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All these structures have evolved over a span of 30 years. The
first machine to use a kind of overlap is UNIVAC I, where program
execution was overlapped with certain 1/0 activities. Partitioning
of instruction execution units and ﬁsing pipelining techniques were
first introduced in the IBM machine called STRETCH and interleaving
of memory was used by the IBM 7094iII to speed up memory access time.
By 1967, the CDC-6600 had separate execution units for floating point
operations and integer operations. With the demand for a higher
execution rate there evolved VECTOR PROCESSORS in which a single function
was executed successively on many individual data. (Such sets of data
were cailed VECTORS.) Three vector processors which have internal
pipelines are described in Chapter 2 . Computer designers have used
specialised pipelines (CRAY 1) as well as general purpose pipelines

(CYBER 205) in these vector processors.

Another radical change in the computer architecture was to
introduce replication of processors which resulted in the construction
of the ILLIAC IV in the 1970's. Though ILLIAC IV is sometimes regarded
as a failure, its influence has been profound. Many array processors
like PEPE, BSP, ICLDAP have used the idea of providing an array of
PE's (processing element;) and also have used the above mentioned
overlapping ideas. Now the differences between pure pipelining,
overlapping and pure parallelism have become quite indistinct. The
machines like CRAY X-MP, CYﬁER 205 are the examples of the present

trend.



ABSTRACT

Development of parallel and pipelined processors has initiated re-
examination of the use of direct methods in solving large linear systems
Ax = b, where A 1is an n X n sparse positive definite matrix. We
consider those algorithms applicable to CRAY-like vector computers.
Looking first at the conventional approaches to solve sparse systems,
namely the band and envelope methods, we find that these are easily
vectorizable and quite fast on CRAY-like computers. However generai
sparse methods tend to produce small vectors which do not use the
CRAY-like computers to advantage. Different problems lead to different
conclusions. We therefore look at methods like the minimum degree
method, quotiént tree ordering, and the nested dissection method
which retain to some extent the sparseness of the original matrix
in the factorization process and are compatible with a vectorized

i

computation.
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INTRODUCTION

The technological revolution in the computer hardware industry
has introduced new computers called vector processors. Uée of vector
processors to solve large sparse system of equations has attracted
numerical analysts for a long time, but the existing algorithms to
solve sparse systems fail to give the expected inc;ease in their

performance on these computers. The algorithms need £o be redesigned

with the specific architecture in mimd.

In Chaptér 1 we consider in brief the history of the development
‘of these computers and a couple of examples whérg they are gainfully
emponed. In Chapter 2 we degcribe the salient features of the
existing vector processors and how pipelined techniques are used to
increase the p;rformance. In Chapter 3 we consider methods for
banded sparse positive definite systems. In Chapter 4 we examine
the minimum degree method as suggested by George and Liu (1981) and
in Chapter 5 the use of quotient tree ordering and nested dissection

in the block elimination method.



CHAPTER 1

History and Application of Parallel Processors

1.0 Introduction

In this chapter we consider in brief, the hisdry of development,
of the present day supercomputers. New architectural ures used by
different computers have enabled us to reach computational speeds up to
millions of floating point operations per second. These supercomputers
have become the necessary tools for science and engineering, In Section
1.2 we consider the use of these computers in two fields: in the study

of seismic waves for the location of o0il resources, and in basic
A

research — to calculate the ground state energy of He4 atoms in

nuclear physics.

1.1 Evolution of Parallel Processors

There has been a tremendous improvement in the speed of executing
arithmetic operations since the }ime that the UNIVAC I was produced
commercially. This increased speed can be attributed mainly to improve-
ment in hardware structure and parallelism. Parallelism refers to the
ability to overlap or perform many tasks simultaneously. The principal

ways of introducing parallelism into the architecture are

(a) pipelining: wusing aséembly line techniques to improve
performance;

(b) functional: providing several processing elements or

3

processors all under a ¢ommon control unit, performing
Al

the same operations;

(c) multiprocessing: providing several processors each having

its own memory and following its own instructions, but also

communicating with the others via a common memory.



All these structures have evolved over a span of 30 years. The
first machine to use a kind of overlap is UNIVAC I, where program
execution was overlapped with certain I/0 activities. Partitioning
of instruction execution units and Qsinq pipelining techniques were
first introduced in the IBM machine called STRETCH and interleaving
of memory was used by the IBM 7094111 to speed up memory access time.
By 1967, the CDC-6600 had separate execution units for floating point
operations and integer operations. With the demand for a higher
execution rate there evolved VECTOR PROCESSORS in which a single function
was executed successively on many individual data. (Such sets of data
were cailed VECTORS.) Three vector processors which have internal
pipelines are described in Chapter 2 . Computer designers have used
specialised pipelines (CRAY 1) as well as general purpose pipelines

(CYBER 205) in these vector processors.

Another radical change in the computer architecture was to
introduce replication of processors which resulted in the construction
of the ILLIAC IV in the 1970's. Though ILLIAC IV is sometimes regarded
as a failure, its influence has been profound. Many array processors
like PEPE, BSP, ICLDAP have used the idea of providing an array of
PE's (processing element;) and also have used the above mentioned
overlapping ideas. Now the differences between pure pipelining,
overlapping and pure parallelism have become quite indistinct. The
machines like CRAY X-MP, CYﬁER 205 are the examples of the present

trend.



1.2 Applications of Parallel Processing

The demand for fast and efficient computing has increased many
times in recent years, largely because of the requirements in scientific
and engineering fields. A computer study and Simulation of a physical
model is often much more cost-effective and faster than physical
experiments which would otherwise be necessary, and ;he practical con-
straints may be fewer than the ones wh;re physical experiments are

involved.

Some of the instance where such computer modelling is very useful
are
(i) simulation studies,
(ii) engineering design,
(iii) energy resources,

(iv}) medical and basic research.

Here we consider the application of these parallel processors

in the study of energy resources and basic research.

(a) Energy Resources (Butschner, 1983)

The purpose of reflection seismology is the investigation
of unknown subsurface structure like o0il resources.
Se;smfc waves are emitted by an energy source and the reflected signals
are recorded by an array of receivers. Seismic migratfion proce@ures
are based on the governiﬁg wave equation in order to locate the origins
of the reflected signals’ﬁore correctly. One can also state this as

'inverse scattering' problem.

To study these signals the elastic wave equations are used.
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where the Ti are tridiagonal matrices. The time taken to compute a
scalar solution when n = 512 has been found to be 1800 us but

using cyclic r;duction method on 2 pipe CYBER 205 this can be reduced
to 383 Ys . Using a multiple cyclic reduction methed with M ; 64 the

time taken can be reduced to 20l Us . One can see an order of time ,

difference in the computational speeds.

\

A recent 3D-migration example from Prakla Seismes has (630, 450)
gridpoints in (%X, y) . the number of recorded echotime samples for

node point is 1250 . This results in a data volume of 350 million
. ~

~

real numbers. BAbout 5 X 1012 floating point operations have to be

-

performed with a user CPU of 20 houfgs. Such seismic data processing

-

requires Fqnsiderable CPU power and 1/0 capabilities.

. (b) Basfc Research (Helmbrecht and Zabolitzky, 1983)

Here we consider the solution of the Schrodinger equation by

Green-functions using Monte-Carlo methods. This technique of solution

is applied to few body systems. Consider a collection of N He, atoms.

a 4
The Hamiltonian of the system is given by
2
H = Z ( ;b— Vi ) + z vlr -r .
i=1 2m i<j
The ground state energy Eo is given by
- {“: .
H w(fl' e ,rn) = Eo W(rl, - ,rn) . — (1)

The wave function is assumed to vanish for the atoms approaching infinity.
Equation (1) is transformed by use of a Green's function operator of

second order diff. equations into the integral equation:

¢



Y(R) = E_ [ G(r, R) (R dR, — (2)

I3

where R = (r., ..., ) .
1 n

The full Green function is defined by

( 42 2 + v(R)) G(R, R)) = §(R - R)
om i 1 " 1

For a non -degenerate ground state, the iteration sequence

(n+1)

- (n)
¢ (R) = E, [ atz, R) ¢ ' (R) dR

1

will converge to the ground state wave equation for an arbitrary trial

energy Et > 0 . The ground state energy is given by

[ o™ (R ar

E =1lim E
o t
n-ce

[ o™ m) ar
»

Udo Helmbrecht et al have found that by using interpolation of functions
for N = 500 , the scalar mode on CYBER 205 took 32.00 milliseconds
and on vector mode it took 1.49 milliseconds. Again vectorization

of the problem reduces the computational time by a very significant

extent.



CHAPTER 2

Pipelined and Parallel Processors

2.0 Introduction

In this chapter we consider the influence of "concurrency" on
computer architecture, which has increased the computational speed to
several million floating-point operations/sec. "Pipelining” and
"Parallelism" are the two techniques, which have been employed by many
of these Supercomputers. We also give a brief description of the
computers which have employed the two techniques to achiewe higher

computational speed.

2.1 Pipelined Processors

In the past three to four decades computer architects have seen
the basic technology change from relays and tubes to large scale inte-»
gration chips. Regardless of these tremendous changes, there always -&
has been a desire for a computer with super performance. To extend
capabilities of computers, computer architects have been using several
techniques that can be broadly classified under the term "concurrent

operation". The two well-recognized techniques which come under this

broad category are "parallelism" and "pipelining".

In "parallelism" concurrency is achieved by replicating the
hardware structure, whereas "pipelining" takes the approach of assembly-
line techniques. Thus, in "pipelining” a particular task is divided
into subtasks and each subtask is allocated with a different hardware
structure like "array structure”. These subtasks are called 'stages’.
The data or instruction flows through the different stages just as

liquid flows in a physical pipeline. As a particular item flows



through the pipeling it will occupy a stage at a time andmthen another
stage further down the pipeline. As time goes on, a stage vacated by
one item is taken over by the one immediately following it. This
simultaneous use of many different stages by different items at any

given instant is called "overlap".

We now consider an example to illustrate how different architectures
can increase the speed of execution of a task, for example performing
arithmetic operations (Hockney and Jesshope, 1981). Consider the
execution of a floating point addition in serial, pipelined@ and array
architectures. Addition of floating point quantities requires four
operations: comparing exponents, shifting, adding and renormalizing.
The whole task of addition can be divided into four stages, each stage
performing the operations mentioned above. Let x and y be two

vectors of floating-point numbers,

x = (x,}) , y=(v.) i=1, 2, ., n
i i
x. =ex2P2 | y = fx 239
i i
The sum vector =z is given by
z = (2,) = (x, + yi) , 1 =1,2, ... , n
xl yi N

1] compare exponents (p, q)

2 shift

3 add

4 normalise




The sequential calculation ¢f the elements of the sum is illustrated

in Fidure 2.1(a), where a time axis runs from top to bottom.

Overlap Suboperations Replicate Units
Pipeline Serial Array
xl,yl x ,yl Xlry XZY - X .Y
i
1 1 1 1
XZIY 1
2 1 x3,y3 2 2 2 2
3 2 1 3 3 3 3
4 3 2 . . 4 4 4 4
4 3 1 X ,Y z z z
v 2’72 1l 2 n
4 1
N-Processors
2
1 clock/result 4 Clocks / N Results
3
4
z2 ¢ X
3/Y3
1
2
3 <
+
4

4 Clocks/Result

Clocks/Result

Figure 2.1(a)
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It is clear from the illustration that there is a potential of a four-
fold increase in the speed in the pipelined process as compared to the
serial process. And for array processors we have all the results at

the same time.

There are two types of pipelining: static and dynamic. The
above illustration of floating point addition is one of the classical
examples of static pipelining. Each evaluation of the basic function
is independent of previous evaluations. Every evaluation goes through
the same subfunctions which are closely related. 2And the time to
compute each subfunction is almost the same. Dynamic pipelining is
nothing but tﬁe ;dea of overlapping. There may b*%fependencies between
the evaluations which may require different subfunctions; the time for
a stage may not be a constant; and subfunctions may be distinct in
their purpose. One of the simplest examples of dynamic pipelining is

the computer where all I/0 (input/cutput) is handled by one processor

and all computations by another. The communication between the -processors

-

is through a common memory module. Here the operations are less
synchronized and the partitioning of the basic function is dynamically

changing, so it is hard to predict the time per stage in advance.

Pipelines can be classified according to their capabilities:
{Ramamoorthy and Li, 1977) a unifunctional and mqltifunctional.
Unifunctional pipelines are those which perform éhe same kind of
function evaluation on every set of data given to it without any

variation. Multifunctional pipelines are capable of doing several

kinds of functional evaluations.
it

11
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2.2 Vector Computers

Program loops occur very frequently in scientific processing.
In such cases the execution speed can be greatly increased by providing
efficient hardware and software designs to handle these loops. Consider

the addition of two vectors A and B . The typical loop for this is

For most computers, the equivalent code in machine language 1s a
sequence of instructions, that reads single elements of arrays A and

B , adds them, stores the result in the array A:, and then increments
the loop control variable. These steps are repeated until the value

of the variable reaches the limit. This repetition of instructions

can be exploited by using instructions that read a series of elements
of arrays A and B and another adds the elements, and another stores
the series of sums to the A array. Such a series of numbers is called
a VECTOR. The application of arithmetic and logical operations on these
vectors is called the VECTOR PROCESSING. By using the idea of vector

processing one can avoid overheads ®ssociated with the loop variable

maintenance.

2.3 Pipelined Computers

Here we describe the salient features of the existing pipelined
computers. The computers, which make use of pipelined aspects for
increasing speed and are trend setters in’ their own ways, are

CRAY 1, CDC CYBER 205, APS AP-120B and VP 100/200 .

.
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CRAY 1: The architecture of the CRAY 1 is shown in Figqure 2.3(a)
(Johnson, 1978, Hockney and Jesshope, 1981). It is both a scalar and

a vector processor with separate registers and instructions for both
applications. It has eight scalar registers (called S-registers) each
having a single element. The eight vector registers (called V-registers)
each have €4 elements.- The operands lie in these registers thus reducing
memory conflicts. The contents of vector length (VL) register determine
the number of operations performed by the vector instruction. Eight
24-bit A registers are used as address registers for memory references
and as index registers. Each of the A and S registers are supported
by 64 rapid-access temporary registers called B and T registers. The
memory consists of 1024-bit large scale integration (LSI) chips. The
maximum size of the main memory on the CRAY 1 i; l-milléon, -64-bit words.
It is divided into 16 memory banks that may operate concurrently. The
clock period of the machine is 12.5 ns amnd the access and cycle-time
of the memory is 50 ns, so a memory bank is busy for four clock period;
after a request is accepted. Further reference cannot be made to the
same bank ﬁﬁile it is busy with a request. But references to other
memory banks may be made at the interval of one clock period. Thus

the main memory can deliver data at the rate of one 64-bit word from
each of the 16 memory banks every 50 ns. The data bus between the.
registers and the main memory is only 64 bits wide, and so the maximum
rate at which data is transferred is one 64~bit word per clock period,

if the words are drawn from different memory banks. The miminum rate

is one word.per four clock periods when the words are drawn from the

same memory bank. Successive memory addresses are allocated to successive



Memory

Vector

Registers

T Registers

B Registers

Instruction

Buffer

A Registerq

Control
to all
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Vector
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—+ Functional

Units

Address

Section

Figure 2.3(a)

The Architecture of CRAY 1
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memory banks (this is called interleaving of the memory) so that the

maximum rate can be maintained.

CRAY 1 has twelve specialized functional units all pipelined,
in the central processing unit (CPU) to handle the arithmetic,
logical and shift operations. Six of these specialized units are
used strictly by the instruction processor for address calculation,
scalar integer addition, logical and shifting operations and for
scanning of bit vectors. Three of the remaining functional units are
used exclusively for vector operations on integer or logical data, and
the rest for performing floating point operations for both vector and

scalar instructions.

The CRAY 1 has other unique features which enhances the performance
of vector operations. The first is that two vector instructions that
use distinct vector registers may execute nearly simultaneously. For

example, the following instructions can be executed simultaneously.

vy v, @ v

Secondly CHAINING can be used. When the result register for one vector
instruction is the same as one of the input registers for an instruction
which uses separate functional units, the hardware will start the

second vector operation during the clock cycle when the first result

is just leaving its functional unit. This is done by supplying a copy

of the result to the second functional unit. This cycle is then

repeated for every clock cycle thereafter. By proper programming several

different vector operations can be 'chained' together in this way.
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CDC CYBER 205: The main units are shown in Figure 2.3(b) (Hockney

and Jesshope, 1981). The total memory is about 4 M words, which is
divided into four 1 M word sections. And each 1 M word section is
organised into 16 memory stacks. Each 1 M word section is connected
to the memory interface by a 512-bit wide data pa;h. This width is
known as a 'superword' or 'sword'. The is the main unit of access to
memory. The memory has a cycle and access time of 80 ns and the
unit clock period is 20 ns . Hence each data path can read or write
at the maximum rate of one sword per clock period which is about five
times the access rate of the CRAY 1. Each sgéck of 1M word has
a 32-bit stack data path to the memory interface. Successive addresses
are taken from successive stacks. Each stack is divided into eight
independent banks, each holding 16k - 39 bit halfwords. The banks
can share a single stack data path because only the last clock cycle
of a memory access uses it. The memory interface unit organises
memory requests at each 20 ns c¢lock interval intd sword;, words,
halfwords and then delivers or assembles this data via 128-bit wide
paths to scalar and vector sections. The rest of the computer is
communicgted with through three read paths and two write paths and

the memory interface unit has one sword buffer associated with each
path. Each I/O section is connected to the memory interface by two
128-bit wide paths. Thus there are ten 128-bit paths connecting a
memory interface unit to each vector, scalar and I/0O section. Hence
the maximum total transfer rate is about 1000 M words/sec . All data
paths to the vector section pass through the scalar section, where

single error correction and double error correction checking and

priority determination for memory requests takes place. The scalar
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section also contains the instructions issued to the pipeline. The
instructions are decoded into scalar and vector instructions and the
decoded vector instructions are then sent to the vector unit. The
result from any unit of the scalar section can be passed on to any

other unit by the process called shortstopping, which eliminates the

time required to write results to a register and retrieve them for the
next operation. Access to main memory is controlled by a load/store
unit which acts as a pipeline which can accept one read from memory
every clock period or write to hemory every two clock periods. A
randomly accessed word can be r;ad from memory and loaded onto the

registers in 300 ns provided the memory is not busy. If it is,

then 80 ns 1is required.

On the other hand, all vector operations are main memory to
memory operations since there are no vector reqiéters. This increases
the vector start up time. The vector unit consists of four floating
point pipelines. Each of which consists of five pipelined functional
units for addition, multiplication, shifting delay and logical
operations. Each of these units is attached to a data interchange unit

by three 128-~bit data paths.

The addition operation in this computer is divided into seven
stages. The backward connection is provided to allow the addition of the
unnormalized portion of one element of a vector operation to the next

element of the vector.

In this architecture, chaining is accomplished in a more restrictive

sense. Since different units can éxchange data between themselves
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throuéh the data exchange unit, linking operations like {vector + vector

x scalar], [ (vector + scalar) X vector] can be chained.

FPS AP-120B / FPS 164 : In the late 1960's the high cest of super *
computaers lead to the design intruction of floating point units which
could be‘attached to minicomputers and which were much cheaper but
still very fast. Such a unit was first marketed by Floating Point
Systems in 1976 as the AP-120B (Charlesworth, 1981, GMU Technology
Series, 1983). This machine was superseded by the FPS 164 which is
very similar to AP-120B, but with some improvements like a 64-bit

floating point arithmetics unit and a Caéehe memory.

The primary storage unit for data is main memory. It is also the
secondary storage unit for instruction words. The maximum size of this
memory is 1.5 M words of cyéle time 500 ns . Memory mapping registers
have also been added to accommodate multiple users. In addition to this,
there is also an auxilliary memory which can bg used by algorithms with
high memory.bandwidth requirements. The size of this memory ranges
from 8000 to 32000 words. The X and Y data register units
(each containing 32 38-bit registers) {(Figure 2.3(c) ovide temporary
storage for intermediatelresults and sc reduce the tfji:ic in and out
of the main memory. For every CPU cycle one register locatign can be
read and another written from both units which means four simultaneous
accesses possible. The address adder unit is responsible for addition,
subtraction and logical oﬁerations on memory ad&resses, loop counters
&q integer d*ita contained in the address registers. The width of
the address arithmetic is 32 bits .. The 64 address register;, iike

index registers in conventional computers, provide space for the ’
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separate hardware. Each stage does a portion of work in say, one clock
period. At the end of each of clock period results are passed on to

the next stage and results are accepted from the previous stage.
4

The CRAY-like machine has six major components:

1. Main Memory

2. Scalar Processor

3. Vector Controller

4. Vector Memory Address Generator and Memory Controller
5. Local Memory

6. Arithmetic Pipelining.

The main memory is similar to the main memories of conventional
computers. Instructions and data in both vector and non-vector form
resides in the memory. But the memory organization is heavily inter-
leaved and designed to minimize the access time for vector operands.

The scalar processor is responsible for non-vector operations. Once the
vector instruction has been fetched and recognized, a separate vector
controller takes over. The main functions of this unit are decoding

the vector instruction, generating operand address parameters, allocating
and setting up vector memory address generator and the arithmetic pipeline
itself and monitoring the execution of vector instructions. The vector
memory address generator and controller takes the address parameters

and translates them into a series of main memory access requests and

also makés sure that the arithmetic pipeling has the data it needs when
it needs it. :Finally the arithmétic pipeline is thé hardware Qhere the
arithmetic functions associated with the vector instructions that are

actually executed. -
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calculations needed to address array elements. The instruction memory
keeps code.fetches separate from data fetches; this enables the execution
control to execute the two operations simultaneously without mutual
interference. The branch control allows the processor to decide which

instruction to execute next in parallel with completion of the current

instructions.

The functional units are all pipelined. Most of the functional
units like multiplier, main memory read pipeline have two or three

internal stages. A new operation can be initiated every 167 ns

Unlike the CRAY 1 computer, the scalar hardware is also used for
computations and software loops using scalar operations used to

program vector operations.

FACOM Vector Processor System: VP 100 / VP 200 : These models are

manufactured by Fujitsu - Japan. Both the VP 100 and VP 200 employ
pipeline architecture with multiple pipeline units which can operate

concurrently (Kamiya, 1983).

The VP 200 (Figure 2.3(d)) has a main memory of 256 M bytes with
a 256-way interleave and the VP 100 has a main memory of 128 M bytes
with 128 interleave. There are separate scalar and wector units. Thg
scalar unit which is responsible for'fetching and decoding of instructions
is provided with 16 general purpose régisters, 8 floating point registers
and 64 K bytes of Cache memory. The vector unit consists of six
functional pipeIine units, vector registers (64K bytes capacity) and

256~vector mask registers. The pipelines for arithmetic operations

consist of add/logical pipe, mulitply pipe, divide pipe and. any two of
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éhese pipes can operate concurrently. Theré is also a mask pipe and
two loa&>store pipes. The two load/store pipes are responsible

fﬁr data transfer between the main storage and the vector registers.
The vector operations are done on operands in vector registersv(just
as in CRAY 1) and operate with a band width of 32 bytes/15 ns . The
mask pipe performs logical operations.,associated with mask vectors
(that is, bit strings). The vector processor system also providef
vector editing functions: compress/expand and indirect addressing.
The processor also proéideg with dynamically reconfigurable vector

registers. The length of the vector registers for the currently

executed vector instruction can be altered by an instruction in the

_program,

The vector unit and the scalar unit can work concurrently and

the vector operands can be chained as in the CRAY 1.

8

2.4 Processor Arrays

Another way of increasing the speed of computation is by replicating
the processors (recall Figqure 2.1(a)). Here we have N processors which

are under, the control of a common control unit. The control unit is
N

responsible for decoding and transmitting the instructions and data to
Lol »

the proceséors. Hque,Jat any given instant of time, we have the
processors doing the‘sa;g Qperagi;n on similar operands. The main reascns
for this replication of processor elements are
(1) ig is;cﬁeapeé to manufacture N processors than N computers,
(11) fuil utiIiza?ién of communication bandwidth.
Here we considgr‘two procéaso%,ﬁfray systems: the BSP (Burroughs

Scientific Processor) and ICL DAP (Pistributed Array Processor). The

"
.
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BSP is a miniversion of ILLIAC IV, and has been discontinued by Burroughs,
but it is a well-designed array computer worth citing here. TBhe ICL DAP
computer is a design which balances computational power with inexpensive

technology.

THE BSP: (Hwang, 1984; Hockney and Jesshope, 1981)

’ File Parellel
Central 1/0 Memory

Processor Processor Processor .

Instruction
or Control Main
Memory Memory

Peripherals I I

Instruction

Processor H

Arithmetic
Elements

5

System Manager . B.S.P.

Figure 2.4(a)

The BSP is not a stand-alone computer. It is attached to a

system manager as shown in Figure 2.4(a) — which is a host machine,

usually a B-7800/B-7700 Burroughs processor. This frees the BSP
_from routine management and I/O functions. There are two data highways
between the BSP and the system manager. The slow highway makes a direct

cantact between I/0O units and the control unit of BSP. The fast data

path is between I/0 processor and -the file memory comtroller.

The major components (Ref: Figure 2.4(b)) of the BSP are the

control processor, the parallﬁl processors, a file memory, parallel-

¢

memgiy‘mbd;;s and two aligrmment networks (one fof;input data and the
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other for output data). The control processor has 256 K words of memory
where scalar and vector instructions and scalar data are stored and this
processor provides, supervisory interface to the system manager. There
is a data pathway to the file memory which can operate at the full
12.5 M words/sec band width. The scalar processor processes all
operating system and user program instructions stored in control
processor memory. It has 16 registers and is clocked with a cycle of
80 ns . The scalar processor does some serial and scalar portions

of user programs, but certain scalar instructions and all vector
instructions are passed onto the vector processor. It is the .
responsibility of the scalar processor to check for vector hazards and
to insert various data fields into vector instructions. The parallel
processor or vector processor then validates these and transforms

them into appropriate ;nstructions. The control and maintenance unit
is an interface between the system manager and different control
processors. The parallel processors perform vector computations with
a clock period of 160 ns. The memory-to-memory data operation forms
a five_stage pipeline. Data for the array operations is stored in

17 memory modules and is transferred to and from this memory through
output and input alignment networks. Each memory module may contain
from 32 K to 512 K words with 160 ns cycle time. Using a prime
number (17) of memory'modules assists access to rows, columns or
diagonals without memory bank conflicts as long as the skip distance
or stride is pof a mulitple of 17 . " The arithmetic element units
operate at a clock frequency MHZ and all of them at any instant of P

time will be executing the same instruction.on different data sets.

The file memory is a high speed secondary storage device loaded by the

3
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system manager with BSP tasks and task files, and may also be used to
store ocutput files produced during the execution of the BSP program.
A major advantage claimed by the BSP is that since file memory uses
semiconductor memory, Fhe reliability of the file memory is much

greater than that of conventional devices like discs.

ICL DAP: The ICL DAP is a parallel machine using single instruction
miltiple data type parallelism. Just like the BSP, this machine also
is a front-end, back-end kind of system. The host can be DAP 2906
system. The major components of the DAP system are as shgwn in

Figure 2.4(c). The interface with the host system is provided by the
DAP access control and a column highway which has one bit for each
column of a DAP array. This column highway also provides a path
between the master control unit registers and the rows of a DAP array.
{(The DAP array is a 64 X 64 matrix of slave processors.) ’Finally
the highway also connects master control unit to the DAP instructions
store. The row highway connects DAP array to master control unit (MCU)

registers in the orthogonal direction. This highway is used exclusively

for data transfers.

The DAP array is a 64 X 64 matrix of processing elements. The
array is connected two dimensionally. Each processing element has
four neighbours, and can comfiunicate with each of them. Communication
with edge processing elements takes a long time. The instruction may
command periodic connectién between rows and columns of the processgr
arra%. Each processor element consists of bit-serial units. The A

register provides control (programmable) over the action of the

processing element. The A register also has a latch input for rapid

27
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combination of control masks. The Q register is the accumulator and
the ¥ -register is the carry register. The ICL DAP also has vector

transmitting facilities which help in the replication of the vectors.
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