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Abstract

This thesis develops a new adaptive algorithm for general array signal-processing.
It is a true stochastic Quasi-Newton (QN) Least Mean Squares (LMS) algorithm, as
compared to simply an accelerated LMS algovithm. It is inherently faster than LMS but
slower than the Recursive Least Squares (RLS) algorithm (which is also QN but
optimizes a different performance function). It is unique in that, as LMS. it requires only
order-of-N computations per iteration compared to order-of N for RLS. yet is applicable
to arbitrary array signals of N dimensions. unlike other order-of-N (Fast) RLS

approaches.

Specifically, the new Fast Robust Quasi-Newton (FRQN) algorithm potential'y
has unique performance advantages over existing algorithms in time-critical digital
adaptive antenna arrays, i.e. spatial filtering in a dynamic environment. That is because
stable Fast RLS algorithms for general N-element adaptive arrays do not prescntly exist,
only for tapped-delay-line (temporal) adaptive filters {6]. The popular, order-of-N LMS
algorithm suffers from slow modes of convergence in commonly-encountered ill-
conditioned scenarios, and from high misadjustment. It is shown, analytically and via
Tepreseniative computer simulations, that the FRQN algorithm has order-of-N
complexity, fast Quasi-Newton convergence and very small misadjustment. Robustness
in this thesis refers to the stability of its properties with respect to type of array signal
and scenario. The "price” for these desirable features is a larger tracking error, more bits

of precision and twice the complexity as the Normalized LMS (NLMS) algorithm.

Background material includes tutorial developments of the LMS and RLS
algorithms, a review of competing algorithms in the recent literature and applications

which motivate their development. The FRQN algorithm is derived in detail and

ifi



compared to the NLMS and RLS algorithms. Results demonstrate that in highly il-
conditioned and fast dynamic scenarios. FRQN outperforms the NLMS algorithm. and
is only slightly worse than ordinary RLS at low to moderately-high signal-to-noise ratios.
Analyses include stability in the mean and mean-square, misadjustment and tracking
errors, computational aspects and ways of providing reference signals in possible

applications.
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Chapter 1

Background and Statement of the Problem
1.1 General Context

As the number of users of electronic communication channels increases, problems
arise due to mutual interference among users, thus limiting the capacity of the channels
to transmit information. Higher transmission rates over greater distances have been
imposed on these media in order to transmit the ever-increasing volume of information,
leading to reception problems caused by channel distortions. In efforts to overcome these
limitations, methods of compensating the channel degradations have been devised.
Specifically, because the disruptive effects are usually time-varving, adaptive systems
such as interference cancellers and equalizers for radio and wired links have been
implemented. However, in many applications their speed is not sufficient to cope with

the dynamics of the channel.

Such adaptive signal-processing systems are governed by mathematical a'gorithms
which in some way measure the signal and/or distortion parameters (usually via estimates
of the statistics of received signals), and adjust the coefficients of some form of filter
(e.g. a linear combiner) so as to optimize a performance measure (typically a quadratic

function of the difference between the received and desired signal waveforms).

Adaptation rate is much lower than the signalling rate so the adaptive system is
essentially linear with respect to the signal, but it must adapt faster than the rate of
change of the channel or interference environment. Adaptation speed (for convergence
and/or tracking) of a practical adaptive system is limited by the complexity of its

algorithm, speed of the hardware on which it is implemented, the number of filter
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()

coefficients to be adapted and for some algorithms. on the bandwidth occupied by the
received signals at the input of the system. The speed of some algorithms is also a
function of the input signals’ statistics. generally giving rise to fast as well as slow modes

of coefficient adaptation which are largely beyond the user's control.

Fast modes are undesirable because they cause the system to depart from a quasi-
linear filter, giving rise to such phenomena as partial signal cancellation. Slow modes
tend to prolong the response times to intolerable lengths in fast dynamic scenarios. Other
algorithms are impractical due to their computational complexity, meaning there is
insufficient time between the Nyquist samples to perform the computations of one
algorithm iteration. As there is no ideal algorithm, there are many applications for which
the performance of current adaptive algorithms is inadequate. Consequently, much past
and present research and development effort is directed toward improving upon the
performance of some of the well-known algorithms, and/or making them casier to

implement in real-time.

Perhaps the most well-known and widely used adaptive algorithm is the so-called
Least Mean Squares (LMS) algorithm (see e.g. [1]). It requires in the order of N
complex multiply-add operations per iteration, so it is one of the simplest to implement.
However, it generally requires many iterations (more than 10N - [00N) to converge. In
fact, its convergence speed is directly at the mercy of the signal statistics. While its
performance is sufficient for many applications, it is not acceptable for some of the more
recent ones such as adaptive antenna arrays (spatial filters) for mobile digital cellular
radio communications [13, 14]. Fast adaptive time-domain filters and equalizers also
require a faster, more robust algorithm because only short sequences of known data
symbols are available for "training” them and limited computing power is available to

compute coefficient updates in the short time intervals between signal samples.
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1.2 Directions of Previous Research

Despite the tremendous progress of technology over the past 20 years, the quest
for faster and more robust adaptive algorithms continues, because the same technology
also allowed the pace and density of electronic information transfer to increase. thus
fuelling the need. More complicated and faster algorithms became practical. but they

were required in ever higher-speed applications.

Whereas the LMS algorithm follows the path of steepest descent along the surface
of the penalty-function in filter-coefficient space (in an average sense). other algorithms
such as Recursive Least Squares (RLS) or Direct Matrix Inversion (DMI) follow a more
direct path to the optimal coefficients, converging in 2N to 3N iterations. However, RLS
requires in the order of N* computations per iteration and DMI requires in the order of

N?, whereas LMS requires only in the order of N computations.

Many ongoing research efforts are devoted to reducing the order of their
computational complexity to N for practical implementation. Specifically, efforis were
directed at developing a fast RLS (FRLS) algorithm having order-of-N complexity.
Unfortunately most of the results suffered from numerical instability requiring further
"rescuing” operations for practical implementation with finite-precision hardware.
Performance in nonstationary environments was not reliable. Only recently a stable FRLS
algorithm has been devised [6], but only for FIR types of time-domain filters. It relies
explicitly on their tapped delay-line structure for greater computational regularity, hence
speed. Since spatial adaptive filters (e.g. radar, sonar or communications antenna
adaptive arrays) do not give rise to such a regular signal structure, it follows that no
FRLS algorithm yet exists for general adaptive arrays. (Signal-vectors of uniform line

arrays resemble those of tapped delay-lines but with a different inter-tap delay for each
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angle of arrival of the planewave signal. For arbitrary arrays with mutual coupling
among the elements, and arbitrary propagation modes. the relationship among the entries

of the signal-vectors is even more complicated. though presumably lirear.)

An alternative approach to an improved practical algorithm is 1o increase the
speed of the LMS algorithm without sacrificing too much of its appealing simplicity,
stability and robustness. Efforts tend towards reducing its dependence on the signal
statistics. specifically the eigenvalues of the input-signal covariance matrix. The hope is
to make it follow the same convergence path as RLS in fewer iterations than LMS, at
least approximately. These are the so-called Quasi-Newton (QN) algorithms {1.3.4.5].
Although RLS is also 2 QN algorithm [28]. the interest is in those having order-of-N

complexity.

Besides the FRLS time-domain FIR adaptive algorithm [6], analogue
implementations of more general QN algorithms have been developed [4,5]. While
suitable for high power and/or high bandwidth applications, analogue hardware is more
bulky, costly and difficult to design than current digital hardware. Moreover, analogue
signals are susceptible to corruption by noise, signal leakage and radiation, bias and
spurious disturbance signals, and the physical idiosyncrasies of analogue components.
Systems are hard-wired and difficult to reconfigure for diverse applications. which
require costly redesign. A limited variety of physical components is available to perform
basic signal-processing functions. By contrast, digital implementations are robust with
respect to physical hardware effects, precision is easily retained and computations more
readily tailored to specific applications, especially with the support of the extensive
hardware and software infrastructure of computer-aided design (CAD) tools. An ever-
increasing variety of signal-processing functions is readily programmable into the same

compact digital hardware so cost of implementation is presently decreasing.
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With the present trend being toward digital implementation of communications
and control systems thanks to the advances in technology. many present (and most
future) adaptive systems require a digital implementation. In that form, they are also in
the best position to make use of digital information which is being transmitted in ever-
increasing volume with many types of signals. Presently, the need for fast QN algorithms
for general adaptive arrays is unfulfilled in digital radio communications such as from
aircraft [4], personal mobile radio' and emerging digital cellular mobile-radio systems

[13,14], where the LMS algorithm has been found to perform inadequately.

1.3 Statement of Thesis Research

Against this general background, this thesis advances a new, digital adaptive
algorithm which is unconditionally stable, robust with respect to arbitrary signal-vector
structures, and, with only order-of-N complexity, approximates the quasi-Newton
convergence behaviour of RLS algorithms. (The QN property is explained in the
Appendix of [5] as well as in the following tutorial chapter herein.) In this thesis,
“robustness” is used to mean stability of the convergence properties with respect to type
of array signals, their statistics and freedom from analytic divergence, rather than the
mathematically formal robustness based on perturbation analysis. As will be shown in
subsequent chapters, this FRQN algorithm potentially has unique performance advantages
over existing algorithms in time-critical, digital adaptive-array applications, i.e. spatial
filtering in a dynamic environment. The hope is that the analysis and optimization of its
convergence, tracking and other key properties will result in a useful approximation to
an FRLS adaptive algorithm for general array signal processing. Even if its speed does

not ultimately match that of RLS, it is a useful contribution to array processing because

' Dr. Salim Hanna, DOC (Canadian govt.), private communication
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it is inherently general, stable and of low complexity. unlike existing RLS or FRLS
algorithms. Specifically. the contributions of the FRQN algorithm developed in this thesis

are:

* Low computational complexity (6N + 2, only twice that of NLMS. compared

o 4N° + 4N + 2 for RLS):

* Applicability to arbitrary array signal vectors (unlike present order-of-N FRLS):

* Quasi-Newton adaptation (faster than NLMS and otherwise accelerated LMS
algorithms, similar to but slower than RLS), specifically meaning that adaptation
speed is robust with respect to condition of signal-scenario in that it is relatively

insensitive to the eigenvalue spread of the array covariance matrix:

* Lower steady-state misadjustment error than NLMS and lower total mean
squared error (despite a higher tracking error) than NLMS even in very fast
dynamic scenarios, comparable to RLS at low to moderately-high signal-tc-noise

ratios.

Adaptive arrays in a mobile-radio network base-station are used as the vehicle to
develop and compare the FRQN algorithm in this thesis, as they possess a more general
signal structure, require fewer degrees of freedom than time-domain equalizers to
mitigate multipath and cancel co-channel interference, making them very popular systems

in near-future mobile wireless networks.
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1.4 Synopsis

The following chapters explain the origins and motivations of the proposed FRQN
algorithm in greater detail. Chapter 2 presents the starting point, namely the LMS
algorithm, in a ttorial format, followed by the RLS algorithm which. minus its
complexity, represents the goal. With details of its derivation deferred to chapter 3. the
FRQN algorithm and some of its salient properties are stated. Alternative approaches
found in recent literature are reviewed for comparison and to more clearly define its
place in the context of current research. Applications particularly suited to this algorithm

are cited as motivation for its development.

Chapter 3 develops the FRQN algorithm in detail (equations (80) or (122), with
(93)). Its properties are mathematically derived and explained by appealing to geometric
concepts and compared to corresponding features of the LMS and RLS algorithms in
section 3.2. Preliminary simulation results serve to illustrate the favourable performance
of the algorithm relative to that of LMS in a simple adaptive antenna array (a generalized

sidelobe canceller).

Further simulation results quantitatively compare their performances as fully
adaptive antenna arrays in a mobile-radio environment. The mathematical treatment in
section 3.5 indicates other possible versions of this algorithm, while section 3.6
characterizes key convergence properties and evaluates the performance of the FRQN as
well as NLMS and RLS algorithms in stationary and non-stationary adaptive array
applications. Section 3.7 shows that the FRQN algorithm requires only twice the
computations per iteration as the NLMS algorithm, and slightly more bits to avoid
stalling at the same minimum mean squared error. Appendix H includes the block
diagram of a possible implementation. For completeness, and to improve continuity of

the main text, detailed mathematical derivations are grouped into appendices at the end.
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Performance properties of the three algorithms are summarized with reference to
the key analytic and simulation results. Chapter 4 outlines possible ways of providing
reference signals for the FRQN (or other) algorithm(s) in adaptive array applications.
particularly in a high-capacity cellular or mobile personal communications network base-
station. It is shown that the FRQN algorithm can be used with the same generic
reference-generating subsystems that generate the reference signal from the array output
for blind adaptation in the same way as the NLMS algorithm. Chapter 5 summarizes the
work and 1ts main contributions and draws the conclusions. It also develops a new
interpretation of the mathematical relationship among the FRQN, RLS and NLMS

algorithms.

To set the stage for the developments that follow, the context of the FRQN
algorithm in terms of its general merits relative to those of the NLMS, RLS and stable

FRLS algorithms is summarized in Table ! below.

Table 1: Merits of Adaptive Algorithms

Algorithm » NLMS RLS FRLS [6] FRQN
Merit v

Complexity for || 3N 4N? ON + 23 6N + 2
N coefficients I gN

Performance Slow, erratic | Fast, accurate | Fast, Accurate Moderately

fast, accurale

Sophistication

General arrays,
requires well-

conditioned data

Optimal, general

arrays

Requires delay-
line data
structure; not

genieral arrays

General arrays




Chapter 2

Preliminaries
2.1 Principles of LMS and RLS Adaptive Algorithms - A Tutorial

Adaptive systems imply a vast field of research and development so the present
discussion is restricted to the most common structures and algorithms. More involved
discussions are available in the vast body of literature, e.g. [1].[3].[31].]34]. With only
a negligible loss of generality, the structure considered for the present purposes is that
of a linear combiner as sketched in Figure 1 below. It is aiways stable from the signal
viewpoint, and. as mentioned in [3]. can serve a variety of appiications from equalizers

to neural networks to antenna arrays. The last application is of primary interest herein.

2

b

Figure 1: Linear combiner structure.
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Essentially. the linear combiner serves to compute the inner product of its
complex coefficient N-vector W, with the signal-vector Y, to generate a scalar output
signal y, as

Wiy, =y, (1

for the k-th iteration at time ¢z =k Ar . where Ar is the sampling interval. Superscript
H denotes the complex-conjugate transpose (Hermitian). As mentioned in chapter 1, the
purpose of the coefficients is to compensate for some sort of time-varying signal-
corruption, so they must be continually adapted. Without loss of generality. assume that
a reference signal r, is available and is highly correlated with the (uncorrupted) desired
signal and negligibly correlated with the interfering signals and noise. It serves 1o guide
the adaptation of the combiner coefficients or "weights” so that, in some average sense

(to be clarified shortly), the error signal given by
&=y, -r, Q)

is minimized. In the context of adaptive antenna arrays, the input vector consists of
narrowband® signals received on each antenna element comprising ;hc desired as well
as interfering signals from various directions. Ideally the output of the combiner is only
the desired signal. The quantity being minimized is also referred to as the penalty
function. (Within each category of applications, the constraint or guiding reference signal
may be obtained by various means, but the basic algorithm is analytically still the same.
although the particular system applications may be known by different names, e.g.
sidelobe canceller, noise canceller, fully-adaptive beamformer. A discussion of reference
signals is contained in Chapter 4.) The adaptive coefficients which perform the

minimization will also be referred to as the state variables of the system.

* Occupied signal bandwidth ,B, is much less than the reciprocal of the transit time of the receive signals across the
array aperture.
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The general problem is therefore to find an optimal set of combiner coefficients
SO as to minimize the penalty function which in the case of LMS is the mean square
(magnitude of) error. (If the instanianeous error was to be zero. the signal would not

convey any information.) That is
Min [P(W)] = Min [#{|e,f || ~ mmse G)
W w
where mmse denotes the minimum mean square error. All signals are assumed to be
ergodic so the expectation over the ensemble & {} is equivalent to the time-average
over {k}. hereafter denoted by an overbar. One may apply the common approach to

finding the extremum of a function of several independent variables. i.e. set its gradient

10 the zero vector:
— — = 4
Virlesf =VWIWI: Yk-rkr =0 @
Usually it is assumed that y, and W, are practically independent because the {W,}

represent a much slower process than the {y,}. The average. being a linear operation,

is performed first, affecting only the "fast” processes according to
Veled =V riry - WAYr] - YW wHY YW <0 ®)

The averaged quantities are identified as follows:



CHAPTER 2 12

02, = r,tr‘t2 = reference-signal power (6)
S=Y,r," = steering or constraint vector M
R=Y,Y,¥ — array covariance marrix. ®

Carrying out the operation using the complex gradient operator (see e.g. [34])

d a
g, y Wy
VW a . + ] . 9
3 3
W,y [awlmv
with w=w, +jw, results in the so-called Wiener-Hopf or Normal Equations:
Volef =RW-5-=0 a0

or, providing the inverse covariance marrix exists’, the optimal weight vector

- p-1
Wope = RS (n

Because in general the signal environment will not be stationary, it is necessary

to keep adjusting the weights so as to maintain their optimality, i.e. towards the zero of

*R may be d by a small diagonal noise covariance matrix, or the pseudoinverse may be used [34].
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the gradient, according to

AW, =W, - W, =-BVlef . (12

This is the k+1 -st iteration of the so-called gradient algorithm, where g is a scalar
parameter controlling the step-size of W in the direction of the negative gradient of the
penalty function. Since R is positive-definite, the gradient is zero at the minimum of
P(W), i.e. the minimum mean squared error. For stability, the step-size parameter must

generally be bounded as (see Appendix B)

<Bs

2
R A 13

where A s the largest eigenvalue of R, and Tr[R] is equal to the sum of all
eigenvalues of R [34]. The algorithm will track the minimum of P as the signal

environment slowly changes with time.

In practice, such a gradient computation cannot be implemented because. in
principle, infinite averaging time is required to compute the signal-statistics R and S. In
real-time adaptive systems, these must be estimated at each iteration k. Moreover, the
estimates should be consistent in the sense that their ensemble averages should equal the

actual corresponding statistics in equations (6)-(8) and (10).

A simple and consistent estimate of the whole gradient (10) where all these

statistics appear is obtained by using the instantaneous error signal at each iteration as
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Vyleif = Vi leif = LY W, - Yer) = Ve (4

which is of course nor equal to the zero-vector for each k. Note that the estimated
gradient is also equal 1o the actual gradient of the square magnitude of the instantaneous
error signal. In either case the estimate is consistent, as may be verified by averaging the
quantities in equation (14) the same way as was done in equation (5). The result is the
popular so-called steepest-descent or Least Mean Squares (LMS) algorithm, which at

iteration k is given by:

AW, =-BY, &, (15)

or equivalently, in a recursive weight-update form,

H .
We=Wey - ka-l(Yk-lel - ’k—x) > (16)

with the available® output at the same time given by

H
Yo =W by (17)

Because each step AW, takes the states of the combiner only a short way towards the
optimal states, the whole journey incorporates many samples of the input signal vector
Y via the recursion (16), so the LMS algorithm intrinsically performs averaging of the

signal statistics. Since the signals are assumed ergodic, the averaged LMS algorithm is

“Since W, is still being computed at the k-th iteration, W:’ Y, is not an available output. To compute it would
incur some 2N additional computations. Moreover, as the speed of NLMS is increased, that would not be  useful output
because, due to the nature of the gradient estimate (comments regarding equation (14)), it b zero Iy,
meaning that it follows r, exactly. thus effectively destroying any information transmitted as part of Y,.
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seen 1o be the gradient algorithm. It therefore minimizes the squared error in an average

sense, "average” implying over the whole adaptation time until the steady state of W

(hence the name LMS).

\\
N

N <

\\\\\\\‘ > /
\\\\\\\\\\\\zs’a.ut,// o
\\‘\‘\\\\‘«\\\\\o.:”,: y
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Figure 2: Quadratic penalty-surface in W-space.

The step-size parameter is bounded by (13). Too large a step-size results in

divergence because the coefficient step overshoots the direction of decreasing P (error

power). Convergence time is governed by the actual step-sizes and directions along the

penalty surface in W-coordinates. The steps are also proportional to the eigenvalues of

R. Equivalently. the time-constants of these modes of convergence of W are inversely

proportional to the respective eigenvalues. Clearly, the eigenvalues depend on the signal

statistics and cannot be selected by the user. The average adaptation behaviour of W may

be visualized as the descent of the tip of the W-vector along the steepest path (negative

gradient) of the penalty surface. Figure 2 shows a sketch of such a surface; it is a

quadratic function of the weights, corresponding to the bracketed quantity in (5). The W-
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vector proceeds rapidly in the direction of the large arrows and slowly along the small
arrows, always perpendicular to the contours of constant penalty magnitude. Depending
upon the initial weights W, and the shape of P(W), it may take a very long time to reach
W Frequently such is the case in practice, as for example when two or more point
sources of interference are separated by a small angle relative to the far-field beamwidth

of the array aperture [34].

As may be evident from the preceding discussion, the direction of adaptation of
W may not be toward W, at every instant. In fact, it is more likely 1o be in a different
direction (except when the eigenvalues are all equal and/or W, is on one of the principal
axes of the P(W) ellipsoid). Algorithms which always adapt the weights in the optimum
direction, i.e. along the shortest, strzight line toward W are known as Quasi-Newton
(QN) algorithms. They cause W, to follow Newton's method of approaching the zero of
the gradient function of the mean squared error [4.5,28]. Among them are the Fletcher-
Powell "conjugate gradient” algorithms, variations of which can also be made order-of-N
in complexity in principle, as they rely on past gradients to approximate the inverse of
R (the Hessian) [28]. The convergence speed of QN algorithms is therefore independent
of the eigenvalues of R, hence more controllable by the user and robust with respect to

the signal environment.

One quasi-Newton algorithm is the so-called Recursive Least Squares (RLS)
algorithm. At every iteration it minimizes the sum of squared errors up to that iteration,
using all the past data up to the time kA [31]. (In that respect it differs from LMS
and the aigorithm developed in this thesis because the latter two minimize a different
penalty-function, namely the squared error intrinsically averaged over the run-times of

these algorithms.)
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Formally RLS solves the problem

k
Min| 3 20| W'Y, - rf (18)
q=0

k

which minimizes the sum of all squared errors from time q=0 to the present q=k using
the coefficients W, for all q up to k. The squared errors are exponentially weighted in
time by the "forgetting” factor

O<acgl 19

which governs the tracking properties of the algorithm [30]. As new data becomes
available at each increment of g, a new set of coefficients is computed to again minimize

the newly-incremented sum of squared errors up to the current time.

Minimization is again performed by setting the gradient to zero, but this time no
estimation needs to be performed because the problem is not posed in terms of ideal

statistics, but rather in terms of their best current estimates. Therefore. setting

k
- H 2
results in
. - H 2
YA =Y Ay YW, @b
q=0 q=0

which is similar to the Wiener-Hopf equations. Indeed, because the signals are assumed
to be ergodic, the weighted sums in (21) may be thought of as statistical averages using
all available data up to time k, which are the best estimations that can be computed in

real time.
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Denoting
L 4 9
R = ,,Z% Aty Y, 2)
and
u 9
S, = qz; MYy (23

it is seen that RLS solves the least-squares problem at every iteration k, since according
to (21).

o
S =RV, . &

To compare the coefficient steps of RLS with those of LMS, note that according to (22)
and (23). the current (estimates of the) statistics are obtained recursively from past

estimates and current data as

R =YY +1R, (25)

and

Sy=Y,r - A5, . 6)

(Because W, is still being computed at the k-th iteration, the output signal will be denoted
by Y = Wk"_’1 Y, which also avoids incurring 2N extra computations.) Now rewrite (24)
using (26) as

RW, =Yg +45,,, @7

then apply (24) at the previous (k-1)_st iteration to S,., above, to obtain

RW, =Y,r; + AR W, . (28)

Isolate Ry, in (25), substitute into (28) above and simplify to

RW,=Y,r + (Rk - YkYk”) Wit 29



CHAPTER 2 19

Subtracting R, W, , from both sides above results in the Quasi-Newton (QN) form of

the algorithm:

R AW, =-Y,a, (30)

where «, is the g-priori error, defined as

H
=W, Y, -r, @D

(as opposed to the current instantaneous error. the sum of which is being minimized)
given at the same time by

e =W'Y,-r, . (32)

It looks much like the LMS algorithm (e.g. equation (16)) when rewritten as

-1 .
We-Wo=-R Yk(YkHWk-l - "k) : (33)

Note that, except for the indices of the signal quantities. the difference between RLS and
LMS coefficient steps is that, on average, the magnitudes and directions of the former
co not depend on the eigenvalues of R. That is because, on average, the (matrix)

coefficient of W, in (33) becomes the identity matrix for k>2N:

&R vy} =RE(Y, Y} =RR=1. 34)

There is also no time-constant, so when sufficient number of linearly-independent
samples from each of the N signal dimensions have been incorporated in the least-squares
solutions (after 2N to 3N iterations), the algorithm converges and (33) becomes the
optimal solution

-1
We-We =~V * RS, . @3

It is required only that each successive sample of Y be linearly independent of the

previous ones.
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The QN form of the RLS algorithm is not usually what is implemented. Because
in place of the scalar step-size parameter g . as in LMS, one now has the NxN
matrix R;' inits place in RLS. the computational complexity is of order N* due to the
matrix-inversion. Usually the matrix-inversion lemma (see Appendix E) is employed on

(25) 1o recursively update the array-covariance matrix inverse as

- Hp-1
Rk«ll Yk Yk Rl—l
A+Y R Y,

R'=[AR_,+ YkYkH]_l =Ti R, - (36)

thus reducing the computational complexity of the RLS algorithm to order of N*. When

(36) is substituted into (33) it eventually simplifies to

1

- H .
——— [RAY (W, - ) 37
A+Y R Y,

AWk=—[

where the first factor on the right-hand side is a scalar. Since Rk“yk in (33) and

R;_’l Y, are vector quantities, one may denote them by

L,=R'Y, (38)
and
V,=RY,. 39
Defining the vector
Ve
K =—F— (40)
A+YV,

allows one to write the recursive update of the matrix inverse as
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a1 14 1 H
R = < R - 0 KV 1C2Y)
and that of the weights as

. 5
We=Wi - Ko, “2)

which require order of N° operations per iteration. For a faster (order of N) RLS
algorithm, one wants to find a simple recursive update relation for L, in terms of L, .
So far. a stable way of doing it or its equivalent has been found only for a time-domain

FIR type of filter structure [6].

2.2 Relations to Continuous Time Algorithms - The Normalized LMS
Algorithm:

It is instructive to develop the discrete-time LMS algorithm from its continuous-
time counterpart and to relate that to the conventional discrete-time LMS and normalized
LMS (NLMS) algorithms. It helps in understanding the FRQN algorithm and its possible

variants.

The conventional LMS algorithm in discrete-time is given by
We=We -BY, e, “3)

where

H
LR/ AR @4

is the past error, r is the corresponding reference signal (correlated with the desired
signal and uncorrelated with the interfering signals) and Y is the input signal vector. Note

that the past error is utilized in a causal updating relation for the current weights vector
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(i. e. at the k-th time-interval). This may also be written in terms of the resulting step

from W, 1o W, as

H . .
LW =-BY Y, W, ~BY, re =-BY e, . 3

This algorithm is stable as long as Q<p<2/Tr[R] Wwhere the quantity

Tr[R] = TH{&(YY#)] = Y?y, is the input signal power.

It has been suggested that a better version of the LMS algorithm should use the
current signals, because the conventional LMS algorithm introduces an extra delay by
using the past signals [22-24]. This results in a normalized LMS (NLMS) algorithm,
which may be derived alternatively as in [31]. Here it is derived from the continuous-

time LMS algorithm to show how various versions of the FRQN algorithm can be

obtained.

In continuous-time the extra delay in the LMS algorithm vanishes in the limit as

At-dt. It is given by the differential equation

T% W) = -g YO YR W) + gY@ r () = -g YD e (1) (46)

where T is the open-loop averaging time-constant and the gain is required to be g >0 for
swability. The LMS algorithm minimizes the mean square error on average, but at each
instant its direction of change of the weight vector is that which reduces the instantaneous
squared error. That is because it uses the instantaneous gradient of the squared error
(which is also the gradient of the instantaneous squared error) to estimate the true
gradient of the performance surface. The algorithm itself performs averaging intrinsically
by its recursive nature, and the fact that each incremental change in W advances it only

a short way to the final solution.
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To obtain the normalized discrete-time LMS algorithm. equation (46) is first
averaged with the usual assumptions of ergodicity and independence of W(t) from Y(1),

resulting in
Tgt- W) = -gRWG) +gS. @7

This is then transformed to the Laplace domain and written as
sTW(s) = -~g RW(s) + gS(s). 438)

At this point one of a number of s-to-z transformations (see Appendix A) may be applied

to convert it into the z-domain, e. g. the bilinear transformation

se2fl=z7) 49)
Atl 1 -z7?

or the backward-difference transformation

sol-zt (50)
Ar

Choosing the latter with  Ar being the Nyguist sampling interval and transforming back

into the now discrete-time domain produces
tAW,= -gRW, +gS (51

where ¢ = T/Ar is the normalized open-loop time-constant. Upon "deaveraging” and
assuming that the signals or data represented in R and S include the current data at time

t=kAr . this becomes
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TAW, = -gY, Y W, +~gYri=-gY,ef 62

which compares with (45). However, this is not a causal updating expression for W,
because e, also contains W,. To obtain a useful updating algorithm for W,. one again

makes use of the matrix-inversion lemma (see Appendix E) to isolate it as

[1+n Yk}'[’] Wo=W,  +pYr (3)
where
B= £ = g_At >0.
T T 54)

This leads to the updating equation (which compares with (16))

We=Wey - BkYkYkH Wi+ BeYyre (55)

with the time-varying step-size parameter given by

By=—E— . (56)
l+pt,'y, :

Since W, is still being computed at this (k-th) iteration. the available output is given by

H
Ye= W, Yy (57)

to avoid the problems pointed out in connection with the more conventional form of the
LMS algorithm. The indexing of Y and y in the two algorithms is not identical. It can
be shown that if B in the conventional LMS algorithm is normalized by Tr|R], the
outputs of both LMS and NLMS are identical except for that of the latter occurring one

iteration earlier. Normalization is merely a convenient way of ensuring that (13) is
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b

satisfied, so there is effectively only one normalized LMS algorithm (NLMS), contrary
to implications of [22-24]. In this thesis. the NLMS form as derived from continuous-
time LMS will be utilized, since it most closely resembles the convention utilized in the

FRQN aigorithm, making comparisons easier.

Note that on average. B, is a step-size parameter normalized by the signal
power, thus satisfying (13). Consequently (56) gives unconditional stability since the gain
is usually g > > 1. (One would also expect to preserve this kind of stability by the nature
of this s-to-z transformation, as shown in Appendix A.) Note that (56) is naturally
prevented from becoming infinite when the signal power happens to be zero. {In

practice. finite noise power would prevent that.)

Also note that, although (55) minimizes the current error with the current weights
according to (52), it does not actually use the current error in computing the current
weights, as that is not causally possible. Instead. it uses the a-priori error, (as does RLS),
which also automatically avoids the probiem of instantaneous following of the reference

as its speed is increased. according to (53).

The RLS algorithm also minimizes the present error using the a-priori error. One
type of comparison of algorithms should involve NLMS optimized with respect to speed
and misadjustment. The common step-size parameter for achieving this in the
conventional LMS algorithm is

1
Tr[R]

B, =

It makes the excess mean square error equal to the minimum mean square error [31].
Reference [26] contains a derivation for the corresponding condition in the continuous-

time LMS algorithm from which it can be deduced that
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Tr(R] =1 (58)

~lQ
oo

where G=gand §/2 = A is the Nyquist sampling interval. This corresponds to
1
Eope 59)
T &y, vy
in (55). It leads to an average step-size parameter via (56) given by

- 1
2TAR] |

(60)

which is close to the one typically used in the conventional discrete-time LMS algorithm.
Therefore the corresponding optimal open-loop gain in (54)-(56) should be

61

T
TriR] ’

or with ¢ determined as 4N from the requirements for Nyquist-rate sampling and

sufficient correlation time (to be discussed in chapter 3)

4N

S AN (62)
& T

2.3 The FRQON Algorithm in Relation to Similarly-Motivated Approaches

- A Review of Recent Literature:

This algorithm owes its genesis to the work of Dr. R. T. Compton, Jr. of Ohio
Sute University. He published in 1980 a modification for the analogue, continuous-time
LMS algorithm implementation popular for adaptive arrays at the time, which cancelled
most of the dependence of its time-constants on the covariance-matrix eigenvalues [4].

He pointed out in his introduction, that it was not intended as a digital discrete-time
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computational algorithm, because other such algorithms which circumvented the problem
of eigenvalue-dependent convergence properties already existed. Presumably he had in
mind block-wise matrix-inversion (with order-of-N> complexity), and recursive least
squares (with order-of-N* complexity). Present research and development efforts are

directed toward achieving order-of-N complexity.

With the original intent of [4] in mind, the present author modified Compton’s
analogue loops to more exactly cancel their eigenvalue dependence in the time-constants,
and confirmed its constant convergence properties by analysis and hardware
experimentation [5]. It has beer successfully implemented in some products for military
communications applications. These depended on its constant-convergence performance
in that it served to protect digital radio links which could not tolerate lengthy jamming
intervals without loss of synchronization, or other links which also used fast frequency-
hopping to evade jamming. The analogue implementation had the advantage of relatively
low complexity and real-time wideband nerformance. For some types of algorithms, this

is still the case today [10].

By applying the matrix-inversion lemma to the finite-difference counterpart of the
original second-order differential equation of 5], a discrete-time version of the algorithm
was created. However, for stability reasons, the original block diagram now took on the
form of a non-computable discrete-time network. This meant that a digital hardware
impiementation would have to be of a different topology than that of the original

continuous-time servo loops, in order to be causal.
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The basic version of this (FRQN) algorithm is written as

T (W - 2W + i) ¢ Tz[YI * ngYkH]<Wk - W) =

Y (63)
= -gV Y, W, +gY,r,

where k denotes the k-th iteration, g is a loop-gain factor: W is the N-vector of complex
weights or adaptive coefficients. Y is the N-vector of complex input or data signals and T, and 1,

are time-constants normalized by the sampling interval Ar . the latter determining the
overall convergence time, and the former being much smaller. The scalar r represents
a reference signal, or a main-channel signal as in the case of a (generalized) sidelobe
canceller. Gamma (y) is a diagonal augmentation term of the input signal covariance

matrix.

It was shown in {5] that the original analogue version of this algorithm follows
the Newton-Raphson method of minimization of the penalty-function, according to a first-
order analysis. It is preferable to the gradient-descent approximated by the LMS
algorithm because the former always converges at a fixed and selectable overall rate,

whereas the latter is exceedingly slow and jittery in many practical situations [1].

The FRQN algorithm can have several versions, and in fact differs from the
original discrete-time version originally developed for simulation of the analogue
continuous-time implementation. That one also had two time-constants, but the smalier
one was limited to be greater than about 8N due to the requirement for Nyquist-ratc
sampling combined with that of sufficient averaging time for decorrelation of N different
signal vectors. With some modifications, the FRQN algorithm runs well with the smaller
time-constant set to N and the larger one to about 4N, and achieves much greater

suppression ratios than the original. Other versions can be derived by applying different
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s-to-z transformations to the Laplace-transform of the averaged original differential
equation in [5]. {Such an approach is also applicable to other continuous-time stochastic

adaptive algorithms.)

By specific references to recent papers on similarly-motivated improvements of
LMS and RLS algorithms, the unique properties of the FRQN algorithm will next be
illustrated. First, the difference equation for the basic (not optimized) version of the
FRQN algorithm is rearranged in the form of a programmable. recursive weight-update

equation as

W, =

k Wk-l -

9 ay/by + o Y,

Tt A
-[;2]1-——“—5Wk4+ (64)
) aglby + Y'Y,

. (i]_yk”‘_
by ) ayfb, + Y'Y,

(Bt
k

with  a;=1,(t;+vY), by=g +7,8, a,=27,(t,+v/2) and b =gt,=b,~-g . The
parameters were chosen as y = 1/1,, g = A ., %, =4Nand 7 = 1,/4.
Since v w,_, and yk" W,_, are scalars, it is clearly of order N. Its derivation and

refinements are postponed until chapter 3.

The FRQN algorithm is numerically stable and works with arbitrary array
geometries and coupling structures. Initial comparisons in the same scenarios with LMS
(actually NLMS) showed dramatic improvements of convergence rates and weight jitter

in the ill-conditioned cases.
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Perhaps the best-known numerically stable FRLS type of algorithm is that of
reference [6], but it is not applicable to adaptive arrays. hecause their data vectors do not
possess the requisite shifting property. That is true even for perfectly regular array
geometries such as uniformly spaced elements along a line without mutual coupling. The
technique of reference [7] is applied specifically to adaptive arrays but requires a specific
(uniform, linear) array geometry. In addition, there are concerns that its initialization
does not guarantee global convergence. It relies on infrequent updates of a spatial pre-
filter or beamformer, which are of order-of-N° complexity. A related reference [8]
addresses the convergence problem, but still relies on the special array geometry. It also
refers to Compton’s work [4], citing that the convergence is still slow for the smallest
eigenvalues. Mention is also made of a fast adaptive-array aigorithm operating on a
cascade structure known as a Davies tree, but it also requires a specific array geometry
(either uniform linear or circular with a phase-mode network) [9]. That technique does
not always converge to the optimal state, and the computation is of order N°. Like other
techniques relying on specific array geometries, the accuracy of the interference
cancellation is always compromised by the inevitable phenomenon of mutual

electromagnetic coupling among the array elements.

As mentioned earlier, reference {10} describes an analogue implementation of a
neural network adaptive-array algorithm. It is rather fast (10 degrees of freedom adapt
in 0.1 ns) and cites digital LMS implementations as being slow and suffering from signal-
cancellation (due to weight jitter [1]). It is similar to [5] only in that the response time
is determined solely by resistance-capacitance (RC) time-constants rather than by
computational complexity (which is of order N?). Being analogue, it does not benefit
from the inherent precision and flexibility of digital implementations as the FRQN

algorithm does.
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A common approach to improving the convergence properties of the LMS
algorithm is to vary its step-size, as for example in references [11] and [19]. That can
modify the steepest-descent path only in a scalar fashion. i.e. it cannot change its shape
to effect a shorter, more direct path to the optimum state. Usually the step-size is varied
from large values for fast initial convergence to small values for low steady-state
misadjustment and negligible signal-cancellation. It cannot achieve the homogenization
of all modal time-constants as in Newton-type algorithms, which are regarded as the most
"efficient” in this sense [1], because that requires a matrix operation on the gradient
estimate. It is also not always clear when the adaptation is in the "initial” stages and
when it is in more "steady" stages in an arbitrary dynamic scenario. i.e. it has little

relevance to non-stationary scenarios (footnote 5 of [3]), unlike the FRQN algorithm.

A somewhat more potent approach is to use a diagonal matrix in place of a scalar
step-size in an LMS algorithm, as for example in [15]-[18]. In [15] the authors use a
fixed diagonal matrix to keep the computational complexity low. It is calculated from the
known signal structure, in this case measured echo characteristics of a conference room.
Being diagonal and deterministic, this gradient transformation inatrix also cannot achieve
the homogenization of the LMS modal time-constants. References [16]-[18] are
concerned with a varying diagonal step-size matrix, which effectively performs an
automatic gain control function on the components of the estimated gradient. That gets
around the problem of distinguishing initial adaptation stages from later ones, but its
authors acknowledge some of the comments to the effect that it may not work with long
filters [18]. In principle, it still cannot achieve a Newton-type of convergence to the
optimum because the step-size matrix is diagonal, whereas the ideal step-size marrix is
the inverse of the array covariance matrix (as in the RLS algorithm, effectively) which

is rarely if ever diagonal.
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Auempts at effecting non-diagonal step-size matrices in LMS algorithms
sometimes follow the approach of transforming the data vectors so the covariance matrix
of the transformed data would become more diagonal. That may be done by passive array
feed networks or beamformers. but does not work in general. because the required
transformation is data-dependent and the beamformer is constrained to be fixed. Some
improvement may result from using power normalization of the beamformer outputs as
in [20], but that cannot generally be relied upon to eliminate the eigenvalue disparities.
To quote from the abstract of that reference: "Since the Karhunen-Logéve transform
(KLT) is the ideal transform for this application,and since the KLT is defined in terms
of the statistics of the input signal, it is certain that no fixed-parameter transform will
deliver optimal learning characteristics for all input signals. However, the simulations
suggest that, with a little trial and error, transforms can be found which give much
improved performance in a given situation.” [20]. The FRQN algorithm does not have

such limitations.

Algorithms which inherently orthogonalize the data and thus effectively equalize
all the modal convergence rates are studied in [21] in the context of adaptive equalizers.
Fast quasi-Newton and conjugate gradient algorithms are quoted as being profoundly
affected by extremely small amounts of noise. even to the point of instability in the case
of the conjugate gradient method. The self-orthogonalizing algorithms studied in that
paper all have a computational complexity of order N? and are applied only to tapped-
delay-line or FIR types of input signals. The FRQN algorithm is insensitive to noise in

the data and is computationally simpler.

Less accurate but computationally simpier approaches to self-orthogonalization are
described in [22]-{24]). Actwally, reference [22] does not claim to perform self-

orthogonalization, but rather to enhance the stability of the LMS algorithm by using the
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current weights and data in the weight-update equations. Reference [23] shows how to
perform the corresponding weight-vector computations without having to compute the
vector entries one at a time while holding the others fixed. It is essentially the same idea
as the "noncomputable loop” for the LMS algorithm and may also be derived by
application of the matrix-inversion lemma to that kind of loop. That was done in the
process of developing the FRQN algorithm. In the case of the LMS algorithm, it has a
similar effect as division of the step-size by the total input power, which accounts for the
unconditional stability of the resulting MLMS algorithm. However, it does nothing to
reduce its eigenvalue disparity, and provides the same output as the conventional LMS
algorithm, but one iteration earlier. The same idea is responsible for the unconditional
stability of the FRQN algorithm. However, the FRQN algorithm also employs other
features to effectively achieve self-orthogonalization, i.e. by normalizing its step-size
with a higher-rank operator than the scalar signal power. The approach of [24] is to use
reduced-rank estimates of this operator as a way of generalizing the power normalization
idea. Typically the rank is 1 or 2. While that is clearly suboptimal, its author has some
concern that the "implementation compicxity might be high.” The optimal operator is the
inverse of the (up-to-date estimate of the) input covarian:e matrix, which is closely

approximated in the FRQN algorithm without excessive complexity.

The FRQN algorithm is similar to a second-order LMS algorithm described in
[26], in the sense that it is also a second-order algorithm with similar complexity. When
the gain of the second-order LMS algorithm is such that all its modes converge with
decaying oscillations, their envelopes have the same time-constant which is independent
of the eigenvalues. The oscillation frequencies, however, are directly related to them,
which may compromise its stability with real-life stochastic signal. (Subsequent
investigations during the course of this work showed it to be unstable in discrete-time

simulations in most scenarios.) Reference [26] was mostly concerned with analyzing its






