
Monaural Music Separation via Supervised
Non-negative Matrix Factor with Side-information

by

Ce Peng, M.A.Sc

A dissertation submitted to the

Faculty of Graduate and Postdoctoral Affairs

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy of Electrical: Computer Engineering

Ottawa-Carleton Institute for Electrical and Computer Engineering

Department of Systems and Computer Engineering

Carleton University

Ottawa, Ontario

July, 2017

c©Copyright

Ce Peng, 2017



Abstract

In this dissertation, a supervised source template nonnegative matrix factorization

(NMF) algorithm is proposed to solve the monaural music source separation problem.

Different from the previous state-of-the-art algorithms, the basic theoretical concept

of the proposed algorithm considers the spectrogram from an audio mixture as linear

combinations of note templates. Having prior knowledge of these note templates

for each source, we can estimate and determine the activities of each template in

recordings to build a mask of each source. Through the masks, the audio of target

tracks can be reconstructed.

We reviewed previous research on source separation for monaural music audio

separation and compared these work with our proposed algorithm not only in math-

ematical expressions but also in separation performances. First, the prior knowledge

of note templates is informed by musical instrument audio dataset. The spectrograms

from these instruments are obtained and factored into a source resonance character

matrix and a source impulse excitation matrix by assuming that the spectrum of the

different notes are formed by the resonance effects from an impulse excitation. Sec-

ondary, according to the prior informed note templates, their onset-offset-like features

are estimated by using the multiplicative update rule and supervised by the proposed

pitch-checking algorithm to remove misleading estimations. Finally, the supervised

note onset-offset-like features alternatively become a constraint to help the proposed

model evolve its prior informed note templates into the forms given by the recorded

instruments.

We employed the TRIOS and the Bach-10 dataset for our multi-source separation

performance tests. Among the source separation algorithms, our proposed supervised

source template NMF and the state-of-the-art algorithms including the sound-prism

and the Oracle-toolbox methods were selected to make comparisons. Furthermore,

we added white Gaussian noise into the audio mixture to simulate the background

full of the random noise to test the noise characteristics of each algorithm. The
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experimental results SDR (signal to distortion ratio), SIR (signal to interferences

ratio), and SAR (signal to artifacts ratio) indicate that with the note templates

from side-information, the proposed supervised source template NMF algorithm can

have equivalent or higher performance in two-source separation and have a better

performance under noise.
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Chapter 1

Introduction

1.1 Problem Statement

The source separation problem is more difficult than its mixing process. A simplified

example is that it is easy to mix salt in water, but hard to separate them. A similar

problem also exists in music sound separation. However, unlike the separation of

salt and water, a human’s ears and brain can focus on the sound of the interested

instrument and mask it from others. This characteristic is very useful in applications

of signal separation and understood by using machine learning to find an efficient

method for teaching the computer to get a solution.

The phenomenon of audio mixture separation by brain was first brought out by

Colin Cherry in 1953 [13] as a problem faced by air traffic controllers and is well

known now as the cocktail party problem, where the human auditory system can

pay attention to a particular stimulus while filtering out a range of “other noises.”

In the early years, the solution was given by the application of classic filters such

as high pass [14], low pass [15], band pass [16] or filter banks [17], which keep the

attention on a particular frequency band and get rid of the range of other noises.

Though filters work, in general, their performance encounters severe challenges when

there are overlaps of useful signal and “noise” in the frequency domain. Lately,

adaptive filter theory [18, 19] has been developed to point at the frequency overlap

problem and pick up useful data, if the useful data is predictable or the “noise” can

be depicted in a statistical way. But the filter theory would not work well when the

useful data is unpredicted, or the reference signal is non-stationary or non-stochastic

series. Compared with filter theory, the advantage of a machine learning technique

is that it can build a model using the data of non-stationary or non-stochastic series,

1



CHAPTER 1. INTRODUCTION 2

therefore a machine learning technique can become an alternative to classic filters

and adaptive filters in getting useful data from “other noise.”

To blend the sound of different instruments is as easy as blending salt and water

together. But to separate and rebuild the audio of the targeted track or instrument

from a monaural musical audio mixture is much harder because there are an infinite

number of mathematical solutions. This problem can be described as how to work out

a set of numbers, of which the sum is 9. In mathematics, the possible solutions could

be 1+8, 1−2i+8+2i, 0.5+0.05+8.45 and so on. For our needs, we have to consider

several factors from prior settings. The first is the domain of solutions, e.g. negative,

positive, real or imaginary, and the second is the number of required numbers, e.g.

two or three. These prior settings are called constraints and depending on them, we

will get different possible answers. The other metaphor of explaining how constraints

work in source separation is to consider a fruit recognition between bananas, apples,

tomatoes or pears. If we separate them according to shape, the banana is different

from the others; if we separate them from the way they are cooked, the tomato is the

only fruit normally cooked as a vegetable; and if we separate them from the taste,

the four fruits have four unique flavours. The constraints such as the shape, colour,

the preparation method and the taste determine the outputs of the separation. From

a machine learning perspective, the most challenging problem in source separation is

choosing the prior constraints to fit the needs of the separation task and determining

if the coefficients of the prior constraints can be calculated in mathematics, or if the

prior templates can be evolved to approach the actual ones which created the blended

data.

Fortunately, the non-negative matrix factorization (NMF) algorithm [20, 21], an

unsupervised classifier like the form of under-determined simultaneous equations, is

applied in many areas and shows great potential value in our research. In its basic

form, a non-negative matrix, a spectrogram of an observed musical audio mixture, can

be factored into two non-negative underlying factors, which are most likely defined as

the frequency profile templates in Hertz and their actions in time by a number of notes

from a musical clip. These underlying factors are summarized as the note templates

and their coefficients. Therefore, the multi-source separation work is turned into a

problem of finding the instrument labelled note templates used in actual recordings

and calculating their onset-offset-like features. The sub-spectrogram of the targeted

track can be reconstructed based on the time combinations of the same instrument
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labelled note templates as the mask for filtering.

Though the templates play a crucial role to avoid getting lost in infinite solutions in

the under-determined problem, how to obtain proper templates is still in the research

phase. If we decide to establish the separation algorithm based on the source labelled

prior template, there will be a sequence of questions, such as where we should find

them, whether they have the same form with the actual recording templates, and if

the prior templates can be evolved to approach the form of actual recorded ones. It

is just like a scenario of teaching a person to know the sounds of one violin he has

heard before and letting him recognize the sounds of other violins from audio mixture.

This needs the flexibility of the templates, which supposes to be a constraint and an

updatable factor at the same time.

1.2 Overview of Proposed Plan

For solving the problems mentioned above, we propose a plan to build up a new type

of constraint and side-information to supervise monaural music source separation.

The proposed model is divided into two parts: the note templates labelled by instru-

ment and their onset-offset-like features describing how strongly these templates are

activated in the observed music. For the note templates, we propose to use isolated

note audio from a standard dataset as one of the side-information to build up the

prior note templates which can be decomposed further into a resonance matrix of

different notes and a column vector representing the impulse excitation. On the one

hand, a resonance matrix has to be in the form of an identity matrix and this design

constraint has the restriction to keep the note resonances of an instrument from one

basis note. On the other hand, the resonance matrix should have the flexibility in the

degrees-of-freedom of being updated in the separation to adopt the unique resonance

characteristics of each note rather than being strictly defined by a single score for the

entire instrument. From the perspective of onset-offset-like features, we propose the

note range of the actual recordings and their fundamental frequency components as

another side-information, which allows the features to be modified dynamically.

According to the degrees-of-freedom, we classify the constraints used in NMF

research as strong, medium and weak. In previous work of shifted non-negative ten-

sor factorization (Shifted NTF) [10, 22], 2-D non-negative matrix factorization (2-D



CHAPTER 1. INTRODUCTION 4

NMF) [5,6], and score informed non-negative tensor factorization [1, 5,22], they per-

form the strong constraint with low level degrees-of-freedom on unit constant mag-

nification frequency shifted operands on a basis note vector to translate other notes

of an instrument, but in fact the frequency spectrum often varies from note to note.

In our proposed plan, the resonance matrix has a medium constraint with a medium

level degrees-of-freedom, which means the constraint can be self evolved from its

original form to fit the separation work. In the work of sparse non-negative tensor

factorization [23], J. Kim and H. Park applied a weak constraint with a high-level

degrees-of-freedom of measuring the norms of the underlying factors. Whatever the

case, building the constraints or side-information is aimed at adjusting the degrees-

of-freedom to obtain high accuracy separation results. The research of instrument

Separation Accuracy

Max

Degrees-of-freedom

Score Informed NMF

2-D deconvolution NMF

Shifted NTF

Sparse

NMF
Basic

NMF

Min

 Side-information

Proposed

supervised source template NMF

· · ·

Figure 1.1: The technique position of proposed work.

separation based on NMF gives its contribution to find out the balance between the

degree-of-freedom and separation accuracy. In Fig 1.1, we illustrate the position-

ing of this proposed work among state-of-the-art algorithms. Below the degrees-of-

freedom axis, a quadratic surface is used to illustrate the separation accuracy. In the

source separation problem, the underlying factors with too small or large degrees-

of-freedom both cause poor accuracy in source separation. The degrees-of-freedom
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can be changed by forcing the constraint on factors, and there is an optimized point

of degrees-of-freedom corresponding to the highest level of separation accuracy. The

work of the shifted NTF, 2-D NMF and score informed NMF, and the work of sparse

NMF and basic NMF are located on the sides of the small level and high level of

degrees-of-freedom. Our task is to find suitable constraints by adjusting the degrees-

of-freedom close to the optimized point with the help of side-information or prior

knowledge.

1.3 Bulleted List of Contributions

• Contribution 1 is the setup of the source labelled constraints. By our assump-

tion the source labelled constraints include a note resonance characteristic part

and a note impulse excitation part, which are initialized by a prior note tem-

plates through our proposed supervised learning algorithm in Section 3.3.1. This

part of work explores the note resonance characteristic and the note impulse

excitation information by instrument from a prior source labelled constraints.

• Contribution 2 is the introduction of an updatable constraint of a note res-

onance characteristic part which is obtained from the supervised learning al-

gorithm and responsible for the notes translation function in Section 3.4.3.

In previous work [5, 6, 10, 22], the constraint of the notes translation from a

basis note is a fixed identity matrix and non-updatable. Our proposed work

breaks the restriction of the constraints from the previous work and enlarges

the degrees-of-freedom of the constraints.

• Contribution 3 is supervising the convergence process iteratively by our pro-

posed pitch-checking algorithm in Section 3.4.2. This part of work is a necessary

supplement for gradient descent [24,25] based convergence algorithms e.g. mul-

tiplicative update rule [26–28]. Because the multiplicative update rule gives

its optimized solutions following the constraints of gradient descent direction,

which may not the optimized solutions for the source separation problem. The

aim of this part of work is adding our side-information of pitch-checking as

one of the constrains on convergence process in order to get a side-information

oriented optimized solutions.
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1.4 Proposal Organization

The organization of the proposal is listed by item structures.

• Chapter 2 is a background introduction. In its first part, we present the

general procedure of source separation based on the NMF algorithm. Then in

its second part, we review the literature in the previous work of NMF, sparseness

NMF [23], de-convolution NMF [1,5,22], score-informed NMF [29], shifted NTF

[10,22] and so on.

• Chapter 3 is mainly composed of four sub-topics. The first sub-topic talks

about the motivation of our proposed work. The second sub-topic describes

the basic expression of the proposed source template NMF. The third sub-

topic mainly introduces the supervised learning work which aims at building

the source labelled note templates and estimating their corresponding onset-

offset-like features.

• Chapter 4 designs the source separation performances test for the proposed

source template NMF, sound-prism algorithm [2] and Oracle-toolbox algorithm

[30] based on the TRIOS dataset [1] and the Bach-10 dataset [31]. It also tests

the noise characteristics of all three algorithms on simulated audio mixtures

which are created by adding the white noise as the background.

• Chapter 5 makes conclusions and analysis of our proposed source template

NMF algorithm. Furthermore, it discusses the advantages and disadvantages in

the proposed algorithm and gives the potential development in the future.



Chapter 2

Research Background

This chapter introduces the work regarding monophonic sound source separation

based on NMF methods which are related to our proposed work. The main top-

ics include the general procedure of source separation and a review of previous work

putting the emphasis on three branches: the development of constraints on the note

basis vector matrix W, the innovation of constraints on the coefficient or weight

vector matrix H and the growth of the method on convergence.

2.1 Audio Mixtures and Source Separation

Instrument separation is an important and challenging problem in computational

analysis and music research [32,33]. Acoustic signal mixtures result, when several in-

struments, such as the saxophone, trumpet and violin, play together simultaneously

shown in Fig. 2.1. Coccurring sounds from others instruments makes it difficult to

estimate an individual instrument. The separation task would become easier depend-

ing on the spatial locations of recording microphone arrays. However, if the scenario

does not have multi-channel recording, then the estimation task only involves source

separation of monaural music signals [33]. This acoustic signal mixture is depicted in

the time domain in the form of sound waveforms which may be played by the sum

of musical notes in Fig. 2.2. In this figure, the music notes are arranged in a piano

keyboard. We selected the notes from C, D, E, F , G, A, B and C1 to indicate a

completed range of an octave. Compared with the concept of audio mixtures in Fig.

2.1, the idea of source separation is addressed in a different point of view completely.

It describes that the STFT of the audio mixtures is defined as V can be decomposed

7
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Figure 2.1: Monaural audio mixtures from several instruments

into the sum of the products of a note dictionary matrix W and a note activation

matrix H by source. The number of sources and notes are side information provided

by the prior knowledge. When the source defined dictionary matrix and activation

matrix are obtained, their product will build up the STFT of a targeted channel.

Through the inverse operand of STFT, the time domain signal of a targeted channel

can be rebuilt as the separation solution. It has to be clear that all the separation

procedure is called masking-based separation and the necessary phase information is

obtained by the original spectrogram [1].

There are several ways such as mean opinion score (MOS) [34–36], perceptual evalu-

ation of audio quality (PEAQ) [37–39] and signal-to-distortion ratio (SDR) [40,41] to

evaluate the quality of sound. MOS method is a measurement in telecommunication

engineering domain. Though it is commonly used for measuring audio quality, it

needs a large number of people to give a rating in scaled numbers between 1 and 5.

Furthermore it also takes a long time to finish the rating by a large group of people.

PEAQ measurements are commonly used in perception coding, which may introduce

different levels of noise into a signal. But for separation operands, the main differ-

ence between the reconstructed signal and the target signal are the interference from

other sources and the distortion from the separation algorithm. So in this thesis, we

employed the SDR as a measure to outline the quality. The definitions of SDR and

the feature set are introduced in Chapter 3.
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Figure 2.2: Music note and its octave relation

2.2 Procedure of Source Separation Based on

NMF Algorithm

In the 1990s, the beginning work of NMF [20,21,42] was created by Paatero, Tapper,

Lee, and Seung. NMF has widespread application in such domains as chemo met-

rics [43, 44], audio and image signal processing [45–47], data clustering, [48–50] and

computer vision [48, 51]. But the concentration of this proposal only focuses on its

application in side information aided monophonic sound source separation (MSSS).

NMF is a way to factor any non-negative matrix, vector or data V into two matrices

with no negative elements: matrix W which has linear combination basis vectors and

matrix H which contains the weights of corresponding hidden components that make

the contribution of each basis vector [52]. The NMF basic sketch is given in Fig 2.4,

which makes the resulting matrices easily understood, especially in the factorization

process. The basic expression for NMF is

V ≈W ·H
=
∑

k

Wf,k · Hk,t,
(2.1)

where V is a non-negative matrix with size of F × T and its grayscale indicates the

data intensity. W is a collection of non-negative basis vectors formed in an F ×K
matrix, in which F is the domain of non-negative basis components and K is the

number of these potential bases. H is a collection of row vectors which represent the

basis activation sequences in a K × T matrix. The numbers within H determine the

amplitude of an activation process and the subscript t represents the length of the

activation sequence.
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Figure 2.3: Source separation illustration
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Figure 2.4: Basic sketch of NMF

For the instrument separation scenario in Fig. 2.5, V is the short time Fourier

transform (STFT) of the observed signal. After several iteration, the V is factored

into the note basis matrix W and its corresponding weight matrix H with non-

negative values. The frequency bin is related to the notation f in Hz. The label t is

related to time in seconds and k is related to the potential number of notes. In this

simple example in Fig. 2.5, K is supposed to be five notes which are determined by

prior knowledge. Matrix W contains the note frequency profiles in column vectors.

Matrix H is their related activations described as attack and decay profiles in the row

vectors of time. For the instrument separation scenario in Fig. 2.6, each source STFT
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Figure 2.5: STFT non-negative matrix factorization

is rebuilt by masking W and H. For example in Fig. 2.6(a) and 2.6(b), if informed

by side information that notes 1, 2, and 3 are played by the 1 st instrument and notes

4 and 5 belong to the 2 nd instrument, the rebuilt STFT of the 1 st source can be

obtained as V1 by multiplying the matrices W1 and H1 whose components of notes,

4 and 5, are removed in Fig. 2.6(a). In the same way, the rebuilt STFT of the 2 nd

source are worked out as V2 in Fig. 2.6(b). Obviously, we have V ≈ V1 + V2 in the

frequency domain and their time domain signals, s1(t) and s2(t), can be estimated

through an inverse STFT. For the simple condition, the factored H1 and H2 still

contain the note triggered and decay information from another source.

2.3 Literature Review

To be a tool for MSSS, NMF has an ability for data separating and clustering [53–55].

The main research is that among the many solutions in non-convex space, is how to

avoid being trapped in a local minimum [56] that does not correspond to a realistic

source separation. In other words, if matrices Ŵ and Ĥ are particular minimum

solutions, the general solutions can be given by countless pairs of solutions Ŵ =

WC and Ĥ = C−1H for any non-negative invertible C. To improve the uniqueness

convergence, a constraint in the form of sparsity has proven to be useful and merged

with other different levels of constraints together for optimized searching guidance

[57]. The following sections discuss a few common constraints.
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Figure 2.6: Instrument separation based on NMF

2.3.1 Constraint on W and H

In the work [23,52,58–61], the sparseness was measured and employed within the cost

function. The generalized error residual of sparse NMF becomes

E(e) = D(V||
∑

k

Wf,k · Hk,t) + ηw||W||p + ηh||H||p, (2.2)

where D (·||·) would be any distance function such as Euclidean distance,

Kullback−Leibler distance or β−divergence distance. ηw and ηh are Lagrange multi-

pliers and p represents the Lp−norm of a matrix. According to the definition of spar-

sity, these regularizer constraints relate to the work of L0−norm measurement [62].

But in the work of Tao et al. [63], under the restricted isometry property condition,

the solutions from L0−norm are proved to equal the solutions from L1−norm. So

these regularizer measurements mainly emphasize L1−norm.

Furthermore, the work of complex NMF [64] by Kameoka, Ono, Kashino and
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Sagayama is denoted in the complex-spectrum domain to recover the phase for the

separated signals also with regularizer sparsity constraints on the code matrix H to

guide to a unique iterated solution. The form of its cost function is

E(e) =
∑

f,t

|Vf,t − V̂f,t|2 + 2η
∑

k,t

||Hk,t||p, (2.3)

where

V̂f,t =
∑

d

V̂d,f,t

=
∑

d

∑

kd

Wf,kd · Hkd,t · ejφkd,f,t ,
(2.4)

and η is a Lagrange multiplier and p refers to Lp−norm. d is defined as the source

identification and kd refers to the kth component which belongs to the dth source. This

method was improved by Brian King’s work [65, 66] with the constraint of complex

probabilistic latent component analysis. With a similar idea of forcing the constraint

on W , in Hualiang Li’s work [67,68] an orthogonality measure is defined and orthog-

onality constraints are forced upon the standard NMF to get a flexible subsequent

detection. In the work of Seungjin [69], the orthogonality constraints are imposed on

the basis or encoding matrix.

2.3.2 Shift Constraints on W

If the Lp−norm regularizer can be accepted as a kind of external constraint, the

relation among the basis vectors in W can be treated as a kind of inner bound

constraint. In 2006, Mikkel and Morten [5, 6] developed the NMF model into 2-D

deconvolution NMF which extends the matrix factorization into tensor factorization

with the parameters τ and φ which indicate shifted operations along the time and

frequency domain. So the original NMF was modified as

V ≈V̂ =
∑

τ,φ

↓φ
Wτ

→τ
Hφ

V̂ω,t =
∑

τ,φ,d

Wτ
ω−φ,dH

φ
d,t−τ ,

(2.5)
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and the error residual is written as

E(e) = D
(
V||V̂

)
+ ηf(H), (2.6)

where f(H) is a sparsity term with a positive derivative. Additionally, Paris also set

a deconvolution rule [7, 8] to the underlying factor code matrix. Similarly, Cichocki

used this method in 3-D NTF [70]. In the work of Fitzgerald et al. [9], their method

is based on a simplified approximation of the real condition to overcome the problem

of dealing with multiple notes belonging to a single source. This assumes that these

notes are translated versions of a single frequency basis function. They developed

their theory in [10, 22, 71] in 2011 and 2013 with the constant Q technique in order

to limit the shifted step size to a semi or quarter note. The matrix operand in

factorization is replaced by a tensor operand. So the expression of NTF is

V ≈ 〈〈T W〉(3,1)H〉(2:3,1:2), (2.7)

where T is a translation tensor containing the shift rules of each basis tensor W . To

strengthen the sparseness in the solution by a group sparsity constraint, the error

residual is regarded as

E(e) = min
〈RD〉(3,1),H≥0

(
D(V||〈〈T W〉(3,1)H〉(2:3,1:2)) + ηΦ(H)

)
, (2.8)

where the term Φ(H) is defined as the group sparsity constraint. For all shift con-

strained NMF and NTF, the observed STFT V must be transferred into log(f) or

the constant Q scale to force the minimum shift step size of a basis vector to equal

a semitone. The work of 2-D deconvolution NMF, Kirbiz and Gunsel [72] proposed

to improve the perceptual qualities of separated STFT sources by means of a defined

perceptual evaluation of audio quality (PEAQ) auditory model [73].

Based on the source-filter theory, Tomohiko and Hirokazu [74] describe the spec-

trogram of a mixture signal as the sum of the products between the shifted copies of

excitation spectrum templates and filter spectrum templates to reduce the separation

error caused by using a shifted copy of a spectrum template to represent the spectra

of different fundamental frequency F0s. They developed the shifted NMF model in

the form of

Xl,m =
∑

k,r

∑

p,τ

Fr,l,τSk,l−pUk,r,p,m−τ , (2.9)
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where Fr,l,τ is the filter spectrum templates related to the number r, the indices of

log-frequency l and the time shift index τ . Also, m indicates the indices of time; k

denotes the source excitation and p is an element within the set of possible frequency

shifts.

2.3.3 Score Informed Constraints on H

The use of constraints on W may help to reduce the problem of partial interference,

but this situation is going to remain in H when applying the algorithm in separation.

So in the work of R.Hennequin [1], J. Fritsch [75], and S.Ewert [29,76] , the synchro-

nized MIDI information is taken out as a constraint on code matrix H to restrict the

note attack and decayed profile in time. Their expression is in the form of

V ≈ (W �Wtmp) · (H�Htmp) , (2.10)

where � represents elements-wise multiplication. Wtmp and Htmp are defined by prior

information from the note spectrogram envelops or synchronized MIDI files. In Fig.

2.7, the Wtmp and Htmp are given in simple examples. The values in lightened places

are set to 1 while in dark are 0. More exactly, the area of the nth harmonic pitch p

corresponds to the frequency range (n · f(p−φ), n · f(p+φ)), where φ is a parameter

in semitone to control the size of these areas lighted in Fig. 2.7(a) and selected to

1 [76]. Here, f : R→ R≥0 is defined by

f(p) := 2(p−69)/12 · 440. (2.11)

Details of Fig. 2.7(b) are provided by the synchronized MIDI file which are manually

aligned one by one with Sonic Visualizer [75, 77]. The matrix Htmp is similar to a

piano roll representation. The size of lightened places along the time axes represents

the note attack and decay action. The initialization of W and H are randomly set

to non-negative values.

Apart from using a synchronized MIDI file, Ning and Roger [78] described a

method that aligns polyphonic audio recordings of music to symbolic score informa-

tion in the standard MIDI file. For matching notes in a musical performance to the

corresponding notes in a score, Pedro and Alex implemented a score-performance

matching algorithm based on hidden Markov models (HMM) [79]. The other existing
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Figure 2.7: Examples of Wtmp and Htmp in score informed algorithm

audio-score alignment work includes [80,81] using the dynamic time warping (DTW)

method and [2, 82] using the hidden Markov model method. The model structure of

SoundPrism [2] is illustrated in Fig. 2.8 where xn is the note position in beats, vn is

the tempo and the nth frame yn is associated with a 2-D hidden state vector defined

as

sn =

(
xn
vn

)
. (2.12)

But vn in their process model is based on the real-time music tempo estimation and yn

is associated with each audio frame in their observation model. The SoudPrism score

follower is built on multi-pitch estimation work [31] which is a maximum-likelihood-

based algorithm and trained on thousands of isolated musical chords.

2.4 Optimization Algorithm

When the p changes in Lp-norm regularizer constraints and the NMF or NTF model

structure becomes more complicated, the multiplicative iteration rules, auxiliary func-

tion algorithm and EM algorithm are adopted to get the minimization of univariate

functions.
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Figure 2.8: Illustration of the SoundPrism model structure [2]

2.4.1 Multiplicative Update Algorithm

The multiplicative update rules are developed from the gradient descent algorithm [83]

which is often used to deal with the optimization of convex or concave functions such

as the exponential function, log function and parts of power functions. In 2001, Lee

provided the derivation for multiplicative iteration rules [21] for NMF and in 2007

Lin focused on the convergence of this algorithm [26]. For the classic NMF model,

to choose a specific iteration step size, the iterated results can inherit the positive

character from the initialization values. The expressions for multiplicative update are

new

Hk,t =
old

Hk,t
(
old

Wf,k)
T · Vf,t

(
old

Wf,k)T · (
old

Wf,k ·
old

Hk,t)

∀k, t, (2.13)

and

new

Wf,k =
old

Wf,k
Vf,t · (

old

Hk,t)
T

(
old

Wf,k ·
old

Hk,t) · (
old

Hk,t)T
∀f, k. (2.14)

If the changes between the new and the old factors meet a stopping criterion the

iteration loop is stopped. Given this work, Lin provided his projected gradient algo-

rithm [84] for NMF optimization.
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2.4.2 Auxiliary Function Iterative Algorithm

The multiplicative update is not the only approach in solving the iterative optimiza-

tion problem of NMF; the auxiliary-function method [85] is an alternative method

adopted in work [64, 74, 86, 87]. Meanwhile, the distance function D(·) is extended

into Kullback-Leibler divergence [88–90], Itakura-Saito divergence [91], the develop-

ing β-divergence [92–94], α-β-divergence [95] and α-β-γ-divergence [96]. With the

parameters α, β or γ, the NMF optimization problem falls into a non-convex and

non-smooth problem. The auxiliary function method was only discussed when the

distance function is a convex or a concave function in different ranges of parameter

values dependent on the values of α, β. Unlike the fast convergence speed of the

multiplicative update rule, the auxiliary-function method evolves the underlying ma-

trix in a slower but more stable way. In general, the auxiliary function is described

as a delicate artificial function which complies with the following requirement for ∀h
belonging to a K−dimensional non-negative real domain RK

+

Fe(h
i+1) ≤ G(hi+1|hi) ≤ G(hi|hi) = Fe(h

i), (2.15)

where Fe(·) is a convex function and G(·|·) is an auxiliary function. A simple example

of their relation is given in Figure 2.9. As drawn, the value of function G(ĥ|h) is

determined by two parameters ĥ and h. If the ith iteration of h is defined as hi, the

only overlap between these functions is G(hi|hi) = Fe(h
i) and we also have ĥ = hi.

When ĥ moves toward the new point hi+1 to let the auxiliary function reach its

minimum value, the value of G(hi+1|hi) is smaller than G(hi|hi) but still greater

than Fe(h
i). Alternatively, the new point hi+1 is viewed as the beginning of the

(i+ 1)th iteration and set to h. Then we look for a new value of ĥ to let G(·|hi+1) go

toward its new minimum position. We repeat this operation n times while the point

hn moves closer to hmin step by step.

Thanks to the following lemma and referring to Jensen’s inequality, we have a way

to create an auxiliary function.

Lemma 1. Let F :R 7→ R be a convex function. If λk with k ∈ Z+ satisfies ∀k,

λk ≥ 0 and
∑

k λk = 1, then for xk ∈ R

F

(∑

k

xk

)
≤
∑

k

λkF

(
xk
λk

)
(2.16)
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Equality occurs when λk = xk/
∑

k xk.

Lemma 2. Let f :R 7→ R be a continuously differentiable and concave function.

Then, for any point z

F (x ) ≤ F
′
(z)(x− z) + F (z). (2.17)

According to these two lemma, if a continuously differentiable distance function Fe(·)
can be separated into convex and concave sections, its auxiliary function can be

constructed and proved.

Fe(h) G(ĥ|h)

hihi+1

�
Fe(h

i), hi
�

�
G(hi|hi), hi

�
�
G(hi+1|hi), hi+1

�

=�
G(hi+1|hi+1), hi+1

�

=

�
Fe(h

i+1), hi+1
�

hmin

Figure 2.9: A convex function and its auxiliary function in 2-D space.

2.4.3 Expectation Maximization Algorithm

Since Paris and his student Madhusudana brought the latent probability concept

[97–100] into the NMF model, the expectation maximization (EM) algorithm [101]

is employed to get an iterative rule for getting the convergence distribution value of

the probabilistic latent component and related parameters. This concept explains the

NMF framework in a probability context based on Bayes’ theorem [102, 103]. The

basic concept of probabilistic latent component analysis (PLCA) is if the observed

non-negative entries Vf,t are generated by an underlying distribution p(f, t), the latent
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class zi∈[1,2,...,k] ∈ Z characterizes the underlying distribution p(f, t) as

p(f, t) =
∑

zi

p(zi)p(f |zi)p(t|zi). (2.18)

In matrix form, the expression of the latent variable model is

pf,t =
k∑

i=1

Szi,ziWf,ziHzi,t, (2.19)

and

P = S ·W ·H, (2.20)

where P represents the probability distribution of the observed data and S is defined

as the probability of latent components. Basis matrix W and activation matrix

H are normalized in the form of
Wf,zi∑
iWf,zi

and
Hzi,t∑
i Hzi,t

. The Kullback−Leibler (KL)

divergence between the model of p(Vf,t; Λ) with Λ = {p(zi), p(zi |t), p(zi |f )} and the

true distribution model p(Vf,t) is

D(p(Vf,t)||p(Vf,t; Λ)) = −EVf,t{log[p(Vf,t; Λ)]} − Entropy(Vf,t). (2.21)

Using the EM algorithm, the iterative update rule is

new

Λ = arg maxΛ Q(Λ,
old

Λ), (2.22)

and

Q(Λ,
old

Λ) = EVf,t{E
(zi|Vf,t;

old
Λ )
{log[p(Vf,t, zi; Λ)]}}. (2.23)



Chapter 3

Core Work on Proposed Model

3.1 Motivation

According to the previous research mentioned, there are still a few questions that need

to be resolved and our proposed source template NMF algorithm has been developed

with advantages in solving such problems. For example, the work of shift-invariant
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(a) Two notes’ spectra from the same instru-
ment based on the shift-invariant theory
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Figure 3.1: Note spectra comparison between the shift-invariant theory and reality
condition (fs = 44100 Hz, 8 frequency bins per note).

operands [5–10, 22, 71] are based on the assumption that the sound source consists

of translations of a single envelope basis function and the magnification is constant.

21
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A simple example of this assumption is illustrated in Fig. 3.1(a) which describes

a bassoon note G3 in the solid line and A3 in the dotted line. According to the

assumption of shift-invariant operands, the envelope of the note A3 is only a unit

constant magnification shift of note G3.
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(c) Trumpet spectra of different F0s based on

shift-invariant rule
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Figure 3.2: Comparisons of instrument spectra of different fundamental frequency
F0s between the shift-invariant rules and reality (fs = 44100 Hz and 8 frequency
bins per note). The note range of bassoon is A1# ∼ D5 and trumpet is E3 ∼
D6).
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According to reality, the spectrum of these two notes A3 and G3 are different

in the frequency profile envelope illustrated in Fig. 3.1(b). The comparison in Fig.

3.1 demonstrates that the shift-invariant operand method does not work well enough

to deal with real conditions because its shift rules are too rigid. Moreover, this

phenomenon becomes obvious in comparison of the spectra of different fundamental

frequencies denoted as F0s by instrument in Fig. 3.2. For a specific source like the

bassoon, there is a “missing fundamental” problem [104–106] in Fig. 3.2(b) where

though for some notes there is no apparent source or component of their pitch, they

still can be heard. If the shift-invariant rule is still employed to solve the source

separation problem, it is hard to build the note spectra of actual recorded instruments

like in Fig.3.2(b) and 3.2(d).

The second problem exists in score informed separation methods [1,2,29,75], which

get their results with the necessary help of synchronized time or score alignment

information from a source like a MIDI file. Most of the time, it is hard to get

the synchronized note trigger-decay information, and sometimes the score alignment

information. This situation makes these algorithms limited in practice.

contribution !

contribution "

Spectra of different

Instruments’ Note Templates 

Pitch Checking 

Correction

Side-information (Peak detection)

Estimating

Evolving of spectra   

Supervised learning

1

3 4

Hd,k,t

5

2

F0s

contribution Ⓐ 

Figure 3.3: Diagram of proposed algorithm.

In this chapter, the core model of the proposed source template NMF is introduced.

It contains the supervised learning algorithm or called shift-variant operand to solve



CHAPTER 3. CORE WORK ON PROPOSED MODEL 24

the problem of shift-invariant theory. Besides this, it estimates the note onset-offset-

like features and supervises them under the pitch-check algorithm to abandon the

need of a MIDI file. The diagram of our proposed algorithm is summarised in Fig.

3.3. Stage 1 and 2 are explained in Sec. 3.3. Stage 3 and 4 are introduced in Sec.

3.4.1-3.4.2 and the iterative update rule of the final stage 5 is derived in Sec. 3.4.3.

3.2 Mathematical Model

3.2.1 Mathematical Model of NMF

The work of proposed source template NMF starts from a statement of two-

dimensional convention. If W is defined as a column vector [w1,w2, . . . ,wn]
′

and

H is defined as a row vectors [h1, h2, . . . , hn], the convention of these two matrices is

denoted as

V̂ = W · H

=
N∑

n=1

wn · hn

= w1 · h1 + w2 · h2 + . . .+ wN · hN ,

(3.1)

where ′ is the transpose operand and n ∈ N. The subscripts are index of coordinates.

Therefore if we let V̂f,t be seen as one of the entries of the reconstructed audio STFT

matrix V̂ with size of F × T ,

V̂ =




V̂1,1 V̂1,2 · · · V̂1,T

V̂2,1 V̂2,2 · · · V̂2,T

...
... V̂f,t

...

V̂F,1 V̂F,2 · · · V̂F,T




, (3.2)

then the basic expression of NMF is

V̂f,t =
N∑

φ=1

Wf,φ ·Hφ,t, (3.3)
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where W has been extended to be an F × Φ matrix [W1,W2, . . . ,WΦ] of column

basis vectors Wφ = [w1,φ, w2,φ, . . . , wF,φ]
′

and H has been extended as a Φ×T matrix

[H1, H2, . . . , HΦ]
′

of row activation vectors Hφ = [hφ,1, hφ,2, . . . , hφ,T ]. f and t denote

frequency and time domains. φ denotes the number of potential notes whose frequency

template and attack decay profiles are described by the corresponding columns of W

and rows of H. In the mono source separation (MSSS) problem, the basic NMF model

is expanded in dimensions to indicate a number of sources and written as

V̂f,t =
∑

d,φ

Wf,φ,d ·Hd,φ,t, (3.4)

where d represents the dth sound source. W is beyond the meaning of basis vectors

and denoted as spectra of different fundamental frequency F0s, and in reality, the

note’s profile of f is unique for each note φ and source d. But, this kind of model

will not be efficient in the MSSS problem because it has an absence of constraints

on these spectra of different fundamental freequency F0s to cluster the data into its

target group.

3.2.2 Basic Expression of Proposed Algorithm

Considering the translation tensor Tf,φ,f in the shift-invariant operand [5,6,10,22,71]

is only determined by parameters of the frequency and the note, one of the contri-

butions of our proposed algorithm is extending the translation matrix from 3-D to

4-D by assuming that each instrument source has its unique characteristics of the

shift operand and has been recorded as d, the extended dimension, in the proposed

translation matrix Td,f,φ,f̂ . Moreover, the proposed Td,f,φ,f̂ is updatable along the d

dimension by the way of the iteration update rule to form the shift characteristics of

the instrument templates. With the adaptive 4-D translation Td,f,φ,f̂ , our proposed

source template NMF model based on the shift-variant operand is written as

V̂f,t =
∑

d,φ,f̂

Td,f,φ,f̂ ·Ωf̂ ,d ·Hd,φ,t, (3.5)

Ŵf,φ,d =
∑

f̂

Td,f,φ,f̂ ·Ωf̂ ,d, (3.6)
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where the translation matrix T is set up with a size D×F ×Φ× F̂ and is responsible

for translating the note of an instrument into other various notes. Φ represents the

number of possible translations or potential notes played in musical clips. F̂ represents

the potential component domain of the basis notes. In the shift-variant operand, F̂

equals F , but in our proposed algorithm F̂ ≥ F as long as Td,f,φ,f̂ and Wf̂ ,d are

satisfied with the 2-D matrix production rule in Fig. 3.4. Matrix V̂f,t, with size of

F × T , denotes the estimation of the STFT of the observed signal Vf,t. We defined

the basic expression of adaptive shifted NMF model as

Vf,t = V̂f,t + ef,t

=
∑

d,φ,f̂

Td,f,φ,f̂ · Ωf̂ ,d · Hd,φ,t + ef,t.
(3.7)

Under a maximum a posteriori (MAP) assumption [107, 108], when the residual ef,t

has a normal distribution N ((f, t); 0, 1), the cost function of our proposed algorithm

becomes

DE(V||V̂) =
1

2

∑

f,t

(
Vf,t − V̂f,t

)2

, (3.8)

and if the residual ef,t has a Poisson distribution, the cost function of our proposed

algorithm becomes the Kullback−Leibler (K-L) divergence in the form of

DE(V||V̂) =
∑

f,t

(
Vf,t · log

Vf,t

V̂f,t

− Vf,t + V̂f,t

)
. (3.9)

In Fig. 3.4, the flow chart of the proposed source template NMF is illustrated and

divided into three levels of summations to reconstruct the targeted mixtures signal.

The first level is the summation in the potential component domain f̂ . It allows the

translation matrix T to combine with the basis fundamental frequency F0 template

Ω to calculate the spectra of different fundamental frequency F0s W. In the next

level of summation of the score domain Φ, the spectra within W are controlled by

their activation in H to construct the estimated STFT by the source. Finally, these

specified STFTs are summed along the D dimension to estimate the spectrogram of

the observed the audio mixture.



CHAPTER 3. CORE WORK ON PROPOSED MODEL 27

D

×

×

V̂f,t

F

Hd,φ,t

( )
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Figure 3.4: Sketch of proposed source template NMF
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3.3 Instrument Labeled Note Templates and Su-

pervised Learning Algorithm

The distinction in this thesis is made merely to introduce the new concept of notes’

spectrum template, W, which is actually the spectra of different F0s by assuming

that it consists of the resonance responses of different F0s, T × Ω, from a basis F0

impulse excitation Ω. The new symbols of Td,f,φ,f̂ ∈ RD×F×Φ×F̂ and Ωf̂ ,d ∈ RF̂×D are

employed here to be the 4-D resonance response translation matrix and the 2-D basis

impulse excitation matrix where Td,f,φ,f̂ represents the resonance coefficient of specific

instrument and note at specific frequency f , and Wf̂ ,d represents the impulse excita-

tion of specific instrument. In addition, f̂ forms an additional frequency dimension

that allows the selection of a different frequency resolution over what f̂ may offer. If

we denote Ŵf,φ,d as the reconstructed notes’ spectrum template by instrument, the

relationship among Ŵ, T and Ω would be

Wf,φ,d =
∑

f̂

Td,f,φ,f̂ · Ωf̂ ,d + EWf,φ,d

= Ŵf,φ,d + EWf,φ,d, (3.10)

where EWf,φ,d is an error/residual term under a maximum a posteriori (MAP) assump-

tion [107] [108]. When the residual has a normal distribution N (f, t;µ = 0, σ = 1),

the cost function of our proposed algorithm is based on Euclidean distance and be-

comes

DEu(W||Ŵ) =
1

2

∑

d,f,φ

(
Wf,φ,d −

∑

f̂

Td,f,φ,f̂ · Ωf̂ ,d

)2
. (3.11)

When the residual obeys the rule of Poisson distribution [107], the cost function of

our proposed algorithm is based on Kullback-Leibler (K-L) distance and becomes

DK−L(W||Ŵ) =
∑

d,f,φ

(
Wf,φ,d · log

Wf,φ,d∑
f̂ Td,f,φ,f̂ · Ωf̂ ,d

−Wf,φ,d +
∑

f̂

Td,f,φ,f̂ · Ωf̂ ,d

)
. (3.12)
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Considering T and Ω works under the framework of (3.7), we substitute (3.10) into

it to get our proposed updatable shift-variant NMF model as

Vf,t =
∑

d,φ

((∑

f̂

Td,f,φ,f̂ · Ωf̂ ,d + EWf,φ,d
)
· Hφ,t,d

)
+ EVf,t

= V̂f,t +
(∑

d,φ

EWf,φ,d · Hφ,t,d

)
+ EVf,t

= V̂f,t + EWf,t + EVf,t, (3.13)

where V̂f,t is the reconstructed spectrogram of the audio mixture. EWf,t is the residual

coming from the process of the notes’ spectrum template reconstruction and EVf,t is

the residual coming from the procedure of the spectrogram reconstruction. If they

obey the same rules as the statistical distribution, the overall residual of the proposed

algorithm can be written as

Ef,t = EWf,t + EVf,t. (3.14)

A sketch of the source template model (without Ef,t) is also shown in Fig. 3.4 for the

multi-source separation problem and indicated in the first level of sums. The task

of this level is to form the reconstructed source template spectra by Td,f,φ,f̂ · Ωf̂ ,d

throughout the index f̂ and does note clustering.

3.3.1 Supervised Learning Operand

The core idea of the proposed source template NMF is to find the notes’ spectrum

templates of the actual recorded instruments and their activation. By masking the

specified template and the corresponding trigger-decay profiles, the designated chan-

nel audio can be reconstructed. Then the procedure of finding the notes’ spectrum

templates of the actual recorded instruments starts at the initializations of T and Ω.

Though the spectra of different F0s of the actual recorded instrument are hard to ob-

tain prior to the separation, the initialization procedure can be a supervised learning

to use side-information of the individual note audio of the similar instruments from

standard datasets [3, 4, 109]. When we obtained the different F0s spectra, W, from

the side-information, the following work is to factor it into underlying factors of T

and Ω, which play a role of a translation matrix providing the shift-variant rule and

restoring the rule’s weights, source template coefficients, and role of a basis matrix

representing the basis F0 impulse excitation individually.
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Construction of side-information based W

The beginning of this supervised learning starts from the prior set up of W, the

spectra of different notes, obtained from a set of instrument sounds’ spectrograms.

A simple example of making three notes’ spectrum template is drawn in Fig. 3.5

with notes D3, D#
3 and E3. Each note has an audio waveform at sampling frequency

44100 Hz. A windowing function ω with the width of 4096 point is adopted to pick

up a spectrum from the centre of the score audio spectrogram and make this selected

spectrum as the corresponding score spectrum in W. This operand gives two aspects

of information: the first is the resonance response character of each note; the second

is the potential candidates of notes by an instrument in a audio mixture. When a

side-information based W is given, the following work is to get the optimized T and

Ω.
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Figure 3.5: Making a notes’ spectrum template from the RWC music database [3,4]

Convergence method by means of multiplicative iteration rules

In this part, multiplicative update rules [26–28] are developed to iteratively update the

proposed adaptive translation matrix T. The iterative update rules are derived from

a gradient descent optimization algorithm [110] and the key issue is the selection of

step size η to maintain non-negativity and zero keeping results. The basic expression
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of the gradient descent optimization algorithm of T is

n+1

T d,f,φ,f̂ =
n

T d,f,φ,f̂ −
n
ηT ·

∂DEu(W||
n

Ŵ)

∂
n

T d,f,φ,f̂

, (3.15)

where n and n+1 represent the nth and the (n+1)th iteration.
n
ηT represents the step

size in the gradient descent algorithm. To develop the update rules of T, first consider

the partial derivatives of Ŵf,φ,d with respect to the adaptive translation matrix given

as
∂Ŵf,φ,d

∂Td,f,φ,f̂

= Ωf̂ ,d. (3.16)

Combining (3.11) with (3.16), the partial derivative of DEu(W||
n

Ŵ) with respect

to
n

T d,f,φ,f̂ is

∂DEu(W||
n

Ŵ)

∂
n

T d,f,φ,f̂

= −
(
Wf,φ,d −

n

Ŵ f,φ,d

)
·
n

Ω f̂ ,d. (3.17)

If we set
n
ηT to be the value of

n
ηT =

n

T d,f,φ,f̂
n

Ŵ f,φ,d ·
n

Ωf̂ ,d

, (3.18)

the update rule for Td,f,φ,f̂ in (3.15) becomes the multiplicative update rule

n+1

T d,f,φ,f̂ =
n

T d,f,φ,f̂ +

n

T d,f,φ,f̂
n

Ŵ f,φ,d ·
n

Ωf̂ ,d

·
(
Wf,φ,d −

n

Ŵ f,φ,d

)
·
n

Ω f̂ ,d

=
n

T d,f,φ,f̂ ·
(

Wf,φ,d ·
n

Ωf̂ ,d

(∑
f̂

n

T d,f,φ,f̂ ·
n

Ωf̂ ,d

)
·
n

Ωf̂ ,d

)
. (3.19)

Using the same approach, the update rule of Ω is denoted as

n+1

Ω f̂ ,d =
n

Ωf̂ ,d

∑
f,φWf,φ,d ·

n

T d,f,φ,f̂
∑

f,φ

(∑
f̂

n

T d,f,φ,f̂
)
·
n

T d,f,φ,f̂

. (3.20)
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Additionally, based upon the K-L distance, the multiplicative update rules of the

supervised learning are

n+1

T d,fφ,f̂ =
n

T d,fφ,f̂
Wf,φ,d

∑
f̂ (

n

T d,f,φ,f̂ ·
n

Ωf̂ ,d)
n

Ωf̂ ,d

n

T d,f,φ,f̂
n

Ωf̂ ,d

, (3.21)

and
n+1

Ω f̂ ,d =
n

Ωf̂ ,d

∑

f,φ

(∑

f̂

n

T d,f,φ,f̂ ·
n

Ωf̂ ,d

)
. (3.22)

Initialization of supervised learning operand

The initialization of the translation matrix Td,f,φ,l is informed according to the prior

information. For example, if we have sheet music of a combined clip of the bassoon and

trumpet in Fig. 3.6, it is easy to conclude that the basis note of the bassoon is C4 and

the trumpet is D4. Considering the scale on the basis note to others, for the bassoon

translation matrix, it needs the shift operand to include C4 toD4, C4 toD4#, and C4

to E4. But for the trumpet translation matrix, it only requires the shift operand for

D4 to E4. In Fig. 3.7, the T is initialized separately for the bassoon and the trumpet.

C4 D4 D4 E4

Bassoon Trumpet 

D4 D4E4 E4

Figure 3.6: Sheet music of a mixture clip

When d = 1, it corresponds to the bassoon translation matrix initialization and is

represented as Td=1,f,φ,f̂ . The φ = 1 situation is equivalent to the shift operand from

C4 to C4. However, D4 is not included in the bassoon playing list, so Td=1,f,φ=2,f̂ is

filled with zeros. Then all situations described in Fig 3.7(a) of φ = 3, φ = 4, and φ = 5

represents the shift operands C4 to D4, D4#, and E4 individually. Alternatively, Fig.

3.7(b) demonstrates how the trumpet translation matrix initialization is figured out.

Since there are two notes, D4 and E4, on the trumpet playing list, the magnification
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Figure 3.7: Prior set-up of proposed shift-variant translation matrix T in supervised
learning operand.

entries within the trumpet translation matrix Td=2,f,φ,f̂ are initialized to 1 only at

φ = 3 and φ = 5. In this step of the proposed work, the magnification entries

within the translation matrix are set to 1, but during the iterations, the magnification

entries will be adjusted adaptively to meet the demands of instrument separation. For

improving the separation results, we need the proposed source template NMF to do

a supervised learning from prior information. It will have several advantages such

as discovering clues for notes and timbres of instruments, supporting the prediction

of the unknown values of underlying matrices, and self-upgrading to accommodate

the instruments’ individual differences in separation. The prior information is the

spectra of different F0s of the specific instrument, W, which is introduced in Sec.

3.3.1. The audio of each individual note is provided by the database in [3, 4, 109].

Essentially, the proposed supervised learning is the process of factoring the Wf,φ,d into

the non-negative matrices Td,f,φ,f̂ and Ωf̂ ,d. The supervised learning factored results

are regarded to be the initialization of T and Ω, which involve the prior knowledge

of the instrument range and notes’ frequency profiles into our proposed model.
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3.3.2 Exampler results of supervised learning operand

Based on the iteration update rules introduced in Sec. 3.3.1 and datasets [1], the

supervised learning results of a variety of instruments are given in the following para-

graphs. The target instrument templates Wbassoon and Wtrumpet are presented in Fig

3.8(a) and 3.8(b), meanwhile their rebuilt results are given in Fig. 3.8(c) and 3.8(d).

The note recordings are all provided from Iowa University Electronic Music Studios

Lab [109] and McGill University [3, 4]. The target instrument templates of trumpet
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(b) Prior trumpet template Wtrumpet
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(c) Rebuilt bassoon template Ŵbassoon
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(d) Rebuilt trumpet template Ŵtrumpet

Figure 3.8: Prior and rebuilt instrument templates. (Fs = 44100 Hz and the bin in
log frequency scale is 1

4
note.)
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from MIDI numbers 54 to 87 and bassoon from 34 to 73 are built by their note audio.

The residue between the target and rebuilt templates are shown in Table 3.1. The re-

constructed W are calculated by the product of T and Ω. The residual E between the

target and rebuilt instrument templates are used to evaluate the supervised learning

performances. The rebuilt accuracy of templates is nearly perfect.

Table 3.1: Supervised learning results

Instrument Estart Eend Iterations W

Ŵ
%

Bassoon 31555066.31 11665.78 1 99.98

Trumpet 3920484.98 88.36 1 100

Note: E = DEucild(W ||Ŵ ). W is notes’ template by source and Ŵ is the rebuilt notes’

template by our supervised learning algorithm.

The supervised learning algorithm is performed based on the shift-variant operand

and based on the results in Table 3.1, Ŵ is a high accuracy reconstructed copy of

the instrument notes’ template W. In the shift-variant operand, the factorized T

and Ω restores the translation coefficients and the basis note spectrum separately.

The supervised learnt Td,f,φ,f̂ and Ωf̂ ,d are provided in Fig. 3.10. The barrier for a

convenient viewing is the 4 dimensional factor Td,f,φ,f̂ . It can not be observed in 2-D

plane directly and need a special angle to show the details. If we use a specific d̃ to

exhibit Td̃,f,φ,f̂ , the shift-variant translation matrix T can be depicted in 3-D space

as drawn illustrated in Fig. 3.9. For any note φ, the shift weights are arranged in the

form of a diagonal matrix. If we take a look at T along the “φ direction” in Fig. 3.9,

all the shift weights will be viewed easily in Fig. 3.10.

Present the shift weights of the bassoon Φ notes within Tbassoon together in Fig.

3.10(a). Similarly, the shift weights of trumpet Φ notes within Ttrumpet is presented

in Fig. 3.10(b). Compared with the shift-invariant operand, these shift weights are

not kept at unity anymore. With the increase of Φ, the length of a group of shift

weights becomes shorter, which corresponds to a note and arranged in a line parallel

to the diagonal. So it lets us arrange the shift weight of one instrument into a lower

triangular matrix for convenient viewing. The supervised learning results of the basis
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Figure 3.9: Convenient view of shift-variant translation matrix T

matrix Ω are plotted in Fig. 3.10(c) and 3.10(d). The entries of the basis F0 template

represent the impulse excitation by the instrument. The difference between the learnt

Ωbassoon and Ωtrumpet is the ratio of each frequency component weight to their sum.

The components are observed as fundamental frequency and its harmonics which

are formed in peaks in Fig. 3.10(c) and 3.10(d). This can be calculated by the

work in [111] and considered the pattern of the instrument. Therefore, it will be

a discussion of the basis F0 template Ωf̂ ,d and the shift-variant matrix Td,f,φ,f̂ later

to assume their functions in the impulse excitation and the resonance response at

different F0s.

3.3.3 Comparing the Supervised Learning Algorithm with

Previous Research

Proposed shift-variant operand VS shift-invariant operand

To further understand the procedures of using the shift-invariant or variant copies

from the basis F0 template to form the spectra of different scores, a structural com-

parison is made. In [5–8] presented diagrammatically in Fig 3.11, the shift operand is

denoted as a downward notation ↓ φ on the top of the basis matrix W to indicate the

operand of moving the entries Wf,d downward along the frequency ordinate, where

the entries beyond the bottom vanish and their vacancies on the top are replaced

by zeroes. φ is the parameter representing the score pitch and corresponds to the

shift-invariant downward operand. In [9, 10] given diagrammatically in Fig 3.12, a

shift-invariant translation tensor T filled with unit shift-weights is introduced. Its
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Figure 3.10: Supervised learnt T and Ω. (Fs = 44100 Hz and the bin in log
frequency scale is 1

4
note.)

shift-invariant operand is demonstrated by the product of T ×W . The characteristics

of the shift-invariant translation tensor T are non-updatable, non-prior setting by the

source and its shift-weights keep the unit form during the separation process. For

comparison, our proposed shift-variant operand is shown in Fig 3.13 for performing

the supervised learning algorithm and extended the concept from the shift-weights

and the basis vector to resonance coefficients and impulse excitation matrices. In our

proposed algorithm, the product Td,f,φ,f̂×Ωf̂ ,d will move its pitch value toward a high
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position along the log scale f axis by increasing φ in a fixed d. Theoretically, the

parameter f̂ , the fourth subscript of Td,f,φ,f̂ and the first subscript of Wf̂ ,d, can adopt

any value to fit the matrix multiplication rule, but for the simplified calculation, we

let f̂ equal to f in this thesis. In the scope of the proposed model, the matrix W

appears as the notes’ spectrum template and the matrix Ω is denoted as the basis F0

excitation impulse. The resonance translation matrix T is designed as an underlying

factor and can be evolved in the separation as well as Ω and H.
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Figure 3.11: Examples of shift operand in [5–8].
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Figure 3.12: Examples of shift operand in [9, 10].

Supervised Learning Operand Versus Score Training Session

The novelty of our proposed supervised learning procedure is to deconvolve the prior

W into T and Ω. In Fig. 3.14, the supervised learnt T is assumed to be a container
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Figure 3.13: Examples of shift operand in proposed shift-variant operand.

of F0 variant resonance response coefficients which amplify or compress the amplitude

of the basis F0 impulse excitation Ω by note and source. Fig. 3.15 figures out the

training procedure in previous work [11]. In this training, the prior knowledge of the

notes’ spectrogram generated from an instrument sound database was adopted and

factored into a notes’ spectrum template matrix W and an activation matrix H. This

training session cannot work without the help of prior synchronized note trigger and

decay information in the activation matrix H. Because the translation matrix T is

an underlying factor and can be updated as well as the basis matrix Ω, the proposed

supervised learning performance is determined by the constraint of shift-variant rule,

while in [11] the performance of note training session is only concerned by the prior

constraint of a note’s onset-offset information in the matrix H.
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3.4 Estimating the Onset-Offset-Like Features

Within H

In practical situations, it is hard to determine the entries Hd,φ,t within a matrix H

with an absence of synchronized information of the notes’ attack and decay process.

However, with the support of prior knowledge, we can obtain a rough estimate of a

matrix H to narrow down its possible values. This estimate can be regarded as one

kind of music transcription [11]. Though the note spectra of different F0s extracted

from datasets are not the same from recorded instruments, the supervised learnt T

and Ω are integrated with the note information which is similar to the actual recorded

one. Combined with the results from [99, 100], the estimated values are considered

to be probabilities of notes’ triggered and decayed activation and also defined as the

onset-offset-like features. Based on the concepts in (3.8), when the supervised learnt

Ŵ is obtained, based on multiplicative update rules [26–28], we can estimate the

values within H by means of

n+1

H φ,t,d =
n

Hφ,t,d

∑
f Vf,t

n

Ŵ f,φ,d

∑
f

n

V̂ f,t

n

Ŵ f,φ,d

, (3.23)

where
n

V̂ f,t is the rebuilt Vf,t by using the nth iterated underlying factors and based

on the concept in (3.9), the iterative estimation becomes

n+1

H φ,t,d =
n

Hφ,t,d

∑
f̂
Vf,t

n

Ŵ f,φ,d
n

V̂ f,t

∑
f̂

n

Ŵ f,φ,d

. (3.24)

In this case, a music sample named “Lusser” provided by the TRIOS dataset [75] is

used in estimating the onset-offset-like features from the activation matrix H. This

sample is an audio mixture of the bassoon and the trumpet. The estimated Hbassoon

is presented in Fig. 3.16(a) and Htrumpet in Fig. 3.16(b). For a visual evaluation of

this estimate, the prior knowledge of the notes’ trigger and decay profile informed

by the synchronized MIDI are also shown in 3.16(c) and 3.16(d). It is important to

know that the onset-offset-like features of different F0s are represented in φ over time
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(d) Trumpet synchronized MIDI events of notes’
attack and decay information in piano-roll form

Figure 3.16: Comparison of the predicted matrix H and synchronized MIDI events.
(Fs = 44100 Hz.)

but the synchronized MIDI informed note’s trigger and decay profiles are organized in

piano-roll style, and labelled by MIDI numbers. In the estimate results, parts of Hd,φ,t

at the higher value represented in dark colour are located in the same areas as those

informed by the synchronized MIDI, while other parts of the lower value represented

in light colour are located in unexpected areas according to the synchronized MIDI.

Ideally, if the prior instrument note templates and the actual recorded templates are

exactly the same, the estimated values of H should completely overlap with the MIDI
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piano roll information. These conflicts are concluded from two reasons: first is that

spectrograms within the prior instrument note templates are different from the actual

recorded instrument note templates; the second is the misleading from the gradient

descent oriented iteration rules, the multiplicative update rule in (3.23) and (3.24).

The plan for solving the first problem comes forward in Sec. 3.4.3 and the plan for

solving the second problem is raised in Sec. 3.4.1.

3.4.1 Onset-Offset Components Extraction

The estimated results obtained in Fig. 3.16(a) and 3.16(b) are explained in two

aspects: from the first point of view, the high and low values within the estimated

H represent possibilities of the note being activated or suppressed; from the second

point of view, the estimated values are composed of useful information of onset-offset-

like features and noise. Because it is hard to obtain the synchronized clue of a note

being triggered and decayed, it is a challenge for us to determine which value is useful

and which value is misleading. It is necessary to set up a preprocessing operand of

estimated elements of Hd,φ,t for data de-noising, clustering and recognizing, so the

next following steps of Gaussian blur, boundary detection and peak selection are

developed to fit the needs.

Gaussian Smoothing for De-noising

We adopt the Gaussian blur method [112, 113] to smooth or reduce the noise and

detail in the estimated Hd ,φ,t . The fact in Fig. 3.16(a) and 3.16(b) is that the

estimated elements Hd,φ,t with high amplitude have higher probability of being onset-

offset-features than the elements with low amplitude. Because of the wide use of the

Gaussian blur algorithm in image processing [114–119], it is expected to enlarge the

approximation and compress the detail in H. The Gaussian blur function is expressed

as

G(t) =
1√

2πσ2
e−

t2

2σ2 , (3.25)

where t is the pixel involved in the smoothing operand. σ is the standard deviation

and controls the width to contain the majority of data in a Gaussian distribution. If σ

is too big, excessive noise would be clustered together to generate a fake peak. If σ is

too small, the Gaussian blur function will lose the smoothing effect. In consideration

of audio frequency sampling at 44100 Hz and step-size is 512 points in the spectrogram
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analysis, one bin of Hd,φ,t represents 11.61 ms. Based on experience, when σ reaches

50, the smoothing effect is satisfied by experiments. Because the column of H is

determined by the step-size of STFT analysis for audio mixtures, the time of each

column bin equals a time of samples in a step-size window. So the value of σ is

various with the changes of step-size of STFT analysis. For easy viewing, one row of

an estimated H at d = bassoon, φ = 8 is picked up to demonstrate the results of a

Gaussian smoothing operand. The calculation of smoothed Hd=bas,φ=8,t is determined

by the formula of

H smoothed
d,φ,t = H estimated

d,φ,t ⊗G(t), (3.26)

where ⊗ is to a convolution operation and output H smoothed
d,φ,t is drawn in Fig. 3.17. The

estimated result from Sec. 3.4 is given in Fig. 3.17(a) to illustrate the condition of a

“noisy” estimate, where it is hard to distinguish onset-offset components from onset-

offset-like features. The Gaussian smoothing results are shown out in Fig. 3.17(b)

to show the approximation of the estimated Hd=bas,φ=8,t enveloped by a series of peak

regions.

Boundary Detection for Regions

Though the Gaussian smoothed Hd=bas,φ=8,t gives an approximation of the notes’

trigger-decay profile, it is seen as a temporary and not final solution of the separation

problem. In Fig. 3.17(b), the smoothed profiles reflect that the note activation is

composed of a series of peak and each peak region is assumed as a completed onset-

offset process. If the approximation can be decomposed in regions, it would be easy

for us to examine the estimated values and find misleading ones. For this purpose, the

Laplace-of-Gaussian (LoG) factor [112,120–122] algorithm is employed for a boundary

detection. Its definition as a 1-dimensional function starts from a Gaussian kernel

with width of σLOG,

GσLoG(t) =
1√

2πσ2
LoG

exp

(
− t2

2σ2
LoG

)
, (3.27)

and to further suppress the noise before using LoG for boundary detection

∆[GσLoG(t)⊗Hsmoothed
d,φ,t ] = [∆GσLoG ]⊗Hsmoothed

d,φ,t

= LoG⊗Hsmoothed
d,φ,t . (3.28)
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(a) Estimated Hd=bas,φ=8,t
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Figure 3.17: Gaussian smoothing results. (Fs = 44100 Hz.)

The tricky way of getting results from (3.28) is that we can calculate the partial

differential of GσLoG instead of calculating the partial differential of the convolution

GσLoG ⊗Hsmoothed
d,φ,t . So, firstly we consider that

∂

∂t
GσLoG(t) =

−t√
2πσ2σ2

exp

(
− t2

2σ2

)
, (3.29)

and then
∂2

∂2t
GσLoG(t) =

−t2√
2πσ2σ4

exp

(
− t2

2σ2

)
. (3.30)

From now on, we get the LoG as an operator defined as

LoG
∆
=

∂2

∂2t
GσLoG(t). (3.31)

When LoG is convolved with the smoothed Hd,φ,t, after zero-crossing detection,

the detected boundaries are marked by vertical lines and drawn together with the
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smoothed Hd,φ,t in Fig. 3.17. The effects of LoG decomposes the Gaussian blurred

Hd,φ,t into several peak regions which are limited by a pair of vertical lines and defined

as an independent trigger-decay process. For the example in Fig. 3.17, the smoothed

Hd,φ,t is divided into 17 regions indicating the individual onset-offset-like feature. It

is still hard for us to determine which estimated elements in Hd,φ,t are actual onset-

offset-features, so a further step is needed for judging the note alignment which is

clustered by estimated elements in Hd,φ,t.
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Figure 3.18: Boundary detection results. (Fs = 44100 Hz.)

Peak Detection in Each Region

Before the work of making a judgment on the peak alignment, peak detection is

necessarily employed here to determine an “attack” peak within a peak’s alignment.

A peak value exhibits the time when a note is activated at its maximum level. If

a representative peak is determined, its occurance time is denoted as the top in the

“attack” period of an isolated note [123]. The reason for finding the “attack” peak is

that its moment in the audio mixture gives evidence to prove whether this alignment is

a misleading estimate. But for the playing of some wind and string instruments, there

would be several peaks in an isolated note attack-decay profile during its activation.

The prominence becomes a peak measurement in “attack” peak selection, which is

a local maximum and depends on how much the peak exceeds others because of its

inherent height and its relative position [124]. The main task of the peak detection

operation is to find a local maximum peak in an independent alignment. Fig. 3.19

illustrates the final peak finding results and marks their top three peaks. These top

three peaks are the local maxima peak in 3rd, 11th and 17th regions separately. Their
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occurrance time will be the key issue and highlighted in the audio mixture STFT

spectrogram to help the work of bias correction of multiplicative update rules.
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Figure 3.19: Local maxima peak detection results. (Fs = 44100 Hz.)

3.4.2 Pitch-checking for Onset-offset-like Features

For estimated Hd,φ,t, the Gaussian blur, the LoG boundary detection and the local

maxima peak selection algorithms are the preprocessing operations for onset-offset-

like features recognition. Though they all describe the activation of the notes in the

time line, there is still a difference between onset-offset-like and onset-offset features.

From a mathematical point-of-view, these estimated trigger-decay profiles are the

maximum likelihood estimation of note activation and still have the uncertainty of

being onset-offset features in reality. If the onset-offset-like features can be further

checked and corrected based on some evidence, they will become closer to the onset-

offset features of actual recorded condition.

The examination and correction work begins at the results of local maxima peak

detection in Fig. 3.19. For a simplified example, the top three local maxima peaks are

marked and their corresponding time locations are also labelled by t1, t2 and t3 with

highlight vertical lines in Fig. 3.20. In an audio mixture spectrogram, each column

represents a spectrum at a window of time. If the spectrogram can be denoted as

Vf,t, the symbols of Vf,t1 , Vf,t2 and Vf,t3 are used to indicate the three spectra in time

of t1, t2 and t3. Based on the basic definition of NMF in (3.4), for the first spectrum

in Fig. 3.20, we have

Vf,t1 ≈ Wf,φ,d=bas ·Hd=bas,φ,t +Wf,φ,d=trp ·Hφ,t,d=trp. (3.32)
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Figure 3.20: Spectrogram of mixture audio with labels of t1, t2 and t3. (Fs = 44100
Hz.)

If Wf,φ,d=trp or Hφ,t,d=trp equals zero, the relationship in (3.32) becomes

Vf,t1 ≈ Wf,φ,d=bas ·Hd=bas,φ,t. (3.33)

If we only chose φ = 8, (3.33) turns out to be

Vf,t1 ⊇ Wf,φ=8,d=bas ·Hd=bas,φ=8,t. (3.34)

If Hd=bas,φ=8,t is a scalar to amplify or compress, the amplitude of Wf,φ=8,d=bas, (3.34)

is further derived into

Vf,t1 ⊇ Wf,φ=8,d=bas. (3.35)

A lesson from the derivation of (3.35) says that the envelop of Vf,t1 should contain

Wf,φ=8,d=bas and this ⊇ relation is demonstrated in Fig. 3.21, where the fundamental

frequency of Vf,t1 is denoted as F
Vf,t1
0 and the fundamental frequency of Wf,φ=8,d=bas is

denoted as F
Wf,8,bas

0 . The definition of ⊇ means a containing or an involving. In Fig.

3.21(a), the peaks of components within Wf,φ=8,d=bas are coherently overlapped by the

peaks in Vf,t1 , especially, their pitches F
Vf,t1
0 and F

Wf,8,bas

0 are equal in frequency value.

But when t = t2 and t = t3, the ⊇ relation is broken and these phenomenons are

illustrated in Fig. 3.21(b) and 3.21(c). In these situations, we can find partial areas

of overlap between these two kinds of spectrum, but prominently their in-equivalent

F0s state that Vf,t2 is not a superset of Wf,φ=8,d=bas as well as the condition of Vf,t3 .

The relationship between ⊇ and + suggest that Wf,φ=8,d=bas’s activation Hd=bas,φ=8,t1

happening at time t1 is more reliable than another Hd=bas,φ=8,t happening at time t2



CHAPTER 3. CORE WORK ON PROPOSED MODEL 49

and t3, though they are all acceptable from a mathematical point of view. The pitch-

check based examination has the characteristic that it cannot verify the correct Hd,φ,t

but it can falsify the misleading parts. Meanwhile, the pitch-check based examination

operations can be adopted as evidence to force the misleading parts into zeros and

supervise the evolution of H.
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Figure 3.21: Pitch-check examination (Fs = 44100 Hz, MIDI NO. = 52.)

Why might the estimated Hd,φ,t given by the multiplicative algorithm [26–28] not

provide the expected solution in separation? One reason is that in convex optimiza-

tion, the gradient descent algorithm working on the negative direction of gradient

increments will not consider the rules of (3.34) and (3.35). If there exists a large area
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of overlap with Vf,t, Wf,φ,d, it has a high probability of being marked as the activated

state in Hd,φ,t without any consideration of the superset relationship of frequency

components between Vf,t and Wf,φ,d. So we need an examination algorithm to check

on this situation and the simplest way is to detect whether the pitch component of

Wf,φ,d is included by Vf,t. Therefore, the pitch-checking examination algorithm intro-

duced here does not have a capability to prove that the selected estimated Hd,φ,t is

correct but has the ability to show it is incorrect and can be eliminated. According to

the pitch-checking examination theory, for the example results in Fig. 3.21(a), after

the pitch-checking examination, the corrected Hd,φ,t is illustrated in Fig. 3.22. Only

the peaks-alignment region around Hd=bas,φ=8,t1 remains and the rest of the parts of

Hd=bas,φ=8,t6=t1 are set to zeros. Based on the multiplicative iteration theory, only

the information expressed by non-zero values can be relayed by evolving the other

underlying factors.
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Figure 3.22: Corrected Hd,φ,t after pitch-checking examination (Fs = 44100 Hz,
MIDI NO. = 52.)

3.4.3 Evolving of Supervised Learnt Notes Spectra

The main goal of our proposed algorithm is to try to find the actual recorded

instruments’ note spectrum template of different F0s. It needs to evolve from the

prior informed note spectrum template. This evolving operation is different from the

previous iterative updates in supervised learning operation in (3.19), (3.20), (3.21)

and (3.22), which is a plan of pursuing the optimized Td,f,φ,f̂ and Ωf̂ ,d to get the

reconstruction of a prior Wf,φ,d. But in this section, the reconstructed target is the

spectrogram Vf,t of the observed audio mixture and the reconstructed underlying

factors include Td,f,φ,f̂ , Ωf̂ ,d and Hd,φ,t. Referring to the iterative update rules in the

supervised learning operation, if we had a fixed Vf,t and a corrected Hd,φ,t, the rest

are updating Td,f,φ,f̂ or Ωf̂ ,d.
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The evolution of Wf,φ,d is determined by updating the underlying factors Td,f,φ,f̂
and Ωf̂ ,d. Three methods can be adopted for the updating. The first way is to update

both Td,f,φ,f̂ and Ωf̂ ,d; the second way is to update Td,f,φ,f̂ only; and the final way

is presented as the updating of Ωf̂ ,d. For the first plan, if Td,f,φ,f̂ and Ωf̂ ,d are both

changed, the prior information from the dataset based on the note spectrum template

will be discarded and the shift-variant problem becomes an unconstrained optimiza-

tion procedure. So we should make a selection from Td,f,φ,f̂ or Ωf̂ ,d to update. In our

proposed algorithm, we assume that in shift-variant rule, Wf,φ,d, the score spectra of

different F0s is generated from the shift-variant copy of the basis F0 template Ωf̂ ,d

and also assume that combining with the shift-variant translation matrix Td,f,φ,f̂ they

construct a source template model (3.10) for the instrument. If the Td,f,φ,f̂ represents

the resonance coefficients and Ωf̂ ,d refers to the excitation impulses, that means Ωf̂ ,d

should have a general form for other cases. By analyzing the individual note audio

labelled by instrument from datasets [3,4,109,125,126], we present the forms of Ωf̂ ,d

in Fig. 3.23. Though the isolated note audio comes from different datasets and defi-

nitely distinct source, if the audio from the same category instrument, their impulse

excitation Ωf̂ ,d should have similarities in shape. For example, Fig. 3.23(a), 3.23(b)

and 3.23(c) are note audio of violins from three different datasets, but they belong

to instruments of violins and their Ωf̂ ,d have similarities in frequency envelop and

are easily distinguished from the instruments of the bassoon, clarinet and saxophone.

These characteristics are summarized in that the Ωf̂ ,d from the instruments of one

kind spans their own space which can be distinguished by the Ωf̂ ,d from the instru-

ments of other kinds. We verify our assumption using principal component analysis

(PCA) [127–131]. If the relative weights of n harmonics in Ωf̂ ,d is formed as a column

vector, the m different Ωf̂ ,ds are arranged together as a matrix X with size of m× n
and each vector per column. After its data adjusted operations deduct the mean

value of each vector, its covariance matrix can be calculated as

Σ =




cov(x1, x1) cov(x1, x2) · · · cov(x1, xn)

cov(x2, x1) cov(x2, x2) · · · cov(x2, xn)

· · · · · · · · · · · ·

cov(xn, x1) cov(xn, x2) · · · cov(xn, xn)




. (3.36)
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(a) Ωf̂ ,vln from dataset [3, 4]

 
45 187 796 3375 14306
0

0.2

0.4

0.6

0.8

1

(b) Ωf̂ ,vln from dataset [125]
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(c) Ωf̂ ,vln from dataset [109]
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(d) Ωf̂ ,cln from dataset [3, 4]

 
45 187 796 3375 14306
0

0.2

0.4

0.6

0.8

1

(e) Ωf̂ ,cln from dataset [125]
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(f) Ωf̂ ,cln from dataset [109]
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(g) Ωf̂ ,bas from dataset [3, 4]
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(h) Ωf̂ ,bas from dataset [125]
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(i) Ωf̂ ,bas from dataset [109]
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(j) Ωf̂ ,sax from dataset [3, 4]
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(k) Ωf̂ ,sax from dataset [125]
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(l) Ωf̂ ,sax from dataset [126]

Figure 3.23: Ωf̂ ,d forms from different datasets by instrument (vln = violin, cln =
clarinet, bas = bassoon, sax = saxophone)
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In (3.36), if the expectation of xi is denoted as µi = E(xi), then cov(xi, xj) =

E[(xi − µi)(xj − µj)]. Based on the values of Σ, its eigenvalues are labelled as λ1

through λp and ordered from largest to smallest in the form of

λ1 > λ2 > · · · > λp. (3.37)

Then their corresponding eigenvectors should be arranged as

e1 > e2 > · · · > ep. (3.38)

We can calculate the ith PCA coefficient coefi as

coefi = X× e
′

i, (3.39)

where ′ is the matrix transposition. By obtaining the top 3 coefi, we mapped the

Ωf̂ ,ds in Fig. 3.23 into the points in Fig. 3.24. In this figure, the points that belong to

the instrument of the same kind have a trend of being clustered together as one group.

That means that the Ωf̂ ,ds labelled by the same kind of source will have similarities

in forms and keeps its shape stable within the group.

Evolution Rule of Supervised Learnt Notes Spectra

Since the samples from the standard datasets are individual note recordings of limited

kinds of instruments, we can only get research on Ωf̂ ,d of a few instruments. For

example, the Ωf̂ ,d in Fig. 3.23(j), Fig. 3.23(k), and Fig. 3.23(l) comes from different

types of saxophones, and have little difference in shape of frequency profiles. However,

the illustrations in Fig. 3.23 and 3.24 provide preliminary support for our assumption

that Td,f,φ,f̂ acts as a resonance character and Ωf̂ ,d acts as an impulse excitation which

keeps its form during the separation procedure. Therefore, the evolution of Ŵf,φ,d is

only involved in the iterative update of Td,f,φ,f̂ . To accomplish this goal, we suppose a

two procedure structure in our proposed source template NMF algorithm in Fig. 3.25,

which are supervised learning and separation procedures. In the first procedure, we

need to evolve the underlying factors Td,f,φ,f̂ and Ωf̂ ,d to reconstruct the prior setting

Wf,φ,d. After the Ωf̂ ,d inherits partial side-information from the supervised learning

operand, it switches to update underlying factors Td,f,φ,f̂ and Hd,φ,t to reconstruct the
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Figure 3.24: Principal component analysis (PCA) on Ωf̂ ,d for different instruments
from different datasets

targeted Vf,t.

V̂f,t =
∑

d,φ,f̂

Td,f,φ,f̂ · Ωf̂ ,d ·Hd,φ,t

Supervised Learning Procedure

Separation Procedure

Evolving

Evolving

Evolving

Evolving

Figure 3.25: Illustration of underlying factors in different procedures

On the basis of (3.10), (3.8) and (3.9), the multiplicative update rules of shift-

variant translation matrix Td,f,φ,f̂ in the separation procedure should be

n+1

T d,f,φ,f̂ =
n

T d,f,φ,f̂ ·
∑

t Vf,t ·
n

Ωf̂ ,d ·
n

Hφ,t,d

∑
t

n

V̂ f,t

n

Ωf̂ ,d ·
n

Hφ,t,d

, (3.40)
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and

n+1

T d,f,φ,f̂ =
n

T d,f,φ,f̂ ·

∑
t Vf,t

n
Ωf̂ ,d·

n
Hφ,t,d

n

V̂ f,t

∑
t

n

V̂ f,t

n

Ωf̂ ,d ·
n

Hφ,t,d

. (3.41)

3.4.4 Specific Channel Audio Reconstruction

For the ith source, the specific STFT is obtained by applying the source template

NMF on

V̂f,t,d =
∑

f̂ ,φ

Td,f,φ,f̂ · Ωf̂ ,d ·Hd,φ,t. (3.42)

With (3.42), the reconstruction of the specific channel audio magnitude spectrogram

needs the optimized Td,f,φ,f̂ and Hd,φ,t calculated by the alternative iterations in the

separation procedure. The algorithm of this part is given in Algorithm 1.

Algorithm 1: Td,f,φ,f̂ and Hd,φ,t Optimization in Separation

Data: magnitude spectrogram of the audio mixture Vf,t, supervised learnt

Td,f,φ,f̂ and pitch-checking corrected Hd,φ,t

Result: Optimized Td,f,φ,f̂ and Hd,φ,t

V̂f,t ←
∑

f̂ ,φ Td,f,φ,f̂ · Ωf̂ ,d ·Hd,φ,t;

DE ← V̂f,t, Vf,t;

while DE does not reach the criterion do

while Td,f,φ,f̂ does not go convergence in this sub-while do
n+1

T d,f,φ,f̂ ←
n

T d,f,φ,f̂ ·
∑
t Vf,t·

n
Ωf̂ ,d·

n
Hφ,t,d∑

t

n

V̂ f,t
n
Ωf̂ ,d·

n
Hφ,t,d

;

while Hd,φ,t does not go convergence in this sub-while do
n+1

H φ,t,d ←
n

Hφ,t,d

∑
f Vf,t

n

Ŵ f,φ,d∑
f

n

V̂ f,t

n

Ŵ f,φ,d

;

n+1

H φ,t,d ← pitch.checking

(
n+1

H φ,t,d

)

V̂f,t ←
∑

f̂ ,φ Td,f,φ,f̂ · Ωf̂ ,d ·Hd,φ,t;

DE ← V̂f,t, Vf,t;
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(f) 3rd generation evolving of Htrp,φ,t

Figure 3.26: Evolution of H in proposed algorithm
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It is hard for us to verify the evolution of Td,f,φ,f̂ with the absence of the notes spectra

of the actual recorded instrument. However, it is easy to obtain the prior knowledge

of the synchronized scores event from dataset [75], we give the verification of evolving

Hd,φ,t of each sub-while loop in Fig. 3.26.

Following the estimated Hd,φ,t in Fig 3.16(a) and 3.16(b), the
n

Hd,φ,t are corrected

by the pitch-checking method and involved in evolving
n+1

T d,f,φ,f̂ . Alternatively, the

evolved
n+1

T d,f,φ,f̂ is employed to determine the first generation
n+1

H d,φ,t in Fig. 3.26(a)

and 3.26(b). Compared with the prior synchronized score events, the misleading parts

are circled in solid line for easy observation. In the next step, the corrected
n+1

H d,φ,t

gives its contributions in an evolved
n+1

T d,f,φ,f̂ and repeats the alternative update

rules, the second and third generations
n+2

H d,φ,t and
n+3

H d,φ,t are represented in Fig.

3.26(c)-3.26(f). With generations increasing, the misleading parts are reduced and

the evolved Hd,φ,t becomes close to prior synchronized score events.

3.4.5 Audio Reconstruction

Channel Masking Template

In the proposed algorithm, the typical way of time-frequency decomposition, the

spectrogram of the audio mixture is the sum of multi spectrogram of individual au-

dio source based on their magnitude which are the absolute results from complex

values. This implies that factoring a magnitude spectrogram into the sum of addi-

tive independent components leads to a partially missing phase of the information

of the targeted spectrogram [64–66, 132]. This inaccurate reconstruction on phase

information is acceptable here by using a masking template Md with the form of

Md =
V̂f,t,d
Vf,t + ε

, (3.43)

where ε is a small positive number to avoid a zero value in denominator. Then the

reconstructed complex spectrogram of a specific channel can be obtained by

·

V̂ f,t,d = Md ·
·
V f,t, (3.44)
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where
·
V f,t is the observed complex spectrogram of the audio mixture and

·

V̂ f,t,d is

the reconstructed complex spectrogram of the specific channel.

Separated Magnitude Spectrogram Reconstruction

The music sample named “Lussier” and the audio mixture of the bassoon and trumpet

from the dataset [75] is selected to perform the separation procedure of the proposed

source template NMF. Its waveform and magnitude spectrogram are both plotted

in Fig. 3.27. Fig. 3.27(a) shows that it is a mixed audio lasting for over 17 sec-

onds at a sampling frequency of 44100 Hz and Fig. 3.27(b) illustrates its magnitude

spectrogram by using 4096-points per frame for a window, 4096-points per frame for

fast Fourier transform (FFT), and 512-points for step-size. In particular, each bin in

log(f) means 2
1
48 per octave.

 
0 5 10 15

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

(a) Audio mixture of bassoon and trumpet
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Figure 3.27: Waveform and magnitude spectrogram of the audio mixture “Lussier”

The separated magnitude spectrogram of the bassoon and trumpet channel are

given in Fig. 3.28(c) and 3.28(d). We also give the target magnitude spectrogram of

the bassoon and trumpet channels in Fig. 3.28(a) and 3.28(b) for esay comparison. In

overview, the separated magnitude spectrograms give a high accuracy reconstruction

of the target one. But in some details, the intensity of the separated track is a little

different from the target track. This phenomenon is the result of the linear separation

operation on a additive sound mixture.
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(b) Target magnitude spectrogram of trum-

pet
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(c) Reconstructed magnitude spectrogram of

bassoon
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(d) Reconstructed magnitude spectrogram of

trumpet

Figure 3.28: Target and reconstructed magnitude spectrograms bassoon and trum-
pet

To further demonstrate the performance of the proposed source template NMF,

the target and the separation waveforms are all illustrated in Fig. 3.29. Referring to

the target waveforms in Fig. 3.29(a) and 3.29(b), some obvious areas with inaccurate

reconstructions are marked with a solid circle in Fig. 3.29(c) and 3.29(d).
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(a) Target waveform of bassoon
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(b) Target waveform of trumpet
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(c) Reconstructed waveform of bassoon
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(d) Reconstructed waveform of trumpet

Figure 3.29: Target and reconstructed waveforms of bassoon and trumpet

Except for the note profile results given above, the performance of the proposed

algorithm was evaluated by using popular separation quality measures, such as the

signal-to-distortion ratio (SDR), the signal-to-interference ratio (SIR) and the signal-

to-artifact ratio (SAR) [133] [71]. From the basic notation in their work, the observed

input signal Sinput is considered to be the sum of

Sinput = Starget + Einterf + Enoise + Eartif , (3.45)

where Starget, Einterf , Enoise and Eartif mean the reconstructed track interference,

noise and artifacts error terms individually. The SDR, SIR and SAR are determined
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in dB as

SDR = 20 · log10

(
Starget

Einterf + Enoise + Eartif

)
, (3.46)

SIR = 20 · log10

(
Starget
Einterf

)
, (3.47)

SAR = 20 · log10

(
Starget + Einterf + Enoise

Eartif

)
. (3.48)

Table 3.2: Separation performance from proposed source template NMF algorithm

Instrument SAR (dB) SDR (dB) SIR (dB)

Bassoon 14.39 11.06 13.93

Trumpet 16.28 15.90 26.71

Table 3.3: Separation performance from SoundPrism algorithm

Instrument SAR (dB) SDR (dB) SIR (dB)

Bassoon 8.55 6.28 10.75

Trumpet 8.14 4.43 7.45

The separation performance is evaluated using SAR, SDR and SIR parameters in

Table. 3.2 and 3.3. Because the SoundPrism [2] algorithm is more efficient than the

other state-of-the-art algorithms in source separation [2], we employed it as a compar-

ing algorithm in this dissertation. We also present the evolution of note templates in

separation from beginning to the end in Fig. 3.30. We select the bassoon note A3#

and trumpet note C5 as an example. At first, we give the note templates of A3# and

C5 from their recorded instrument in Fig. 3.30 (A) and (D). This part is provided

as the targets. At the beginning of separation, the initialized note templates of A3#

and C5 in Fig. 3.30 (B) and (E) are obtained from the dataset [3, 4, 109] to build

the constraints of instruments resonance characteristics and notes impulse excitation

through the proposed supervised learning algorithm. Under the operation of the

proposed source template NMF algorithm, the constraints of instruments resonance

characteristics are updated and evolve a new form of the underling note templates in



CHAPTER 3. CORE WORK ON PROPOSED MODEL 62

0

0.5

1

1.5

2

45 91 187 387 796 1639 3375 6949 14306
log scale F in Hz

A
m

p
li

tu
d

e

Bassoon Note A3# Template from Actual Recorded Bassoon

0

0.5

1

Rebuilt Bassoon Note A3# Template from Supervised Learning

45 91 187 387 796 1639 3375 6949 14306
log scale F in Hz

A
m

p
li

tu
d

e

0

0.5

1

1.5

Rebuilt Bassoon Note A3# Template from Proposed Source Template NMF Algorithm

45 91 187 387 796 1639 3375 6949 14306
log scale F in Hz

A
m

p
li

tu
d

e

0

0.5

1

Trumpet Note C5 Template from Actual Recorded Trumpet

A
m

p
li

tu
d

e

45 91 187 387 796 1639 3375 6949 14306
log scale F in Hz

0

0.5

1

Rebuilt Trumpet Note C5 Template from Supervised Learning

45 91 187 387 796 1639 3375 6949 14306
log scale F in Hz

A
m

p
li

tu
d

e

0

0.5

1

Rebuilt Trumpet Note C5 Template from Proposed Source Template NMF Algorithm

A
m

p
li

tu
d

e

45 91 187 387 796 1639 3375 6949 14306
log scale F in Hz

A

B

C

D

E

F

Figure 3.30: Comparisons of note templates in separation
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Fig. 3.30 (C) and (F) of the proposed model. In Fig. 3.30, it is easy to find that the

evolved note templates of A3# of bassoon in sub-fig (C)and C5 of trumpet in sub-fig

(F) are similar to the forms of note templates given by the actual recorded bassoon

in sub-fig (A) and trumpet in sub-fig (D).



Chapter 4

Performance Evaluation and Comparison

The aim of the proposed source template NMF is to make a wide application on a

multi-instrument separation scenario. Matlab toolbox [41] is adopted to provide the

SAR, SDR, and SIR calculation between the separated signal and target source. A

surprising number of datasets are created for music transcription and source separa-

tion testing such as MedleyDB [134], RWC music database [135], structural segmenta-

tion of the multitrack dataset (SSMD) [136], Woodwind Quintet [137], MAPS [138],

LabROSA piano [139], TRIOS [1], Bach10 [31] and so on. However, considering

the further performance evaluations compared with the other state-of-the-art algo-

rithms [2, 30], the contents of alternative datasets should contain the mixed audio

which is played by the multiple instruments, the targeted isolated sound source of

each instrument, and the MIDI transcription which is necessary for the sound-prism

algorithm [2] but not for the proposed source template NMF. For the dataset, based

on these considerations above, the database TRIOS [1] and Bach10 [31] are both com-

petent selections in this thesis. In terms of algorithms, the proposed source template

NMF algorithm, the sound-prism method [2] and the oracle toolbox [30] were also

selected as comparing algorithms. The sound-prism algorithm is a prevalent algo-

rithm which has been proved with higher separation accuracies than many previous

source separation algorithms [31,140–142] and tested by Bach 10 database containing

more complex and longer audio mixtures than ever used in source separation work.

Meanwhile for the oracle toolbox, it is believed theoretically the best source sepa-

ration method is based on time frequency masking methods and the analysis filter

bank used on the separation system. Its calculation requires isolated sound sources.

The mixed signals are filtered with the analysis filter bank. After that, the isolated

sources, which are also filtered by the analysis filter bank, are used to obtain the

64
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ideal masks, which are the best mark that can be obtained with the given frequency

resolution. Then these masks are applied to the mixed signal and the oracle separated

signal is obtained. This process gives the best possible separation with the system

set-up. It sets an upper bound of all the configurations of the proposed method. The

runtime environment of each algorithm is listed in Table 4.1.

Table 4.1: Runtime environment of each algorithm

Side information
Test algorithms

Pitch-variant NMF Sound-prism Oracle toolbox

Score alignment info X

Score list of each recording X X

Multi-pitch estimation∗ X

Note recordings X X

Target audio X
∗ The “universal” likelihood model is trained on thousands of isolated musical chords
generated by different combinations of notes from 16 kinds of instruments.

4.1 Separation Performance Based on TRIOS

Dataset

In this TRIOS dataset [1], except the fifth percussion music, it has four melodies:

Brahms’s “Horn Trio in Eb major, op. 40,” Lussier’s “Bacchanale pour trompette,

bassoon, et piano,” Mozart’s “Trio in Eb major Kegelstatt, K.498,” and Schubert’s

“Piano Trio in Eb major, D.929.” Each piece includes synchronized audio recordings

created from the MIDI score by an instrument and a manually played isolated audio

recording while the player is listening to the mix of the synthesized audio of other

parts strictly synchronized in beat through a headphone. Though each isolated track

is recorded individually, when we use Logic Pro software [143] for audio mixing, all

pieces have a steady tempo. But it has errors in synchronized MIDI files of Brahms

and Mozart pieces and these errors have effects on the application of the sound-prism

algorithm. The details of audio mixture, isolated track sounds and synchronized MIDI
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Table 4.2: TRIOS dataset [1]

Melody Solo
Mixture audio

MIDI Time Amount
2 source 3 source

Brahms

horn X X X X

43 s 4 audio mixturespiano X X X X

violin X X X X

Lussier

bassoon X X X X

18 s 4 audio mixturespiano X X X X

trumpet X X X X

Mozart

clarinet X X X X

33 s 4 audio mixturespiano X X X X

viola X X X X

Schubert

cello X X X X

53 s 4 audio mixturespiano X X X X

violin X X X X

files are listed in Table 4.2. In one melody piece, the involved instruments are listed

down a column, when being used for playing an audio mixture, they are marked by

a checkmark in the column. Each two instruments can get one polyphony-2 audio

mixtures. By means of it, we obtain twelve 2-source and four 3-source audio mixtures

from this dataset. The mean length of all pieces is 36.75 seconds, and 8 kinds of

instruments are used for playing melodies. For the track reconstruction, 24 samples

are obtained from 2-source separation and 8 samples from 3-source separation. As it

shows in Table 4.1, each melody is composed of different kinds of instruments, the

numbers of reconstructed audio channels were not equal and calculated in Table 4.3.

4.1.1 Results under Proposed Source Template NMF Sepa-

ration System

In this section, we use box-whisker plots to demonstrate our separation results in a

descriptive statistical way. The box-whisker plot has an advantage in depicting the
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Table 4.3: The amount of rebuilt channel audio

Rebuilt channels
From mixture audio

Total NO.
2-source 3-source

bassoon 2 1 3

cello 2 1 3

clarinet 2 1 3

horn 2 1 3

piano 8 4 12

trumpet 2 1 3

violin 4 2 6

viola 2 1 3

numbers of numerical data through its quartiles graphically, which is shown in Fig.

4.1 [12] to make a comparison between a box-whisker plot and a normal N(0, 1σ2)

probability density function (pdf). Q1 and Q3 are the first and the third quartiles.

The lowest values are located within 1.5 interquartile range (IQR) of the lowest quar-

tile, and the same theory for the highest part. By these means, in Fig. 4.2, we present

multi-source separation results using the proposed source template NMF. The mean

values of SAR, SDR and SIR in 2-source separation are tagged around 10.5 dB, 5.8

dB and 9.8 dB respectively while in 3-source separation, they are 7 dB, 0 dB, and 2.1

dB. One reason is that when the number of sources increases, the number of param-

eters in the proposed model gets higher, but the useful information of indicating the

notes and their sources are still very limited. This leads to the lower performances in

3-source separation. From the other respect, the separation work is based on the esti-

mated process of the notes’ onset-offset like features whose accuracy is also influenced

by the number of sources. If the misleading estimations gets higher, the multi-source

separation accuracy gets lower. To show a further separation performance evaluation

based on the proposed source template NMF, Fig. 4.3 focuses on the SAR, SDR,

and SIR parameters by rebuilt track. Each reconstructed audio channel has different

performances of SAR values in Fig. 4.3(a), SDR values in Fig. 4.3(b) and SIR values
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Figure 4.1: Box-whisker plot and a normal N(0, 1σ2) distribution [12]
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Figure 4.2: Multi-source separation on TRIOS dataset under the proposed source
template NMF
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(c) Rebuilt tracks SIR evaluation

Figure 4.3: Rebuilt track evaluation on TRIOS dataset under the proposed source
template NMF by instrument
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Figure 4.4: Piano chord in an audio mixture

in Fig. 4.3(c). We count on the 2-source separation rebuilt and 3-source separation

rebuilt samples together to get enough samples and give a statistical analysis. The

rebuilt samples of piano and violin are 6 and 12 which are greater than other in-

struments in the TRIOS dataset. However, the piano is a very complicated device

with plenty of chords which cannot be recognized by human ears without any prior

training practice. Fig. 4.4 gives one part of the sheet music of Schubert’s piece in

TRIOS database. Its low performance in 3-source separation may be a crucial reason

to get the negative values in Fig. 4.3. It appears that one piano chord consists of 3

or 5 notes together and this pianism undoubtedly makes the multi-source separation

challenging work.

4.1.2 Results under Sound-prism Separation System
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Figure 4.5: Source separation evaluation on TRIOS dataset under the sound-prism
system
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(c) Rebuilt tracks SIR evaluation

Figure 4.6: Rebuilt track evaluation on TRIOS dataset under the sound-prism
system



CHAPTER 4. PERFORMANCE EVALUATION AND COMPARISON 72

In this dissertation, the sound-prism on-line music separation system [2] is adopted

as one comparison against the proposed source template NMF algorithm. Generally,

its separation work relies on the support of MIDI files as the capability to provide

score alignment to calculate onset-offset like features by a Hidden Markov model

(HMM). With the prior information of synchronized score events from the dataset

of TRIOS, the sound-prism algorithm grabs the accurate score onset-offset features,

then its separation work reaches high values of SAR, SDR and SIR parameters in

Fig. 4.5. However in an aspect of 2-source separation, sound-prism performances of

SAR, SDR and SIR are about 3.5 dB, 1.5 dB and 2 dB less than SAR, SDR and SIR

in Fig. 4.2. For 3-source separation, the sound-prism performances of SAR, SDR and

SIR keep their performances as well as in 2-source separation, with the aid from the

score alignment information of the actual recordings from synchronized MIDI. One

reason of its lower 2-source separation than the proposed source template NMF is the

multi-pitch estimation algorithm used in sound-prism system. Though its multi-pitch

estimation model has been trained by thousands of isolated musical chords from 16

kinds of instruments [2], the complex chords generated from the piano may go beyond

its collections and deteriorate the reconstructions of source signals.

The rebuilt channel audio evaluation in the form of SAR, SDR and SIR are pre-

sented in Fig. 4.6. Compared with the separation performances in Fig. 4.3, the

rebuilt channel audio performances are higher because of better performances in 3-

source separation. But the rebuilt piano channel performance is close to the work

in Fig. 4.6(b) and still gets the worst SAR, SDR and SIR values among the other

sources. This suggests that the synchronized MIDI informed score alignment informa-

tion improves the efficiency of multi-polyphony separation but the trained multi-pitch

estimation algorithm has a limited chord recognition with actual samples beyond its

collections.

4.1.3 Results under Oracle Separation System

The near-optimal time-frequency masks for single-channel source separation [144]

from the Oracle-tool box is employed to show the best theoretical performance in our

thesis, and its performance estimation results is described in Fig. 4.7. Whatever the

performances of SAR, SDR and SIR in 2-source or 3-source separation, they imply
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Figure 4.7: Source separation on TRIOS dataset under the near-optimal time-
frequency masks for single-channel source separation algorithm from Oracle-tool
box

that big potential improvement exists in the proposed source template NMF and

sound-prism algorithms. The theoretical best performances of rebuilt channel audio

are given in Fig. 4.8. Unlike the experiment results of the proposed source template

NMF algorithm in Fig. 4.3 and sound-prism algorithms in Fig. 4.6, the rebuilt

channel audio of piano does not have the worst performances among the others. It

means that more side information concerned with the piano chords will improve the

performances of rebuilt piano track audio in the proposed source template NMF and

sound-prism algorithms.
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(c) Rebuilt tracks SIR evaluation

Figure 4.8: Rebuilt track evaluation on TRIOS dataset under the Near-optimal
time-frequency masks for single-channel source separation algorithm from Ora-
cle tool box by instrument
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4.2 Separation Performance on Bach10 Dataset

Table 4.4: Bach10 dataset

Melody Solo
Mixture audio

NO.
2-source 3-source 4 source

Each
Piece

bas X X X X X X X

11
cla X X X X X X X

vln X X X X X X X

sax X X X X X X X

Table 4.5: Time length (seconds) per melody piece in Bach 10 dataset
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Time length (second) 26 42 27.5 41.6 36.8 34.3 33.1 33.6 30 38.2

Mean value (second) 34.31

The Bach 10 database [31] is composed of ten polyphony melodies, and each of

them contains 4 isolated solos. These isolated solos in one melody piece are performed

by players under the circumstance of listening to the mixture of all previous recorded

audio instead of the metronome based synchronization. Because the players of solos

are not involved in the group synchronized recording, the Bach 10 belongs to a less-

than-ideal synchronization database. Because of the variation in the tempo, it is not

difficult to find notes in inarticulate places. Actually, the fermata signs in pieces

prolonged the notes beyond their normal duration. The structure and the mixed

audio samples are listed in Table 4.4. Each piece of melody contains four isolated

audio of different instruments. They are bassoon, clarinet, violin and saxophone.

There are six different polyphony-2 audio mixtures per melody, if we choose from
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four different instruments of the two instruments of the combination number. With

the same theory, there are four different polyphony-3 audio mixtures per melody.

So for each melody piece, it can provide 11 audio mixtures. For 10 melodies in the

Bach10 database, the total amount of available audio mixtures is 110 which includes

60 two-source audio mixtures, 40 three-source audio mixtures and 10 four-source

audio mixtures. Their MIDI files are obtained from online web resources. The time

length of each melody is listed in Table 4.5. Therefore, there are many changes of

natural tempo, while the MIDI file has a constant tempo. We use this database to

test our proposed source template NMF, and repeat the experiments sound-prism

and Oracle toolbox algorithms. Typically, we calculate the possible number of rebuilt

track audio per melody and give the final results in Table 4.6. The multi-source

Table 4.6: Numbers of rebuilt audio channels per melody in Bach10

Rec solo
From audio mixture

Total NO.
2-source 3-source 4-source

Per melody

bassoon 6 4 1 11

clarinet 6 4 1 11

violin 6 4 1 11

saxophone 6 4 1 11

separation performances are plotted in Fig. 4.9. By observing the SAR, SDR and SIR

results in Fig. 4.9(a), it shows the separation performance in two to four polyphony

separation. Being consistent with the experiment results in TRIOS dataset. In Fig.

4.9(a), the performances decrease when the number of polyphony is increased. Its

best results are SAR at 10.2 dB, SDR at 6 dB and SIR at 10.5 dB in two-source

separation. The sound-prism based separation results given in Fig .4.9(b) shows its

stability performances of SAR around 7.8 dB, SDR around 5.2 dB and SIR around

11 dB whenever the sound-prism algorithm is working at two, three or four-source

separation conditions. Finally, the separation performances based on Oracle-toolbox

are presented in Fig. 4.9 to indicate the theoretical limit of the state-of-the-art

algorithms.

It is also interesting to see the performances of rebuilt tracks in Fig. 4.10, 4.11

and 4.12 which were based on the proposed source template NMF, the sound-prism
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and the Oracle-toolbox algorithm respectively. In polyphony-2 separation condition,

the rebuilt clarinet track audio has the best performance in SAR, SDR and SIR

values based on all proposed source template NMF, sound-prism and Oracle-toolbox

algorithms. The performances of the proposed source template NMF, the rebuilt

violin track audio has violent in changes performances on multi-polyphony separation

experiments.

4.3 Separation Performance Test by Simulating

Actual Environment

As the experiments mentioned above, these algorithms are all tested using audio at

laboratory level. But in real circumstances, the multi-polyphony audio mixture is

generated and recorded in noisy situations because of outside noise such as the bi-

acoustics sounds from crowds, air conditioning, power supplies, reverberation and

so on. But the real noise background is hard to simulate. If we only consider a

simplified noise background with the similar characteristics of white Gaussian noise,

and have a flat spectrum over the range of frequencies, the simulated audio mixture is

generated by adding Gaussian type white noise to the audio mixture from the Bach 10

dataset. It is also interesting to see the variations of separation performances with the

different levels of background noise. We use the signal-to-noise ratio (SNR) [145,146]

parameter to measure the noise energy and observe the behaviours of these three

algorithms with various SNR. The SNR here indicates an average signal-to-noise

ratio and its definition is

SNRdB = E

[
10log10

[(
Vsignal
Vnoise

)2
]]

. (4.1)

In experiments, we plan to test the polyphony-2 separation performances of these

algorithms on simulated audio mixtures with different levels of noise. In order to

control the noise level, the SNR is adjusted. Fig. 4.13 shows the original audio

mixture from the Bach 10 dataset and lists its simulated audio in the min and max

SNR value of 4 dB and 16 dB. From the plot, it is easy to observe that the curves of
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(c) Source separation based on oracle-toolbox algorithm

Figure 4.9: Source separation on Bach 10 dataset among these three algorithms

the simulated audio mixture at SNR 16 dB are smoother than the simulated audio

mixture at SNR 4 dB. Therefore the expected separation performances at SNR 16

dB should be higher than the results at SNR 4 dB.
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Figure 4.10: Rebuilt track performance evaluation on Bach 10 dataset under the
proposed source template NMF
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Figure 4.11: Rebuilt track performance evaluation on Bach 10 dataset under the
SoundPrism
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Figure 4.12: Rebuilt track performance evaluation on Bach 10 dataset under the
Oracle-toolbox
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The audio mixture separation is only referring to the polyphony-2 separation

work. The polyphony-2 audio mixtures in Bach 10 dataset are 120 as well as we

can derive that the simulated polyphony two audio mixtures are equal to the same

number. The first procedure of the test is to choose one of the source separation

algorithms from the three and calculate the SAR, SDR and SIR parameters in Fig.

4.14, 4.16 and 4.18. It is obvious to see that except for the Oracle-toolbox algorithm,
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Figure 4.13: Audio mixture and its simulations with noise

the two-source separation performance on the simulated audio mixtures under the

proposed source template NMF and sound-prism algorithms are both sensitive to

the effects of Gaussian white noise. Particularly, the sound-prism algorithm has the

lowest performances. For an example, the mean SDR of the Oracle algorithm is
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around 15 dB at Fig. 4.9(c), and its mean SDR is still located around 15 dB in Fig.

4.18(b) when it works on the stimulated mixture audio with mean SNR at 16 dB;

the mean SDR of the proposed source template NMF is around 6 dB at Fig. 4.9(a)

and its mean SDR keeps the value at 5 dB in Fig. 4.14(b) with SNR at 16 dB; but

the value of average SDR goes down when the SoundPrism algorithm is utilized to

process the simulated audio mixtures, and the value of average SDR is reduced from

5 dB in Fig. 4.9(b) to 1.8 dB in Fig. 4.16(b). Furthermore, this reduction goes into

the negative quadrant with the noise signal energy increasing to SNR 4 dB.

The polyphony-2 separation performances of SAR, SDR and SIR show their values

of rebuilt audio track performances by the instrument in Fig. 4.15, 4.17 and 4.19.

The number of rebuilt audio samples of each instrument is 30 s and they are all

reconstructed from polyphony-2 separation results. The instruments include bassoon,

clarinet, saxophone and violin, and they are grouped together under the different SNR

values. For the rebuilt audio track performances, the proposed source template NMF

and the sound-prism algorithm both have the problem of getting lower average values

of SAR, SDR and SIR with different values of SNR. In particular, the rebuilt violin

track always gets a lower mark than others on the rebuilt track. However the proposed

source template NMF keeps its competitive edge on values of average SAR, SDR and

SIR compared with the sound-prism algorithm.
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Figure 4.14: Polyphony two separation performance evaluation on noise added
stimulation audio mixture under the source template NMF



CHAPTER 4. PERFORMANCE EVALUATION AND COMPARISON 85

-7

-4

-1

2

5

8

11

14

S
A

R

SNR (dB)

4 6 8 10 12 14 16

bassoon

clarinet

saxophone

violin

bassoon

clarinet

saxophone

violin

bassoon

clarinet

saxophone

violin

bassoon

clarinet

saxophone

violin

bassoon

clarinet

saxophone

violin

bassoon

clarinet

saxophone

violin

bassoon

clarinet

saxophone

violin

(d
B

)

(a) Rebuilt tracks SAR estimation

S
D

R

SNR 
4 6 8 10 12 14 16

bassoon

clarinet

saxophone

violin

bassoon

clarinet

saxophone

violin

bassoon

clarinet

saxophone

violin

bassoon

clarinet

saxophone

violin

bassoon

clarinet

saxophone

violin

bassoon

clarinet

saxophone

violin

bassoon

clarinet

saxophone

violin

-13

-10

-7

-4

-1

2

5

8

11

14

(d
B

)

(b) Rebuilt tracks SDR estimation

S
IR

SNR (dB)

4 6 8 10 12 14 16

bassoon

clarinet

saxophone

violin

bassoon

clarinet

saxophone

violin

bassoon

clarinet

saxophone

violin

bassoon

clarinet

saxophone

violin

bassoon

clarinet

saxophone

violin

bassoon

clarinet

saxophone

violin

bassoon

clarinet

saxophone

violin

-10

-7

-4

-1

2

5

8

11

14

17

20

(d
B

)

(c) Rebuilt tracks SIR estimation

Figure 4.15: Rebuilt track performance evaluation on noise added stimulation audio
mixture under the source template NMF
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Figure 4.16: Polyphony two separation performance evaluation on noise added
stimulation audio mixture under the sound-prism algorithm
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Figure 4.17: Rebuilt track performance evaluation on noise added stimulation audio
mixture under the sound-prism algorithm
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Figure 4.18: Polyphony two separation performance evaluation on noise added
stimulation audio mixture under the Oracle-toolbox algorithm
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Figure 4.19: Rebuilt track performance evaluation on noise added stimulation audio
mixture under the Oracle-boolbox algorithm



Chapter 5

Conclusion and Discussion

In this dissertation, we developed the proposed source template NMF method for

multi-instrument separation for monaural musical audio and designed the experimen-

tal tests based on TRIOS and Bach10 datasets compared with the SoundPrism and

Oracle-toolbox algorithms. The conclusion of these experiments is made here from

the performance evaluations in Chapter 4 to summarize the value of the research.

Meanwhile the discussion is also made to discover the advantages and disadvantages

theoretically in our proposed algorithm and to look forward to potential and realistic

improvements in the future.

5.1 Conclusion

In this research, we assumed that each instrument notes’ templates in the frequency

domain are generated by the production of a basis impulse excitation with the shift-

variant resonance functions of different fundamental frequency f0s. Based on this

assumption, we developed the proposed source template NMF model which uses lin-

ear combinations of the source labelled score spectra templates to approximate the

spectrogram of the observed audio mixture. The prior knowledge of the note spectra

templates are obtained from a recorded dataset full of isolated instrument notes. The

proposed source template NMF model evolves the prior informed resonance func-

tions approximately to the actual recorded instrument and estimates the combina-

tion coefficients of each template to build the separation mask for instrument audio

track reconstruction. We test the proposed source template model with the TRIOS

and Bach10 datasets, and compared the multi-source separation performances with

90
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SoundPrism and Oracle-toolbox algorithms. On one side, from the performance com-

parisons, we found that the proposed source template NMF model had equivalent or

higher qualities in polyphony-2 separation depending on the datasets. In polyphony-

3 or -4 separation, the performances of our proposed source template NMF method

is behind the SoundPrism algorithm. But the necessary special requirements of the

SoundPrism algorithm includes a score-alignment defined MIDI file and multi-pitch

detection algorithm trained by thousands of isolated chords, which are far beyond

the necessary, isolated notes’ recordings and an actual recording scores list used in

the proposed source template NMF. On the other side, from the SNR tests, the per-

formance of the proposed source template NMF exceeded the SoundPrism algorithm

in polyphony-2 separation. The overall experimental test results tell us that the pro-

posed source template NMF has advantages in two-source separation and has better

noise performance.

5.2 Discussion

The proposed source template NMF is designed in this dissertation to solve the source

separation problem for monaural musical audio. Compared with the SoundPrism

algorithm, the proposed source template NMF achieved a higher accuracy of two-

source separation on the TRIOS dataset and almost the same performance of two-

source separation on the Bach-10 dataset with fewer supports from side information.

Furthermore, the proposed source template NMF has a better noise performance on

two-source separation on simulated audio. There were many reasons to explain the

performance on two or multi-source separation.

In the proposed model, the isolated notes’ audio informed instrument templates

have the potential to promote the efficiency of two-source separation on ensemble

and polyphony audio. The isolated notes’ audio contains prior information of certain

frequencies’ oscillation under strings or airflow vibrations which lead to the excitation

impulse and driving force for an instrument. With the help of this prior information,

the proposed source template NMF model estimates the maximum likelihood of the

note’s onset-offset features corresponding to the prior template. The notes’ maximum

likelihood estimations are supervised by the prior information of notes list and the

pitch-checking algorithm to improve the accuracy. Then the supervised estimations

of notes’ onset-offset features are used alternatively to evolve the actual recorded



CHAPTER 5. CONCLUSION AND DISCUSSION 92

instruments’ templates from prior ones. The proposed algorithm proved its efficiency

with results in Fig. 4.2 and Fig. 4.9(a).

But the proposed source template NMF algorithm is limited to some samples in

two, three or four-source separation because of two main reasons. The first reason is

called the octave error problem which is still a challenge in a multi-pitch detection

algorithm. A scenario of the octave error problem in our experiments is described

and explained in Fig. 5.1 which happened in the sample of Brahms’s rhythm from

the TRIOS dataset. In A© of Fig. 5.1, it shows the score onset-offset-like features of

the rebuilt violin track. The feature A in the row of MIDI number 87 and the feature

B in the row of MIDI number 75 are both onset-offset-like features which have one

octave gap. But according to the prior information of notes in actual recordings in

B©, the feature A is a misleading estimation. We found the corresponding time of

events A and B in the spectrogram of the audio mixtures of C© and marked it with a

dotted vertical line. Then we extracted a slice of the mixture audio spectrogram at

the time of events A and B and presented the time slice in the item D© to observe the

frequency profile’s history at that time. Combined with the prior knowledge of the

notes template in E© and F©, the goal of our proposed algorithm is to find out that

which gives the contributions to D©. However, because of the frequency components

of F© are covered by E© it’s hard to decide whether D© is a combination of E© and F©,

or just evolving from only one of them. The misleading part cannot be recognized

until some necessary side information is given.

The second reason of misleading estimations under our proposed source template

NMF is the harmonic component compression phenomenon in some instrument play-

ing. The example of harmonic components compression of a wind pipe type instru-

ment, alto saxophone, is given in Fig. 5.2. The note templates show the frequency

profiles of the notes from the row of MIDI number 49 to MIDI number 80 which are

provided by the dataset [109]. The harmonic component compression phenomenon

is more obvious in the note spectrum template at MIDI number 80 than at MIDI

number 66. In an actual recording scenario shown by item F© of Fig. 5.3, the funda-

mental frequency component is more outstanding than other harmonics and causes

a new type of misleading in note onset-offset-like features estimations. In Fig. 5.3,

we prescribed this kind of misleading estimation in source separation of the sample

called “ChristeDuBeistand” from the Bach-10 dataset. In A© and C©, we give the
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estimated note’s onset-offset-like features of clarinet track and violin track compared

with their prior score alignment information in B© and D©. From this comparison, we

found the estimated A in A© was an effective estimate but the estimated B in C© was

misleading. Then we located the time of the effective A and the misleading B in the

spectrogram of mixture audio in E© and spread out the frequency profiles history in

F©. It clearly shows the phenomenon of harmonic components compression in which

it is observed as the primary outstanding fundamental component and withered har-

monics. Under this circumstance, though the proposed source template NMF model

is informed by the prior note templates in G© and H©, it is still hard to say which one

of them, G© or H©, has the main contributions to the actual mixture recording at the

specific time when it is indicated by a dotted vertical line. Because of the absence of

the necessary information from harmonic components, this type of misleading feature

cannot be solved without the help from the further information of notes playing. We

should note that these kinds of misleading feature will accumulate with increasing

number of sources and prove to be the explanation of the low performance in three

or four-source separation behaviours.

However, these limitations do not affect the effectiveness of our proposed source

template NMF algorithm in conditions with simulated noise background. In order

to explain this advantageous characteristic, we illustrate the frequency profiles at

a specific time in the spectrograms of the original and simulated audio mixture at

different levels of SNR. Item A© in Fig. 5.4 is a time slice from spectrograms of original

audio. The lowest peak is located around 91 Hz and can be recognized clearly from

other peaks. But its shape becomes more ambiguous to recognize when noise energy

is higher in C© and D©. This deterioration of the peak value leads to a challenge to the

multi-pitch detection algorithm in the SoundPrism algorithm, which is very sensitive

to noise and even goes on strike if a silence period exists in the audio mixture. But

in our proposed source template NMF algorithm, the score onset-offset-like feature

estimation is based on the prior note templates, which is hard to be affected by the

trivial changes in the frequency profiles of the audio mixture.
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5.3 Future Work

According to the discussion, future work on the proposed approach can start from the

work of solving the three problems of octave error, harmonic component compression

and missing fundamental frequency. In order to solve the octave error problem, the

estimation of note activation has to be detected to find out whether the notes have

an octave relationship and are active simultaneously. If they are, we could use the

note timbre of the source as side information to evaluate the spectrum of the observed

audio mixtures and determine whether the spectrum is a frequency profile of only one

note or the sum of notes. In this way, the note timbre provides clues to recognize

the situation of multi-pitch estimation. Following a similar approach, we may find

solutions of harmonic component compression and missing fundamental frequency

phenomena. The research of note timbre characteristics by source would become a

key issue in the future research.

Additionally, the proposed algorithm can also be developed in exploring the phase

side information from the observed audio mixture STFT. In source separation work,

the STFT of observed audio mixtures give us two aspects of information: the first

is the magnitude of the spectrogram, the second is its phase. Because it is difficult

to establish a model with constraints of both the note frequency magnitudes and the

phase, in the proposed algorithm, we only develop an updatable constraint for notes

by source and focus on the magnitudes. So the phase of the rebuilt signal of the target

channel is inherited from the original STFT and is not denoted by source. For the

future development, we should pay attention to the research of the side information

of the phase and establish a statistic constraint to rebuild the source defined phase

characteristics.
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Figure 5.1: Scenario of octave error problem
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