types discussed correspond to the inverse- to normally-graded, and normally-graded
conglomerates of Walker (1975, 1984) and the R\textsubscript{2} and R\textsubscript{3} of Lowe's (1982) ideal gravelly flow sequence.

Both Walker and Lowe suggested that proximal to distal changes are apparent in flow deposits (disorganized to inverse- to normally-graded, to graded bed types in Walker's 1975 model). However, extreme flow separation is probably common, resulting in separated deposition sites without preserved lateral transitions (Lowe 1982). At Cobalt, these lateral transitions could not be documented within single units, suggesting that such flow separations occurred.

Some interfan clast-supported diamicrites are directly overlain by thin sandstone or mudstone beds or laminae which are usually parallel or cross-laminated. These probably reflect winnowing of finer material from the gravelly, high-density flows. Hampton (1972) and Krause and Oldershaw (1979) discuss such a process where low-density turbulent clouds develop on the top of the main flow due to backward streaming of displaced water and sediment at the head of the flow. Deposition of the gravelly sedimentation wave is followed by deposition from a separate low-density turbidity current (shown in Figure 11). At Cobalt, these planar-laminated or thin-bedded sandstones and mudstones with ripple bedforms are interpreted as the B and C divisions of a Bouma sequence.

Coarse- to medium-grained interfan sandstone beds are interpreted as high-density sandy flows. These may be the residual portions of gravelly flows which continued downslope after deposition of the coarser gravel (Lowe 1982). This is a flow separation effect similar to that described previously. Grading sequences are similar to those seen in the clast-supported diamicrites, and the processes probably were essentially the same, with density-modified grain flows and sandy, high-
density turbidity flows accounting for most of these isolated units. Some are overlain by thin, planar-laminated or rippled fine-grained sandstone or mudstone units. These are interpreted as B and C divisions of the Bouma turbidite model, reflecting waning turbulent flows velocities.

4.4 Upper Assemblage - Heterolithic Diamictite Complex

The restricted and in most places poorly-exposed occurrence of this assemblage hinders an extensive discussion of its origin. There is no direct evidence for a sudden change in depositional environment, or of an unconformity between the lower stratigraphic assemblage previously discussed and this complex. However, whereas the lower diamictite assemblage appears to occur in areas laterally equivalent to those of the subaqueous outwash fan associations, the upper package does not include well-developed rhythmite/sandstone/clast-supported diamictite associations. This suggests a significant change in the depositional environment of the upper assemblage.

Fine-grained lithofacies of this upper assemblage commonly consist of discontinuous silt and clay laminae of variable thickness with diffuse gradational contacts. These are in sharp contrast to the lower rhythmite units, interpreted to have been deposited by meltwater underflows and proximal interflows/overflows. The non-rhythmic laminae could reflect deposition in areas distal from the meltwater input sites. The diffuse contacts and discontinuous laminations are similar to features described by Mackiewicz et al. (1984) for distal laminated muds deposited by tidewater glacier meltwater in the Glacier Bay fjords of Alaska. Deposition is by suspension-settling of material transported by turbid overflows and/or interflows. Clay flocculation causes deposition of clay and silt at similar rates, resulting in a poorly-laminated
mudstone. The site of deposition is distal with respect to underflow deposits, but can still be within hundreds of metres to a few kilometres of the ice-front (Mackiewicz et al. 1984). This process has also been observed in Canadian Arctic fjords (Gilbert, 1983). Domack (1983) described similar mudstones (his pebbly-mud lithofacies) from a ice-proximal, Pleistocene glaciomarine environment. The similar features in the fine-grained lithofacies of the upper assemblage at Cobalt suggest comparable deposition in a glaciomarine environment, although not a fjord. This might reflect a significant change in the basin from lacustrine to marine conditions, or increased salinity effects in an ice-distal marine environment with deposition of the lower strata mimicking-lacustrine conditions due to extreme meltwater input and sediment concentrations. These possibilities are discussed in detail in the next chapter. Single beds of diamicite or rarely, sandstone that occur within these mudstones are interpreted as sediment gravity flow deposits in areas of otherwise quiescent bottom conditions.

Dropstones are common within the upper assemblage mudstones, in contrast to underlying fan association rhythmites, where dropstones are relatively rare in the distal deposits. Some poorly-laminated mudstones contain abundant gravel-sized clasts; distributed randomly throughout the finer-grained matrix. Many of these clasts pierce mudstone laminae, implying a dropstone origin. These gravel-rich mudstones are a type of matrix-supported diamicite, apparently formed by introduction of the larger clasts into the mudstones. The term dropstone diamicite (Powell 1984) seems applicable to these units. Pebby mudstones of similar origin were termed compound para-tills by Anderson et al. (1980), but use of the term "till" for these deposits is inappropriate in view of the definition of till used in this study.
Some matrix-supported diamicrites are massive and unsorted. These appear to be more extensive than the similar diamicrites of the lower assemblage. An origin as subglacial tills deposited during a readvance of the ice sheet is considered unlikely, because major glaciotectonic deformation features are absent in the underlying strata. Also, there is no evidence of erosion, shaping, or incorporation of the substratum. Clast apparent long-axis orientation data for these diamicrites supports a non-till interpretation. The random patterns (Figure 8A-D) are in sharp contrast to the strong trends typical of subglacially deposited tills (Holmes 1941; Boulton 1971).

Possible alternative origins for these diamicrites are as dropstone diamicrites or cohesive debris flows. Direct evidence to discriminate between these two is lacking in the study area. The presence of the probable dropstone diamicrite discussed previously supports a similar interpretation for the massive units. However, clast-supported diamicrites within the upper assemblage contain evidence of sediment gravity flow origins (discussed below). Thus, a facies association approach is inconclusive. The random orientations of large clasts are characteristic of dropstone diamicrites (Domack 1983; Lawson and Domack 1985; Anderson 1983), but can also occur in debris flows (Lindsay 1968).

Clast-supported diamicrites of this upper assemblage are similar to those of the interfan areas. The inversely-graded zone at the base of otherwise massive units suggest traction-carpet deposition at the base of high-density flows, either as debris flows or as density-modified grain flows of the type discussed by Lowe (1982) and Lash (1984). The presence of a preferred long-axis orientation of gravel-sized clasts within these units supports this interpretation. Clarke (1975) and Hein
suggested that unimodal orientations in similar resedimented conglomerates are parallel to the dominant flow direction. This could not be confirmed at Cobalt due to a lack of independent paleocurrent or paleoslope evidence for these or adjacent lithotypes. Fine-grained interbeds that occur between poorly-defined subunits of this clast-supported diamictite type probably reflect sedimentation between multiple flow events.

Clast-supported diamictite with crude-stratification and poorly-developed, normally-graded sequences are interpreted as deposits from high-density, surging flows of the type described by Hein (1982) and Lowe (1982). Extreme flow unsteadiness can cause crude, normally-graded sequences as flow velocities fluctuate due to flow separation effects (Hein 1982; Lowe 1982). Pebbly sandstone interbeds at the top of these units reflect deposition during the waning stages of transportation, as Walker (1975, 1984) suggested in his general model for graded-stratified, resedimented conglomerates. The strong unimodal trend of clast apparent long-axis orientations (Figure 8E-F) is typical of these types of gravity flows, and should parallel the main flow direction (Walker 1975; Hein 1982; Massari 1984). Independent paleocurrent evidence to confirm this interpretation is lacking in units of the upper assemblage.
CHAPTER V

CHARACTERISTICS AND SUMMARY OF THE GLACIOGENIC PALEOENVIRONMENT AT COBALT

5.1 Regional Glacial Setting

The extensive glacial deposits of the lower Gowganda Formation reflect continental-scale glaciation (Lindsey 1969, 1971). Lindsey proposed an ice sheet model for this deposition, based mainly on pebble-fabric and paleocurrent studies. At Cobalt, the stratigraphic relationships and gentle paleotopography also suggest deposition beneath an ice sheet, as opposed to ice tongues or valley glaciers.

The lateral equivalence and intercalation of diamictites and sandstones with the dropstone-bearing fine-grained lithofacies indicates a subaqueous environment of deposition. Dropstones in the sandstones and the lack of sedimentary structures indicative of subaerial exposure also support this interpretation. Studies from regions to the north (Miall 1983; Long 1985) and south (Young 1981a, 1985; Miall 1985; Lindsey 1971) also suggest that lower Gowganda Formation deposition was subaqueous. Thus, all preserved parts of the formation appear to have been deposited in a subaqueous environment. The regional extent defines a basin of considerable size, and correlations of this formation with other early Proterozoic glacial strata of interpreted subaqueous deposition are correct (Young 1973; Marmo and Ojakangas 1984), an even larger basin is implied. This large size does not require a marine basin, as glaciolacustrine environments of this scale existed during the Pleistocene Epoch. Consequently, in the continental margin tectonic setting proposed for upper Huronian Supergroup deposition, the Cobalt area would have occupied an inner shelf zone in the sense of Gravenor et al. (1984), where marine or lacustrine conditions are not specified.
5.2 **Glaciomarine vs. Glaciolacustrine Deposition**

The regolith on the unconformity surface indicates subaerial exposure before glaciation, and this could be used to support a glaciolacustrine interpretation for subsequent Coleman Member deposition. However, coupled with an already subsiding continental margin tectonic setting, isostatic loading due to initial ice sheet advance could have resulted in subsidence of the unconformity surface below sea level. Thus the unconformity surface regolith does not preclude a glaciomarine interpretation.

The observed lithofacies could form in either a freshwater or saline basin, with the possible exception of the fine-grained rhythmites. Lindsey (1966, 1969, 1971) considered this lithotype, which he interpreted as varves, to indicate a freshwater environment for the northern occurrences of the lower Gowganda Formation, including the Cobalt area. Legun (1981) also suggested a freshwater origin for the Cobalt strata based on this single criterion, although he later (1984) speculated that the basin may have been marine.

The rhythmites in the Cobalt area are very similar to some glaciolacustrine rhythmites in grading patterns, contact relationships and proximal-distal variations. The formation of the proximal rhythmites by meltwater underflow deposition also appears to support a glaciolacustrine interpretation. Modern observations document that where meltwater enters a marine environment, overflows or possibly interflows form due to freshwater-saltwater density contrasts (Gilbert, 1983 presented a recent discussion of these processes). Suspended sediment increases the density of the meltwater, but probably not enough to overcome buoyancy effects except in unusual cases (Kuenen 1951;
Mackiewicz et al. (1984). However, Mackiewicz et al. (1984) documented underflow deposits of fine-grained sand/silt-clay couplets in ice-proximal (<0.5 km) areas of Glacier Bay, Alaska. They attributed formation of these underflows to the added density effects of a high bedload concentration of sediments in subglacial streams, and to the unique hydraulic conditions of subglacial streams (pipe-flow rather than open channel flow). These hydraulic differences suggest that suspension sedimentation may be more uniform and in higher concentrations in subglacial streams than in open channels. Sediment loads can also be increased after discharge by entraining morainal bank debris, or by turbulent mixing at the site of discharge due to the hydraulic jump effect (Mackiewicz et al. 1984). Domack (1984) cited similar processes to explain rhythmic interbedding of sands and muds and varve-like, laminated silts and muds in a Pleistocene glaciomarine sequence in the Puget Sound of Washington. He (and Gilbert 1983) also suggested that where large volumes of meltwater enter a marine environment, a dilution effect can occur, decreasing the salinity and, as a result, reducing the density contrast between inflowing meltwater and the sea water in proximal areas.

Both Mackiewicz et al. (1984) and Domack (1984) documented proximal to distal changes in predominant flow types with respect to deposition of fine-grained laminae (fine sand, silt and clay). They observed that underflows in proximal areas change distally to interflows/overflows as sedimentation concentration and perhaps salinity-dilution decreases. In the most distal areas, flocculation produces poorly-laminated mudstones rather than interlaminated silt-clay couplets. This general sequence corresponds well with the interpretation at Cobalt of underflow transport for proximal couplets and interflow-overflow transport for the
more distal couplets. The non-rhythmic, poorly-laminated mudstones at Cobalt correspond to areas of normal salinity and low sediment concentrations. Similar underflow to overflow/interflow changes can occur in glaciolacustrine sequences, but generally this applies only if the glacier is not present within the lake basin (Ashley 1975; Ashley et al. 1985). In ice-contact lakes, underflow deposition appears to dominate even in areas distal to the meltwater influx (Ashley et al. 1985; Gustavson 1975). The evidence for ice-contact, subaqueous deposition is abundant at Cobalt, therefore the previous discussion suggests a glaciomarine interpretation is warranted.

5.3 **Ice Sheet Characteristics - Lower Stratigraphic Units**

The upper assemblage of the heterolithic diamicrite complex contains lithotypes and associations which are in some respects unlike those of the underlying strata. The lower strata (basal diamicrite, subaqueous outwash fan and interfan [lower heterolithic diamicrite complex] associations) form the bulk of the well-exposed areas in Cobalt, and this has resulted in a more thorough understanding of the depositional processes for the lower stratigraphic units at Cobalt. For this reason, the conclusions regarding ice sheet characteristics and its controls on sedimentation presented below apply only to the lower stratigraphic units. A brief discussion of possible ice sheet controls on the upper stratigraphic units is presented separately.

Grounded vs. Floating Ice Sheet Models

Presence of an extensive, subglacially deposited tillite, rare leeside tillite, and a shaped and quarried unconformity surface indicate that the ice sheet was grounded during at least the initial advance. The presence of basal tillites at Cobalt is consistent with glaciomarine
deposition from a grounded ice sheet. Subglacial deposition beneath a
grounded ice sheet should produce the same deposits whether the ice
sheet is grounded subaqueously or subaerially (Powell 1984). Cenozoic
age basal tills are recognized throughout the Antarctic continental
shelf and probably reflect subglacial deposition hundreds of metres
below sea level (Anderson et al. 1980a).

At Cobalt, the recognition of morainal banks and subaqueous fans
also indicates deposition at the grounding line of a subaqueously-
grounded ice sheet (Powell 1984, Rust and Ramanelli 1975, Gravenor et
al. 1984, Edwards 1984). This type of ice-proximal deposition can occur
at the front of an ice-sheets that terminates at an ice cliff, termed a
tidewater glacier by Powell (1981, 1984). Similar deposition can occur
at the grounding line of an ice sheet where it has decoupled from the
basin floor to form an ice shelf (Gravenor et al.; Powell 1984). At
Cobalt, the distribution of dropstones provides strong evidence to
support a tidewater glacier model. A rapid decrease in the abundance of
dropstones is apparent in increasingly distal rhythmites of the
subaqueous outwash fan associations. Proximal rhythmites in the western
portion of the study area consist of >10% dropstones in some sequences.
In contrast, dropstones make up <1% of the distal rhythmites. Drewry
and Cooper (1981), Powell (1984), and Eyles and Miall (1984) cited
evidence to show that ice shelves deposit basal and low englacial debris
by undermelting and ice rain-out within a short distance of the
grounding line (a few km according to Drewry and Cooper). This suggests
that in an ice shelf environment, dropstones should occur in the distal
rhythmites (still within 100's or a few thousand metres of the meltwater
influx) in approximately similar quantities as in the proximal.
rhythmites. In contrast, Ovenshine (1970) observed that directly following ice-calving, icebergs in Glacier Bay undergo an initial period of fragmentation and rapid overturning before stabilization. Many icebergs calve from the base of subaqueously grounded ice fronts (Gustavson 1975, Anderson et al. 1980b; Powell 1983) and contain significant debris. This initial fragmentation thus should yield abundant ice-rafted debris in ice-proximal positions. Boulton and Deynoux (1981) suggested that in open marine conditions, icebergs are rapidly swept out of the ice-proximal zone. A combination of initial instability and rapid transport of icebergs could account for the variations in dropstone abundances at Cobalt. The interpretation of rare clast-clusters in the Cobalt strata as having resulted from iceberg overturns also supports a tidewater glacier model. This type of feature could not occur beneath an ice shelf (Powell 1984).

Tidewater glaciers can be grounded in considerable depths of water. Powell (1984) cites a theoretical limiting depth of approximately 250 m, although ice sheets ground below 310 m in Antarctica (Robin 1979). Whereas the abundance of dropstones at Cobalt indicates that ice-calving was common, no iceberg-contact features are preserved within the strata. These could include grounding structures such as those documented by Thomas and Connell (1985), impact marks (Powell, 1983) and ice-scour gouges (as in Dredge, 1982). Anderson et al. (1984) observed tabular icebergs with drafts exceeding 200 m; but these were calved from ice shelves and probably exceed the size of icebergs originating from tidewater glaciers. Observations at tidewater ice fronts suggests that ice calving impact rarely occurs below 100 m (Powell 1983). Based on the preceding discussion, a conservative estimate of water depth at Cobalt during deposition is 50–300 m.
Retreat Rate of Ice Sheet

The lack of deformation or erosion features normally associated with overriding of proglacial sediments by an advancing glacier suggests that deposition occurred during overall retreat of the ice sheet. However, the coarsening-upward nature of the fan associations suggest that retreat rates were sufficiently slow to allow progradation to occur. A rapid retreat should cause deposition of fining-upward subaqueous fan associations (Rust and Romanelli 1975); minor advance and quasi-stationary periods in ice-front position could have occurred without significantly changing the patterns of deposition. A slow retreat rate is also compatible with the formation of morainal banks at the grounding line (Powell 1981, 1984).

Basal Thermal Regime

The basal thermal regimes of glaciers have been generalised into wet-based (temperate, free water at base) and dry-based (cold, frozen to bed) types (Edwards 1978). However, the actual regimes are complex, with wet- and dry-based sections present within the same glacier and conditions at a single position varying over daily, seasonal, or longer time periods (Powell 1984; Eyles et al. 1983). At Cobalt, the abundance of meltwater deposits suggests that wet-based conditions predominated near the grounding-line during deposition of these sediments. The data provided by this study do not allow a more detailed interpretation of the basal thermal regime at Cobalt.
5.4 Ice Sheet Characteristics - Upper Assemblage of the Heterolithic

Diamictite Complex

A tidewater ice sheet model is proposed for deposition of the subglacial sediments, subaqueous fans, and the interfan deposits (most of the strata exposed at Cobalt). In the overlying assemblage of the heterolithic diamictite complex, a lateral variation in frequencies of dropstones, and the presence of clast concentrations suggestive of iceberg overturn deposits, were not observed. This can be attributed to less extensive exposure, but the presence of dropstone diamictite, and of massive diamictite with random clast orientations, suggests a change in ice-sheet characteristics.

The absence of glaciotectonic deformation structures, or evidence of erosion and incorporation of underlying material in this sequence, indicates that readvance did not involve a grounded ice sheet. The lack of such features has been cited in studies of Pleistocene deposits to support ice shelf depositional models (Eyles and Eyles 1983, McCabe et al. 1984). Ice shelf deposition at Cobalt would account for the random long-axis orientations observed in the massive diamictite, and also for the presence of dropstone diamictite. The non-rhythmic nature of the poorly laminated mudstones and the lack of fan associations suggests little direct deposition by meltwater currents. However, there is no evidence of a major retreat of the grounded ice sheet prior to deposition of this upper assemblage. Thick associations of dropstone-poor, non-rhythmically laminated mudstones would be expected if normal marine conditions developed due to a significant retreat of the ice sheet prior to the readvance. Such a lithotype is not present at Cobalt. A more likely possibility is that partial decoupling of the ice sheet occurred to the north of the study area so that the readvance was
of a partially floating ice sheet. This type of ice-sheet decoupling has been proposed elsewhere to explain similar rapid changes in Pleistocene age lithotypes suggesting both grounded ice and ice shelf deposition (McCabe et al. 1984; Dreimanis 1982). These authors suggested that ice sheet thinning or sea-level rises could have caused the partial decoupling. At Cobalt, no evidence was observed to indicate a cause for this possible decoupling of the ice sheet.

A partially floating ice shelf model would be expected to deposit large morainal banks at the grounding line zone due to rapid undermelting of basal and low englacial debris, accompanied by ice-push effects (Powell 1984; Gravenor et al. 1984). These large accumulations of diamicton (a subtype of undermelt diamicton in the classification of Gravenor et al. 1984) should have been a major source of sediment gravity flows into distal areas. These flows are initiated on bank slopes due to initial slope instability and oversteepening from advance of the grounding line (Powell 1984). This process could account for the thick resedimented diamicrites which form a major component of the upper assemblage at Cobalt. Sandstones intercalated with these diamicrites may reflect secondary flow initiation at the head of the high-density flows, a process discussed previously.

Whether this readvance of the ice sheet was part of a major readvance, or merely a large-scale fluctuation in the overall retreat, has not been established. The Coleman Member at Cobalt is incompletely preserved, with perhaps >100 m of the uppermost strata missing (based on regional correlations). For this reason, the importance of the evolution of the glacial depositional environment for the upper assemblage at Cobalt cannot be ascertained.
5.5 **Summary of Depositional Sequence at Cobalt**

The simplified summary diagrams of Figures 11 and 12 illustrate the glaciogenic depositional environments envisioned for the Cobalt area:

1. The local setting was an area of low to moderate relief on the inner shelf of a slowly subsiding continental margin. A regolith was developed on part of the subaerially exposed (at least initially) Archean unconformity surface.

2. Continental-scale glaciation involved southerly advance of an ice sheet, perhaps inducing isostatic loading to below sea level.

3. Subglacial processes caused plucking, brecciation and shaping of the unconformity surface. The regolith was incorporated by the advancing ice sheet, except where cavitation occurred over paleotopographic lows. Lee-side till was deposited into these subglacial cavities, covering the remaining regolith. A primary basal till was deposited over much of the unconformity surface.

4. Deposition during retreat was from a wet-based tidewater glacier grounded approximately 50-300 m below sea level.

5. Slow retreat rates resulted in deposition of prograding subaqueous outwash fans where subglacial/englacial meltwater channels entered the basin. Deposition from underflows induced by proximal meltwater changed distally to deposition from interflows and/or overflows.

6. Morainal banks formed at the grounding line in interfan areas due to englacial/subglacial melt-out and fluctuations in ice-sheet retreat rates.

7. Oversteepening of fan and morainal bank slopes, bank collapse during retreat, and perhaps the shock effects of ice-calving, initiated sediment gravity flows into interfan areas. Numerous sediment-support
mechanisms resulted in a variety of intercalated flow types.

8. Ice-calving caused deposition of IRD in areas near the ice front. Rapid iceberg transport caused less dropstone deposition in relatively distal areas.

9. The upper strata of the Coleman Member probably were deposited by readvance of a floating or partially-floating ice sheet. Undermelt diamictons were initially deposited near the grounding line (north of the study area) and were redeposited as sediment gravity flows within the study area. Ice-rafted debris from melt-out beneath the shelf was in part deposited as dropstone diamicton.
Figure 10. Depositional model for the lower part of the Coleman Member at Cobalt.

- Clast-supported, Diamictite (proximal subaqueous fan deposit)
- Sandstone
- Rhythmites (with dropstones)
- Diamictite - sediment gravity flows from fan Dcs-Dcm
- Diamictite - morainal bank deposits and associated sediment gravity flow plus subglacial tillite deposit
- Lee-side Tillite
- Regolith/Breccia
- Archean
Figure 11. Depositional model for the upper part of the Coleman Member at Cobalt.
PHOTOGRAPl
cal PLATES

(Location of photographs is shown on Figure 23, back-pocket)
Plate 1. Unconformity surface and basal breccia.

A. Oblique view of joint-bounded depression in unconformity surface infilled with Coleman Member diamictite.

B. Vertical face (south to the right) showing south-facing step on unconformity surface, and locally derived breccia.

C. Horizontal exposure of extensively jointed unconformity surface. Dark infillings of angular depressions are Coleman Member diamictite.

D. Vertical exposure of sharp unconformity contact between Archean felsic volcanic and overlying Coleman Member diamictite.

E. Thin section of breccia derived from lee-side erosion of unconformity. Breccia fragments “float” in a sandstone matrix similar to that of the Coleman Member basal diamictite.

F. Basal breccia preserved in a paleodepression. Extensively fractured Archean mafic volcanic rock at base of photo is in place, and grades upward to increasingly displaced breccia fragments. White rounded clasts at upper right are in the basal part of a Coleman Member clast-supported diamictite which overlies the breccia and infills the remaining portion of the paleodepression (also shown in Plate 2G,H).

G. Felsic volcanic clasts of the southern breccia lens.
Plate 2. Basal diamictite association.

A. Typical basal diamictite with gravel-sized clasts floating in a sandstone matrix.

B. Horizontal surface showing possible faceted clasts in the basal diamictite. Some clasts margins are outlined by concentrations of chlorite, a metamorphic alteration product.

C. Thin section of basal diamictite matrix showing poor sorting and angularity of many grains. Note high percentage of angular silt-sized grains.

D. Thin section of basal diamictite matrix showing lack of alteration of most grains. Quartz grains generally are pristine, with only slight edge alteration. Many feldspar grains are essentially unaltered, especially in cores. Large grain at bottom centre is untwinned K-feldspar.

E. A vertical exposure of basal diamictite containing irregular, thin, slightly distorted sandstone lenses.

F. Irregular laminations at a gradational contact between basal diamictite and an overlying rhythmite unit.

G. Clast-supported diamictite (upper third of photo) overlying basal breccia in a palaeodepression on the unconformity (same outcrop as in Plate 1F).

H. Vertical exposure of the clast-supported diamictite of Plate 2G. Note poor sorting and lack of obvious fabric.
Plate 3. Fan association: rhythmite and sandstone units

A. Well-developed rhythmic alternation of siltstone (dark-coloured) and claystone laminae. A thin bed of siltstone near top of photo has loaded into the underlying claystone; associated flames have been thrust to the right (southeast, approximately equal to the local paleoslope).

B. Distal rhythmites showing multiple graded silt-clay couplets and two coarse silt laminae, one of which is normally graded. Ovoid mass of silt and clay near right centre is interpreted as a till pellet. Scale = .5 mm.

C. Rhythmites with silt laminae generally thicker than clay, a variety of grading patterns, and common microlaminations of silt in the clay laminae. Central ovoid mass is interpreted as a till pellet.

D. Lenticular to wavy fine-grained sandstone interbeds in rhythmites. Some ripple bedforms are apparent. Some lenses are slightly deformed (especially lenses below scale card).

E. Proximal rhythmites (top to left in photo) with graded or massive sandstone to siltstone thin beds relatively common and multiple silt-clay laminations separating coarser-grained layers.

F. Sinusoidal climbing ripples, some transitional to "type B" of Jopling and Walker (1968). Correspond to "draped laminations" of Gustavson et al. (1975).

G. Thick beds of massive sandstone within upper portion of rhythmite sequence. Bases of some sandstone beds are loaded into rhythmites.

H. Rhythmite laminae below a massive sandstone interbed with well-developed loading and flame structures plus decoupling and thrusting of a portion of the rhythmites. Thrusting and deformation of flames is to the south (right of photo).

I. Sandstone interbed in rhythmites showing breached convolute lamination. Massive vertical zones separating the concave-up laminated zones probably were the result of early dewatering.
Plate 4. Fan association: rhythmite and sandstone units.

A. Proximal rhythmites with graded sandstone bases, some containing fragments of finer-grained rhythmite. Loading of sandstone bases into the underlying laminae is common.

B. Dropstone in rhythmite — see Figure 5A for discussion of the contact relationships of this dropstone.

C. Deformation structures in rhythmite (top to left of photo). Light-coloured clay-rich laminae in layer 1 cm left of scale have been thrust to the right (southeast), approximately down the paleoslope. Laminae in centre of rock slab are deformed and broken, perhaps due to a combination of thrusting and dewatering.

D. Massive clastic dyke of fine-grained sandstone that has intruded and deformed rhythmites. Top of tape measure is at top contact of sandstone.

E. Thin section of poorly laminated mudstone. Laminae are wavy, discontinuous and of variable thickness.

F. Fine-grained sandstone pseudonodules in a poorly laminated mudstone. Pseudonodules display distorted internal lamination, and appear to be the result of the complete foundering of a laminated sandstone bed in a water-saturated mudstone.

G. Thin section of a fan-association medium-grained sandstone (modal grain size in photo = .4-.5 mm). Condensed packing (sutured grain boundaries) is typical of these sandstones. Feldspar grains are only slightly altered, supporting a cold climate hypothesis for weathering and transport.

H. Low-angle planar cross-bedding in the mid portion of a sandstone unit. Current transport to the right (approximately south).
Plate 52 Fan association: sandstones and clast-supported diamictites

A. Upper portion of a sandstone unit. Pebby coarse-grained sandstone with poorly defined trough crossbedding (curved erosion surface parallels a trough outline).

B. Upper portion of a sandstone unit (top to left). Repetitive cycles of pebbly sandstone (to granule conglomerate) and planar laminated coarse-grained sandstone. Some cycles show normal grading between the coarser base and finer top.

C. Pebby sandstone/granule conglomerate cycles at the top of a sandstone unit. Transitional to a clast-supported diamictite above.

D. Dropstone near the base of a sandstone unit.

E. Typical clast-supported diamictite showing poor sorting and apparent lack of stratification.

F. Crude stratification in a clast-supported diamictite.

Stratification defined by horizontal alignment of clasts and poorly defined graded cycles.

G. Stratified, clast-supported diamictite with moderate sorting and relatively well-developed graded cycles.

H. Upper subunit of a clast-supported diamictite with moderately sorted beds of pebbles (some graded) and sharply defined normally graded beds of small pebble to very coarse-grained sandstone. Planar crossbedding dips southward (left in photo).
Plate 6 Heterolithic diamicite association: lower stratigraphic assemblage (interfan association)

A. Cyclically repeated clast-supported diamicite and pebbly sandstone beds of a fining upward fan association.

B. Matrix-supported stratified diamicites in an interfan area. Irregular beds and lenses of mudstone and sandstone occur within and between individual diamicites.

C. Pentagonal outline of a clast in an interfan diamicite. Similar clast outlines are moderately common and suggest a faceted shape.

D. Two units of matrix-supported diamicite and interbedded rhythmites. The lower contact of the upper diamicite is sharp and erosive into the underlying rhythmite.

E. Grooved surface on the top of a matrix-supported diamicite. A thin veneer of siltstone partially fills some grooves (linear light grey zones above, and to the left of hammer). Pleistocene striations are faintly visible, oriented approximately 90° to the grooves.

F. Boulder of clast-supported diamicite in a matrix-supported diamicite. Clasts at edge of boulder are not truncated and some protrude. Largest cobbles are at base of boulder. Faint laminae in host diamicite are depressed beneath and at lower edges of boulder, and some are pierced by boulder.

G. Erosive contact between a generally clast-supported, very poorly sorted diamicite and a bedded sandstone unit. Both units occur as discontinuous sheet-like bodies in an interfan area.

H. Normally graded clast-supported sheet-like diamicite with clasts projecting into overlying sandstone (top right corner shows best example). Overlying sandstone unit is shown in Plate 7a.
Plate 7. Heterolithic diamictite complex: lower and upper stratigraphic assemblage

A. Detail of sandstone overlying the diamictite shown in Plate 6H. Unit thins upward overall from a normally graded coarse-grained sandstone to a rippled (some climbing) fine- to medium-grained sandstone. Planar laminated siltstone caps the sequence, and coarse-grained sandstone sharply overlies the siltstone.

B. Boulder-rich massive diamictite with in situ fractured and separated boulder fragments.

C. Close-up of separated fragments of a boulder shown in Plate 7B. Spaces between fragments have been infilled by the enclosing diamictite.

D. Bedding-parallel view of laminated mudstone draped around a clast of the underlying diamictite shown in Plate 7B.C.

E. Sandstone which occurs as a discontinuous sheet-like body in an interfan area. Inverse-to-normal grading in apparent in the bed shown (base of bed 1 cm below scale, top not shown; dark areas in top left and above scale are weathered surfaces).

F. Upper stratigraphic assemblage showing nonrhythmically laminated fine-grained sandstone and mudstone that contains abundant clasts. Many (perhaps all) of the large clasts are dropstones.

G. Clast-supported diamictite of the upper assemblage, showing a well-defined inversely graded zone above its lower contact. The contact appears to be slightly erosive with respect to the underlying mudstone.

H. Thin section of poorly laminated mudstone of the upper assemblage. Laminae are nonrhythmic, discontinuous and contacts are diffuse.

I. Erode contact between a matrix-supported diamictite and a laminated mudstone. A fragment of the underlying mudstone (right of scale) has been incorporated into the diamictite.
APPENDICES
APPENDIX 1

Measured Sections

These nine measured sections are abbreviated versions of the original section descriptions, plus interpretations of the units based on knowledge gained through this study. Localities of the measured sections are shown in Figure 12. Table 1 (page 5) shows the lithofacies code used during this study; Table 3 is a legend of symbols used in the graphic logs. Tables 1 and 3 have been combined in a single removable back-pocket addition (Figure 23) to facilitate examination of these sections. Vertical distances shown on the left of the sections are in metres.
Figure 12 Localities of Measured Sections. Lines indicate sections partially measured along the topographic surface. Diamonds indicate sections measured vertically on an exposed face of an abandoned pit or vein cut.
LEGEND - MEASURED SECTIONS

LITHOLOGIES:

- Nipissing Diabase, N
- DIAMICTITES, D
- Clast-Supported
- Matrix-supported, stratified
- Matrix-supported, massive

SANDSTONES, S
- Pebbly
- Fine to Coarse-Grained

FINE-GRAINED LITHOFACIES, F
- Silt > Clay
- Clay > Silt

BRECCIA, Bx

ARCHEAN ROCKS, A

COVERED INTERVAL

CONTACTS
- Sharp
- Erosional
- Deformed
- Gradational
- Lateral Gradational

STRUCTURES
- Ripple Marks
- Climbing Ripples
- Planar Crossbedding
- Trough Crossbedding
- Discontinuous Interbed
- Dropstone
- Deformed Laminations
- Rip-up Clasts

VERTICAL SCALE

SECTION WIDTH VS. GRAIN SIZE

Table 3
MS-1 CONGLOMÈTRE VALLEY PIT

OBSERVATIONS

<table>
<thead>
<tr>
<th>Description</th>
<th>Location</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dune 10-15% clasts in f.g. sand matrix; largest clast 40cm, mode 2-4cm, most granitic, non-sorted, no app. origin, laterally extensive, 100's - 1000's of meters; rare diamant. f,g 5h of Pl lenses, 10's cm thick, 1-2cm length</td>
<td></td>
<td>Upper Complex Probably series of debris flows with lenses of 5h and Pl as interflow deposits; dropstone diamantite origin possible but evidence lacking due to massive nature of rocks.</td>
</tr>
<tr>
<td>Dune+pShd+pSpd 10-50% clasts in poorly sorted sand/silt matrix, poorly sorted, some beds/lenses w. crude subhor. align. of peb. long unknown; largest clast 2m, mode 2-4cm, most granitic 5h; 102 bkg; chert; peb. some dropstones in pShd+pSpd, Dsh-pSh unit to north appears equivalent</td>
<td></td>
<td>Interfan Complex Pro-fan flows from fan apex to north, combined turb. and lam. flow-types plus high EB component.</td>
</tr>
<tr>
<td>Dm 10-15% clasts in fine to medium-grained sand/silt matrix, 20-25% clasts in top 2m; largest clast 120cm; random sizes and orient. non-sorted; class 95% granite, 15% volc.</td>
<td></td>
<td>Fair Association Relatively prod. muds; underflow rhythmites of fan progressing from the north. Sp and Dsh beds rep. grain flows and debris flows from more proximal areas; high dropstone content reflects proximal position to ice-front; dropstone lenses may be iceberg overturn deposits. Lack of overlying sandstone beds units of fan suggest shifting of outlet location or cutoff of subglacial meltwater channel prior to complete propagation of fan at this point.</td>
</tr>
<tr>
<td>Dm 10-15% clasts in fine to medium-grained sand/silt matrix, 20-25% clasts in top 2m; largest clast 120cm; random sizes and orient. non-sorted; class 95% granite, 15% volc.</td>
<td></td>
<td>Interfan Complex sediment gravity flow, thickness and erosive contact suggest density-modified grain flow.</td>
</tr>
<tr>
<td>Dm 10-15% clasts in fine to medium-grained sand/silt matrix, 20-25% clasts in top 2m; largest clast 120cm; random sizes and orient. non-sorted; class 95% granite, 15% volc.</td>
<td></td>
<td>Interfan Complex Debris flow or flows, perhaps from morainal banks formed at ice front in interfan area to north.</td>
</tr>
<tr>
<td>Dm 10-15% clasts in fine to medium-grained sand/silt matrix, 20-25% clasts in top 2m; largest clast 120cm; random sizes and orient. non-sorted; class 95% granite, 15% volc.</td>
<td></td>
<td>Interfan/Fan Association Channelized turbulent flows from proximal fan area; perhaps result of short-lived, extreme meltwater influx event.</td>
</tr>
<tr>
<td>Dm 10-15% clasts in fine to medium-grained sand/silt matrix, 20-25% clasts in top 2m; largest clast 120cm; random sizes and orient. non-sorted; class 95% granite, 15% volc.</td>
<td></td>
<td>Fan Association proximal-southwest-deposited rhythmites; perhaps part of meltwater system which deposited underlying units. Sp and Dsh increase up slope, thickness and grain size suggest renewed meltwater input.</td>
</tr>
<tr>
<td>Dm 10-15% clasts in fine to medium-grained sand/silt matrix, 20-25% clasts in top 2m; largest clast 120cm; random sizes and orient. non-sorted; class 95% granite, 15% volc.</td>
<td></td>
<td>Fan Association Proximal deposition to meltwater outlet in ice sheet. Initial thinning-up trend suggests widening current strength due to ice retreat, lower ice-melt rates, or fan migration.</td>
</tr>
<tr>
<td>Dm 10-15% clasts in fine to medium-grained sand/silt matrix, 20-25% clasts in top 2m; largest clast 120cm; random sizes and orient. non-sorted; class 95% granite, 15% volc.</td>
<td></td>
<td>Fan Association Proximal deposition to meltwater outlet in ice sheet. Initial thinning-up trend suggests widening current strength due to ice retreat, lower ice-melt rates, or fan migration.</td>
</tr>
<tr>
<td>Dm 10-15% clasts in fine to medium-grained sand/silt matrix, 20-25% clasts in top 2m; largest clast 120cm; random sizes and orient. non-sorted; class 95% granite, 15% volc.</td>
<td></td>
<td>Fan Association Proximal deposition to meltwater outlet in ice sheet. Initial thinning-up trend suggests widening current strength due to ice retreat, lower ice-melt rates, or fan migration.</td>
</tr>
<tr>
<td>Dm 10-15% clasts in fine to medium-grained sand/silt matrix, 20-25% clasts in top 2m; largest clast 120cm; random sizes and orient. non-sorted; class 95% granite, 15% volc.</td>
<td></td>
<td>Fan Association Proximal deposition to meltwater outlet in ice sheet. Initial thinning-up trend suggests widening current strength due to ice retreat, lower ice-melt rates, or fan migration.</td>
</tr>
<tr>
<td>Dm 10-15% clasts in fine to medium-grained sand/silt matrix, 20-25% clasts in top 2m; largest clast 120cm; random sizes and orient. non-sorted; class 95% granite, 15% volc.</td>
<td></td>
<td>Fan Association Proximal deposition to meltwater outlet in ice sheet. Initial thinning-up trend suggests widening current strength due to ice retreat, lower ice-melt rates, or fan migration.</td>
</tr>
<tr>
<td>Dm 10-15% clasts in fine to medium-grained sand/silt matrix, 20-25% clasts in top 2m; largest clast 120cm; random sizes and orient. non-sorted; class 95% granite, 15% volc.</td>
<td></td>
<td>Fan Association Proximal deposition to meltwater outlet in ice sheet. Initial thinning-up trend suggests widening current strength due to ice retreat, lower ice-melt rates, or fan migration.</td>
</tr>
<tr>
<td>Dm 10-15% clasts in fine to medium-grained sand/silt matrix, 20-25% clasts in top 2m; largest clast 120cm; random sizes and orient. non-sorted; class 95% granite, 15% volc.</td>
<td></td>
<td>Fan Association Proximal deposition to meltwater outlet in ice sheet. Initial thinning-up trend suggests widening current strength due to ice retreat, lower ice-melt rates, or fan migration.</td>
</tr>
<tr>
<td>Dm 10-15% clasts in fine to medium-grained sand/silt matrix, 20-25% clasts in top 2m; largest clast 120cm; random sizes and orient. non-sorted; class 95% granite, 15% volc.</td>
<td></td>
<td>Fan Association Proximal deposition to meltwater outlet in ice sheet. Initial thinning-up trend suggests widening current strength due to ice retreat, lower ice-melt rates, or fan migration.</td>
</tr>
<tr>
<td>Dm 10-15% clasts in fine to medium-grained sand/silt matrix, 20-25% clasts in top 2m; largest clast 120cm; random sizes and orient. non-sorted; class 95% granite, 15% volc.</td>
<td></td>
<td>Fan Association Proximal deposition to meltwater outlet in ice sheet. Initial thinning-up trend suggests widening current strength due to ice retreat, lower ice-melt rates, or fan migration.</td>
</tr>
<tr>
<td>Dm 10-15% clasts in fine to medium-grained sand/silt matrix, 20-25% clasts in top 2m; largest clast 120cm; random sizes and orient. non-sorted; class 95% granite, 15% volc.</td>
<td></td>
<td>Fan Association Proximal deposition to meltwater outlet in ice sheet. Initial thinning-up trend suggests widening current strength due to ice retreat, lower ice-melt rates, or fan migration.</td>
</tr>
</tbody>
</table>

A note on volcanic activity: Exposed in S.W. corner pit.
OBSERVATIONS

Dec-pShan 20-50cm beds w. peb.-coh. base (10-35cm) and med-case grained norm. graded sandst. top: largest clast 25cm, mode 2-4cm. med. sort.; >5% random peb. in sandst. Shl inact. on cliff face, appears med-case grained, w. bedded.

Decm-Deca 75-85% pebbles-cobbles in a coars-grained sandst. matrix: largest clast 40cm, mode 2-4cm; poor sort., rare crude stratif. ws. slight cone. of similar sizes in poorly defined beds; clasts >50% granite, <50% felsic volcan. felsic volcan. bedded.

Dmm 10-15% pebbles-cobbles in a vlg sandst. matrix: faintly laminated, non-thycnic, no obv. grading or grain-size variations in matrix, rest of unit as for Dm below.

Dmm 10-15% pebbles-cobbles in vlg sandst. matrix: nonoriented, no obv. clast orient.; granite, <20% volc.

INTERPRETATIONS

Fan Association: Upper fan high energy deposition, related to underlying deposits, reflecting rapid changes in meltwater influx and lateral fan migration.

Fan Association: Upper to mid-fan, distal vs. overlying Dec-pShan.

Fan/Interfan Association: One or several debris flows into interfan area from prox. upper fan face source, perhaps reflects initial fan migration into interfan area.

Interfan Association: Debris flow or flows? Perhaps from morainal banks or ice sheet edge, laminae might reflect distal meltwater or other currents.

Interfan Association: Similar origin to above unit, ind. flows not appear of basal tillite, but Archean not found in pit.

Archean volcs. exposed to west of pit and overlain by thin (c.2m) bllm. Projection and information from mine reports suggest base to section is within 5m. of Archean contact.
NS-3 LITTLE SILVER VEIN CLIFF

OBSERVATIONS

- Pebble-bed (9%) pebbles-boulders in a ca-grained sandstone, matrix: largest clast 30 cm, mode 4-10 cm, poor sorting, coarse strat., with subhor. clast align., poorly-defined thick beds of similar clast sizes; rare discrete, contorted ca-grained sandstone, lens 0.39 m, thick and 0.25 m exposed length

- Sp hand-sized boulders, crossbedded units; up to 1.3 m long, overlapping terraces w. erosion of terrace below. approx. basal 3 cm of each terrace preserved; small peb./gravelly base lens grade up to granule, ca-grained sandstone, rare pebbles; paleocurrents towards SW

- Sp medium-coarse grained feldspathic arenite, planar crossbedded beds up to 6 cm thick, most <5 cm, crossbeds dip approx. 10° towards S/SW

- 5.5-5.8 m, medium-grained field, arenite: faintly bedded (1-2 cm); rare rippled w. internal k-strat.; rare dropstones up to 15 cm dia.

- Fr-5m intercalated medium-grained sandstone beds (14-40 cm) in Fr; 5.8 m, bases loaded w. flumes of Fr dislocated to Sth.; poss. dewatering plumes in some 5m beds; Fr lamina 2 cm thick w. fg sandstone, bases, and rare 1-2 cm Sr beds w. ripples preserved, to nth.

- Fr couplet of silt./sand, coarse-grained and thicker (to 1 m) upward; bases sharp or, acc. et al., mudstone, beds (1-2 cm) lg x lam., sandstone, acc. rippled w. internal k-strat., nst. show th.; transport, acc. nst. directed, acc. poorly dev. climbing-ripped near top (lithology)

INTERPRETATIONS

- Fan Association Proximal upper fan deposition in influent alluvium of subglacial/marginal meltwater channel into basin. Sandstone lenses may reflect fluctuations in input & current strength.

- Fan Association Upper/mid fan. Continual change upward in grain size and sed. structures reflects increasing current strength towards influent site, progradation of fan into basin and temporal fluctuations in current strength (graded upper beds)

- Fan Association transition from low fan Fr to mid-fan 5 m as density-modified grain flows from south end prograding mid-fan

- Fan Association lower fan, deposition in density underflows. Interflow/overflow (proximal): Thicker and coarse-grained lams. reflect southward fan progradation.

- Basal Tillite Association primary subglacial till; sand lenses may indicate melt-out origin; faint lam. in upper part due to reworking by currents depositing overlying Frd

- Basal Tillite Association small subglacial meltwater channel

A pillow vent, uncut, poorly exposed in vertical 2 m of cliff, well-exposed SW of vent-cut.
OBSERVATIONS

Observation 1: Patchy alter. of medium-grained sand, "med-poor sort."; occ. pebb. breccia; poorly exposed.

Observation 2: 80-85% pebb.-cob. clasts in mud-grained sand; matrix; largest clast 2cm, mode 1-2cm, poor sorting, crude strata; occ. poorly defined thick beds; discontin. lenses of muddy sand/mud/medium-grained massive sand.; <5cm thick, 1cm length.

Observation 3: Mud 10-50% pebb.-cob. clasts in medium-grained sand; matrix; non-sorted, no obs.; clast orient.: clasts 50-100% gr. 50-80% vol.; rare discontin. lenses vlg sand/mud/sand.; 1cm thick, 1cm length.

Observation 4: Mud matrix/vlg sand/mud; non-rhythmic fluctuations; many bedded and discontin. laminae 1-5mm thick; rare 2-3cm thick massive sand. beds; basal laminae projecting clasts of mud.

Observation 5: 15-65% pebb.-cob. clasts in fine to medium-grained sand; matrix; non-sorted, no obs.; clast orient.: clasts 40-70% gr.; 30-60% vol.; <5 cm; projecting clasts at top into Fld.

Observation 6: 70-85% pebb.-cob. clasts in medium-grained sand; matrix; largest clast 25cm, mode 1cm, poorly sorted, crude 1-2cm thick beds sep. by discontin. Fl-5h lenses 1cm thick, 1cm length; most beds mass., poor subhor. clast klin. In spots, occ. poor inv. grading at base, norm. grading at top; clasts 50-60% gr., 40-50% vol.

Observation 7: Poorly exposed vlg in lg sand; perhaps fault bedding? no obs. structures; rare limestones (pebble size).

INTERPRETATIONS

Interpretation 1: Upper Complex gravelly facies; red, grey, flows related to Fld below?

Interpretation 2: Upper Complex gravelly debris flows with rare lava flow giving crude beds. In more defined flows, debris may be density-modified grain flows from backflowing in gravel flows.

Interpretation 3: Upper Complex debris flows on dropstone diamicite. Debris lenses may be interfingering with lava flows.

Interpretation 4: Upper Complex debris flow on dropstone diamicite, depositional when little IRD input.

Interpretation 5: Upper Complex ice-distal deposition in quiet environment. Non-erosional mass wasting input of IRD. Currents and mass wasting at normal basal current.

Interpretation 6: Upper Complex debris flow or flows; poor dropstone diamicite. Upper Complex supports debris flow interpretation.

Interpretation 7: Upper Complex gravelly red, grey, flows; high density debris flows and fluidized flows; traction carpet deposition at base gives rise. Grading, slight lam. flow gives coarse beds and norm. grading. High lenses matrix flow contacts, form sea den. mat. grain flows, perhaps wedged from backflowing effects in gravel flows.

Interpretation 8: Upper Complex density-modified grain flow or flows. Limestones on dropstone or dropstone? Poor exp. blowers int.

Covered: Bushy zone at base of cliff, possible location of Valley Fault (but may be just west of unit blow).

Interpretation 9: Upper Complex combined debris flows and dropstone diamicite, limestones suggest ice-distal currents, clasts in IRD plus reworked debris flows.

SECTION APPROX. 12M ABOVE UNCONFORMITY (based on assessment reports, mine plans and cross-sections drawn for this thesis).
MS-5 West Side Peterson Lake

Observations

Nipissing Diabase

Covered

On N/S—S/E wall; peg. in coarse-grain sandst.
matrix; mud-wet sorted; ore. should in core.
patch in linear surface; align. on mud-ree
grain sandst. lenses (150m thick, 150m length
psp—psap); mud-coarse grain feldspar, arsine; mod.
vent., groups at base of 10—15m thick
graded beds of base of trough; trough and
planar x-body ind. str. palaeocurrents; rate
droplets in psp, largest 50cm

Frd siltst., mud in non rhythmic beds.
most lam 5cm thick, occ. 1cm vfg sandst lam.
to str. thickens and becomes rhythmic couplets

Dmm—Dmm 10—15cm clasts in a mudcoarse-grain
sandst. matrix; clasts non-sorted, no obs.
orient., largest 150cm, mode 1—2cm; clasts.
40—50% gran., 50—70% volc., 12±1%. volc., 1—2cm
thick unit of 10—15cm clasts; matrix ore. well
anast. clasts at top 1—2cm, matrix fine-grained, lam.
to str. changes Dmm—Frd, Frd over 100m, some
clasts def. droplets

Dmm 20—35cm peb—cob clasts in vfg sandst.
matrix; clasts non-sorted, no obs.
orient., largest clast 40cm, mode 1—2cm;
clasts 30—50% volc (mattic—felsic). 35—55%
gran., 55—45% indistinct contacts to smooth.
contacts, upper contact v. Dmm—Dmm

Pan Association upper fan portion
smoother and better sorting vs. upper
fans in area; shoulders as dropstones?
(doesn't explain linear trend)

Pan Association as above; seq.
structures and coarsening-up
ind. increased energy due to str.
fan progradation; dropstones support
subaqueous fan interpretation.

Pan/Interfan Association ban—distal
meltwater dep.; sug. fan above from
rapid migration into interfan area

Interfan Complex: Combined debris
flows and high IRD input into area
of fan—distal meltwater deposit. Str.
transitions to Frd and grad. contact
w. 50m suggests ice—prox. deposits,
perhaps collapsed morainal banks.

Banded Tillite Association primary
subglacial till; unusably high IRD
volc. clasts and position on SE side
of Rm. paleo—high (Nipissing
Hill) suggests local source for many
of these clasts.
OBSERVATIONS

Dcm-pSpgn 10-50cm beds of 30% pebbles, medium grained sandstone. (Trachybasalt) most beds nor, graded, acc. planar cross-stratification, coarse pebbles in one spot, rare rippled silts. Top 5cm, silt, palaeocurrents: base Dcm beds sharp.

Dcm-Dacs 75-90% pebbly clasts in medium-coarse grained sandstone. Matrix: largest clasts 3cm, mode 2cm; poor sorting, absence of coarse sand in beds. Ap. mudstone, thin beds, dip, align. Grains size sorting: basal 20cm, nor, graded, basement load and evolve into Dacs-Shd below; clasts 20-35cm, 30-70% vol., 20-30% sed. (most stunt)

Fed-Sm complete silts. Vg. sandstone, mudstone. Lenses thicker up (2-3cm to 5cm) and grain-size increases; acc. thin beds of silt, v. sandstone, thicker (2-5cm), common in top 20cm, 2.5cm thick beds, layer, w. ang. Fr clasts, most 5cm, v. large 3cm, some convolute lam.; Fed above/below undeformed; acc. dropstones (largest 4cm) pierce/slice Fr layers, common in top 40cm.

Dams 10-15% pebbly clasts in v.g. sandstone-siltstones. Matrix: non-sorted, no obs. clast orient., largest clasts 5cm, mode 1-2cm. Matrix massive, no convolutions.

Fed-Shd complete silts. Vg. sandstone, minor mudstone. Icm laminae and 1-3cm sandstone beds; acc. dropstones.

Shd-pSpgn 20-50cm thick beds w. pebbles, bases gradationally upwards into medium-fine grained sandstone, rare rippled silts. Top

INTERPRETATION

Fan Association Upper fan, proximal to meltwater underflow, fluctuating (seasonal?) input causes grading and changes in sand structure, less pebbles. Then Dacs beds below due to fan migration, ice sheet retreat and/or changing subglacial meltwater paths.

Fan Association Proximal fan deposition at influence site of subglacial meltwater channel into basin: Some reworking as high-density sed. grav. flows pass.

Fan Association Lower fan, deposition by meltwater underflow and perhaps interflows/overflows (lower section); dense, modified, grain flows from 5th, prograding fan; increased grain size and lam., thickens upward reflecting prograding fan.

Interfluve Association debris flow or flows; very similar to basal tillite, may be flows from interfluve morainal banks at edge of ice sheet.

Fan Association small (?) short-lived?) fan deposit; time-lapse sequence and lack of main gravel units suggests relatively lower energy (vs. other fans in study) and varying meltwater input.

Archaen not seen at base, present approximately 200m to S.E. where massive volcanics are sharply overlain by 100m. Map and cross-section information suggest unconformity is within 5m or base of section.
Observations

<table>
<thead>
<tr>
<th>Grain Size</th>
<th>Matrix</th>
<th>Stratification</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>40-100 μm</td>
<td>Pebble-clay</td>
<td>Lenticular</td>
<td>In situ blocks of subjacent pillow v. in a muddy matrix; grad. upward from fine to coarse. In situ Arkose to per., non-rotated blocks; no increasingly rotated fragments; "I-gne" pattern; are: clasts of subjacent ultramafic dve in basal 10 m, upper nth. transported, Bn continued to depression on unconformable surface.</td>
</tr>
<tr>
<td>0.05-0.10 mm</td>
<td>Fine-grained</td>
<td>Cross-bedded</td>
<td>Subglacial, primary till; sand lenses may indicate melt-out origin; salt laminae in upper part due to reworking by meltwater currents (fluvial overwash unit to south).</td>
</tr>
<tr>
<td>0.10-0.25 mm</td>
<td>Medium-grained</td>
<td>Bedded</td>
<td>Subglacial, primary till; location in plansediment, covered by regolith deposition, maybe till or ice-ground till. Clasts may reflect basal transport and local source.</td>
</tr>
</tbody>
</table>

Fan Association

Upper and mid fan fluvialite flows consist of aggradational fans and the grain size and sed. structures reflects increasing current strength toward inflow site (where Talc has deposited). Progradation of fan into basin and temporal fluctuations in input current strength focusing grading. 9 cm from debris flow at upper fan.

Basal Tillite Association

Subglacial, primary till; sand lenses may indicate melt-out origin; salt laminae in upper part due to reworking by meltwater currents (fluvial overwash unit to south).
OBSERVATIONS

- **Dms-Dee** 20-400% pebble/cobble clasts in red/cr-
grain sand. Matrix: in bed w. subhor. clast
align., mod. split, largest clast 10cm, mode
2-5cm, clasts 65-95% vol., 25-80% grs, 5%
ped.; below out 10-40cm beds nor. graded rae
/w med grained sand. w. pebbly bases

- **Sp-Sr** 10-60cm beds med/cr grained feld.
astinite; mod. split; com. planar x-beds dip
15-30° swh/swh west; unit coarsens up,
basal 30cm fine/med grained 5cm thick beds
W. ripples/climbing-ripples (ach paleocurs.)

- Fed-Sm-Sn later alter. feld. sand. mud,
changes up: planar silt/mud lam 5mm
rare l-3cm. discord S Sr beds, wavy vfg sand/
slit/mud lam 1cm thick w. occ. 5m beds up
to 5cm thick. 5m beds loaded, large flame Fr.
deformed to ewh, some trh to wth.; one 10cm
frontal fr. contact deformed; rate dropstnees

- **Dms** 1% clasts in bg sand./silt.
matrix: fine-sorted, no obs. clast align.,
largest clast 12cm, mode 2-1cm, clasts 90%
grs., 90-50% vol., <5% ped.; top 10-15cm
slightly laminated, grad. change to

- A Chondritic feldes penevolcanics; uncom.
surface well-exposed to wth; irregular w.
subsurface feldes inflamed w. 50mm or 10cm,
weak strong facin penevolcanics (5% high) w.
depth, to e when inflamed by 10cm containing
sublumusly derived clasts; typical uncon.
contact sharp with no bs.

INTERPRETATION

- **Interim Association** series of
debris flows, density-modified grain
flows, high-density turbid flows into
interim area from wth. progressing
fan and wthral banks. prom. 19th
component but difficult to recognize
due to massive or poorly laminated
structure.

- **Fan Association** relatively
complete but condensed (ex MS-1)
fan succession. 9th extension of
MS-1 units. Coarsening-up and
fan propagation. 80 beds in 6
thick density-modified grain flows
off of mid fan. Sudden loading by
5m caused thrust flow structures
and convolute laminates. High
sedimentation rates may account for
unusual thickness and number of
grain flows into lower beds.

- **Basil Tillite Association** angular.
primary tillite lamina in upper part may
reflect reworking by meltwater
currents during dep. of lid.
Observations

Dem-8mm; 10-40mm clasts in fine-sand, matrix; poor sorted, no obv. clast orient.; largest clast 1cm, mode 1-2mm; clasts 50-60%; 25-45% vol.; 65% sed.; occ. faint layers; avg. 4mm. Bennet R., Abregum, Sr. 0-1km thick, max. 150m length, some cont. over 10km; well-developed grooves in top of Dem in one area, grooves infilled by 0-2cm thick wgt. Sh; base of unit erosional into pSphn below.

Interfan Association series of debris flows from upper fan and marginal banks; sep. flows running where interflow deposits press; grooves from drag and flow separation at debris flow base; 5h dep. as dens. mid. grain flows and sandy turbidity flows; Fl as distal meltwater deposits between flow events.

pSphn-8mm; 10-40mm beds w. 2-5cm thck. pebbles grading to 5-15cm thck. medium-grain sand.; med. sort.; largest clast 2cm, mode 1mm, base of beds sharp; base of unit sharp, planar erosive into Dem below.

Fan/Interfan Association typical of upper fan deposits from strong, fluctuating meltwater underflows, but adj. units sug. interfan area? Perhaps from short-lived period of extreme meltwater influx.

Dem; 10-35mm pebbly clasts in fine-sand; silt; matrix, non-sorted, no obv. clast orientation; largest clast 1cm, mode 1mm; clasts 60-70%; 25-35% vol.; 65% sed.

Interfan/Arbital Tillite Association poss. debris flow or flows from interfan marginal banks; may be subglacial primary till; evidence inconclusive for either interp.

Archaeon not seen at base. Cross-sections from this study suggest unconformity is within ten metres of base of section.
APPENDIX 2

Apparent Long-Axis Orientations of Diamictite Clasts

Surfaces approximately parallel to bedding (defined by adjacent or nearby stratification) were selected for measurement of apparent long-axis orientations of clasts with apparent a:b ratios of 2:1 or greater. Large clasts (pebbles and cobbles) were measured for ease of sampling and because they should show the least variable fabrics (Boulton and Deynoux 1981). As recommended by Rust (1975), who observed that in glaciofluvial gravels small pebbles showed more scattered orientations, clasts with apparent long axes greater than 3 cm were measured. Azimuths of apparent long-axes were measured using a Brunton compass. A minimum of 40 clasts were measured per site. To obtain this minimum number of measurements no size restrictions were placed on the area of the sample site.

As recommended by Andrews (1971) for the statistical analysis of till fabrics where three-dimensional orientations cannot be measured, the two-dimensional vector method of Curray (1956) was applied. This method is summarized in Table 3. The BASIC programs in Table 4 were used to compute all statistics. The significance of the resultant vectors was measured by the Rayleigh significance test which Curray (1956) showed gave values similar (or slightly higher) than chi-square tests. Orientation rose diagrams were plotted in the form suggested by Andrews (1971), with 20° class intervals.
For each 20° class interval:

Resultant Vector \(\phi = \frac{1}{2} \arctan \frac{A}{B} \)

where \(A = \sum_{i=1}^{n} \sin 2\Theta \) \(n = \) number of observations in interval

\(B = \sum_{i=1}^{n} \cos 2\Theta \) \(\Theta = \) azimuth of each observation

Vector Strength \(R = (A^2 + B^2)^{0.5} \)

Vector Magnitude \(L\% = \frac{R}{n} \times 100 \)

For total sample site:

Total Resultant Vector

\(\phi = \frac{1}{2} \arctan \frac{A_T}{B_T} \)

where \(A_T = \sum_{i=1}^{K} A \) \(K = \) number of intervals = 9 for this study

\(B_T = \sum_{i=1}^{K} B \)

Total Vector Strength

\(R_T = (A_T^2 + B_T^2)^{0.5} \)

Total Vector Magnitude

\(L\% = \frac{R_T}{N} \times 100 \) \(N = \) total number of observations

Significance (Rayleigh test of probability)

\(S = \) from graph in Curray 1956 (Figure 4)

Table 3. Formulæ used in the statistical analysis of two-dimensional orientation data (based on Curray 1956; Andrews 1971).
Calculation of Vector Mean and Magnitude for Each Interval

CLS
PRINT "INPUT NUMBER IN SET"
INPUT "NUMBER IN SET"; N
PRINT "INPUT DATA FOR INTERVAL"
INPUT "NUMBER IN INTERVAL"; T
DIM THETA!(T%), T2!(T%), ST2!(T%), CT2!(T%), RTH!(T%)
ASUM! = 0.00
BSUM! = 0.00
FOR J% = 1 TO T%
 INPUT "ANGLE"; THETA!(J%)
 T2!(J%) = THETA!(J%) * 2
 RTHJ(J%) = T2!(J%) * 0.01745 'VERT TO RAD
 ST2!(J%) = SIN(RTH!(J%))
 ASUM! = ASUM! + ST2!(J%)
 CT2!(J%) = COS(RTH!(J%))
 BSUM! = BSUM! + CT2!(J%)
NEXT
ACT! = ATN(ASUM!/BSUM!) * 0.5
ACT! = ACT! * 57.29578
VM! = (SQR(ASUM!^2 + BSUM!^2)/N%) * 100
PRINT "SUMA, SUMB, ARCTAN, VMAG"
PRINT ASUM!; BSUM!; ACT!; VM!
END

Calculation of Total Vector Mean, Strength, Magnitude

CLS
PRINT "VECTOR MEAN - STRENGTH - MAGNITUDE"
INPUT "NUMBER IN SET"; N
PRINT "INPUT DATA FOR INTERVAL, A FIRST THEN B"
DIM A!(9), B!(9)
ASUM! = 0.00 : BSUM! = 0.00
FOR J% = 1 TO 9
 INPUT "A"; A!(J%)
 ASUM! = ASUM! + A!(J%)
NEXT
FOR J% = 1 TO 9
 INPUT "B"; B!(J%)
 BSUM! = BSUM! + B!(J%)
NEXT
VM! = ATN(ASUM!/BSUM!) * 0.5 * 57.2958
VS! = SQR(ASUM!^2 + BSUM!^2)
VW! = (SQR(ASUM!^2 + BSUM!^2)/N%) * 100
PRINT "SUMA, SUMB, VMEAN, VSTREN, VMAG"
PRINT ASUM!; BSUM!; VM!; VS!; VW!
END

Table 4. BASIC programs for statistical analysis of two-dimensional orientation data using formulae in Table 3. (BASIC for Radio Shack TRS Model 100. Programs written by J. Richardson, Ottawa-Carleton Centre for Geoscience Studies.)
APPENDIX 3

PALEOPLACER GOLD POTENTIAL AT COBALT

Previous studies of the lower Gowganda Formation Coleman Member indicated that there is little potential for paleoplacer gold concentration (Long 1981, 1982; Mossman and Harron 1983, 1984). However, none of these studies specifically examined the immediate Cobalt area.

A major component of Coleman Member deposition at Cobalt is interpreted to comprise prograding subaqueous outwash fans (of the type documented by Rust and Romanelli, 1975) resulting from subglacial and/or englacial meltwater streams entering a proglacial body of water. Preserved parts of these small fans (areas of less than 2-3 km² in the Cobalt region) consist of a coarsening upward sequence of siltsilte-mudstone rhythmites overlain by horizontal- and planar-crossbedded fine- to medium-grained sands, less-common trough-crossbedded sands, and pebbly sands with sparse pebble lags, all capped by moderately to poorly sorted orthoconglomerates.

On the basis of pebble-cobble long-axis orientations, Lindsey (1967) suggested SSW-directed movement of the Gowganda ice sheet. This was confirmed by the discovery during this study of lee-side glacial quarrying features on the unconformity surface at Cobalt and the strong northeast/southwest trend of clast long-axes in the basal diamictite (interpreted as a primary subglacial tillite). The combination of an excellent gold source area to the north (the Abitibi Greenstone Belt) and the abundance of current-worked sands and gravels at Cobalt, suggested that sampling and analysis was justified.

The results of this sampling program are shown in Table 4.
The general locations of sample sites are shown in Figure 17. Some high values were obtained in the initial analyses. However, analysis of the retained portions of these samples resulted in trace values at best, suggesting lab error or perhaps the presence of isolated gold-rich volcanic or sulphide clasts (D. Long, pers. com. 1984). One repeat of sample A8 was slightly anomalous (0.012 oz./ton), but a second analysis of the retained portion of the same sample preparation yielded only 0.003 oz./ton, again suggesting that no real anomaly exists. Additional sampling resulted in more low values. Thus, in spite of the sedimentologically promising setting, results from the Cobalt area complement those obtained from other areas, and suggest that the Coleman Member contains little paleoplacer gold potential.
<table>
<thead>
<tr>
<th>Sample</th>
<th>Gold Value (oz/ton)</th>
<th>Lithology</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Initial</td>
<td>Repeat</td>
<td></td>
</tr>
<tr>
<td>Fan A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A1</td>
<td>nil(2)</td>
<td>nil(2)</td>
<td>top of granule-pebble orthocgl.</td>
</tr>
<tr>
<td>A2</td>
<td>trace(2)</td>
<td>nil(2)</td>
<td>upper zone, Al unit</td>
</tr>
<tr>
<td>A3</td>
<td>0.019</td>
<td>nil</td>
<td>mid Al unit</td>
</tr>
<tr>
<td></td>
<td>0.001(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A4</td>
<td>trace</td>
<td></td>
<td>med-cse pebbly sandstone</td>
</tr>
<tr>
<td>A5</td>
<td>nil(3)</td>
<td></td>
<td>med-cse sandstone</td>
</tr>
<tr>
<td>A6</td>
<td>nil</td>
<td>nil</td>
<td>base of graded trough peb. SS</td>
</tr>
<tr>
<td>A7</td>
<td>nil</td>
<td></td>
<td>med sandstone</td>
</tr>
<tr>
<td></td>
<td>0.012</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A8</td>
<td>0.112</td>
<td>0.003</td>
<td>peb. lag of trough, x-bedded SS</td>
</tr>
<tr>
<td></td>
<td>nil</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A9</td>
<td>nil(2)</td>
<td></td>
<td>graded granule cgl-cse SS</td>
</tr>
<tr>
<td>A10</td>
<td>nil(2)</td>
<td>nil</td>
<td>cse, pebbly, hor. bedded SS</td>
</tr>
<tr>
<td>A11</td>
<td>0.006</td>
<td>nil</td>
<td>graded cse-med sandstone</td>
</tr>
<tr>
<td>A12</td>
<td>nil</td>
<td></td>
<td>cse sandstone</td>
</tr>
<tr>
<td>Fan B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B1</td>
<td>0.004</td>
<td>0.002</td>
<td>pebble-cobble orthocgl.</td>
</tr>
<tr>
<td>B2</td>
<td>0.002</td>
<td></td>
<td>base: same as Bl</td>
</tr>
<tr>
<td>B3</td>
<td>0.006</td>
<td>nil</td>
<td>top: med-cse peb.</td>
</tr>
<tr>
<td>B4</td>
<td>0.004</td>
<td>nil</td>
<td>base: troughed SS</td>
</tr>
<tr>
<td>Fan C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C1</td>
<td>nil</td>
<td></td>
<td>med-large peb. orthocgl.</td>
</tr>
<tr>
<td>C2</td>
<td>trace</td>
<td></td>
<td>small peb. orthocgl.</td>
</tr>
<tr>
<td>C3</td>
<td>nil</td>
<td></td>
<td>peb. lag, graded trough SS.</td>
</tr>
<tr>
<td>Fan D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D1</td>
<td>trace</td>
<td></td>
<td>med-cse, graded peb. SS.</td>
</tr>
<tr>
<td>D2</td>
<td>trace</td>
<td></td>
<td>med-grained pebbly SS.</td>
</tr>
<tr>
<td>Misc.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M1</td>
<td>trace</td>
<td></td>
<td>small peb orthocgl. on Archean uncon. surface</td>
</tr>
<tr>
<td>M2</td>
<td>nil</td>
<td></td>
<td>similar to MI</td>
</tr>
<tr>
<td>M3</td>
<td>nil</td>
<td></td>
<td>graded hor. bed peb cse SS</td>
</tr>
<tr>
<td>M4</td>
<td>nil</td>
<td></td>
<td>small peb. orthocgl lens in diamicite (matrix sup) Mass Flow in interfan zone</td>
</tr>
</tbody>
</table>

Table 4 Assay results from Coleman Member of the lower Gowganda Formation in the Cobalt study area. Assays are grouped within fan complexes and in correct relative stratigraphic position where possible. Bracketted numbers after assay values indicate multiple samples from the same unit. The general location of sample sites are shown in Figure 17.
APPENDIX 4

Locality Maps Showing Data Collection Sites
Figure 13 Sample sites - Orientations of apparent long axes of clasts in diamicrites of the Basal Diamictite Association (see Figure 4)
Figure 14 Sample sites - Paleocurrent measurements (see Figure 6A-D)
Figure 15 Sample sites – Orientations of apparent long axes of clasts in diamicrites of the Fan and Interfan Associations (see Figure 7).
Figure 16 Sample Sites - Orientation of apparent long axes of clasts in diamicrites of the Upper Diamictite Complex (see Fig. 8).
Figure 17 Sample Sites - Gold Assays of Table 6
REFERENCES

1908. Lower Huronian ice-age. Journal of Geology, 16, pp. 149-158.

of America, Memoir 161, pp. 299-307.

under glacial influence: the Gowganda Formation (Huronian), Elliot Lake area, Ontario, Canada. Sedimentology, 32.

1961. Part of underground workings and approximate structural contours, Coleman T, Concessions V & VI - Lots 1 to 6, District of Timiskaming. Ontario Department of Mines, Provisional Map P-97A.

1964a. Geological map of the Cobalt silver area, northern sheet. Ontario Department of Mines. Map 2050, Scale: 1 inch to 1,000 feet.

1964b. Geological map of the Cobalt silver area, southwestern sheet. Ontario Department of Mines. Map 2051, Scale: 1 inch to 1,000 feet.

1964c. Geological map of the Cobalt silver area, southeastern
Ontario Department of Mines. Map 2052, Scale: 1 inch to 1,000 feet.

1981b. Sedimentary environments and regional tectonic setting of the Huronian Supergroup, north shore of Lake Huron, Ontario, Canada. Field trip guidebook, Society of Economic Paleontologists and
Diamictite, clast supported

A - massive
D - stratified

Sandstone
US - pebbly sandstone (51 gravel-sized grains)
Sm - massive
Sl - horizontal lamination
Sr - ripple
St - trough cross bedded
Sp - planar cross bedded
Sgn - graded, normal
Sgr - graded, reverse

Fine-grained Facies (mudstone, minor epyt fine-grained sandstone)
fr - rhythmically laminated (sand-silt and/or silt-clay alternations)
fl - laminated (non-rhythmic)
fn - massive (non-laminated)
F & D - dropstones

Basal Diamictite (Tillite)
blan - matrix-supported, massive
- outer symbols as for Upper Diamictite Complex

Breccia
br - red, re-sedimented

Angular Unconformity

Archean

Basic/Ultrabasic Intrusions

Intrusive Contact

A - unclassified Archean
Ap - basic volcanic rock - pillow
An - basic volcanic rock - massive
Af - felsic volcanic rock
Al - interflow sedimentary rock

Strike and dip of bedding: inclined, horizontal, vertical
Strike, top of pillowd volcanic rock: dip known, unknown
Fault indicator: direction known, unknown
Dike attitude: inclined, vertical

Major Fault: dip, upthrow (3), downthrow (3) sides
Minor fault or shear zone (little displacement)

Open pit or quarry

Mixed vein or exploration trench

Ditch

Portal of tunnel or adit

Cross-section location

Topographic contour: one metre intervals

Sources of Information
Geology, 1984: P. Mustard, R. Scammell, R. Wilson, R. Rainbird
1985: P. Mustard, E. Dodd

NOTICE

The quality of this microfiche is heavily dependent upon the quality of the original thesis submitted for microfilming. Every effort has been made to ensure the highest quality of reproduction possible.

If pages are missing, contact the university which granted the degree.

Some pages may have indistinct print especially if the original pages were typed with a poor typewriter ribbon or if the university sent us an inferior photocopy.

Previously copyrighted materials (journal articles, published tests, etc.) are not filmed.

Reproduction in full or in part of this film is governed by the Canadian Copyright Act, R.S.C. 1970, c. C-30.

THIS DISSERTATION HAS BEEN MICROFILMED EXACTLY AS RECEIVED

AVIS

La qualité de cette microfiche dépend grandement de la qualité de la thèse soumise au microfilmage. Nous avons tout fait pour assurer une qualité supérieure de reproduction.

S'il manque des pages, veuillez communiquer avec l'université qui a conféré le grade.

La qualité d'impression de certaines pages peut laisser à désirer, surtout si les pages originales ont été dactylographiées à l'aide d'un ruban usé ou si l'université nous a fait parvenir une photocopie de qualité inférieure.

Les documents qui font déjà l'objet d'un droit d'auteur (articles de revue, examens publiés, etc.) ne sont pas microfilmés.

La reproduction, même partielle, de ce microfilm est soumise à la Loi canadienne sur le droit d'auteur, SRC 1970, c. C-30.

LA THÈSE A ÉTÉ MICROFILMÉE TELLE QUE NOUS L'AVONS RÉCU
Diamictite, clast supported
Dcm massive
Dts stratified

Sandstone
Us unbedded sandstone (pale gravel-sized grains)
Sm massive
Sh horizontal lamination
Sr rippled
Sb trough cross-bedded
Gp planar cross-bedded
G-gr graded, normal
G-gr graded, reverse

Fine-grained facies (sandstone, minor very fine-grained sandstone)
Fr Rhythmically laminated (sand-silt and/or silt-clay alter.)
Fl Laminated (non-rhythmic)
Fs massive (no laminations)
F-d dropstones

Basal Diamictite (illitized)
Bsmn matrix-supported, massive

Other symbols as for Upper Diamictite Complex

Brecia
Bx re-deposited
A small occurrences

Angular unconformity

Archean

Basic/Ultrabasic Intrusions
Intrusive Contact

A undifferentiated Archean
Ap basic volcanic rock - pillow ed
Am basic volcanic rock - massive
Af felsic volcanic rock
At interflow sedimentary rock

Strike, tops of pillowd volcanic rocks: dip known, unknown.
Paleocurrent indicator: direction known, unknown

Dyke attitude: inclined, vertical
Major faults: dip, upthrown (U), downthrown (D) sides
Minor faults or shear zone (little displacement)
Open pit or quarry
Mined vein or exploration trench: > 2 m wide, < 1 m wide

Ditch
Portal of tunnel or adit
Cross-section location
Topographic contour: one metre intervals

Sources of Information
Geology, 1984: P. Mustard, R. Scammell, B. Wilson, R. Rainbird

LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE</th>
<th>DESCRIPTION</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Lithofacies Code used for Mapping and Section Measurement</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>Sediment Gravity Flow Classification Schemes</td>
<td>63</td>
</tr>
</tbody>
</table>

APPENDICES

<table>
<thead>
<tr>
<th>TABLE</th>
<th>DESCRIPTION</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Measured Sections - Legend</td>
<td>107</td>
</tr>
<tr>
<td>4</td>
<td>Formulae used in the Statistical Analysis of Two-dimensional Orientation Data</td>
<td>119</td>
</tr>
<tr>
<td>5</td>
<td>BASIC Programs for Statistical Analysis of Two-dimensional Orientation Data using Formulae in Table IV</td>
<td>120</td>
</tr>
<tr>
<td>6</td>
<td>Gold Assays from the Study Area</td>
<td>123</td>
</tr>
</tbody>
</table>
List of Figures

<table>
<thead>
<tr>
<th>FIGURE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
</table>
| 1 | A. Regional Extent of the Huronian Supergroup and Location of Study Area
B. Study Area Showing Major Geological Features | 4 |
| 2 | Generalised Stratigraphy of Huronian Supergroup | 8 |
| 3 | Lee-side Plucking of the Unconformity Surface | 15 |
| 4 | Clast Apparent Long-axis Orientations for Diamictites of the Basal Diamictite Association | 23 |
| 5 | Contact Relationships of Dropstones in the Study Area | 29 |
| 6 | Paleocurrent Rose Diagrams from Sandstone Units Within the Study Area | 34 |
| 7 | Clast Apparent Long-axis Orientations for Diamictites of Fan and Interfan Associations | 37 |
| 8 | Clast Apparent Long-axis Orientations for Diamictites of the Upper Diamictite Complex | 45 |
| 9 | Model for Sub-glacial Deposition in a Lee-side Cavity | 52 |
| 10 | Model for Deposition of Lower Stratigraphy at Cobalt | 87 |
| 11 | Model for Deposition of Upper Stratigraphy at Cobalt | 88 |

Appendices

<table>
<thead>
<tr>
<th>APPENDICES</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Measured Sections in the Study Area</td>
</tr>
<tr>
<td>13</td>
<td>Sample Sites - Clast Apparent Long-axis Orientations for Basal Diamictite Association Diamictites</td>
</tr>
<tr>
<td>14</td>
<td>Sample Sites - Paleocurrent Measurements of Figure 6A-D</td>
</tr>
<tr>
<td>15</td>
<td>Sample Sites - Clast Apparent Long-axis Orientations for Fan and Interfan Diamictites</td>
</tr>
<tr>
<td>16</td>
<td>Sample Sites - Clast Apparent Long-axis Orientations for Upper Diamictite Complex Diamictites</td>
</tr>
<tr>
<td>17</td>
<td>Sample Sites - Gold Assays</td>
</tr>
<tr>
<td>Page</td>
<td>Description</td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
</tr>
<tr>
<td>18</td>
<td>Geologic Map of Cobalt Study Area - North Sheet</td>
</tr>
<tr>
<td>19</td>
<td>back-pocket</td>
</tr>
<tr>
<td>20</td>
<td>Geologic Map of Cobalt Study Area - South Sheet</td>
</tr>
<tr>
<td>21</td>
<td>back-pocket</td>
</tr>
<tr>
<td></td>
<td>Geological Cross-Sections Through North Sheet of</td>
</tr>
<tr>
<td></td>
<td>Geological Map</td>
</tr>
<tr>
<td></td>
<td>back-pocket</td>
</tr>
<tr>
<td>22</td>
<td>Geological Cross-Sections Through South Sheet of</td>
</tr>
<tr>
<td></td>
<td>Geological Map</td>
</tr>
<tr>
<td></td>
<td>back-pocket</td>
</tr>
<tr>
<td>23</td>
<td>Lithofacies Code and Measured Section Legend</td>
</tr>
<tr>
<td></td>
<td>back-pocket</td>
</tr>
<tr>
<td></td>
<td>Locality Map for Photographs</td>
</tr>
<tr>
<td></td>
<td>back-pocket</td>
</tr>
<tr>
<td>PLATE</td>
<td>DESCRIPTION</td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
</tr>
<tr>
<td>1</td>
<td>Unconformity Surface and Basal Breccia</td>
</tr>
<tr>
<td>2</td>
<td>Basal Diamictite Association</td>
</tr>
<tr>
<td>3</td>
<td>Fan Association: Rhythmite and Sandstone Units</td>
</tr>
<tr>
<td>4</td>
<td>Fan Association: Rhythmite and Sandstone Units</td>
</tr>
<tr>
<td>5</td>
<td>Fan Association: Sandstones and Glast-supported Diamictites</td>
</tr>
<tr>
<td>6</td>
<td>Heterolithic Diamictite Complex - Lower Stratigraphic Assemblage (Interfan Association)</td>
</tr>
<tr>
<td>7</td>
<td>Heterolithic Diamictite Complex - Lower and Upper Stratigraphic Assemblages</td>
</tr>
</tbody>
</table>
CHAPTER I
INTRODUCTION

Significant advances in the understanding of the processes of glacial geology, especially glaciomarine sedimentology, have resulted from recent research (for summaries see Andrews and Matsch 1983; Eyles and Midl 1984; Molina 1983; Powell 1984). The interpretation of ancient glacial deposits has benefited greatly from this increased understanding. (see for example Anderson 1983; Andrews and Matsch 1983; Boulton and Deynoux 1972, 1981; Driemanis 1983; Hambrey and Harland 1981). Incorporating these new ideas and models, this thesis presents a reinterpretation of the lower part of the Gowganda Formation in the Cobalt area, Ontario, Canada.

The extensive early Proterozoic Gowganda Formation (Figure 1A) has been recognized to be the result of glacial deposition since Coleman (1907, 1908) described faceted and striated "boulders" in massive greywackes. The Gowganda Formation has been tentatively correlated with glacial deposits over a wide area in North America (Young 1973), Finland and the U.S.S.R. (Marmo and Ojakangas 1984). This vast extent suggests deposition by ice sheets during at least one or more major periods of Precambrian glaciation.

Early regional studies (Lindsey 1966, 1967, 1969, 1971; Owenshine 1965) led to suggestions of terrestrial glacial deposition of the lower Gowganda Formation (except near Lake Huron where a glaciomarine environment was postulated). Recent studies in the Lake Huron and Elliott Lake areas (Young 1985; Midl 1985) confirm the glaciomarine (probably continental slope) interpretation previously suggested for southern exposures of the Gowganda Formation. Recent interpretations of
the northern part of the Gowganda Formation have been based on limited data (Miall 1983) or regional observations (Long and Leslie 1985). Although they agree that deposition was subaqueous, they differ on whether it occurred in deep marine water from a floating ice sheet (Miall), or in a relatively shallow lacustrine environment from a grounded ice sheet (Long and Leslie).

At Cobalt, Ontario (Figure 1A), the lower part of the Gowganda Formation (Coleman Member) is particularly suited for detailed study. In this area silver exploration and mining during the early 1900's resulted in extensive stripping of outcrops and creation of vertical walls in now-abandoned vein cuts and open pits. The work of Legun (1984) suggested that a more detailed sedimentological study was appropriate. Detailed mapping (1:2000 scale) of a nine km² area including the town of Cobalt (Figure 1B) was combined with section measurements, fabric studies and petrographic examination of representative lithologies. This work provided the basis for the interpretations presented here.

A lithofacies classification scheme based on that of Eyles et al. (1983) was used for mapping and section measurement (Table 1). As per Eyles et al., the non-genetic term diamictite is used in preference to conglomerate or tillite for rocks composed of poorly sorted or non-sorted gravel/sand/mud mixtures. Some minor modifications to the code based on field observation and features of the study area have been introduced here. The prefix "b" indicates a basal diamictite unit which could be mapped independently of other units. The prefix "p" for pebbly sandstones was also appropriate. Subdivision of nonbasal diamictites into clast-supported (Dcm or Dcs) and matrix-supported (Dm) map units proved to be feasible. Some of the clast-supported diamictites would be termed gravels (Gm, Gt etc.) according to other lithofacies codes.
SYMBOLS

Archean-Proterozoic unconformity surface;
Wipissing Diabase Lower contact

Coleman Lithofacies Contacts:

- Defined: Based on surface mapping and projected short distances into section.
- Approximate: Based on projection of surface contacts or information from subsurface sources.
- Very approximate or inferred: Based on imprecise subsurface information.

Major fault: arrows indicate direction of movement.
Minor fault or shear zone (little displacement)

SOURCES OF INFORMATION

Archean Unconformity Surface:
Thomson, R. 1961. Part of underground workings and approximate structural contours, Coleman Co., Concession 4 & 5, Lots 1 to 6, District of Timiskaming, Ontario Department of Mines, Provisional Map P–973A.

Wipissing Diabase Lower Surface:
Thomson, R. 1961. as above

Knight, C.W. 1924. as above

Coleman Member Subsurface Geology:

Knight, C.W. 1924. as above

Minor faults and shear zones trending northeast, southeast, or east were mapped or have been reported (Wilson in prep.; Knight 1924; Thomson 1964a, b, c). None has a displacement of more than a few metres.

The dip of the Archean unconformity surface ranges from horizontal to approximately 30° and rarely exceeds 20°. Coleman Member strata are subparallel or slightly shallower dipping. Knight (1924) suggested that tectonic folding might account for some of the dip variations. This idea is supported by a paleomagnetic study of the Nipissing Diabase which concluded that broad, northeast-trending folds are superimposed on the gentle basin and dome emplacement configuration of the diabase (Symons 1970). Recent workers (Wood 1980; Kim 1979; Legun 1984) proposed that differential compaction over Archean paleotopographic highs accounts for changes in dip attitudes. In their model, present attitudes of the unconformity surface reflect the pre-Coleman Member topography with no subsequent folding. A maximum paleorelief exceeding 200m is apparent from examination of cross sections (Kim 1979; this study) and structure contour maps (Thomson 1961; Legun 1984).

The cross sections accompanying this study show that some lower units of the Coleman Member pinch-out against the Archean unconformity (figures 20, 21). Thickening of lower units in apparent lows and thinning over highs on the unconformity surface is also documented. These observations support the supratenuous folding models.

However, the upper units of the Coleman Member roughly parallel the Archean unconformity surface across areas of high and low topography. This suggests that some tectonic folding of the unconformity surface and the Coleman Member has occurred. When the effects of this folding are considered, the paleorelief in the Cobalt area is estimated to be < 100m (generally tens of metres). The
paleotopography is envisioned as a series of broad, shallow troughs separated by low rises. Two major troughs, trending northeast, are recognized (see cross sections, Figures 20, 21). One is centred approximately over the present position of the Cobalt Lake Fault. The other is beneath Cart and Peterson Lakes. Minor east-to-southeast-trending troughs connect the more extensive troughs in two places (cross sections B-B' and D-D', Figures 20, 21).

Although overall paleotopography of the unconformity is gentle, locally the surface is irregular and rugged. Slopes of 40–50° with ten to fifteen metres of relief were defined during mapping. These steep slopes delineate small-scale paleotopographic features, slight scarps and depressions rather than major ridges and cliffs.

Slightly higher relief probably existed southeast of the study area (Thomson 1957; Legun 1984), although the effects of later folding have not been estimated. Mountainous terrain as postulated by Schenk (1965a,b) for the Lake Temagami area to the southwest did not exist at Cobalt.
CHAPTER II

UNCONFORMITY SURFACE FEATURES AND BRECCIA

The Archean-Proterozoic unconformity surface is well exposed in the study area. It was closely examined for evidence of erosion by a Huronian ice body. Glacial striae have been reported in two other localities (Cooke 1922; Schenk 1965a,b), but were not observed in the study area. However, the unusual conditions required to preserve an exposed, striated paleosurface (such as protection by overhanging strata of the Coleman Member) were not encountered in the Cobalt area.

Three previously unreported features suggesting the presence of grounded ice were discovered.

1. Angular, block-like depressions

 Steep-sided angular depressions are common on the unconformity surface (Plate 1A), the sharply defined edges paralleling Archean joint sets. These depressions, less than one metre on their longest surface dimension, are infilled by unsorted, massive Coleman Member diamictite (Dmm or Dcm). The upper tens-of-centimetres of Archean-rock and the unconformity surface are generally extensively jointed and fractured relative to typical Archean rock (Plate 1C). Ice-plucking of blocks from the highly fractured bedrock is the likely origin of the depressions.

2. Stepped unconformity contact

 Several step-like contacts were observed in vertical exposures of the unconformity surface (Plate 1B). The steps are centimetres to tens-of-centimetres high and face approximately south. As for the plucked depressions, the vertical and horizontal contacts appear to be joint-controlled. These features probably originated by lee-side quarrying at the base of a moving ice mass.
3. Shaped stoss and lee feature

A stoss and lee feature three metres long and one metre high was discovered during the 1984 field season (Figure 3). Developed on Archean volcanic rocks, it displays a streamlined stoss (north) side (smoothed and striated by Quaternary glaciation) that rises southward to a jagged, vertical, south-facing step-like contact with Coleman Member diamictite. On the lee side of this structure, the diamictite contains large angular clasts of the Archean volcanic rock, many of which can be visually restored to the unconformity surface. As for the stepped unconformity contacts, lee-side quarrying by moving ice is inferred, perhaps with some stoss-side shaping.

These features provide strong evidence for the presence of a grounded ice mass during at least initial deposition of the lower Gowganda Formation. Ice movement in a southerly direction is indicated.

Except in rare areas where special conditions existed, the unconformity surface was swept clean of any regolith which may have been present. This has resulted in the sharp Archean-Proterozoic contact commonly observed (Plate 1D) or occasional ice-plucked or stoss and lee structures with related fragments.

Occasionally, breccia derived from underlying or subjacent bedrock occurs at the unconformity. Most occurrences are thin (<20 cm) and rarely persist laterally for more than a few metres. Most occurrences of these breccias can be related to stoss and lee features discussed above (as in Plate 1B), or are preserved in slight lows on the irregular unconformity surface. The matrix of these breccias is similar to the matrix of the basal Coleman Member diamictite (Plate 1E).

Two rare examples of more extensive basal breccias are shown on
Figure 3. Lee-side plucking of the unconformity surface.

Southward (away from viewer) movement of the Pleistocene ice sheet has shaped this outcrop into a smoothed and plucked roche moutonnée that contains a segment of the Coleman-Archean contact. The Archean basement of felsic volcanic rock is stippled in the line drawing; Coleman Member diamictite is unpatterned, except for a few of the largest Archean clasts. The relationship of the irregular unconformity to these felsic clasts reveals that most of them were derived from the adjacent bedrock. At least one metre of paleorelief is apparent between the highest and lowest portions of the extensively jointed unconformity surface, indicating a southwesterly facing paleoscarp. In conjunction with the evidence for glacial deposition of the Coleman Member presented elsewhere in this thesis, an interpretation of joint-controlled, lee-side ice-plucking by an approximately southwest-moving grounded ice sheet is indicated for the illustrated relationship.
isolated breccia occurrences preserved outside paleotopographic lows are related to ice-plucked or stoss and lee structures. The matrix appears to be composed of Coleman Member detritus. Sericite and chlorite is much less common than in the large breccia lenses. Such features suggest a subglacial origin for these breccias.

However, a paleoregolith interpretation does appear valid for the large breccia lenses. The in situ nature and preservation only in paleotopographic lows supports a pre-Coleman Member origin. The high percentage of fine-grained sericite and chlorite in the matrix may reflect a high original clay content. Frost heaving may have separated blocks to allow later Coleman Member sediments to infiltrate upper regions of the breccias. Slight solifluction could explain the northern movement of fragments at the base of the north breccia (Donaldson and Munro 1982). Much of the south breccia occurs north of its only possible bedrock source and must have moved downslope, as Scammell (1984) suggested. However, this must have occurred during an early period of Coleman Member deposition, because the flow breccia rests on diamictite, and has incorporated matrix and framework material of Coleman Member origin.

The preservation of these breccias in depressions and the flow of the south breccia when the area was covered by an ice mass suggests that subglacial cavities existed at these sites. This interpretation is supported by the presence of a unique clast-supported diamictite overlying these breccias. Features and interpretation of this diamictite are presented in chapters 3 and 4 of this thesis.
SYMBOLS

- Archean-Proterozoic unconformity surface, Nipissing Diabase Lower contact

Coleman Lithofacies Contacts:
- Defined: Based on surface mapping and projected short distances into section.
- Approximate: Based on projection of surface contacts or information from subsurface sources.
- Very approximate or inferred: Based on imprecise subsurface information.

Major fault; arrows indicate direction of movement

Minor fault or shear zone (little displacement)

SOURCES OF INFORMATION

Archean Unconformity Surface:
Thomson, R. 1961. Part of underground workings and approximate structural contours, Coleman Ip., concessions 9, 10, 11 - lots 1 to 6, District of Timiskaming, Ontario Department of Mines, Provisional Map P-974.

Nipissing Diabase Lower Surface:
Thomson, R. 1961. as above
Knight, C.W. 1924. as above.

Coleman Member Subsurface Geology:
Knight, C.W. 1924. as above.

Mine plans, assessment files and drillhole data covering the period 1908 to approximately 1950. On file in the Ontario Geological Survey Resident Geologist's office, Cobalt, Ontario.

Table 1: Lithologic code used for mapping and section measurement

(based on Eyles et al., 1983).

COLUMN MEMBRAN LITHOSICIES

Diamictite, (D): Lithified, poorly sorted mud-coarse-gravel
admixture

Sandstone, (S):

p5: poorly (cir gravel)

p:

s:

S:

S:

S:

S:

S:

S:

S:

S:

NB: basal: directly overlying
Archean unconformity

Fine-grained, (F): Mudstone, minor
very fine-grained
sandstone

Breccia, (B):

Angular fragments of
adjacent Archean rocks

F:

s:

S:

S:

S:

S:

S:

F:

B:

r:

r:

r:

r:

r:

r:

OF/DE
occurs, the lower contact is sharp-to-gradational, and the top 10-20 cm of the underlying diamictite also may be faintly laminated (Plate 2F). Most of these rhythmites are the basal component of coarsening-upward sequences that consist of a vertical rhythmite/sandstone/clast-supported diamictite transition. Reverse-order, fining-upward sequences also occur, but are less common and of smaller areal extent. Examination of the maps and cross-sections (Figures 18-21) reveals that these associations occur as fan-shaped bodies which individually cover a maximum area of a few square kilometres and are up to 40 m thick. This fan shape is readily apparent in mid portions of cross-sections A-A' and B-B' (Figure 21) and in cross-section D-D' (Figure 22). The surface expression of these examples (Figures 18, 19) allows an approximation of the areal extent of each fan (based on the extent of sandstone lithofacies of each sequence). For simplicity these sequences are subsequently termed fan associations.

Rhythmite lithofacies range in thickness to a approximate maximum of 19 m. Typically, the basal section consists of silt-clay couplets with a thicker clay component (up to 5 mm). The coarse- to fine-grained quartz-feldspar-silt component is sharp-based and normally graded or massive throughout. Micro-loading into the underlying clay is rare. The clay component generally has a sharp lower contact, but normally-graded fine silt is diffused through the lower half. The upper half usually appears massive. Gradational silt-clay contacts also occur. The clay is partially altered to a chlorite/sericite/Ti-oxide mass. Occasional microlaminations, (one silt grain thick) occur within the clay (Plate 3B).

Silt laminations increase in abundance and thickness upwards. Higher in the sequence, composite graded silt layers are separated by thinner clay-silt layers. Sharp loaded basal contacts and complex internal grading patterns are common (e.g. reverse-to-massive-to-
microlaminations. Fine-grained sand laminae (rarely thin beds), rare in the lower part of the sequence, are more common in mid-rhythmite sections. Many are discontinuous, with a lenticular to wavy (starved ripple) form (Plate 3D). Some contain faint cross-laminations and basal, deformed microflames, indicating southerly-directed flow.

In the upper part of the rhythmite section, the silt layers are thicker (up to 1 cm) and coarser grained. Sand-silt couplets are increasingly common and the clay component decreases in frequency and thickness. Clay layers are generally less than 5 mm thick and contain fine silt throughout, with a normally-graded silty base (Plate 3E).

Near the top of the rhythmite units, one to three cm thick, normally-graded, fine-grained sand to coarse-grained silt beds become common. Ripples and occasional climbing-ripple sets (A, B, and more abundant sinusoidal types of Jopling and Walker, 1968) are present (Plate 3F). Increasingly frequent fine-grained sand interbeds grade upward into a sandstone unit with no discrete clay laminae. Relatively thick (up to 30 cm), very fine- to fine-grained, massive to faintly laminated sandstones are interbedded in the upper 2-3 m of the rhythmites. These beds are deeply loaded into the rhythmites with associated rhythmite flames deformed and locally thrust to the south (Plate 3G,H). Dish and pillar dewatering structures occur in some of the massive sandstone interbeds (Plate 3I).

In the western part of the study area, the lower rhythmite units (cross-section E-E', west side, Figure 20) are unusually coarse-grained (Frd-Shd). The normal bottom component of the couplets is medium- to fine-grained sandstone grading into coarse siltstone. Many of the coarse layers comprise multiple laminations (both normal- and reverse-
graded), with microlaminated silt-clay units forming the upper component of the couplets. Much of this section contains composite subunits, although the upper clay-rich section is predominantly massive. Rarely, fragments of the underlying silt-clay laminae occur immediately above the sharp, loaded basal contact, indicating erosion during transport (Plate 4A).

Lonestones occur in all of the fine-grained lithofacies, but are most prevalent in the rhythmites. They range from sand-size to 80 cm in diameter. All lithologies that occur in the diamicltes are represented. Surrounding laminae are depressed below, draped over, and/or pierced by the clasts (Plate 4B). The pierced laminae are typically contorted and thickened near the clasts. The contact relationships documented for Pliostocene dropstones (Thomas and Donnell 1985, fig. 2) were observed (Figure 5) and a dropstone origin for these clasts is inferred. In general, they are rare in the silt-clay rhythmites and common in the coarse-grained rhythmites. The coarse rhythmites in the western section of the study area contain an unusually high number of dropstones, (up to 10%). Some are concentrated in patches or small lenses parallel to the laminations, but the usual occurrence is as lonestones.

Suboval, sand-sized wacke clasts also occur, and are most abundant in the coarse, dropstone-rich rhythmites (Plate 3B,C). They exhibit diffuse margins, elongation parallel to the laminations and compositions similar to the matrix of the diamicltes. These appear identical to the pelletoidal greywacke clasts described by Lindsey (1970). He proposed an origin as till pellets, partially consolidated by englacial ice pressure, freed by melting, deposited by ice-rafting and compacted into an ovoid form with elongation parallel to the enclosing laminae.
Figure 5. Contact relationships of dropstones in the study area.

[The terminology for dropstone contacts of Thomas and Connell (1985) are used here.]

A. (see also Plate 4b) Slight bending of laminae below clast accompanied by extreme thinning of subjacent laminae. Piercing of laminae and simple rucking (sharp, upward folding) of sediment against clast edges indicates initial penetration of approximately 3cm. Onlap of lamina above rucking is well-defined.

B. Extreme penetration of approximately 30-40cm by an unusually large clast. Displacement of sediment has caused pronounced rucking and convolute folding of individual strata. Sand beds are thickened on edges of clast due to lateral displacement, but the competency of individual strata was sufficient to prevent breakup.

C. Relatively sharp piercing accompanied by only minor rucking at clast edges and thinning below clast. May reflect greater competence of the clay-rich layers pierced as opposed to silt/sand layers of D.

D. Total penetration of layers by largest clast has caused rupture above the final position of the clast with some laminae extensively distorted (This may indicate a relatively water-rich sediment at the time of clast emplacement, in contrast to 5B,C.

E. Large clast has penetrated numerous laminae. Extreme rupture, convolute folding at clast edges, and break-up of some laminae may be the result of shock and displacement effects in a water-rich sediment.

F. A possible pseudo-dropstone: thinning beneath clast is minimal, downwarp of pierced laminae is limited to one side, rucking is not evident, and clast is not oversized with respect to the overlying layer. This pseudo-dropstone may have been transported as bedload, with later compaction resulting in piercing of lamina.
Deformation structures are evident in some of the rhythmites. The loaded bases of the massive sandstone interbeds rarely show evidence of extreme deformation, with sections of the underlying rhythmites decoupled and thrust southward several tens-of-centimetres (Plate 3H). In other areas, thin, short-displacement (<10 cm) thrusts of underlying laminae into the overlying (generally coarser) laminae also occur (Plate 4C). A few examples of convolutely deformed sets of laminae (<1 cm - 40 cm thick) bounded by undeformed lamina were also observed. This style of deformation is not spatially associated with anomalous lithotypes, as is the first. Two clastic dykes of massive sand which cross-cut and deform the edges of rhythmite units were also discovered (Plate 4D).

Paleocurrents were estimated on the basis of cross-laminations in ripples, climbing ripple drift, asymmetry of ripple crests and deformation of flame structures. Exact measurements rarely could be obtained, because the best exposures occur on vertical faces, and three-dimensional exposures are rare. The paleocurrent directions generally range from southeast to southwest throughout the rhythmite sequences. In the middle to upper sections through the rhythmites, a few northerly directions were observed.

Poorly-laminated Units (Pl, Pm, Pl-Sh)

Massive fine-grained lithofacies are absent in the study area, but rare, thin units of faintly and irregularly laminated mudstones occur in higher stratigraphic positions and as the lateral equivalents of the well-laminated units. For both, a close spatial association with current-sorted sandstones is absent.

These units are composed of very to discontinuous silt and clay laminae of variable thickness (most laminae < 2 mm thick) (Plates 4E).
Figure 20). The contact is sharp and slightly erosive.

The sandstones are moderately-sorted feldspathic arenites or wackes with 10 to 40% matrix. The framework mineralogy consists of quartz and feldspar in subequal amounts and 10 to 25% lithic fragments, mostly volcanic. Packing ranges from condensed with numerous sutured grain contacts to dispersed with subangular to subround clasts. Clay alteration is limited to slight grain boundary alteration and incipient feldspar sericitization. The matrix consists of silt-sized clasts, abundant chlorite, minor amounts of sericite and Ti-oxide aggregates (sphene?) and rare patchy carbonate alteration. Plate 4C illustrates many of the above features. Kört (1973) conducted a more detailed petrographic study of three of these sandstones.

In a typical sandstone unit, the basal, thin-bedded, fine- to medium-grained portion contains ripples or small-scale planar crossbedding. This coarsens upwards into medium- to coarse-grained tabular beds (10-50 cm thick), some of which exhibit low-angle planar crossbedding (Plate 4H). In other places, the beds comprise fining-upward coarse- to medium-grained cycles with rare pebbles at the base. Above this, trough crossbedding is occasionally present with overlapping, normally-graded, erosional trough sets containing pebbly lenses at the base. The troughs tend to be 1-2 metres long and less than 25 cm deep as seen in vertical exposures (Plate 5A). Above this, or where trough crossbedding is absent, the upper parts of the sandstone units are very coarse-grained, thin to medium bedded (<5-20 cm) graded cycles of small pebble/granule to coarse-grained sands (Plate 5B, C). Normal, reverse or inverse-to-normal grading is present. Most cycles are normally graded with an unstratified pebble-granule component grading into a faintly laminated (rarely cross-laminated) coarse-grained
Clast-supported diamictites are the areally least extensive unit of the fan association (see cross-sections, Figures 20,21, back-pocket). Diamictite thicknesses exceed 20 m in some coarsening-upwards sequences, but more commonly are less than 15 m. The basal contact may be sharp and erosional, but is commonly gradational with respect to the underlying sandstone. Where the diamictite directly overlies a rhythmite unit, the base is sharp, erosional and loaded.

The diamictite consists of a poorly-sorted, intact framework of 70-90% gravel-sized clasts (Plate 5E). Most are small-pebble to small-cobble size, but large cobbles and boulder clasts are common in some of the occurrences. Clast lithologies are diverse with volcanic (mafic > felsic) and granitic rocks accounting for over 90% of the total. Sedimentary, metamorphic and rarely sulphide clasts are also present. Clasts range from subangular to subrounded, with volcanic clasts more rounded than the igneous clasts in the planar, two-dimensional exposures examined. Most shapes appear to be equant to slightly ovoid.

The sand fraction of these diamictites is a moderately- to poorly-sorted, medium- to very coarse-grained feldspathic arenite (rarely a wacke). Sand and matrix characteristics are similar to those described previously. Many of the quartz and feldspar clasts appear to be derived from plutonic sources, a contrast to the high percentage of volcanic clasts in the gravel-sized fraction.

In a few places, a thick (up to 15 m) basal subunit can be differentiated within the diamictites of the coarsening-upwards associations. It appears massive and unsorted on most weathered surfaces and generally was mapped as Dcm or Dcm-Dcs (see maps, Figures 18,19, back-pocket). A crude stratification is apparent in good
exposures and in some cut slabs. In some exposures inverse grading can be seen in the lowest 20-50 cm. Above this (or where it is not present), a weak horizontal alignment of clast long-axes and poorly-developed graded cycles were commonly apparent (Plate 5F). Bedding could not be precisely defined. Rarely thin (<15 cm), discontinuous pebbly-sandstone lenses occur in the upper portions. Apparent long-axes of clasts are preferentially oriented along south or southwest azimuths (Figure 7G-J). This is parallel to paleocurrent directions determined in the underlying sandstones (Figure 6A-D).

A moderately-sorted, obviously stratified diamictite (Dcs) occurs where this subunit is not present. It can also overlie this unit with a sharp or gradational contact. It usually consists of poorly defined, normally-graded beds tens-of-centimetres thick with pebble/cobble bases and granule- to coarse-grained sandstone tops (Plate 5G). In some areas, this upper subunit is well defined, with distinct graded cycles and faint planar (to trough?) cross-stratification visible in the pebbly-sandstone upper portion (Plate 5H). Rarely, a cycle grades up into asymmetrically-rippled fine-grained sandstone with a thin (<1 cm), laminated, siltstone top.

Clast-supported diamictites in fining-upward associations closely resemble the previous subunit. Poorly defined beds are up to 50 cm thick. The lower 10-30 cm consists of moderately-sorted, faintly graded pebble-to-small-pebble clasts. This grades sharply into a coarse-grained, pebbly-sandstone which also fines upward slightly (Plate 6A). In a few places a lower subunit of diamictite similar to the poorly-stratified lower unit described previously is also present. Apparent long-axes of clasts in these units are randomly oriented on bedding surfaces (Figure 7K-L).
Figure 7. Clast apparent long-axis orientations for diamictites of Fan and Interfan Associations. Sample sites are shown in Figure 15, Appendix 4. The lithofacies is shown in the upper right corner of each diagram (see Table 1 for lithofacies code). Explanation of symbols as for Figure 4.
Rarely, clast-supported diamictites occur as small, discontinuous bodies within the other lithofacies. These channelized, lens-like units decrease in thickness from a central few meters, pinching-out on both sides within tens of meters. They have a sharp, erosive base with the lithofacies containing them (most often Frd-Shd, bDmm, or Dms). Most consist of a moderately-sorted, small-cobble to small-pebble layer which grades into a thin sandstone. Some comprise repetitive beds of normally-graded, gravel- to sand-sized clasts. Faint horizontal bedding/lamination or rarely, planar cross-stratification are present in the sand-sized portion.

3.5 **Heterolithic Diamictite Complex**

This association comprises diamictites complexly intercalated with sandstones and fine-grained lithofacies. Lithotypes do not occur as stratigraphically confined units, as does the basal diamictite, or as members of a well-defined sequence of changing lithofacies as for fan associations. The prefix “upper” was used during mapping to distinguish this association from the basal diamictite.

This complex can be subdivided into units that occur at approximately the same stratigraphic position as the fan associations and overlying units that form the stratigraphically highest lithologies in the study area. The higher assemblage is approximately restricted to the area bounded by the Valley Fault on the west and the Cobalt Lake Fault on the east, plus the highest units west and north of the Valley Fault (Figure 18 and cross-sections C-C', E-E', F-F'; Figures 20, 21, back-pocket).

Lower Stratigraphic Assemblage

Lithologies of this assemblage generally overlie fine-grained or
sandstone lithofacies of the fan associations. Occasionally, this diamictite complex directly overlies the basal diamictite or the unconformity surface, making distinction of a Dmm unit difficult or impossible (eg. northwest side of cross-section C-C', Figure 20, back-pocket).

The most common lithology is matrix-supported diamictite, either stratified (Dms) or massive (Dmm). The former consists of units 0.5 - 1.5 m thick. The thick sections actually may be composite units, because contacts between separate Dms subunits are generally not distinguishable unless another lithology is interbedded (Plate 6B). Gravel-sized clasts typically form 10-70% of a unit and consist of angular to subrounded granules to boulders (largest observed: 140 cm). Some of these clasts appear faceted (Plate 6D). Framework clasts are dispersed in a very poorly sorted, feldspathic wacke similar to that of the basal diamictite, but with occasional faint stratification at thin-section scale. This consists of a subparallel alignment of elongate sand-sized clasts and rarely, the presence of faint, wavy laminations. A crude stratification is also apparent at outcrop scale, consisting of wavy laminations and/or a rough subhorizontal alignment of elongate, gravel-sized clasts. Rarely, a poorly-developed imbrication is apparent. Some clasts have deformed and/or pierced the faint wavy laminae, suggesting a dropstone origin.

This lithology occurs interbedded with other diamictite, sandstone and fine-grained lithofacies. Where discernible, the lower contacts are sharp and in places erosive into the lower unit. This is especially noticeable where underlying laminated fine-grained units occur (Plate 6D). Upper contacts are generally indistinct with overlying diamictites, and sharp with non-diamictites. Rarely, dewatering has caused
intermixing of sands and diamicton, disrupting the contacts. Projecting clasts are occasionally present at the top contact.

Some diamicrites appear to be massive (Dmm). These generally contain fewer gravel-sized clasts (<30%), but are otherwise identical to the stratified diamicrites. Thin, discontinuous, contorted sandstone lenses are rarely present. The massive diamicrite units can be thick (up to 15 m), but recognition of subunit contacts is difficult unless another lithology is interbedded.

The lateral extent of the matrix-supported diamicrites is difficult to ascertain due to the subtle contacts between coincident units. In many areas, no definite change in diamicrite type is apparent over hundreds of metres of exposure, suggesting relatively extensive sheets, although a composite of multiple, virtually identical subunits is suspected. In some places, thin discontinuous lenses of this diamicrite can be mapped.

Unusual structures observed in the matrix-supported diamicrites include a grooved surface on the top of a Dms unit. At the largest exposure (Plate 6E), linear, parallel grooves (2–20 mm amplitudes and 5–10 mm wavelength) are oriented in a direction (135°) which roughly coincides with the local paleoslope. The grooves disappear beneath another Dms unit and have a thin, patchy, siltstone drape, eliminating the possibility of Pleistocene origin.

Two unusual sedimentary boulders were found in Dms units. Both consist of pebbles and cobbles with a wacke matrix and appear identical to Coleman Member clast-supported diamicrites (Plate 6F). The irregular clast boundary is defined by complete, projecting cobbles or pebbles, supporting a synsedimentary source. The example in Plate 6F occurs in
faintly-to well-stratified transitional Dms-Frd. It both depresses and pierces faint laminations. This observation, supported by orientation of the boulder with its largest cobbles at the bottom, suggests final deposition as a dropstone.

A third unusual feature is the rare occurrence of isolated gravel-sized, intact-framework clusters (Dcm) in the generally dispersed-framework Dms units. These clusters tend to be ovoid in sections approximately parallel to bedding and are up to several metres in maximum diameter.

Other lithologies are interbedded with the matrix-supported diamictites. Clast-supported diamictites (Dcm or Dcs) occur as sheets or lenses, usually <2 m thick (rarely up to 5 m). Most of the lensoid units are channelized, moderately-sorted, and fining-upward as previously described (page 38). Sheet-like Dcm units are generally massive, with a sharp, slightly loaded, non-erosive lower contact, although erosional contacts were rarely observed (Plate 6G). These poorly-sorted units exhibit a wide range of grading patterns. Some are nongraded or have a crudely-defined, coarse central portion with nongraded, unsorted top and bottom sections. Some show vague normal grading, with projecting clasts at the top surface (Plate 6H). A thin, finer-grained, laminated, or rippled, bed drapes some of these units (Plate 7A). Inverse- to normal-graded sequences also occur.

An unusual Dcm unit of variable thickness (2-5 m) occurs in the southeastern part of the map area (cross-section A-A'; east side, Figure 21). It consists of an unsorted framework of gravel-sized clasts with an unusually large boulder fraction (>20%; largest: 2.7 m). Some of the large boulders are broken and the fragments are slightly separated (Plate 7B,C). The spaces between the fragments have been infilled by
the enclosing diamicrite. Most of the broken fragments are not significantly dispersed, reflecting in situ fracturing of the clasts. The top contact of this unit is irregular, with some clasts projecting more than 10 cm. An overlying F1-Sh unit covers and infills between the projecting clasts. Compaction may have accentuated, or even caused, such draping of the laminated unit around the uppermost clasts.

Apparent long-axis orientations of clasts in these diamicrites (both massive and clast-supported) are preferentially oriented along a southeast to southwest azimuth (Figure 7A-F).

Sandstones occur as discontinuous sheets or lenses. These are generally coarse- to medium-grained feldspathic arenites or wackes, less than 2m thick and tens to a few hundred metres in extent where this could be determined. Most have sharp, loaded or erosive bases with underlying matrix-supported diamicrites and conformable, draping contacts with clast-supported diamicrites. Usually they consist of a single bed which is apparently massive or graded. Inverse to normal grading is common (Plate 7E), although normally-graded sequences also occur, some with a thin overlying faintly-laminated and locally rippled mudstone or fine-grained sandstone.

Two fine-grained lithofacies are associated with the lower portion of the diamicrite complex. The most extensive are part of the fan association and occur below or are laterally transitional to the diamicrite complex. Where a lateral progression from coarse-grained Frd-Shd lithofacies to stratified diamicrites is observed, complex and abrupt lithologic variations are typical. A less abrupt and sharply intercalated lateral transition also occurs. In one area (cut by cross-section C-C', east side; Figure 21, back-pocket), a gradational
southward transition from Dms to Frd occurs over a few hundred metres.

To the north, 10–15% pebble- to boulder-sized clasts are dispersed in a faintly and irregularly laminated fine-grained wacke which directly overlies the basal diamicite (see MS-5, Appendix 1). Southward, the matrix size decreases, laminations become more regular and gravel-sized clast percentage decreases. The stratigraphically equivalent unit to the south is a well-laminated rhythmite (Frd) that contains rare dropstones (Plate 3A). This rhythmite unit contains a thick (thinning from 7 m to 2 m over 200 m, shown on cross-section B-B' east side; Addition 4, back-pocket), tapered sheet of massive, clast-supported diamicite composed mostly of large pebbles, cobbles and sparse boulders. It occurs within the Frd unit with a sharp, loaded, lower contact and an irregular upper contact with projecting boulders, draped by Frd (similar to Plate 7D).

Irregularly laminated mudstones also occur in the lower stratigraphic assemblage. They are not obvious components of fan association sequences, although their stratigraphic position suggests that many are laterally equivalent to the rhythmites of other areas. These poorly-laminated units were described in detail in the previous section (Fine-grained Lithofacies).

Upper Stratigraphic Assemblage

The highest stratigraphic units in the study area consist of a complex series of diamicite bodies with minor occurrences of other lithologies. This portion of the Coleman Member at Cobalt is preserved in a relatively small area, and most exposures are restricted to isolated occurrences, with the exception of the ridge where a detailed section (MS-4) was measured (Appendix 1).

Matrix-supported diamicites within this upper portion occur as
thick (up to 10 m) tabular sheets, although, as for the lower assemblage, it is difficult to distinguish contacts between multiple Dms or Dmm units. Units include massive, unsorted Dmm with 10-50% granule- to boulder-sized clasts, most subangular to subrounded, dispersed in feldspathic wacke. Some Dm units are faintly stratified with irregular thin sandstone lenses. Others contain a wavy, nonrhythmically-laminated matrix of fine-grained sandstone and mudstone (Plate 7F). Apparent long-axes of clasts within these diamicrites are randomly oriented (Figure 8A-D).

Clast-supported diamicrites also occur. Some appear massive but have a reverse-graded base (up to 50 cm thick) that rests on a surface slightly eroded into the underlying unit (Plate 7G). A few discontinuous (<5 m), thin (<10 cm), Fl lenses appear to be interbedded with these thick (up to 17 m) units, suggesting that they actually consist of multiple subunits. Above these Fl interbeds a thin, reverse-graded zone is locally apparent. Rare stratified, clast-supported diamicrite typically consist of a crudely stratified, poorly-sorted, intact-framework of granule- to boulder-sized clasts with a feldspathic wacke matrix. Stratification consists of a subhorizontal alignment of elongate clasts, a crude bedding, defined by poorly developed size-sorting (poor normal- or reverse-graded cycles) and the rare occurrence of discontinuous pebbly-sandstone interbeds which show a poorly developed normal-grading. Apparent long-axes of clasts strongly trend along a southwest azimuth (Figure 8E-G).

Fine-grained units within the higher diamicrite package tend to be nonrhythmic, poorly laminated mudstones similar to those described for the lower stratigraphic assemblage. Most occurrences are not associated with coarser-grained, stratified sequences as in the lower stratigraphic
Figure 8. Clast apparent long-axis orientations for diamicrites of the Upper Diamictite Complex. Samples sites are shown in Figure 16, Appendix 4. The lithofacies is shown in the upper right corner of each diagram (see Table 1 for lithofacies code). Explanation of symbols as for Figure 4.
packages. In thin section, the nonrhythmic nature of the laminations and diffuse contacts between laminae are readily apparent (Plate 7H). A more regularly laminated and continuous, but nonrhythmic, unit exists in a few places. Diamictite lenses with erosional bases (Plate 7I), lonestones, and discontinuous beds of gravel-sized clasts, are present in a few places within these units.
CHAPTER IV
LITHOFACIES INTERPRETATIONS

4.1 Basal Diamictite Association

The characteristics and facies associations of the basal diamictite suggest an origin as a subglacially deposited, primary basal till (as defined by Boulton and Deynoux 1981; equivalent to the subglacial orthotill of Dreimanis 1983). Although definitions of till (and tillite, the lithified equivalent) vary, most authors agree that original transport and deposition by or from glacier ice is fundamental (see review in Dreimanis 1983). However, there is considerable disagreement on the amount of subsequent water-working or resedimentation a till can undergo and still be classified as a till. Opinions range from allowing no subsequent resedimentation (Lawson 1981), to minor resedimentation without disaggregation (Boulton 1972), or even significant penecontemporaneous resedimentation, including settling through a water column (Dreimanis 1979, 1983; Gravenor et al. 1984). For this study, the relatively restrictive definition of Boulton (1972) is used. The many diamictite units in the study area show a great range of features and facies associations, suggesting a complex depositional history. The discrimination of a tillite in the restrictive sense is regarded as more useful than inclusion of possible tillites that also display resedimentation features compatible with alternate modes of deposition.

Recent papers which summarize criteria for the identification of tillites vs. diamictites of non-till origin include Boulton and Deynoux (1981), Anderson (1983), Dreimanis (1983) and Gravenor et al. (1984). All of these authors stress that no one criterion uniquely
differentiates tillite. Only the association of several characteristics can be regarded as a reliable indication of till origin (sensu stricto).

The stratigraphic position of the basal diamicite and its relationship to other facies supports a subglacial tillite interpretation. It directly and sharply overlies a glacially scoured and shaped basement or, rarely, another diamicite which is interpreted to be a subglacial, lee-side tillite. The basal diamicite is sharply or gradationally overlain by dropstone-bearing rhythmites or other glacially-derived lithofacies. It is laterally persistent, occurring on paleotopographic slopes, highs and lows.

Lithologic characteristics of the basal diamicite also are typical of basal tills. It incorporates the immediate substratum (lee-side derived breccia). It also contains both far-travelled clasts (plutonics and high-grade metamorphics) and volcanic clasts similar to local lithologies (although most volcanic clasts are not diagnostic of distance of travel, because massive and pillowd volcanics are common throughout the Abitibi Subprovince). The apparent shapes of gravel-sized clasts correspond well to those shown by Boulton (1978) to indicate basal or low-englacial transport paths. The highly spherical and commonly subrounded granitoid clasts are the expected end-member of extensive transport in the basal traction zone of the glacier. Faceted clasts, an intermediate form according to Boulton, are relatively scarce at Cobalt; this may reflect extensive basal transport and/or the difficulty in recognizing this form in two-dimensional lithified exposures. The latter suggestion is supported by Coleman’s (1907,1908) description of faceted and striated (in two or more directions) pebbles and cobbles recovered from underground mine workings at Cobalt. Both framework and matrix of the basal diamicite exhibit textural
features that are common to tills. The lack of sorting and the mineralogical immaturity (i.e. "fresh" feldspars and high lithic grain content) are typical of till matrix (Anderson 1983). The high percentage of silt-sized clasts and the subangular, broken appearance of many silt- and sand-sized clasts may reflect comminution in the basal traction zone (as described by Boulton 1978).

The generally massive nature of the basal diamicrite is common in basal tills (Boulton and Deynoux 1981, Anderson 1983, Dreimanis 1983, Gravenor et al. 1984). The sporadically distributed and irregularly laminated, upper zone may represent englacially layered sediment. Such deposits have been observed in recent tills by Boulton 1970 and Lawson, 1981, but are rarely preserved within Pleistocene tills (Boulton 1970). A more likely explanation is reworking during deposition of the overlying lithofacies (usually rhythmite). The discontinuous sandstone lenses rarely observed in the basal diamicrite also have a counterpart in Pleistocene and recent tills. Kruger (1979) cites thin, distorted, discontinuous sandstone lenses as indicative of basal till, and suggests an origin from local and temporary meltwater concentrations.

The apparent long axis orientations of large clasts within the basal diamicrite show a strong northeast-southwest trend. This conforms with the dominant southwest direction of ice movement deduced from stoss and lee structures and derived breccia; similar ice movement has been proposed in other studies (Cooke 1922, Schenk 1965a, b, Lindsey 1967). Orientations of clast long axes parallel to the direction of ice movement is typical of subglacially derived tills (Holmes 1941; Boulton 1971; reviews by Andrews 1971; Domack and Lawson 1985). Up-ice imbrication of clasts is also common in basal tills (Boulton, 1978), but
the exposure type and high induration at Cobalt precludes this type of fabric study.

Rare discontinuous intrabeds of stratified, pebbly sandstone and clast-supported diamicite which occur at the lower contact, or within the basal diamicite, also have parallels in Pleistocene basal tills. Shaw (1977) describes similar units in a thick sequence of melt-out till, and interprets the stratified lenses as the accumulation from small subglacial and englacial meltwater channels. A similar origin is proposed for the stratified intrabeds of the basal diamicite.

The several lines of evidence presented above strongly support a till origin in the restricted sense and, more specifically, an interpretation as a subglacial, primary till. Primary till is commonly subdivided into two major types: lodgement and melt-out (Boulton and Deynoux, 1971; Dreimanis, 1983; Ashley et al., 1985). Learnside till is a special type of lodgement till according to Boulton 1978. Many of the principal distinguishing criteria for lodgement till (reviewed by Eyles et al., 1982) are lacking in the basal diamicite, including fissility, shear lamination ("smudges" of Kruger 1979) and a systematic jointing pattern. However, it seems unlikely that these features would be preserved in the highly indurated, metamorphosed, post-lithification-jointed, basal diamicite. Most other criteria for the recognition of lodgement till also apply to basal melt-out till (clast orientation and shape for example). Although the presence of stratified intrabeds and thin discontinuous sandstone lenses in the basal diamicite supports a melt out genesis, the basal diamicite lacks sufficient features to conclusively select the appropriate subdivision.

The unusual clast-supported diamicite which overlies the unconformity surface regolith in two paleodepressions also appears to be
a subglacial deposit. The massive, non-sorted nature and occurrence directly below the basal tillite suggests a tillite interpretation. However, preservation of the regolith in paleodepressions and restricted occurrence of the Dcm in paleodepressions suggests a unique mode of subglacial deposition in which subglacial cavities formed at a south-facing scarp. The unusual diamicite overlying these breccias is interpreted as a subglacial, lee-side deposit in these cavities. Boulton (1971), Eyles and Menzies (1983) and Hillefors (1973) discussed possible mechanisms of deposition in lee-side cavities. Boulton (1978) termed these deposits lee-side tills. A possible model for the Cobalt occurrences is shown in Figure 9. Basal debris, much of it locally derived, is expelled from the overriding ice due to pressure-release and collects in the cavity. The random orientation of clast long-axes in this diamicite (Figure 4A) may reflect such subglacial expulsion of clasts into a cavity. Lack of stratification and sorting in the clast-supported diamicites or reworking of the north breccia implies that little meltwater was present. This suggests flow of the south breccia downslope may have been a slow, slope creep event rather than a rapid water-saturated mass flow. The faintly-stratified, matrix-supported diamicite lens below the south breccia suggests some early subglacial meltwater activity.
Figure 9. Model for subglacial deposition in a lee-side cavity based on Hillefors 1971; Boulton 1971; Eyles and Menzies 1983).
4.2 Subaqueous Outwash Fans

The coarsening-upward fan associations are interpreted as deposits of subaqueous outwash fans as defined by Rust and Romanelli (1975), termed subaqueous esker-deltas by Thomas (1984). Many features suggest that deposition occurred in a subaqueous environment: sandstones within the fan associations contain dropstones; the fan lithofacies are at the same stratigraphic level as, and overlain by, diamictite-rhythmite-sandstone lithologies that also contain dropstones; sedimentary structures indicative of subaerial exposures are completely lacking from all lithofacies within the study area; regionally, the Coleman Member is conformably overlain by non-glacial, marine, prodeltaic mudstones deposited below wavebase (Rainbird 1985).

Rhythmites and the nonrhythmic, fine-grained lithofacies are interpreted as lower-fan and fan-distal deposits. Paleocurrent indicators and the lithologic distributions suggest that the southerly-directed meltwater discharges were the only significant current-source in this part of the basin. Laterally equivalent poorly-laminated mudstones may represent distal areas where the direct effects of this meltwater input were rarely felt. Similar types of deposits are described from glaciolacustrine lakes by Smith (1978) and Gustafson (1975). Alternatively, if the basin was marine, the poorly-laminated mudstones could reflect normal marine sedimentation in relatively distal areas where the high sediment concentrations and lowered salinity due to high meltwater discharge do not strongly affect the sedimentation patterns (Mackiewicz and Powell 1982; Domack, 1984).

The thin, basal silt-clay rhythms are interpreted as distal-fan deposits. Whereas a marine environment is possible (discussed in Chapter 5), the characteristics of these sediments are very similar to distal
rhythmites/varves described from glaciolacustrine lakes (Ashley 1975; Gustávson et al. 1975; Gustavson 1975; Ashley et al. 1985). The sharp, non-erosive couplet contacts, lack of current-structures, thicker clay than silt layers, and generally sharp silt-clay contacts are similar to features described from rhythmites formed by sediment-rich interflow/overflows (Ashley et al. 1985; Ashley 1975). These correspond to the distal varves of Bannerjee (1973), lake varves of Gustawson et al. (1975), and Group I varves of Ashley (1975). Ashley et al. (1985) provided a review of known processes of interflow/overflow formation and resultant deposits. They concluded that the differentiation of interflow from overflow deposition is impossible on the basis of sedimentary characteristics alone.

Some couplets in the lower rhythmites are continuous, normally-graded sequences without distinct silt-clay contacts. This is more typical of density-driven, turbid underflow deposits (Kuenen 1951; Bannerjee 1973; Ashley 1975), which can be a result of quasi-continuous distal meltwater underflows or short-lived, slump-generated surge-currents (Ashley 1975; Shaw and Archer 1977). The scarcity of microlaminae in the couplet layers and the transitional silt-clay contact is more consistent with single sudden-event deposition rather than irregular, long-term deposition from meltwater underflow (see discussion in Ashley et al. 1985; p. 197).

The intermediate rhythmites show an increase in multiple silt lamina, complex grading patterns and more evidence for basal currents (deformed flames, rare cross-lamination) in comparison to their distal equivalents. These features suggest deposition predominantly by density underflows as proposed for the Group II varves of Ashley (1975) or
intermediate varves of Bannerjee (1973). Sharp silt-clay contacts are still relatively common, and the silt layer microtextures (laminae, multiple grading) indicate underflow rather than overflow/interflow conditions in many cases. Multiple graded silt laminae within similar Pleistocene and recent rhythmites are commonly attributed to the unsteady nature of the quasi-continuous meltwater underflow or fluctuations in sediment content of the meltwater stream (Ashley 1975; Shaw 1975; Gustavson et al. 1975; Smith 1978). Flow types were probably combined with underflows becoming increasingly important closer to the meltwater influx point, changing to overflows/interflows in more distal areas. Slump-generated surge currents also occurred. They best explain rare starved-ripple sequences and single, anomalously-coarse laminae or thin beds of sandstone or coarse siltstone, rarely cross-laminated.

Thicker rhythmites of the upper rhythmite sequences are interpreted as proximal basin deposits or fan bottomsets (delta varves of Gustavson et al. 1975; Group III varves of Ashley 1975). Underflows appear to have been the dominant sediment transporting agent, as suggested by the presence of ripple cross-bedding, multiple normally-graded fine sand and silt laminae and local erosion of underlying rhythmites (producing scours and rip-ups). As with the intermediate rhythmites, the multiple coarse-grained laminae probably indicate velocity pulses in the quasi-continuous underflow. Fluctuating discharge velocities and sediment concentrations are well-documented in modern glacial meltwater currents (Smith 1978; Gustavson 1975). Rare, thin clay laminae within multiple sand-silt lamina may indicate pauses in the overall discharge pattern (Ashley et al. 1985). Thicker (up to 5 mm), normally-graded, silt-rich clay laminae are thought to represent periods of low sediment input, an interpretation proposed for similar Pleistocene sequences (Gustavson et
al 1975; Ashley 1975; Ashley et al 1985), These major discharge
fluctuations could be seasonal, but the presence of other controls on
discharge rates in modern environments makes such a conclusion tentative
(see Smith 1978 for discussion). The grading and silt content of these
clay laminae may indicate a lack of flocculation as has been proposed by
Ashley (1975) for similar clays in her Group III varves.

The massive to faintly laminated sandstone beds which occur within
upper rhythmite sections are interpreted as sediment gravity flows off
prograding mid- to upper fan regions. The generally massive beds,
occasional dish and pillar structures and lack of basal erosion are
indicative of transitional grain flow/fluidized flow (Middleton and
The main grain support method for these flows was probably a combination
of dispersive pressure and escaping pore fluid. Loading of these beds
into the underlying rhythmites suggests that the entire bed flowed en
masse onto the water-saturated muds. These sand accumulations are
associated with some of the deformation features in the rhythmites. For
example, thrusting of rhythmite layers into the sands (Plate 3H). Where
thrusting has not occurred, the basal sandstone contact is deeply loaded
with large asymmetric flames of rhythmite showing southward transport.
This load and flame deformation of the water-saturated rhythmites was
followed in some areas by the decoupling of flame structures on the
south edge and downslope thrusting of rhythmite sections. Shear stress
caused by the rapid deposition of the sand flow is thought to account
for this deformation. Similar but less extensive downstream
deformation occurs in other subaqueous fans, and was also related to
loading by sediment flows (Rust and Romanelli 1975).
Minor, short-displacement, downslope thrusts of rhythmite laminae (Plate 4C) appear to be a result of downslope shear stress. Rare, convolutely deformed packages of laminae seem to fit the generally postulated origin of liquefaction deformation as discussed by Lowe (1975), and Mills (1983). Convolute bedding and thrust faulting in rhythmites have been interpreted to be indicators of overriding by advancing/readvancing glaciers (Hansen et al. 1961; Moran 1971). However, relative rarity and localized occurrence of these features at Cobalt suggests that they instead reflect minor deformation, probably from downslope drag forces generated by slumps, sediment flows, sudden sediment loading, or normal compaction effects on a slope (as suggested for similar types of deformation by Mills 1983; Vissor et al. 1984). Rare clastic dykes of massive sandstone that cut the rhythmites are considered to be dewatering structures where fluidized sands were injected upwards from underlying, overpressured sand units, a process discussed by Lowe (1975). The above methods also can trigger clastic intrusions (Lowe 1975).

A few isolated high-angle normal and reverse faults are probably due to compaction, as suggested for similar structures in the Dwyka Formation in South Africa (Visser et al. 1984). These do not resemble the paired high-angle fault systems seen in Pleistocene sequences and interpreted to be the result of the melting of buried ice blocks (McDonald and Shilts 1975; Boulton 1972; Shaw 1977). No features suggestive of buried ice masses were observed in the study area.

The transitional contact of rhythmite-sandstone units reflects the continuous distal to proximal variations in grain-size and sedimentary structures due to increased velocity and coarser-sediment load closer to the site of meltwater influx. A proximal-distal pattern of sedimentary
structures and grain-size variations is a common characteristic of delta or fan deposition, both in glacial and nonglacial environments (Gustavson et al. 1975; Church and Gilbert 1975; Walker 1984).

The thinly-bedded, graded, fine-grained sandstones of the sandstone-rhythmite transition and the lower portions of the continuous sandstone bodies are interpreted to be more proximal equivalents of the finer-grained rhythmites. Deposition is again thought to have resulted from quasi-continuous underflows. The fluctuating nature of these flows is reflected in the grading, occasional ripple forms and small-scale planar cross-laminations that are preserved within these beds. Climbing-ripple sequences are not abundant in the rhythmite-sandstone transition, in contrast to many Pleistocene and Recent deposits (Gustavson et al. 1975; Jopling and Walker 1968; Ashley et al. 1985). Where poorly-developed climbing-ripple sequences are developed, the sinusoidal lamination form of Jopling and Walker (1968), termed draped lamination by Gustavson et al. (1975), are most abundant. Flume studies suggest that this structure results from suspension settling during the waning stages of short-period, lower-flow-regime pulses (Ashley et al. 1982). The relative scarcity of climbing-ripple structures at Cobalt must reflect flow strength and/or sediment concentration levels that preclude the formation of this structure.

Planar cross-bedded and occasional trough-crossbedded sandstone and pebbly sandstones of the upper sandstone bodies reflect higher current velocities in increasingly proximal areas. Graded cycles of pebble-granule-coarse sand beds reflect temporal flow fluctuations. Bannerjee and McDonald (1975) interpreted similar gravel-sand cycles in a Pleistocene esker-delta as representing annual flow variations. An
annual periodicity is possible for the Cobalt examples, but existence of non-seasonal controls on meltwater discharge rates makes such a specific interpretation impossible. Rare, isolated beds of massive to faintly stratified, non-graded, clast-supported pebble diamictite within the pebbly sandstones are interpreted to be debris flows from fan apical diamictons. These coarse flows may initiate, or be proximal equivalents of, surge-current deposits and other sediment flows seen in the more distal facies.

Variations in the overall coarsening-upward sandstone-pebble sandstone trend occur. An example is the sudden upward transition in MS-J (Appendix 1) from coarse-grained sandstone to graded, gravel-pebble sandstone, then to cross-beded sandstones. This and similar sequences may reflect migration of discharge currents across mid- to upper-fan areas.

The clast-supported pebble-cobble-boulder diamictites which commonly cap the sandstone units are thought to be deposits at the fan apex, which roughly corresponds to the subglacial meltwater influx site. The proximal gravel facies of other subaqueous outwash fans have similar characteristics (Rust and Romanelli 1975; Rust 1977; Cheel and Rust 1982; Thomas 1984). The poor sorting, crude stratification and poorly-developed grading patterns suggest rapid deposition from meltwater streams suddenly exiting from confined subglacial/subglacial tunnels. This interpretation is supported by the parallel-to-flow clast long-axis orientations characteristic of some of these diamictites (Figure 7G-J). These orientations can be due to saltation transport of high gravel concentrations near the bed (Rust 1977; Walker 1984). The high energy conditions required for saltation transport of cobbles and boulders is dissipated after exit of the meltwater from the tunnel into an unrestricted basin. Some bedload rolling of clasts is indicated by
the slight transverse-to-flow orientations. A lack of observed channels is common to the Cobalt deposits and to those of Rust and Romanelli (1975), a feature Rust (1977) felt could be due to the difficulty in distinguishing such forms in the very coarse-grained material.

In some sequences, cyclic, normally-graded pebble-granule-coarse-grained sand beds occur above the thick, crudely-stratified, clast-supported diamicite. Textures and sedimentary structures are similar to those in the graded cycles occurring below the diamicites. They could be due to lateral migration or waning flood-stage currents of the main meltwater flow in proximal areas of the fan, or might reflect a rapid retreat of the ice-front, causing overlap of more distal upper fan facies onto the fan apex gravels. Possible ice-front controls on sedimentation are discussed in more detail in Chapter 5.

The thinner, less extensive, fining-upward fan associations usually contain lithologies and sedimentary structures similar to those of the coarsening-upward fans. Similar overall proximal-distal trends are observed, but with a reverse order of vertical sequences. In the best exposed example (base of MS-1, Appendix 1), the crudely-stratified proximal gravels of the larger fans are not present. The lowest unit consists of cyclic, normally-graded clast-supported diamicite, pebbly-sandstone beds which grade vertically into thinly-bedded, dropstone-rich, proximal rhythmites. Fluctuation in flow strength of meltwater underflows again appears to be responsible for these cyclic deposits. The relative thinness of these associations and their fining-upward trends, suggest deposition during short periods of high meltwater activity, combined with rapid retreat of the ice front (discussed in Chapter 5). The random orientation of clast apparent long-axes in these
beds is unexpected. Possibly it reflects saltation and bedload rolling transport in a small channel combined with fluctuating (waning overall) currents. This could cause preferred orientations both parallel and perpendicular to the flow direction, in this case giving a seemingly random overall pattern. The possible bimodal trend of Figure 7L supports this hypothesis.

4.3 Lower Assemblage - Heterolithic Diamictite Complex

The diamictites, sandstones and minor fine-grained lithofacies of this assemblage occur in interfan areas where meltwater currents were, not dominant depositional agents. Most of these lithologies are interpreted to be the deposits of sediment gravity flows, originating from prograding fans, ice-marginal banks or perhaps from flows off the ice sheet itself.

Sediment gravity flow (also called sediment flow or mass flow) is sediment transport in which movement parallel to the bed is due to gravity (Middleton and Hampton 1976). It encompasses a wide range of flow types and resultant depositional sequences. The classification scheme and nomenclature of Lowe (1979, 1982), used here, is based on the nature of the dominant sediment-support mechanism and the flow behaviour (plastic or fluid), and differs slightly from the Middleton and Hampton (1976) classification as shown in Table 2.

Rhythmite units are common at the base of, and intercalated within this heterolithic complex. These were interpreted earlier as distal fan interflow/overflow deposits. Poorly-laminated mudstones were interpreted as deposits in the most distal areas from the meltwater influx sites, but not necessarily distal with respect to the ice front.

Whereas most diamictites of the interfan complex overlie sandstones
or rhythmites of fan associations, some occur directly on basal diamictite or the unconformity surface. These matrix-supported units resemble the basal diamictite, but are irregularly-stratified with a faint, sometimes distorted lamination or bedding. Long-axis orientations of gravel-sized clasts within these stratified diamictites show a slight reorientation with respect to the basal diamictite (Figure 7E,F). The adjacent stratigraphic association and similarities in texture and composition to the basal diamictite suggests a similar till origin. However, the presence of distorted stratification and the pebble-fabric trends indicate that resedimentation has occurred. The poor sorting, lack of grading, non-erosive contacts and homogeneous appearance of these diamictites suggests debris flow transport. Their stratigraphic position and facies association supports an origin as ice-marginal debris, most likely as small morainal banks similar to those described by Powell (1981, 1984) that form at the margin of subaqueously-grounded ice sheets. These banks form from englacial and subglacial melt-out of debris, with debris possibly added from meltwater currents or flows off nearby fans. A slowly retreating or quasi-stable grounding line is implied, possibly coupled with minor (perhaps winter) advances of the ice sheet causing the push moraines described by Powell (1981, 1984) and May (1977). Clast shapes are similar to those of the basal diamictite, suggesting subglacial-englacial transport with little included supraglacial debris, based on studies of boulder-shape and ice-transport paths (Boulton 1978; Dowdeswell et al. 1985). This supports an origin as banks formed at the ice-sheet grounding line since englacial layers are not thought to be significantly deformed or sheared upward in the front of large, subaqueously-grounded ice sheets (Powell
<table>
<thead>
<tr>
<th>Flow Type</th>
<th>Sediment Support Mechanism</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turbidity Current</td>
<td>Fluid Turbulence</td>
</tr>
<tr>
<td>Fluidized Flow</td>
<td>Escaping Pore Fluid</td>
</tr>
<tr>
<td>Grain Flow</td>
<td>Dispersive Pressure</td>
</tr>
<tr>
<td>Debris Flow</td>
<td>Matrix Strength</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Flow Behaviour</th>
<th>Flow Type</th>
<th>Sediment Support Mechanism</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluidal Flow</td>
<td>High Density Turbidity</td>
<td>Fluid Turbulence</td>
</tr>
<tr>
<td></td>
<td>Current</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Low Density Fluidized Flow</td>
<td>Escaping Pore Fluid</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Full Support)</td>
</tr>
<tr>
<td>Liquefied Flow</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Debris Flow (Bingham)</td>
<td></td>
<td>Escaping Pore Fluid</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Partial Support)</td>
</tr>
<tr>
<td></td>
<td>Grain Flow</td>
<td>Dispersive Pressure</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Matrix Strength and</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Matrix Density</td>
</tr>
<tr>
<td></td>
<td>Mudflow or Cohesive Debris Flow</td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Sediment gravity flow classification schemes of Middleton and Hampton 1976 (Top); and Lowe 1979 (Bottom).
1984; Anderson et al. 1984). These banks are highly unstable, with flows off the bank-slopes common and complete collapse possible when a previously stationary grounding-line retreats (Powell, 1984). Shock waves from ice-calving may also initiate flows off the unstable slopes of these banks and from the outwash fans (Rust 1977; Powell 1984). At Cobalt, these banks are interpreted to have collapsed by a series of debris flows. This term is used in the general sense of Lowe (1979) for plastically behaving flows with the sediment supported by a combination of dispersive pressures, matrix strength and minor escaping pore fluids.

The clast orientations at both sites show a weak secondary trend parallel to the underlying basal diamicrite. This weak trend may reflect the original till orientation, with the main trend due to reorientation of clasts during mass flow off the banks. Lawson (1979, 1981) documented preferred orientations both parallel and perpendicular to flow in sediment flows of water-saturated tills in Alaska. Similar orientations were predicted by May (1977) and reported by Evenson et al. (1977) for subaqueously reworked diamictons.

Similar remobilized subaqueous tills have been documented in Pleistocene or pre-Pleistocene deposits and termed flow tills (Evenson et al 1977; Oremanis 1982), lacustrotill (May 1977) or ice-marginal debris flows (De Jong and Rappol 1983; Visser 1983). Facies associations and stratigraphic positions are major elements supporting a till origin. In isolation, features of these units reflect debris flow transport, but not necessarily a till origin. For this reason the terms "flow till" or "lacustrotill" are rejected in favour of subaqueous debris flow deposits (a convention supported by Gravenor et al. 1984; and Powell 1984).

Matrix-supported diamicrites interbedded in higher levels of the
interfan complex are also interpreted as debris flows. These massive, poorly-sorted diamicrites show a lack of lateral continuity, non-erosive basal contacts, and interbedding with other sediment gravity flows, indicating that these units are not tills deposited by readvances of the ice sheet. Instead, these features are typical of cohesive debris flows which travel downslope with grain support from matrix strength and density. They are deposited by mass emplacement when the gravity-caused shear stress drops below the yield strength of the moving material (Lowe 1982).

Rose diagrams for two of these units (Figure 7A,D) show strongly preferred orientations (NNE-SSW). Evidence for flow directions were not observed in these specific diamicrites. Studies by Enos (1979), Lindsey (1968), Middleton and Hampton (1976) suggest that parallel to flow orientations of clasts might occur within debris flows. However, Lawson (1979, 1982) and Evenson et al. (1977) showed that both parallel- and transverse-to-flow orientations can be developed in water-saturated debris flows originating from glacier debris. Thus the use of fabric as the only means of flow direction indicator is not warranted. The strong central tendency of clast apparent long-axes in these diamicrites argues against a dropstone diamicite interpretation with ice-rafting as the major source of the clasts. Domack (1983) and Domack and Lawson (1985) showed that ice-rafted diamictons have a very weak or random horizontal orientation of clasts. Anderson (1983) suggested that bottom currents might slightly realign ice-rafted clasts after deposition. The strength of the fabric patterns for these diamicrites seems greater than could be attributed to bottom currents alone.

Crudely-stratified, rarely poorly-imbricated diamicrites within the
interfan complex contain features similar to those of the massive diamictite, again suggesting debris flow transportation. However, the poor imbrication, slightly erosive lower contacts, and evidence of dewatering at upper contacts in some units suggests that grain-support mechanisms also included fluid effects and slight turbulence (Lowe 1976b, 1979; Middleton and Hampton 1976). Similar features have been interpreted as the result of density-modified grain flows of gravels (Lowe 1982; Lash 1984), a transitional debris flow—high-density turbidity flow process (Lowe 1979). Enos (1977) showed that erosive turbulence can occur in initial stages of debris flow. This may account for the slightly erosive contacts in places observed at Cobalt. As initial flow velocities decrease, the turbulence changes quickly to more typical laminar conditions at the boundaries of the debris flow (Enos 1977; Middleton and Hampton 1976; Lowe 1979, 1982). Laminar conditions could cause the preferred clast-orientations noted on horizontal surfaces of some of these diamictites, as well as the observed subhorizontal orientation of many clasts in vertical sections. Similar orientations were predicted by Lindsey (1968) for debris flows and documented by Lash (1984) in gravelly, density-modified grain flows.

Dropstones within these flows indicate that ice-calving was occurring penecontemporaneously. Rare clusters of intact-framework gravel-sized clasts may also be related to ice-calving. Melt-out debris commonly accumulates on recent iceberg surfaces and, with overturning, a gravel mixture is deposited on the basin floor in localized concentrations (Powell 1981; Owenshine 1970). Pleistocene occurrences of these dump structures were reported by Thomas and Connell (1985). The clast concentrations at Cobalt are exposed on smoothed horizontal surfaces, and thus the conical mound shape expected for these
structures could not be documented. The downslope oriented grooves uniquely preserved between two flows probably are due to clasts sliding at the base of the upper debris flow. This is a feature that Lowe (1979) suggested could be common at the base of debris flows. Middleton and Hampton (1976) interpreted similar bedding-plane grooves as slide marks formed when blocks of debris produced by tensile separation slid rigidly ahead of the main debris flow.

Clast-supported diamicritites within the interfan areas are interpreted as high-density sediment gravity flows, probably originating from upper-fan meltwater deposits. Channelized, stratified diamicritites could have originated as erosive high-density turbidity currents. Similar, discontinuous units were described by Walker (1984) and Hein (1982) as pebbly-sandstones and were related to suspension-sedimentation of gravels as turbulent flow begins to wane. Sandy upper layers form during continued deceleration of the flow. This is similar to the process proposed for the graded-stratified conglomerate model of Walker (1975). In cases where the channelized sequence contains multiple beds of graded clast-supported diamicrite and pebbly sandstone, surging flows are suggested. Surging flows show an oscillating decline of velocity, competence and capacity. Each surge exhibits an abrupt velocity increase followed by a gradual deceleration, resulting in repetitive grading and structure divisions (cf. Lowe 1982).

These channelized sequences can resemble the cyclic, graded, gravel-to-pebbly sandstone beds in the upper fan areas. They may represent channels in lower fan areas which were formed by unusually strong meltwater underflow currents flowing down the fan slope. Such an underflow is technically not a sediment gravity flow, because the
sediment is being transported by the moving fluid. The scarcity of these sequences, and their association with other deposits of sediment gravity flow origin, supports the first interpretation presented.

More extensive clast-supported diamictites of interfan areas contain features typical of resedimented conglomerates as outlined by Walker (1975, 1984). The massive, non-graded, non-erosive, poorly-sorted lithotypes correspond to the disorganized-bed unit of Walker, and an origin as cohesive debris flows is suggested. Rodine and Johnson (1976) and Hampton (1979) demonstrated experimentally that, when clast densities are high (up to 95%), the matrix strength of the flow is unchanged, but the greatly increased buoyancy allows support of isolated large boulders for great distances on very low slopes. This may explain the irregular upper surface of some of these units, in which large clasts commonly project into, and are draped by, the overlying unit. Projecting clasts have been cited as evidence for cohesive debris flows (Middleton and Hampton 1976; Lowe 1979, 1982; Nemec and Steel 1984).

Some massive diamictites have a vaguely-defined, coarser-grained central portion. This corresponds to the rigid plug zone thought to be a common feature of cohesive debris flows (Middleton and Hampton 1976). Enos (1977), Hampton (1975) and Middleton and Hampton (1976), demonstrated that in subaqueous debris flows, zones of shearing occur at the bottom and top of the flow, but the inner zone acts as a rigid plug. Hampton (1975) showed that competence is significantly greater in the rigid inner plug, and thus grain sizes should be coarser in this zone. Because the rigid plug migrates during flow, sharp intraflow boundaries are unlikely to form (Middleton and Hampton 1976).

Figure 7B shows the apparent long axis orientations of clasts in a clast-rich (partially clast-supported), diamictite which was deposited
over a slightly eroded sandstone (shown in Plate 6G). A poorly defined, nonsorted, internal plug of larger clasts, clasts projecting at the top, and its general lack of sorting all suggest a debris flow origin (cf. Middleton and Hampton 1976; Lowe 1982). The erosive lower contact is not typical of debris flows, and suggests some turbidity flow in initial stages at the base of the otherwise non-turbulent flow. The nature of the lower erosive contact, geometry of the diamicite body, and estimates of the local paleoslope all suggest that flow was roughly to the northwest. The strong preferred orientation thus is transverse to flow, probably reflecting clast-clast interactions or rolling of lower clasts as bedload. A slight parallel-to-flow orientation is also apparent, perhaps the result of laminar flow at flow edges during late stages of flow (Lindsey 1968).

The massive, clast-supported diamicite that contains fractured boulders (described in detail on pages 41-42) also appears to have formed as a cohesive debris flow. The massive nature, lack of sorting or grading, and presence of clasts projecting from an irregular upper surface, are, as discussed above, typical of cohesive debris flows. Although fractured boulders within cohesive debris flows are rare, Johnson (1970) documents recent cases of boulders fractured prior to flow, transported passively within subaerial debris flows and emplaced with the pieces only slightly separated. A similar (but subaqueous) origin is suggested for the fractured boulders at Cobalt. The original fracturing may have been a freeze-thaw or pressure effect related to subglacial or englacial transport. Alternatively, clast interactions within the flow could have caused the final separation of partially fractured boulders. The matrix density and strength of a cohesive debris flow could keep the pieces from separating widely, especially if
they were transported in a rigid plug zone. Infilling of the slight separations could occur either during flow or in the last stages of mass emplacement, perhaps due to a slight kinetic sieving mechanism similar to that proposed by Naylor (1980).

Inverse- to normally-graded and normally graded units, both with slightly erosive and/or loaded bases, are interpreted as high-density flows of the type described by Walker (1975) and Lowe (1982). The grading types suggest sediment-support mechanisms in addition to matrix strength and density. Bouyancy forces and dispersive pressure probably are major additional support mechanisms in these types of flows (Lowe 1976a, 1982, Lash 1984), termed density-modified grain flows. This is a type of flow transitional between cohesive debris flows and high-density turbidity flows as defined by Lowe (1976a, 1982; see Table 2). Inverse grading at the base of some units may reflect a sieving mechanism in which smaller grains displace larger grains upwards (Naylor 1980). Alternatively, a traction carpet layer can deposit a basal inversely-graded zone when intergranular dispersive pressure at the base of a slightly turbulent flow rapidly "freezes" as the velocity drops below the minimum necessary to maintain dispersive pressure (Lowe 1976a, 1982).

Occasionally observed inverse- to normally-graded sequences at Cobalt are interpreted according to the models of Walker (1975) and Lowe (1982). Inverse grading is formed from a highly-concentrated traction carpet layer, and normal grading represents direct suspension-sedimentation of coarser suspended gravel. In other units, extreme flow unsteadiness resulted in direct suspension-sedimentation without the development of a traction carpet, depositing a normally graded clast-supported diamictite. The last two diamictite types discussed correspond to the inverse- to normally-graded, and normally-graded

Both Walker and Lowe suggested that proximal to distal changes are apparent in flow deposits (disorganized to inverse- to normally-graded, to graded bed types in Walker's 1975 model). However, extreme flow separation is probably common, resulting in separated deposition sites without preserved lateral transitions (Lowe 1982). At Cobalt, these lateral transitions could not be documented within single units, suggesting that such flow separations occurred.

Some interfan clast-supported diamictites are directly overlain by thin sandstone or mudstone beds or laminae which are usually parallel or cross-laminated. These probably reflect winnowing of finer material from the gravelly, high-density flows. Hampton (1972) and Krause and Oldershaw (1979) discuss such a process where low-density turbulent clouds develop on the top of the main flow due to backward streaming of displaced water and sediment at the head of the flow. Deposition of the gravelly sedimentation wave is followed by deposition from a separate low-density turbidity current (shown in Figure 11). At Cobalt, these planar-laminated or thin-bedded sandstones and mudstones with ripple bedforms are interpreted as the B and C divisions of a Bouma sequence.

Coarse- to medium-grained interfan sandstone beds are interpreted as high-density sandy flows. These may be the residual portions of gravelly flows which continued downslope after deposition of the coarser gravel (Lowe 1982). This is a flow separation effect similar to that described previously. Grading sequences are similar to those seen in the clast-supported diamictites, and the processes probably were essentially the same, with density-modified grain flows and sandy, high-
density turbidity flows accounting for most of these isolated units. Some are overlain by thin, planar-laminated or rippled fine-grained sandstone or mudstone units. These are interpreted as B and C divisions of the Bouma turbidite model, reflecting waning turbulent flows velocities.

4.4 **Upper Assemblage - Heterolithic Diamictite Complex**

The restricted and in most places poorly-exposed occurrence of this assemblage hinders an extensive discussion of its origin. There is no direct evidence for a sudden change in depositional environment, or of an unconformity between the lower stratigraphic assemblage previously discussed and this complex. However, whereas the lower diamictite assemblage appears to occur in areas laterally equivalent to those of the subaqueous outwash fan associations, the upper package does not include well-developed rhythmite/sandstone/clast-supported diamictite associations. This suggests a significant change in the depositional environment of the upper assemblage.

Fine-grained lithofacies of this upper assemblage commonly consist of discontinuous silt and clay laminae of variable thickness with diffuse gradational contacts. These are in sharp contrast to the lower rhythmite units, interpreted to have been deposited by meltwater underflows and proximal interflows/overflows. The non-rhythmic laminae could reflect deposition in areas distal from the meltwater input sites. The diffuse contacts and discontinuous laminations are similar to features described by Mackiewicz et al. (1984) for distal laminated muds deposited by tidewater glacier meltwater in the Glacier Bay fjords of Alaska. Deposition is by suspension-settling of material transported by turbid overflows and/or interflows. Clay flocculation causes deposition of clay and silt at similar rates, resulting in a poorly-laminated
mudstone. The site of deposition is distal with respect to underflow deposits, but can still be within hundreds of metres to a few kilometres of the ice-front (Mackiewicz et al. 1984). This process has also been observed in Canadian Arctic fjords (Gilbert, 1983). Domack (1983) described similar mudstones (his pebbly-mud lithofacies) from a ice-proximal, Pleistocene glaciomarine environment. The similar features in the fine-grained lithofacies of the upper assemblage at Cobalt suggest comparable deposition in a glaciomarine environment, although not a fjord. This might reflect a significant change in the basin from lacustrine to marine conditions, or increased salinity effects in an ice-distal marine environment with deposition of the lower strata mimicking lacustrine conditions due to extreme meltwater input and sediment concentrations. These possibilities are discussed in detail in the next chapter. Single beds of diamicrite or rarely sandstone that occur within these mudstones are interpreted as sediment gravity flow deposits in areas of otherwise quiescent bottom conditions.

Dropstones are common within the upper assemblage mudstones, in contrast to underlying fan association rhythmites, where dropstones are relatively rare in the distal deposits. Some poorly-laminated mudstones contain abundant gravel-sized clasts; distributed randomly throughout the finer-grained matrix. Many of these clasts pierce mudstone laminae, implying a dropstone origin. These gravel-rich mudstones are a type of matrix-supported diamicrite, apparently formed by introduction of the larger clasts into the mudstones. The term dropstone diamicite (Powell 1984) seems applicable to these units. Pebble mudstones of similar origin were termed compound paratills by Anderson et al. (1980), but use of the term "till" for these deposits is inappropriate in view of the definition of till used in this study.
Some matrix-supported diamicrites are massive and unsorted. These appear to be more extensive than the similar diamicrites of the lower assemblage. An origin as subglacial tills deposited during a readvance of the ice sheet is considered unlikely, because major glaciotectonic deformation features are absent in the underlying strata. Also, there is no evidence of erosion, shaping, or incorporation of the substratum. Clast apparent long-axis orientation data for these diamicrites supports a non-till interpretation. The random patterns (Figure 8A-D) are in sharp contrast to the strong trends typical of subglacially deposited tills (Holmes 1941; Boulton 1971).

Possible alternative origins for these diamicrites are as dropstone diamicrites or cohesive debris flows. Direct evidence to discriminate between these two is lacking in the study area. The presence of the probable dropstone diamicrite discussed previously supports a similar interpretation for the massive units. However, clast-supported diamicrites within the upper assemblage contain evidence of sediment gravity flow origins (discussed below). Thus, a facies association approach is inconclusive. The random orientations of large clasts are characteristic of dropstone diamicrites (Domack 1983; Lawson and Domack 1985; Anderson 1983), but can also occur in debris flows (Lindsay 1968).

Clast-supported diamicrites of this upper assemblage are similar to those of the interfan areas. The inversely-graded zone at the base of otherwise massive units suggest traction-carpet deposition at the base of high-density flows, either as debris flows or as density-modified grain flows of the type discussed by Lowe (1982) and Lash (1984). The presence of a preferred long-axis orientation of gravel-sized clasts within these units supports this interpretation. Walker (1975) and Hein
(1982) suggested that unimodal orientations in similar resedimented conglomerates are parallel to the dominant flow direction. This could not be confirmed at Cobalt due to a lack of independent paleocurrent or paleoslope evidence for these or adjacent lithotypes. Fine-grained interbeds that occur between poorly-defined subunits of this clast-supported diamictite type probably reflect sedimentation between multiple flow events.

Clast-supported diamictite with crude-stratification and poorly-developed, normally-graded sequences are interpreted as deposits from high-density, surging flows of the type described by Hein (1982) and Lowe (1982). Extreme flow unsteadiness can cause crude, normally-graded sequences as flow velocities fluctuate due to flow separation effects (Hein 1982; Lowe 1982). Pebbley sandstone interbeds at the top of these units reflect deposition during the waning stages of transportation, as Walker (1975, 1984) suggested in his general model for graded-stratified, resedimented conglomerates. The strong unimodal trend of clast apparent long-axis orientations (Figure 8E-F) is typical of these types of gravity flows, and should parallel the main flow direction (Walker 1975; Hein 1982; Massari 1984). Independent paleocurrent evidence to confirm this interpretation is lacking in units of the upper assemblage.
CHAPTER V

CHARACTERISTICS AND SUMMARY OF THE GLACIOGENIC PALEOENVIRONMENT AT COBALT

5.1 Regional Glacial Setting

The extensive glacial deposits of the lower Gowganda Formation reflect continental-scale glaciation (Lindsey 1969, 1971). Lindsey proposed an ice sheet model for this deposition, based mainly on pebble-fabric and palaeocurrent studies. At Cobalt, the stratigraphic relationships and gentle palaeotopography also suggest deposition beneath an ice sheet, as opposed to ice tongues or valley glaciers.

The lateral equivalence and intercalation of diamicrites and sandstones with the dropstone-bearing fine-grained lithofacies indicates a subaqueous environment of deposition. Dropstones in the sandstones and the lack of sedimentary structures indicative of subaerial exposure also support this interpretation. Studies from regions to the north (Miall 1983; Long 1985) and south (Young 1981a, 1985; Miall 1985; Lindsey 1971), also suggest that lower Gowganda Formation deposition was subaqueous. Thus, all preserved parts of the formation appear to have been deposited in a subaqueous environment. The regional extent defines a basin of considerable size, and correlations of this formation with other early Proterozoic glacial strata of interpreted subaqueous deposition are correct (Young 1973; Marmo and Ojakangas 1984), an even larger basin is implied. This large size does not require a marine basin, as glaciolacustrine environments of this scale existed during the Pleistocene Epoch. Consequently, in the continental margin tectonic setting proposed for upper Huronian Supergroup deposition, the Cobalt area would have occupied an inner shelf zone in the sense of Gravenor et al. (1984), where marine or lacustrine conditions are not specified.
5.2 **Glaciomarine vs. Glaciolacustrine Deposition**

The regolith on the unconformity surface indicates subaerial exposure before glaciation, and this could be used to support a glaciolacustrine interpretation for subsequent Coleman Member deposition. However, coupled with an already subsiding continental margin tectonic setting, isostatic loading due to initial ice sheet advance could have resulted in subsidence of the unconformity surface below sea level. Thus the unconformity surface regolith does not preclude a glaciomarine interpretation.

The observed lithofacies could form in either a freshwater or saline basin, with the possible exception of the fine-grained rhythmites. Lindsey (1966, 1969, 1971) considered this lithotype, which he interpreted as varves, to indicate a freshwater environment for the northern occurrences of the lower Gogwanda Formation, including the Cobalt area. Legun (1981) also suggested a freshwater origin for the Cobalt strata based on this single criterion, although he later (1984) speculated that the basin may have been marine.

The rhythmites in the Cobalt area are very similar to some glaciolacustrine rhythmites in grading patterns, contact relationships and proximal-distal variations. The formation of the proximal rhythmites by meltwater underflow deposition also appears to support a glaciolacustrine interpretation. Modern observations document that where meltwater enters a marine environment, overflows or possibly interflows form due to freshwater-saltwater density contrasts (Gilbert 1983 presented a recent discussion of these processes). Suspended sediment increases the density of the meltwater, but probably not enough to overcome buoyancy effects except in unusual cases (Kuenen 1951;
Mackiewicz et al. (1984). However, Mackiewicz et al. (1984) documented underflow deposits of fine-grained sand/silt-clay couplets in ice-proximal (<0.5 km) areas of Glacier Bay, Alaska. They attributed formation of these underflows to the added density effects of a high bedload concentration of sediments in subglacial streams, and to the unique hydraulic conditions of subglacial streams (pipe-flow rather than open channel flow). These hydraulic differences suggest that suspension sedimentation may be more uniform and in higher concentrations in subglacial streams than in open channels. Sediment loads can also be increased after discharge by entraining morainal bank debris, or by turbulent mixing at the site of discharge due to the hydraulic jump effect (Mackiewicz et al. 1984). Domack (1984) cited similar processes to explain rhythmic interbedding of sands and muds and varve-like, laminated silts and muds in a Pleistocene glaciomarine sequence in the Puget Sound of Washington. He (and Gilbert 1983) also suggested that where large volumes of meltwater enter a marine environment, a dilution effect can occur, decreasing the salinity and, as a result, reducing the density contrast between inflowing meltwater and the seawater in proximal areas.

Both Mackiewicz et al. (1984) and Domack (1984) documented proximal to distal changes in predominant flow types with respect to deposition of fine-grained laminae (fine sand, silt and clay). They observed that underflows in proximal areas change distally to interflows/overflows as sedimentation concentration and perhaps salinity-dilution decreases. In the most distal areas, flocculation produces poorly-laminated mudstones rather than interlaminated silt-clay couplets. This general sequence corresponds well with the interpretation at Cobalt of underflow transport for proximal couplets and interflow-overflow transport for the
more distal couplets. The non-rhythmic, poorly-laminated mudstones at Cobalt correspond to areas of normal salinity and low sediment concentrations. Similar underflow to overflow/interflow changes can occur in glaciolacustrine sequences, but generally this applies only if the glacier is not present within the lake basin (Ashley 1975; Ashley et al. 1985). In ice-contact lakes, underflow deposition appears to dominate even in areas distal to the meltwater influx (Ashley et al. 1985; Gustavson 1975). The evidence for ice-contact, subaqueous deposition is abundant at Cobalt, therefore the previous discussion suggests a glaciomarine interpretation is warranted.

5.3 **Ice Sheet Characteristics - Lower Stratigraphic Units**

The upper assemblage of the heterolithic diamicite complex contains lithotypes and associations which are in some respects unlike those of the underlying strata. The lower strata (basal diamicite, subaqueous outwash fan and interfan [lower heterolithic diamicite complex] associations) form the bulk of the well-exposed areas in Cobalt, and this has resulted in a more thorough understanding of the depositional processes for the lower stratigraphic units at Cobalt. For this reason, the conclusions regarding ice sheet characteristics and its controls on sedimentation presented below apply only to the lower stratigraphic units. A brief discussion of possible ice sheet controls on the upper stratigraphic units is presented separately.

Grounded vs. Floating Ice Sheet Models.

Presence of an extensive, subglacially deposited tillite, rare leeside tillite, and a shaped and quarried unconformity surface indicate that the ice sheet was grounded during at least the initial advance. The presence of basal tillites at Cobalt is consistent with glaciomarine
deposition from a grounded ice sheet. Subglacial deposition beneath a grounded ice sheet should produce the same deposits whether the ice sheet is grounded subaqueously or subaerially (Powell 1984). Cenozoic age basal tills are recognized throughout the Antarctic continental shelf and probably reflect subglacial deposition hundreds of metres below sea level (Anderson et al. 1980a).

At Cobalt, the recognition of morainal banks and subaqueous fans also indicates deposition at the grounding line of a subaqueously-grounded ice sheet (Powell 1984, Rust and Romanelli 1975, Gravenor et al. 1984, Edwards 1984). This type of ice-proximal deposition can occur at the front of an ice-sheet that terminates at an ice cliff, termed a tidewater glacier by Powell (1981, 1984). Similar deposition can occur at the grounding line of an ice sheet where it has decoupled from the basin floor to form an ice shelf (Gravenor et al.; Powell 1984). At Cobalt, the distribution of dropstones provides strong evidence to support a tidewater glacier model. A rapid decrease in the abundance of dropstones is apparent in increasingly distal rhythmites of the subaqueous outwash fan associations. Proximal rhythmites in the western portion of the study area consist of >10% dropstones in some sequences. In contrast, dropstones make up <1% of the distal rhythmites. Drewry and Cooper (1981), Powell (1984), and Eyles and Miall (1984) cited evidence to show that ice shelves deposit basal and low englacial debris by undermelting and ice rain-out within a short distance of the grounding line (a few km according to Drewry and Cooper). This suggests that in an ice shelf environment, dropstones should occur in the distal rhythmites (still within 100's or a few thousand metres of the meltwater influx) in approximately similar quantities as in the proximal.
rhythmites. In contrast, Ovenshine (1970) observed that directly following ice-calving, icebergs in Glacier Bay undergo an initial period of fragmentation and rapid overturning before stabilization. Many icebergs calve from the base of subaqueously grounded ice fronts (Gustavson 1975, Anderson et al. 1980b; Powell 1983) and contain significant debris. This initial fragmentation thus should yield abundant ice-rafted debris in ice-proximal positions. Boulton and Deynoux (1981) suggested that in open marine conditions, icebergs are rapidly swept out of the ice-proximal zone. A combination of initial instability and rapid transport of icebergs could account for the variations in dropstone abundances at Cobalt. The interpretation of rare clast-clusters in the Cobalt strata as having resulted from iceberg overturns also supports a tidewater glacier model. This type of feature could not occur beneath an ice shelf (Powell 1984).

Tidewater glaciers can be grounded in considerable depths of water. Powell (1984) cites a theoretical limiting depth of approximately 250 m, although ice sheets ground below 310 m in Antarctica (Robin 1979). Where the abundance of dropstones at Cobalt indicates that ice-calving was common, no iceberg-contact features are preserved within the strata. These could include grounding structures such as those documented by Thomas and Connell (1985), impact marks (Powell, 1983) and ice-scour gouges (as in Dredge, 1982). Anderson et al. (1984) observed tabular icebergs with drafts exceeding 200 m, but these were calved from ice shelves and probably exceed the size of icebergs originating from tidewater glaciers. Observations at tidewater ice fronts suggests that ice calving impact rarely occurs below 100 m (Powell 1983). Based on the preceding discussion, a conservative estimate of water depth at Cobalt during deposition is 50–300 m.
Retreat Rate of Ice Sheet

The lack of deformation or erosion features normally associated with overriding of proglacial sediments by an advancing glacier suggests that deposition occurred during overall retreat of the ice sheet. However, the coarsening-upward nature of the fan associations suggest that retreat rates were sufficiently slow to allow progradation to occur. A rapid retreat should cause deposition of fining-upward subaqueous fan associations (Rust and Romanelli 1975); minor advance and quasi-stationary periods in ice-front position could have occurred without significantly changing the patterns of deposition. A slow retreat rate is also compatible with the formation of morainal banks at the grounding line (Powell 1981, 1984).

Basal Thermal Regime

The basal thermal regimes of glaciers have been generalised into wet-based (temperate, free water at base) and dry-based (cold, frozen to bed) types (Edwards 1978). However, the actual regimes are complex, with wet- and dry-based sections present within the same glacier and conditions at a single position varying over daily, seasonal, or longer time periods (Powell 1984; Eyles et al. 1983). At Cobalt, the abundance of meltwater deposits suggests that wet-based conditions predominated near the grounding-line during deposition of these sediments. The data provided by this study do not allow a more detailed interpretation of the basal thermal regime at Cobalt.
5.4 Ice Sheet Characteristics - Upper Assemblage of the Heterolithic

Diamictite Complex

A tidewater ice sheet model is proposed for deposition of the subglacial sediments, subaqueous fans, and the interfan deposits (most of the strata exposed at Cobalt). In the overlying assemblage of the heterolithic diamictite complex, a lateral variation in frequencies of dropstones, and the presence of clast concentrations suggestive of iceberg overturn deposits, were not observed. This can be attributed to less extensive exposure, but the presence of dropstone diamictite, and of massive diamictite with random clast orientations, suggests a change in ice-sheet characteristics.

The absence of glaciotectonic deformation, structures, or evidence of erosion and incorporation of underlying material in this sequence, indicates that readvance did not involve a grounded ice sheet. The lack of such features has been cited in studies of Pleistocene deposits to support ice shelf depositional models (Eyles and Eyles 1983, McCabe et al. 1984). Ice shelf deposition at Cobalt would account for the random long-axis orientations observed in the massive diamictite, and also for the presence of dropstone diamictite. The non-rhythmic nature of the poorly laminated mudstones and the lack of fan associations suggests little direct deposition by meltwater currents. However, there is no evidence of a major retreat of the grounded ice sheet prior to deposition of this upper assemblage. Thick associations of dropstone-poor, non-rhythmically laminated mudstones would be expected if normal marine conditions developed due to a significant retreat of the ice sheet prior to the readvance. Such a lithotype is not present at Cobalt. A more likely possibility is that partial decoupling of the ice sheet occurred to the north of the study area so that the readvance was
of a partially floating ice sheet. This type of ice-sheet decoupling has been proposed elsewhere to explain similar rapid changes in Pleistocene age lithotypes suggesting both grounded ice and ice shelf deposition (McCabe et al. 1984; Dreimanis 1982). These authors suggested that ice sheet thinning or sea-level rises could have caused the partial decoupling. At Cobalt, no evidence was observed to indicate a cause for this possible decoupling of the ice sheet.

A partially floating ice shelf model would be expected to deposit large morainal banks at the grounding line zone due to rapid undermelting of basal and low englacial debris, accompanied by ice-push effects (Powell 1984; Gravenor et al. 1984). These large accumulations of diamicton (a subtype of undermelt diamicton in the classification of Gravenor et al. 1984) should have been a major source of sediment gravity flows into distal areas. These flows are initiated on bank slopes due to initial slope instability and oversteepening from advance of the grounding line (Powell 1984). This process could account for the thick reworked diamicrite which form a major component of the upper assemblage at Cobalt. Sandstones intercalated with these diamicrites may reflect secondary flow initiation at the head of the high-density flows, a process discussed previously.

Whether this readvance of the ice sheet was part of a major readvance, or merely a large-scale fluctuation in the overall retreat, has not been established. The Coleman Member at Cobalt is incompletely preserved, with perhaps >100m of the uppermost strata missing (based on regional correlations). For this reason, the importance of the evolution of the glacial depositional environment for the upper assemblage at Cobalt cannot be ascertained.
5.5 Summary of Depositional Sequence at Cobalt

The simplified summary diagrams of Figures 11 and 12 illustrate the glaciogenic depositional environments envisioned for the Cobalt area:

1. The local setting was an area of low to moderate relief on the inner shelf of a slowly subsiding continental margin. A regolith was developed on part of the subaerially exposed (at least initially) Archean unconformity surface.

2. Continental-scale glaciation involved southerly advance of an ice sheet, perhaps inducing isostatic loading to below sea level.

3. Subglacial processes caused plucking, brecciation and shaping of the unconformity surface. The regolith was incorporated by the advancing ice sheet, except where cavitation occurred over paleotopographic lows. Lee-side till was deposited into these subglacial cavities, covering the remaining regolith. A primary basal till was deposited over much of the unconformity surface.

4. Deposition during retreat was from a wet-based tidewater glacier grounded approximately 50-300 m below sea level.

5. Slow retreat rates resulted in deposition of prograding subaqueous outwash fans where subglacial/englacial meltwater channels entered the basin. Deposition from underflows induced by proximal meltwater changed distally to deposition from interflows and/or overflows.

6. Morainal banks formed at the grounding line in interfan areas due to englacial/subglacial melt-out and fluctuations in ice-sheet retreat rates.

7. Oversteepening of fan and morainal bank slopes, bank collapse during retreat, and perhaps the shock effects of ice-calving, initiated sediment gravity flows into interfan areas. Numerous sediment-support
mechanisms resulted in a variety of intercalated flow types.

8. Ice-calving caused deposition of IRD in areas near the ice front. Rapid iceberg transport caused less dropstone deposition in relatively distal areas.

9. The upper strata of the Coleman Member probably were deposited by readvance of a floating or partially-floating ice sheet. Underwater diamictites were initially deposited near the grounding line (north of the study area) and were re-deposited as sediment gravity flows within the study area. Ice-rafted debris from melt-out beneath the shelf was in part deposited as dropstone diamictite.
MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS
STANDARD REFERENCE MATERIAL 1010a
(ANEI and ISO TEST CHART No 2)
Figure 10. Depositional model for the lower part of the Coleman Member at Cobalt.

- Clast-supported Diamictite (proximal subaqueous fan deposit)
- Sandstone
- Rhythmites (with dropstones)
- Diamictite – sediment gravity flows from fan Dcs-Dcm
- Diamictite – morainal bank deposits and associated sediment gravity flow plus subglacial tillite deposit
- Lee-side Tillite
- Regolith/Breccia
- Archean
Figure 11. Depositional model for the upper part of the Coleman Member at Cobalt.
PHOTOGRAPHIC PLATES

(Location of photographs is shown on Figure 23, back-pocket)
Plate 1. Unconformity surface and basal breccia.

A. Oblique view of joint-bounded depression in unconformity surface infilled with Coleman Member diamictite.

B. Vertical face (south to the right) showing south-facing step on unconformity surface, and locally derived breccia.

C. Horizontal exposure of extensively jointed unconformity surface. Dark infillings of angular depressions are Coleman Member diamictite.

D. Vertical exposure of sharp unconformity contact between Archean felsic volcanic and overlying Coleman Member diamictite.

E. Thin section of breccia derived from lee-side erosion of unconformity. Breccia fragments "float" in a sandstone matrix similar to that of the Coleman Member basal diamictite.

F. Basal breccia preserved in a paleodepression. Extensively fractured Archean mafic volcanic rock at base of photo is in place, and grades upward to increasingly displaced breccia fragments. White rounded clasts at upper right are in the basal part of a Coleman Member clast-supported diamictite which overlies the breccia and infills the remaining portion of the paleodepression (also shown in Plate 2G,H).

G. Felsic volcanic clasts of the southern breccia lens.
Plate 2. Basal diamictite association.

A. Typical basal diamictite with gravel-sized clasts floating in a sandstone matrix.

B. Horizontal surface showing possible faceted clasts in the basal diamictite. Some clasts margins are outlined by concentrations of chlorite, a metamorphic alteration product.

C. Thin section of basal diamictite matrix showing poor sorting and angularity of many grains. Note high percentage of angular silt-sized grains.

D. Thin section of basal diamictite matrix showing lack of alteration of most grains. Quartz grains generally are pristine, with only slight edge alteration. Many feldspar grains are essentially unaltered, especially in cores. Large grain at bottom centre is untwinned K-feldspar.

E. A vertical exposure of basal diamictite containing irregular, thin, slightly distorted sandstone lenses.

F. Irregular laminations at a gradational contact between basal diamictite and an overlying rhythmite unit.

G. Clast-supported diamictite (upper third of photo) overlying basal breccia in a paleodepression on the unconformity (same outcrop as in Plate 1F).

H. Vertical exposure of the clast-supported diamictite of Plate 2G. Note poor sorting and lack of obvious fabric.
Plate 3. Fan association: rhythmite and sandstone units

A. Well-developed rhythmic alternation of siltstone (dark-coloured) and claystone laminae. A thin bed of siltstone near top of photo has loaded into the underlying claystone; associated flames have been thrust to the right (southeast, approximately equal to the local paleoslope).

B. Distal rhythmites showing multiple graded silt-clay couplets and two coarse silt laminae, one of which is normally graded. Ovoid mass of silt and clay near right centre is interpreted as a till pellet. Scale = .5 mm.

C. Rhythmites with silt laminae generally thicker than clay, a variety of grading patterns, and common microlaminations of silt in the clay laminae. Central ovoid mass is interpreted as a till pellet.

D. Lenticular to wavy fine-grained sandstone interbeds in rhythmites. Some ripple bedforms are apparent. Some lenses are slightly deformed (especially lenses below scale card).

E. Proximal rhythmites (top to left in photo) with graded or massive sandstone to siltstone thin beds relatively common and multiple silt-clay laminations separating coarser-grained layers.

F. Sinusoidal climbing ripples, some transitional to "type B" of Jopling and Walker (1968). Correspond to "draped lamination" of Gustavson et al. (1975).

G. Thick beds of massive sandstone within upper portion of rhythmite sequence. Bases of some sandstone beds are loaded into rhythmites.

H. Rhythmite laminae below a massive sandstone interbed with well-developed loading and flame structures plus decoupling and thrusting of a portion of the rhythmites. Thrusting and deformation of flames is to the south (right of photo).

I. Sandstone interbed in rhythmites showing breached convolute lamination. Massive vertical zones separating the concave-up laminated zones probably were the result of early dewatering.
Plate 4. Fan association: rhythmite and sandstone units.

A. Proximal rhythmites with graded sandstone bases, some containing fragments of finer-grained rhythmite. Loading of sandstone bases into the underlying laminae is common.

B. Dropstone in rhythmites - see Figure 5A for discussion of the contact relationships of this dropstone.

C. Deformation structures in rhythmites (top to left of photo). Light-coloured clay-rich laminae in layer 1 cm left of scale have been thrust to the right (southeast), approximately down the paleoslope. Laminae in centre of rock slab are deformed and broken, perhaps due to a combination of thrusting and dewatering.

D. Massive clastic dyke of fine-grained sandstone that has intruded and deformed rhythmites. Top of tape measure is at top contact of sandstone.

E. Thin section of poorly laminated mudstone. Laminae are wavy, discontinuous and of variable thickness.

F. Fine-grained sandstone pseudonodules in a poorly laminated mudstone. Pseudonodules display distorted internal lamination, and appear to be the result of the complete foundering of a laminated sandstone bed in a water-saturated mudstone.

G. Thin section of a fan-association medium-grained sandstone (modal grain size in photo = 4-5 mm). Condensed packing (sutured grain boundaries) is typical of these sandstones. Feldspar grains are only slightly altered, supporting a cold climate hypothesis for weathering and transport.

H. Low-angle planar crossbedding in the mid portion of a sandstone unit. Current transport to the right (approximately south).
Plate 7. Fan association: sandstones and clast-supported diamictites

A. Upper portion of a sandstone unit. Pebby coarse-grained sandstone with poorly defined trough crossbedding (curved erosion surface parallels a trough outline).

B. Upper portion of a sandstone unit (top to left). Repetitive cycles of pebbly sandstone (to granule conglomerate) and planar laminated coarse-grained sandstone. Some cycles show normal grading between the coarser base and finer top.

C. Pebby sandstone/granule conglomerate cycles at the top of a sandstone unit. Transitional to a clast-supported diamictite above.

D. Dropstone near the base of a sandstone unit.

E. Typical clast-supported diamictite showing poor sorting and apparent lack of stratification.

F. Crude stratification in a clast-supported diamictite.
 Stratification defined by horizontal alignment of clasts and poorly defined graded cycles.

G. Stratified, clast-supported diamictite with moderate sorting and relatively well-developed graded cycles.

H. Upper subunit of a clast-supported diamictite with moderately sorted beds of pebbles (some graded) and sharply defined normally graded beds of small pebble to very coarse-grained sandstone.
 Planar crossbedding dips southward (left in photo).
Plate 6 Heterolithic diamictite association: lower stratigraphic assemblage (interfan association)

A. Cyclically repeated clast-supported diamictite and pebbly sandstone beds of a fining upward fan association.

B. Matrix-supported stratified diamictites in an interfan area. Irregular beds and lenses of mudstone and sandstone occur within and between individual diamictites.

C. Pentagonal outline of a clast in an interfan diamictite. Similar clast outlines are moderately common and suggest a faceted shape.

D. Two units of matrix-supported diamictite and interbedded rhythmites. The lower contact of the upper diamictite is sharp and erosive into the underlying rhythmite.

E. Grooved surface on the top of a matrix-supported diamictite.

A thin veneer of siltstone partially fills some grooves (linear light grey zones above, and to the left of hammer). Pleistocene striations are faintly visible, oriented approximately 90° to the grooves.

F. Boulder of clast-supported diamictite in a matrix-supported diamictite. Clasts at edge of boulder are not truncated and some protrude. Largest cobbles are at base of boulder. Faint laminae in host diamictite are depressed beneath and at lower edges of boulder, and some are pierced by boulder.

G. Erosive contact between a generally clast-supported, very poorly sorted diamictite and a bedded sandstone unit. Both units occur as discontinuous sheet-like bodies in an interfan area.

H. Normally graded clast-supported sheet-like diamictite with clasts projecting into overlying sandstone (top right corner shows best example). Overlying sandstone unit is shown in Plate 7a.
Plate 7. Heterolithic diamicite complex: lower and upper stratigraphic assemblage

A. Detail of sandstone overlying the diamicite shown in Plate 6H. Unit fines upward overall from a normally graded coarse-grained sandstone to a rippled (some climbing) fine- to medium-grained sandstone. Planar laminated siltstone caps the sequence, and coarse-grained sandstone sharply overlies the siltstone.

B. Boulder-rich massive diamicite with in situ fractured and separated boulder fragments.

C. Close-up of separated fragments of a boulder shown in Plate 7B. Spaces between fragments have been infilled by the enclosing diamicite.

D. Bedding-parallel view of laminated mudstone draped around a clast of the underlying diamicite shown in Plate 7B.C.

E. Sandstone which occurs as a discontinuous sheet-like body in an interfan area. Inverse-to-normal grading in apparent in the bed shown (base of bed 1 cm below scale, top not shown; dark areas in top left and above scale are weathered surfaces).

F. Upper stratigraphic assemblage showing nonrhythmically laminated fine-grained sandstone and mudstone that contains abundant clasts. Many (perhaps all) of the large clasts are dropstones.

G. Clast-supported diamicite of the upper assemblage, showing a well-defined inversely graded zone above its lower contact. The contact appears to be slightly erosive with respect to the underlying mudstone.

H. Thin section of poorly laminated mudstone of the upper assemblage. Laminae are nonrhythmic, discontinuous and contacts are diffuse.

I. Erosive contact between a matrix-supported diamicite and a laminated mudstone. A fragment of the underlying mudstone (right of scale) has been incorporated into the diamicite.
APPENDIX I

Measured Sections

These nine measured sections are abbreviated versions of the original section descriptions, plus interpretations of the units based on knowledge gained through this study. Localities of the measured sections are shown in Figure 12. Table 1 (page 5) shows the lithofacies code used during this study; Table 3 is a legend of symbols used in the graphic logs. Tables 1 and 3 have been combined in a single removable back-pocket addition (Figure 23) to facilitate examination of these sections. Vertical distances shown on the left of the sections are in metres.
Figure 12 Localities of Measured Sections. Lines indicate sections partially measured along the topographic surface. Diamonds indicate sections measured vertically on an exposed face of an abandoned pit or vein cut.
MS-1 CONIAGAS-TREHUMAY PIT

OBSERVATIONS

Dm 10-15% clasts in fl sand matrix; largest clast 40cm, modal 2-4cm; most granitic; non-sorted, no app. orient. Laterally extensive, 10/4'-1000's of metres; rare distinct Fg fl s or Fl lenses, 10 cm thick, 10's m length.

Dm-6Shd-pSpd 30-50% clasts in poorly bedded sand-sized matrix; poorly sorted, some beds/lenses w. crude subhor. align. of phy. long axes; largest clast 1m, modal 2-4 cm; most granitic but 10% blk. chert pbs; some dropstones in pSpd; Dca-pShd
Unit 20 m north appears equivalent

Frd-pSpd couplets of Fg sandst. siltst., musdt.; most clm thick, some to 20 cm; thicker and coarser to top of unit; sharp contacts between couplets, ooc. microlakes in mudst.; occ. thin beds (2-4 cm) of fine-grained massive sandst. Loads into Frd, rare beds (to 30 cm) of pebble-sized Dca dropstones common (to 10%) esp. in top 50 cm, some occur in poorly defined lenses.

SG medium-grained; thick from 35 cm to 65 cm, slightly eroded into underlying Dm base.

Dm 10-20% clasts in fine to medium-grained sandst. matrix. 20-25% clasts in top 25 cm; largest clast 120 cm; random sizes and orient. non-sorted; clast ECA granitic, 15% vol.

Dca-pShgn, peb./case-grained sandst. w. crossbase into Frd; peb. base. crude norm. graded medium-sized case grained sandst. top; unit thins over 20 m from 230 cm to 150 cm (then thinned, not present on pit wall 20 m to north.

Frd-pShd couplets Fg sandst. siltst., musdt.; most clm thick sandst. based couplets to 1 cm clasts coarse/thicker to top; sharp couplet contact, ooc. microlakes in base, rare rip-up Fr in base 5 m rip-up ripples in 5 m; 5% dropst.

Dca-pShgn interbedded 10-30 cm medium-sorted pebble breccia grade to 120 cm of pebble-size, case-grained, thin-bedded 2-4 cm sandst.; Dca lower contact sharp, ooc. erosive w. pShgn below; poorly defined ripples in pShgn

bDm 10% pebble-cobble clasts, random in Fg sandst. matrix; exposed in S.W. corner of till; unconformity very poorly exposed

A mass. volcanic; exposed in S.W. corner pit

INTERPRETATIONS

Upper Complex: Probably series of debris flows in lenses of Sh and Fl or interflow deposits; dropstone dissection origin possible but evidence lacking due to massive nature of rocks.

Interfan Complex: Pro-fan flows from fan away to north; combined turb. and lam. flow types plus high component.

Fan Association: Relatively prod. mudst. underflow rhyolites of fan progressing from the north. Sh and Dca beds resp. grain flows and debris flows from more proximal areas; high dropstone content reflects proximal position to ice-front; dropstone lenses may be iceberg overturn deposits. Lack of overlying sandst.-Dca units of fan suggests shifting of outlet location or cutoff of subjacent meltwater channel prior to complete progradation of fan at this point.

Interfan Complex: sed. sandst. flow; thickness and erosive contacts suggest density-modified grain flow.

Interfan Complex: Debris flow or flows, perhaps from morainal banks formed at ice front in interfan area to north.

Interfan/Fan Association: Channelized turbulent flows from proximal fan area; perhaps result of short-lived extreme meltwater influx event.

Fan Association: Proximal underflow deposits of rhyolites, perhaps part of meltwater system which deposited underlying units.不服 Increase of lam. thickness and grain-size suggests renewed meltwater input.

Fan Association: Proximal deposition to meltwater outlet in ice sheet. An initial fine-up trend suggests wanting current strength due to ice retreat, lower ice-melt rates, or fan migration.

Basalt Tillite: Subglacial, primary till.
OBSERVATIONS

Dca-pShgn 20-30cm beds w. peb.-cub. base (10-35cm) and med.-coarse grained norm. graded sandst. top; largest clast 25cm, mode 2-4cm. med. sort.; <5% random peb. in sandst.

Shf inaccessible on cliff face, appears med.-coarse grained, med. bedded.

Dcm-0cm 75-85% pebbles-cobbles in a coe-grained sandst. matrix; largest clast 40cm, mode 2-4cm; poor sort., rare crude strataf., w. slight cone. of similar sizes in poorly defined beds). clasts >50% granitic, <30% felsitic volc., <5% mafic volc. med.

Dmm 10-15% pebbles-cobbles in a vif sandst. matrix; faintly laminated, non-rhythmic, no obs. grading or grain-size variations in matrix, rest of unit as for Dma below.

Dmm 10-15% pebbles-cobbles in vif sandst. matrix; nonsorted, no obs. clast orient.; granitic, <20% volc.

INTERPRETATIONS

Fan Association Upper fan high energy deposition, related to underlying deposits, reflecting rapid changes in meltwater influx and lateral fan migration.

Fan Association upper to mid fan, distal vs. overlying Dca-pShgn.

Fan/Interfan Association one or several debris flows into interfan area from prox. upper fan source, perhaps reflects initial fan migration into interfan area.

Interfan Association debris flow or flow? perhaps from marginal fans at ice sheet edge, laminae might reflect distal meltwater or other currents.

Interfan Association similar origin to above unit, ind. flows not appear. of basal tillite, but Archean not found in pit.

Archean volcs. exposed to west of pit and overlain by thin (<2m) dmw. Projection and information from mine reports suggest base of section is within 50 of Archean contact.
LITTLE SILVER VEIN CLIFF

OBSERVATIONS

Dec-Dee

>400 pebbles, boulders in a case-grained sandstone matrix; largest clast 90 cm, mode 40 cm; poor sorting, grade strat. with subhor. clast align. Poorly-defined thick beds of similar clast sizes; rare contorted case-grained sandstone. lenses >30 cm thick and 5 m exposed length

pSign-Design: trough cross-bedded units; up to 1.5 m long overlapping ripples/w. erosion of trough below, approx. basal 25 cm of each trough preserved; small pebbles, grainy, graded up to gravel, case-grained sandstone, w. rare pebbles; paleocurrents towards SW

Se bed: case-grained feldspathic arenite, planar cross-bedded beds up to 1 m thick, most <50 cm; crossbeds dip approx. 20° towards SE/SW

Sh Sr: mod-grained feld. arenite; faintly bedded (3-20 cm); rare ripples w. internal X-strat.; rare dropstones up to 15 cm dia.

Fr: mod-intercalated mod-grained 5 cm beds (15-40 cm) in Fr: 8 m bases loaded w. lenses of Fr distorted to Sch; pinnate, dewatering pillars in some beds; Fr 5 cm thick, w. fine sandstone, bases and rare 10-20 cm Sr beds w. ripples ptms. to Sr

Fr: couplets of silts, muds. vfg. sandstone, coarser-grained and thicker (to 10 cm) upward; bases sharp w. occ. microlaminations; occ. single beds (1-5 cm) f. w. lam. sandstone; occ. ripples w. internal X-lam. most show str. transport, occ. nth. directed; occ. poorly dev. climbing-ripples near top (nth climbing)

Covered interval inaccessible vein cuts, drillhole data, and scattered outcrops indicate all of interval consists of Fr.

Fr: couplets of silts, muds; lam 1-10 cm thick; Sharp bases,REC. deformed dropstones

Bdm 20-30 cm pebbles-cobbles in a vfg sandstone. muds. matrix; largest clast 30 cm, mode 2-4 cm; rare f. contorted, banded sandstone, lenses <5 cm thick, 1 m length; non-wristed, no obs. clast orient.; top 20 cm lam., grad. change to Fr.

Dcm-Sdm 20-30 cm pebbles-cobbles base w. 10-20 cm poorly sorted case-grained sandstone. top: mud. vort. contorted, not present 20 m nth.

A pillow roll, uncons. poorly exposed in vein-cut W. of cliff, well-exposed SW of vein-cut.

INTERPRETATIONS

Fan Association: Proximal upper fan deposition at influx site of subglacial/englacial meltwater channel into basin. Sandstone lenses may reflect fluctuations in input and current strength.

Fan Association: Upper/mid fan. Continual change upward in grain size and sed. structures reflect increasing current strength towards influx site, progradation of fan into basin and temporal fluctuations in current strength (graded upper beds)

Fan Association: transition from lower fan Fr to mid-fan Sr. as density modified grain flows from southward prograding mid-fan

Fan Association: Lower fan, deposition by density underflows (proximal) and interflow/overshoots (distal); Thicker and coarser-grained lams. reflect southward fan progradation.

Basal Tillite Association: primary subglacial till; sand lenses may indicate melt-out origin; faint lam. in upper part due to reworking by currents depositing overlying Frd

Basal Tillite Association: small subglacial meltwater channel
OBSERVATIONS

pHghn patchy a/c of med-/coarse sandst.; mod-, poor sort.; acc. pebb. Sizes: poorly exposed Dcm-Dcm 80-85% pebb.-cob. clasts in coarse-grained sandst. Matrix: largest clst. 3cm, mode 1-4cm, poor sorting, crude strat., acc. poorly defined thick beds; discordant lenses; med./coarse-grained massive sandst., <5cm thick, <10m length

Dcm 30-50% pebb.-cob. clasts in med.-coarse grained sandst. Matrix: non-sorted, no obsv. clst orient.; clst >10cm gran., >60% volc.; rare discordant lenses; vug sandst./medist.; <10cm thick, 3m length

Fln mudist./vug sandst.; non-rhythmic laminaitions; many vugs and discordant; <5cm; 1-2cm thik beds; rare 1-2cm lg massive sandst. beds; basal lam drape projecting clasts of Dcm-Dcm below Dcm-Dcm 35-65% pebb.-cob. clasts in fine to coarse-grain sandst.; matrix: non-sorted, no obsv. clst orient.; clst >10cm gran., 30-40% volc., <5% med.; projecting clasts at top into Fln

Dcm-Dcm 70-85% pebb.-cob. clasts in med/coarse-grain sandst. Matrix: largest clst. 25cm, mode 5cm, poorly sort.; crude 1-2cm thick beds sep. by discord. Fl-Flth lenses <10cm thick, 3m length; most beds mass., poor subhor. clst align. in spots, acc. poor invt. grad. scheme, norm. grading at top; clst >50% gran., >40-50% volc. Occurs part of above unit but massive except basal 30 cm inv. graded; basal cont. sharp, undulating (loaded) and erodes 5m

Mud-Sed poorly exposed vug in fng sandst., perhaps faint bedding; no obsv. structures; rare limestones (pebble size)

Covered brushy zone at base of cliff, possible location of Valley Fault (but may be just west of unit base)

Upper Complex: gravelly sand, gravel, flows; high density debris flows and footed flows; traction carpet deposition at bases; glassy flows; grading, slight lam. flow gives crude beds and norm. grading; high density melt flow contacts, form to den. and, grain flows, perhaps vugs, from backstraining effects of gravel flows.

Upper Complex: density-modified grain flow or flows? limestone as dropstones? poor esp. bedding int.

Dcm-Fln c/c approx. 10m. of cliff; 25-30% pebb.-cob. clasts in vug sandst./flints. Matrix: largest clst 5cm, mode 2-3cm, non-sorted, no obsv. clst orient.; matrix gen. faintly lam., esp. at top, acc. to clst., lam. gen. <5cm, non-rhythmic, some clasts definite dropstones

Upper Complex: combined debris flows and dropstones discontinuities, laminae suggest ice-distal deposition; clasts as IRD plus reworked debris flows?

SECTION APPROX. 120M ABOVE UNCONFORMITY (based on assessment reports, mine plans and cross-sections drawn for this thesis)
Observations

Nipissing Diabase

Covered

0-20m 3-5% 1st quart size, in coarse-grain sandstone, matrix; mudstones, mudstone; cots. boulder in run, patches or linear surface aligned, ore. mudstone grain sandstone, lenses 10cm thick, 10m length

Path-past path-segment grain field, etc.

Mod. unit., gravel as base of 10-30cm thick, graded bed on base of troughs, troughs and planar beds (19.7) paleocurrents; rare dropstones in path., largest 30cm

Flack silcrete, kred in noncalcrete lens, most lens 3cm thick, ore. cots. vug sandstone lens; to 3th, thickness and becomes rhythmic couplets

*Dem-3.8m 10-40% clasts in a small/medium-grain sandstone, matrix; clasts non-sorted, no obv. orientation; largest 10cm, mode 2-4cm; clasts 40-50% gran., 30-70% vole., cots. vug. 1-2m thick unit of 30-50% clasts; matrix ore. well packed, cap top 1-2m, matrix finer-grained, lam. to 3th. changes 0.7m-Flak-Fd (over 10cm, some clasts def. dropstone)

Dem-0.4m 20-35% 1st quart clasts in vug sandstone.

Interpreted

Fan Association upper fan portion smaller and better-sorting vs. other fans in area; boulders on dropstones (may explain linear trend)

Fan Association as above... etc.

W structures and coarsening-upward, increased energy due to 3th. fan progradation; dropstones support subsequent fan interpretation

Fan/Interfan Association fan-distributary, meltwater dep.; aug. fan above from rapid migration into interfan area

Interfan Complex Combined debris flows and high IRD input into area of fan-distributary meltwater input. 3rd. transect to Fd and contact w. oeo. suggests ice-prox. deposits, perhaps collapsed moraine banks

Basal Tillite Association primary unit high bed, unusually high % vole. clasts and position on SE side major Archean palaeo high (Nipissing Hill) suggests local source for many of these clasts

A Archean pillow volcanics; unconformity poorly exposed, no 8th, contact appears sharp
McDonald Vein Pit

Observations

Dec 3-5m:
- 10-15cm beds of 90% pebbles; and -
 - poor sort., mate., but grades at top to case-
 - grained pebb. sand.; (25cm thick), most beds
 - more graded, acc. planar s-beds; pass. trough
 - x-beds in one spot, rare rippled silt, in
 - top 6cm, th. paleour.; base 2cm bed sharp

Dec 10-2cm:
- 75-100% pebbles, clasts in med/case-
 - grained sand.; matrix; largest cl. = 3cm;
 - mode 1-2cm, poor sorting, mate., rare crude
 - beds, app. w. auth. grain size, and poor
 - size sorting; basal 2cm inv. graded, mate.
 - loaded and erosive into Fed-5m below;
 - clasts 10-15%, gran.; 30-40% vol.; 20-30%
 - sed. (most chert)

Fed-5m:
- complete silt, /v.g. sand.;/ mud.;
 - lam. thicker up (2-3m) to 1cm and grain-
 - size increases; acc. thin beds of mate.;
 - silt.; thicker (2-3cm), more common in
 - top 1cm; 15cm thick brecc., layer, w. ang.
 - Fr clasts, mate; 1cm, largest 2cm, same
 - convolute lam.; Fed above/below undeformed;
 - acc. dropstones; (largest 1cm) plen./deform
 - Fr lam.; common in top 40cm

Dec 10-15% pebbles, clasts in v.g. sand.;
- silt.; matrix; non-sorted, no obs. clast
 - orient., largest cl. 2cm, mode 1-2cm;
 - matrix massive

Fed-5m:
- complete silt.; f.g sand.;
 - minor mud.; 1cm lam. and 1-2cm sand;
 - beds.; acc. dropstones

pshn 2-5cm thick beds w. pebble
- bases gradin up to case/case/fine-grained
 - sand.; rare rippled silt, top

Interpretation

Fan Association | Upper fan, prox.
- meltwater underflow, fluctuating
- (seasonal?) input causes grading and
- changes in sed. structures, less prox.
- then Decs below due to lat. fan
- migration, ice sheet retreat and/or
- changing subglacial meltwater paths

Fan Association | Proximal fan depositions at inner site of
- subglacial-marginal, meltwater channel
- into basin. Some remobilization in high-density sed. fine flows pass.
- w. traction carpet, dep. at base
- giving inv. grading.

Fan Association | Lower fan, deposition by meltwater underflows and
- perhaps interflows/overflows (lower
- section); 1m density modified
- grain flows from th. prograding
- mid-fan; increased grain size and
- lam. thickness upward reflects
- progradation of fan.

Interfluve Association | Debris flow or flows; very similar to basalt
- debris, may be flows from interfluve
- marginal banks at edge of ice sheet

Fan Association | Small (short-
- lived?) fan deposits, thinning-up
- sequence and lack of major gravel
- units suggests relatively lower
- energy (vs. other fans in study)
- and timing meltwater input

Archean not seen at base, present approximately 200m to S.E. where massive volcanics are sharply overlain by 30m. Map and cross-section information suggest unconformably
- is within 3% of base of section.
MS-7 BAINBIRD THESIS AREA

OBSERVATIONS

- Red MU-91C pebbles clasts in medium-grained sand matrix; medium sorted; lowest class, 1cm; mode, 1cm; crudely bedded; 30-100cm beds w. subhebbles, class ilumplake pebbles; (subhebbles, dune, and dune cored). Rare clasts, coarse-grained sandstone, interbeds, 10cm thick, 5cm length; clasts MU-91C vol. 30-40%; grains; 5% silt.

- PSp 40-100cm beds coarse, fine-grained sandstone; tuffite; very fine pebbles, some silt, rare pebbles, medium, rare grading, rare clasts; coarse-grained sandstone, interbeds, 10cm thick, 5cm length; clasts MU-91C vol. 30-40%; grain; 5% silt.

- PSp 40-100cm beds coarse, fine-grained sandstone; tuffite; very fine pebbles, some silt, rare pebbles, medium, rare grading, rare clasts; coarse-grained sandstone, interbeds, 10cm thick, 5cm length; clasts MU-91C vol. 30-40%; grain; 5% silt.

- PSp 40-100cm beds coarse, fine-grained sandstone; tuffite; very fine pebbles, some silt, rare pebbles, medium, rare grading, rare clasts; coarse-grained sandstone, interbeds, 10cm thick, 5cm length; clasts MU-91C vol. 30-40%; grain; 5% silt.

- PSp 40-100cm beds coarse, fine-grained sandstone; tuffite; very fine pebbles, some silt, rare pebbles, medium, rare grading, rare clasts; coarse-grained sandstone, interbeds, 10cm thick, 5cm length; clasts MU-91C vol. 30-40%; grain; 5% silt.

INTERPRETATION

- **Fang Association:** Upper and mid fan. Continual change upward to grain size and size distribution reflects increasing current strength towards proximal site. Progradation of fan into basin and temporal fluctuations in input current strength (sustained grading). Unconformity from debris flow off of upper fan.

- **Bajada Tuffite Association:** Subglacial, primary till; sand lenses may indicate melt-out origin; faint laminae in upper part due to reworking by meltwater currents (Frd wettites unit to south).

- **Bajada Tuffite Association:** Subglacial, primary till; location in place/dep.; covering regolith; suggests origin as ice-side infill of a subglacial cavity; high % vol.; clasts may reflect basal transport and local source.

- **Regolith:** Pre-Colman Member deposition, perhaps periglacial cold climate weathering; only preserved in small paleodeposits w. esh-faces, textures causing deformation of subglacial cavities.

- **Glacially Shaped Uncon.** Surface sculpturing periglacial or subglacial freeze-thaw effect. Angular depressions are subglacial plucked blocks, infilled by subglacial till.
NS-B Scarnell Thesis Area (West)

Observations

Dms-Dmm 20-60x pebbly debris in bedded conglomerate. Matrix: v. poor sort., no obs.
clast orient.; largest clast 30 cm, mode 3 cm.

Beds: 1-3 m thick Dms, Dmm faint lam.,Cause of beds, thinning occ. lenses 1 cm, Shgs, Sa, Pm, appear to sep. Beds-1 cm thick, gen. <1 cm length; clasts 50-60% grain., 40-50% vol., <5% med.

Dcs-Pshs 10-72% pebbly debris in bedded conglomerate. Matrix: thin w. sulfide, clast orient.; largest clast 10 cm, mode 2-3 cm; clasts 5-15% vole., 15-30X gran., <5% med.; below peb 10-40 cm beds no clast. Graded facies.

Sp-Sr 10-40 cm beds med./coarse grained feldsparites; mod. sort.; com. planar, w. beds dip 15-20° s/th. 2 structural units, cont. above, basal 5 cm fine/mud grains 5 cm thick beds w. ripples/climbing-ripples (th paleocurr.)

Frd-Sa-Shd couples fitts, v.g. sand., mud., changes up: planar silt/mud lam., 6 cm w., rare 1-3 cm dist., coarse sand. W, v.g. sand/mud laminae thick w. occ., Sa beds up to 30 cm thick.; Sa beds loaded, large flakes Fr.

bDms 15% clasts in f.g sand., mud., Matrix: non-sorted, no obs. clast orient.; largest clast 20 cm, mode 7-3 cm, clasts 10% gran., 40-50% vole., <5% med.; top 10-15 cm faintly laminated, grad. change to Frd

A. Archean felsic volcanics; uncon. surface well-exposed to Nth.; Irregular w. angular depressions infilled w. bDms or Pshs, rare.

Interim Association series of debris flows; density-modified grain flows; high-density turbidity flows into interfan area from s/th. prograding fan and marginal banks; prob. 10K component but difficult to recognize due to massive or poorly laminated nature.

Fan Association: Relatively complete but condensed (fix Nth) fan succession. 5th str. evidence of fan migration. 4th str. evidence of progradation. 3rd str. evidence of thick density-modified grain flows off of mid fan. Sudden loading by Sa caused thrust planes and slump-like features. High sedimentation rates no account for unusual thickness and number of grain flows into lower Frd.

Basal Tillite Association: angular, primary till, lamina in upper part may reflect reworking by subglacial currents during dep. of Frd.

Glacially Shaped Barrens: Surface sediments (from subglacial piling of ice) 4th s/th. surficial, w. slump-like, features, (similar in mth. mountains), indicates S/th. to E/th. subglacial movement.
Observations

Dmm-Dms 10-40cm clasts in fig sandstone matrix; poorly sorted, no obbb. clast orient. largest clast 10cm, mode 1-3cm; clasts 10-40cm, 3-6cm vol. 65%, 35% sed.; occ. faint laminae; occ. discontin. layers Fd, shprgn, Sr, <30cm thick, most <20cm length. Same cont. over 30cm; well-developed grooves on top of Dms in one area, grooves infilled by <2cm thick fig Sh; base of unit erosional into pShg below

pShg-Dms 10-40cm beds w. 2-30cm thick peb. beds grading to 2-30cm thick med/coarse-grain. sandstone, mode. sort.; largest clast 2cm, mode 1cm; base of Dms sharp; base of unit sharp, possibly erosive into Dmm below

Dms 10-15% pebbles clasts in fig sandstone matrix; poorly sorted, no obbb. clast orient. largest clast 15cm, mode 3cm; clasts 10-40cm, 25-35% vol., 65% sed.;

Interfam Association series of debris flows from upper fan and marginal banks; separate flows recognized, where interfam deposit preserved; grooves from drape and flow separation at debris flow base; Sh dep. as dens. mid. grain flows and sandy turbidity flows; fl as distal meltwater deposits between flow events

Fan/Interfam Association Typical of upper fan deposits from strong, fluctuating meltwater underflows, but adj. units sug. interfam area? Perhaps from short-lived period of extreme meltwater input?

Interfam/Basal Tillsite Association poss. debris flow or flows from interfam marginal banks, may be subglacial primary till; evidence inconclusive for either interfam.

Archaeon not seen at base, cross-sections from this study suggest unconformity is within ten metres of base of section.
APPENDIX 2

Apparent Long-Axis Orientations of Diamictite Clasts

Surfaces approximately parallel to bedding (defined by adjacent or nearby stratification) were selected for measurement of apparent long-axis orientations of clasts with apparent a:b ratios of 2:1 or greater. Large clasts (pebbles and cobbles) were measured for ease of sampling and because they should show the least variable fabrics (Boulton and Deynoux 1981). As recommended by Rust (1975), who observed that in glaciofluvial gravels small pebbles showed more scattered orientations, clasts with apparent long axes greater than 3 cm were measured. Azimuths of apparent long-axes were measured using a Brunton compass. A minimum of 40 clasts were measured per site. To obtain this minimum number of measurements no size restrictions were placed on the area of the sample site.

As recommended by Andrews (1971) for the statistical analysis of till fabrics where three-dimensional orientations cannot be measured, the two-dimensional vector method of Curray (1956) was applied. This method is summarized in Table 3. The BASIC programs in Table 4 were used to compute all statistics. The significance of the resultant vectors was measured by the Rayleigh significance test which Curray (1956) showed gave values similar (or slightly higher) than chi-square tests. Orientation rose diagrams were plotted in the form suggested by Andrews (1971), with 20° class intervals.
For each 20° class interval:

Resultant Vector \(\phi = \frac{1}{2} \arctan \frac{A}{B} \)

where \(A = \sum_{i=1}^{n} \sin 2\theta \) \(n = \) number of observations in interval

\(B = \sum_{i=1}^{n} \cos 2\theta \) \(\theta = \) azimuth of each observation

Vector Strength \(R = (A^2 + B^2)^{0.5} \)

Vector Magnitude \(L\% = \frac{R}{n} \times 100 \)

For total sample site:

Total Resultant Vector

\(\phi = \frac{1}{2} \arctan \frac{A_T}{B_T} \)

where \(A_T = \sum_{i=1}^{K} A \) \(K = \) number of intervals = 9 for this study

\(B_T = \sum_{i=1}^{K} B \)

Total Vector Strength

\(R_T = (A_T^2 + B_T^2)^{0.5} \)

Total Vector Magnitude

\(L\% = \frac{R_T}{N} \times 100 \) \(N = \) total number of observations

Significance (Rayleigh test of probability)

\(S = \) from graph in Curray 1956 (Figure 4)

Table 3. Formulae used in the statistical analysis of two-dimensional orientation data (based on Curray 1956; Andrews 1971).
Calculation of Vector Mean and Magnitude for Each Interval

CLS
PRINT "INPUT NUMBER IN SET"
INPUT "NUMBER IN SET"; N
PRINT "INPUT DATA FOR INTERVAL"
INPUT "NUMBER IN INTERVAL"; T
DIM THETA!(T%), T2!(T%), ST2!(T%), CT2!(T%), RTH!(T%)
ASUM! = 0.00
BSUM! = 0.00
FOR J% = 1 TO T
 INPUT "ANGLE"; THETA!(J%)
 T2!(J%) = THETA!(J%) * 2
 RTH!(J%) = T2!(J%) * 0.01745 'VERT TO RAD
 ST2!(J%) = SIN(RTH!(J%))
 CT2!(J%) = COS(RTH!(J%))
 ASUM! = ASUM! + ST2!(J%)
 BSUM! = BSUM! + CT2!(J%)
NEXT
ACT! = ATN(ASUM!/BSUM!) * 0.5
ACT! = ACT! * 57.29578
VM! = (SQR(ASUM!*2 + BSUM!*2)/N%) * 100
PRINT "SUMA, SUMB, ARCTAN, VMAG"
PRINT ASUM!; BSUM!; ACT!; VM!
END

Calculation of Total Vector Mean, Strength, Magnitude

CLS
PRINT "VECTOR MEAN - STRENGTH - MAGNITUDE"
INPUT "NUMBER IN SET"; N
PRINT "INPUT DATA FOR INTERVAL, A FIRST THEN B"
DIM AT(9), B!(9)
ASUM! = 0.00 : BSUM! = 0.00
FOR J% = 1 TO 9
 INPUT "A"; A!(J%)
 ASUM! = ASUM! + A!(J%)
NEXT
FOR J% = 1 TO 9
 INPUT "B"; B!(J%)
 BSUM! = BSUM! + B!(J%)
NEXT
VM! = ATN(ASUM!/BSUM!) * 0.5 * 57.2958
VS! = SQR(ASUM!*2 + BSUM!*2)
VM! = (SQR(ASUM!*2 + BSUM!*2)/N%) * 100
PRINT "SUMA, SUMB, VMEAN, VSTREN, VMAG"
PRINT ASUM!; BSUM!; VM!; VS!; VM!
END

Table 4. BASIC programs for statistical analysis of two-dimensional orientation data using formulae in Table 3. (BASIC for Radio Shack TRS Model 100. Programs written by J. Richardson, Ottawa-Carleton Centre for Geoscience Studies.)
APPENDIX 3

PALEOPLACER GOLD POTENTIAL AT COBALT

Previous studies of the lower Gowganda Formation Coleman Member indicated that there is little potential for pale placer gold concentration (Long 1981, 1982; Mossman and Harron 1983, 1984). However, none of these studies specifically examined the immediate Cobalt area.

A major component of Coleman Member deposition at Cobalt is interpreted to comprise prograding subaqueous outwash fans (of the type documented by Rust and Romanelli, 1975) resulting from subglacial and/or englacial meltwater streams entering a proglacial body of water. Preserved parts of these small fans (areas of less than 2-3 km² in the Cobalt region) consist of a coarsening upward sequence of siltstone-mudstone rhythmites overlain by horizontal- and planar-crossbedded fine-to medium-grained sands, less-common trough-crossbedded sands, and pebbly sands with sparse pebble lags; all capped by moderately to poorly sorted orthoconglomerates.

On the basis of pebble-cobble long-axis orientations, Lindsey (1967) suggested SSW-directed movement of the Gowganda ice sheet. This was confirmed by the discovery during this study of lee-side glacial quarrying features on the unconformity surface at Cobalt and the strong northeast/southwest trend of clast long-axes in the basal diamictite (interpreted as a primary subglacial tillite). The combination of an excellent gold source area to the north (the Abitibi Greenstone Belt) and the abundance of current-worked sands and gravels at Cobalt, suggested that sampling and analysis was justified.

The results of this sampling program are shown in Table 4.
The general locations of sample sites are shown in Figure 17. Some high values were obtained in the initial analyses. However, analysis of the retained portions of these samples resulted in trace values at best, suggesting lab error or perhaps the presence of isolated gold-rich volcanic or sulphide clasts (D. Long, pers. com. 1984). One repeat of sample A8 was slightly anomalous (0.012 oz./ton), but a second analysis of the retained portion of the same sample preparation yielded only 0.003 oz./ton, again suggesting that no real anomaly exists. Additional sampling resulted in more low values. Thus, in spite of the sedimentologically promising setting, results from the Cobalt area complement those obtained from other areas, and suggest that the Coleman Member contains little paleoplacer gold potential.
<table>
<thead>
<tr>
<th>Sample</th>
<th>Gold Value</th>
<th>Lithology</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>oz/ton</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Initial</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Repeat</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fan A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A1</td>
<td>nil(2)</td>
<td>nil(2)</td>
<td>top of granule-pebble orthocl.</td>
</tr>
<tr>
<td>A2</td>
<td>trace(2)</td>
<td>nil(2)</td>
<td>upper zone, Al unit (Proximal)</td>
</tr>
<tr>
<td>A3</td>
<td>0.019</td>
<td>nil</td>
<td>mid Al unit Fan</td>
</tr>
<tr>
<td>A4</td>
<td>0.001(2)</td>
<td>-</td>
<td>med-cse pebbly sandstone</td>
</tr>
<tr>
<td>A5</td>
<td>nil(3)</td>
<td>-</td>
<td>med-cse sandstone</td>
</tr>
<tr>
<td>A6</td>
<td>nil</td>
<td>nil</td>
<td>base of graded trough peb. SS Mid to</td>
</tr>
<tr>
<td>A7</td>
<td>nil</td>
<td>-</td>
<td>med sandstone</td>
</tr>
<tr>
<td>A8</td>
<td>0.012</td>
<td>0.003</td>
<td>peb. lag of trough x-bedded SS Upper</td>
</tr>
<tr>
<td>A9</td>
<td>nil(2)</td>
<td>-</td>
<td>graded granule cgl-cse SS</td>
</tr>
<tr>
<td>A10</td>
<td>nil(2)</td>
<td>nil</td>
<td>cse, pebbly, hor. bedded SS Fan</td>
</tr>
<tr>
<td>A11</td>
<td>0.066</td>
<td>nil</td>
<td>graded cse-med sandstone</td>
</tr>
<tr>
<td>A12</td>
<td>nil</td>
<td>-</td>
<td>cse sandstone</td>
</tr>
<tr>
<td>Fan B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B1</td>
<td>0.004</td>
<td>0.002</td>
<td>pebble-cobble orthocl. Upper</td>
</tr>
<tr>
<td>B2</td>
<td>0.002</td>
<td>-</td>
<td>base: same as Bl Fan</td>
</tr>
<tr>
<td>B3</td>
<td>0.006</td>
<td>nil</td>
<td>top: med-cse peb. Mid to</td>
</tr>
<tr>
<td>B4</td>
<td>0.004</td>
<td>nil</td>
<td>base: troughed SS Upper Fan</td>
</tr>
<tr>
<td>Fan C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C1</td>
<td>nil</td>
<td>-</td>
<td>med-large peb. orthocl. Upper Fan</td>
</tr>
<tr>
<td>C2</td>
<td>trace</td>
<td>-</td>
<td>small peb. orthocl. Mid to</td>
</tr>
<tr>
<td>C3</td>
<td>nil</td>
<td>-</td>
<td>peb. lag, graded trough SS. Upper Fan</td>
</tr>
<tr>
<td>Fan D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D1</td>
<td>trace</td>
<td>-</td>
<td>med-cse, graded peb. SS. Mid</td>
</tr>
<tr>
<td>D2</td>
<td>trace</td>
<td>-</td>
<td>med-grained pebbly SS. Fan</td>
</tr>
<tr>
<td>Misc.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M1</td>
<td>trace</td>
<td>-</td>
<td>small peb orthocl. on Subglacial</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Archean uncon. surface Meltwater</td>
</tr>
<tr>
<td>M2</td>
<td>nil</td>
<td>-</td>
<td>similar to ML Channel</td>
</tr>
<tr>
<td>M3</td>
<td>nil</td>
<td>-</td>
<td>graded hor. bed peb cse SS. Mass Flow</td>
</tr>
<tr>
<td>M4</td>
<td>nil</td>
<td>-</td>
<td>small peb. orthocl lense in diamicite (matrix sup) in interfan zone</td>
</tr>
</tbody>
</table>

Table 4 Assay results from Coleman Member of the lower Gowganda Formation in the Cobalt study area. Assays are grouped within fan complexes and in correct relative stratigraphic position where possible. Bracketted numbers after assay values indicate multiple samples from the same unit. The general location of sample sites are shown in Figure 17,
APPENDIX 4

Locality Maps Showing Data Collection Sites
Figure 13 Sample sites - Orientations of apparent long axes of clasts in diamicrites of the Basal Diamictite Association (see Figure 4)
Figure 14 Sample sites - Paleocurrent measurements (see Figure 6A-D)
Figure 15 Sample sites - Orientations of apparent long axes of clasts in diamicrites of the Fan and Interfan Associations (see Figure 7).
Figure 16 Sample Sites - Orientation of apparent long axes of clasts in diamictites of the Upper Diamictite Complex (see Fig. 8).
Figure 17 Sample Sites - Gold Assays of Table 6
REFERENCES

_____ 1908. Lower Huronian ice age. Journal of Geology. 16, pp. 149-158.

of America, Memoir 161, pp. 299-307.

under glacial influence: the Gowganda Formation (Huronian), Elliot Lake area, Ontario, Canada. Sedimentology, 32.

1961. Part of underground workings and approximate structural contours, Coleman T., Concessions V & VI—Lots 1 to 6, District of Timiskaming. Ontario Department of Mines, Provisional Map P-97A.

1964a. Geological map of the Cobalt silver area, northern sheet. Ontario Department of Mines. Map 2050, Scale: 1 inch to 1,000 feet.

1964b. Geological map of the Cobalt silver area, southwestern sheet. Ontario Department of Mines. Map 2051, Scale: 1 inch to 1,000 feet.

1964c. Geological map of the Cobalt silver area, southeastern
sheet. Jutland Department of Mines. Map 2052, Scale: 1 inch to 1,000 feet.

1981b. Sedimentary environments and regional tectonic setting of the Huronian Supergroup, north shore of Lake Huron, Ontario, Canada. Field trip guidebook, Society of Economic Paleontologists and

GOWGANDA FORMATION
COLEMAN MEMBER
COBALT ONTARIO

Northern Sheet

Contour Interval: 1 Metre
Scale: 1:2000

LEGEND

PROTEROZOIC

Basic Intrusive Silt: Nipissing Diabase
Intrusive Contact

HURONIAN SUPERGROUP
COBALT GROUP

GOWGANDA FORMATION - COLEMAN MEMBER LITHOFACIES

Upper Heterolithic Diamicite Complex

ud upper Diamicite
udm matrix-supported
udc clast-supported (rare)
ud-m massive (<10% irregular stratification)
ud-s stratified
ud-(r) reworked
Diamicrite, class stratified.

Description:
- Massive
- Stratified

Sandstone:
- Grade-weathered sandstone (95% gravel-sized gravel)
- Massive
- Horizontal lamination
- Rippled
- Thrown cross bedded
- Planar cross bedded
- Planar graded, normal
- Planar graded, reverse

Fine-grained facies (mudstone, minor very fine-grained sandstone)
- Rhythmic (laminated sand-silt and/or silt-clay alternations)
- Laminated (non-rhythmic)
- Massive (very fine-grained)
- Dropstones

Boulder Diamicrite (Tillite)
- Matrix-supported, massive
- Other symbols as the Upper Diamicrite Complex

Basalt
- Breccia
- (r) re-sedimented
- Small occurrences

Angular Unconformity

Archean

Basalt/Ultrabasic Intrusions

Intrusive Contact

A undifferentiated Archean
Ap basic volcanic rock - pillow
Am basic volcanic rock - massive
Af felsic volcanic rock
Ai interflow sedimentary rock

Strike and dip of bedding:
- Inclined, horizontal, vertical
- Strike, top of pillow volcanic rock: dip known, unknown
- Fault: dip, upthrust (US), downthrown (DS) sides
- Major fault: dip, upthrust (US), downthrown (DS) sides
- Minor fault on shear zone (little displacement)
- Open pit or quarry
- Mined vein or exploration trench: > 2 m wide, < 2 m wide
- Ditch
- Portal of tunnel or adit
- Cross-section location
- Topographic contours: one metre intervals

Sources of Information:
- Geology, 1984: P. Mustard, R. Scammell, B. Wilson, A. Fainbird
- 1985: P. Mustard, E. Bod

Major Fault Locations: (Thompson R. 1944a)
- Cobalt silver area, northern sheet
- Timiskaming district, Ontario
- Department of Mines, Map 2050.

GOWGANDA FORMATION
COLEMAN MEMBER
COBALT ONTARIO

Southern Sheet

Contour Interval: 1 Metre
Scale: 1:2000

LEGEND

PROTEROZOIC

M. &. Granitic Intrusive Sill: Niagara Diabase
Intrusive Contact

HORONTIAN SYSTEM
Contact Group

GOWGANDA FORMATION - COLEMAN MEMBER LITHOSTRATIGRAPHIC

uM - Upper Migmatic Diamictite Complex

uM - upper diamictite
ulm matrix-supported
udc clast-supported (rare)
uM-m massive (oid pebbles irregular stratification)
uM-s stratified
udc-(r) reworked

Dc - Diamictite, clast supported

Dcm massive
Dcs stratified

SYMBOLS

Geologic contact: defined, approximate, assumed

Boundary of rock outcrop
Small outcrop

Strike and dip of bedding: inclined, horizontal, vertical
Strike, top of pillowd volcanic rock: dip known, unknown
Paleocurrent indicator: direction known, unknown
Drke attitude: inclined, vertical