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ABSTRACT

.

A residue number system based digital FIR filter is descygdibed.
Advantages over c@nventional binary number filters include faster
switching speeds and a linear increase in design complexity with
respect to increasing word lengths“(as compared to a squared increase
of binary systems)., VLSI implementation would normally be )
impractical, due to'the excesgsive size of ROM stored arithmetic
function tables. A new symmetric residue memory compression algorithm
is presented that reduces table size by a factor of four,. such that
VLSI circuits containing sixteen or thirty—-two taps become feasible.
Considerations for VLSI implementation of four and five bit modulus

filter circuits are discussed, including some rough chip area

estimates.
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N-1
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1.0 INTRODUCTION

Current signal processing systems are limited by the speed at
wvhich data can be manipulated. A critical requirement of these g
devices is the abllity to process information in real time. For
example, it is now pos‘ible to identify an iceberg from transmitted °
satellite image data, yet this information will only be of academic
interest if 1t becomes available days after a Titanic is sunk. In the
same fashion, it 1s of little usé to recognize a sea-gskimming missile
(such as an Exocet missile) seconds after it has f%iched its
destination.

Evenyin situations where processing time is not a limiting
factor, analyzing data Iin less than real time can create a tremendous
backlog of information. Unless the input is disabled, any storage
medium, regardless of its maximum capacity will eventuallf overflow.

An intégral part of these gignal processing algorithms i{s the
transversal or finite-impulse response filter. 1In the }gst, analog
devices were often utilized to perform this operation, but they lacked
the versatility available in a digital emvironment.

Unforfunately, a digital filter can be exceedingly complex, often
involving more than a hundred SSI and MSI components. The obvious
solution is to construct a single general purpose VLSI circuit. This
has not proved to be a simple task, due to a wide range of filter
specifications.

As digital word lengths increase (allowing greater signal to

noise ratios), a flaw inherent in existing filter chips will become a

»
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critical design factor. The number qf gates in a cascadable binary

circuit increases (:th the square of the word size; 1f this expansion
is continued, many applications will require an unrealistic amount of
circuitry.

An alternative to this approach 18 a filter based on residue
or modular arithmetic. Such circuits have a linear relationship
between size and digital word length. A circuit constructed in this

fashion will have excellent adaptability, allowing fast accurate

digital filtering with a minjoum cost.

1.1 SUMMARY

Following a b;ief discussion of the properties of. modular
arithmetic, it will be shown that such arithmetic offers a practical
alternative to some of the more ‘standard’ methodsiof digitai FIR
filtering. The cascadability of current single chip’digital filters
is shown to be limited when accﬁrate (low quantization error) data
manipulation is desired.

The need for fast processing combined with a minimum of design
complexity indicates that stored fumction arithmetic tables offer the
best result. However, integrating a complex filter onto a single
chip would requirg an Apotdinate amount of memory, rendering the
design 1mpractical. *

In this thesis a new method of table compression is described

that can reduce memory by as much as a factor of four. When

implemented as part of a single chip caséadable filter design, this



approach becomes not only practical, but better than many comparable

commercial circuits. A filter of this otype is easily expandable, to
: . . »
allow for future requirements of greater accuracy (greater bit length)

4
or greateé complexity (more poles).

Some rough calcul;tions demonstrate that a residue circuit will
require a large (but not impossible) chip area. These estimates are
given for NMOS, CMOS, and bipolar versions, but the complexity of the
design is such that the approximations may bear little resemblance to
reality. In any case, they are only included for completeness, as
the designs are intended to be technology 1ndependgnt. Indeed, many

of the proposed techniques ﬁre especially suitable for hard-wired

circuits, using standard digital components.
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2.1
A
2.0 THE RESIDUE NUMBER SYSTEM
A residue digit r of an 1ntéger x is the smallest positive
remainder of x when divided by the base or modulus m (another
positive integer). The notation given below will be used to
represent operations in residue arithmetic:
L
[x/m] ¢eeeeceescinteger division of x by m.
r = [xl eesseess.residue of x modulus m.
m
A residue r is then calculated as: .
: ' R o
r=x - m[x/m] . ; 62.1)

Derivat;on of residue number properties has been presented by
Garner [2.1], Szabo and‘};nika (2.2], aﬁd Knuth [2.3]. More
recently, McClellan and Rade% [2.4) briefly discussed elementary
number thegry as a basis -for residue arithmette and_ﬂhmper theoretic,
transforms (NTT s).

A residue number system is a method of uniqu;Ly rjpresent#ng an
integer using a ;et of N residues based on a set of N different

integer bases or moduli: -

X = {r ,r , ees ,r }
0 1 N-1

The maximum value of x that can be uniquely represented is
limited by the number of different combinations or states of the
residue digits. Since each residue digit r has m possible values,‘

this ‘dynamic range’ M or maximum value is given by:

N-1 e
M= T m - ‘ ' - (2.2)




If common factors exist between any of the mpdulua bases, then
the maximum range is reduced to:

- N-1
M= (] -)/(product of all common factors) (2.3)
i=0 1

The following example should serve to fillustrate dynamic range

¥

and conversion of anm integer to residue notation.
;

Given: 3 modulus systeg, such that-
m =3, m~5, m=38 sesall relatively prime
o 1 2

2

Dynamic range M = TT m = 120
. . ° i-o i
Let x = 56
From equation (2.2), r = x-m [x/m ]
i i i

r = 56-3[56/3] = 2, r = 56-5[%6/5] = 1, r = 56-8[56/8] = 0
0 / 1 2
£ )
Then x = {2,1,0}

F
Conversion from residue to binary notation is possible using the
Chinese remainder theorem or with mixed radix conversion, as

described in section 2.2.
2.1 RESIDUE ARITHMETIC

Using the definitions of the previous section, the following
arithmetic idéntities can be developed. Some\derivations and
additional information on residue numbers are given in Appendix I.

| x+km| = |x]| (2.4)
m s m



[x+kM| = |x]| (2.5)
m m

| kx| - k|x| (2.6)
km m

Equation (2.5) demonstrates that the residue asystem is cyclic
with period M. Any operation on a residue number which results in a -
value outside of the range will cause an overflow. Detection of this
state 1g impossible without additional (and complex) precautions,
since the apparent result will be indistinguishable from a legitimate
value inside the range. In designing a mbdular system, all possible
regsults must be within the dynamic range of the moduli, or an
erroneous output will occur,

Integer addition, subtraction and multiplication are performed
efficiently using modular arithmetic. Some properties of these

functions are:

. [1x] + Iyl | = |x + y] (2.7)
o mm m

T =TTyl o= x| | (2.8)
m m m

With the set of moduli defined in the' previous example, these
identities can be illustrated:

Given: m=3, m=5, m=28
0 1 2

x =17 = {2,2,1}, y =6 = {0,1,6]}
x+ty = {|17+6] ,|17+6] ,|17+6] } = {2,3,7}
3 5 8

xy = {[17¢6)| ,[17¢(6)| ,|17(6)] } = {0,2,6}
3 5 8



The same results can be obtained in the residue system:

x+y = {2,2,1} + {0,1,6} = {|2+0| ,|2+#1| ,|1+6| } = {2,3,7}
3 5 8

xy = {2,2,1}{0,1,6}

= {](2)(0)] ,l(2)(1)] ,j1)(6)] } = {0,2,6}
3 5 8

In a modular system, there are M unique states, hence M integers
can be represented without repetition. The integer range may start at
any value, but the final value {(to insure unique results) must be
within M units of the initial integer, 1.e.:

a { x < atM (2.9)

Commonly, the range either begins at zero, or is symmetrical
about zero. These two cases are:

(1) 0 { x <M (2.10)
(11) -[M/2] < x < [M/2] S (2.11)

The second equation 1s suitable for signed number systems such as
two’s complement.

The previously defined three modulus system (M= 3(5)(8)= 120)
can uniquely represent integers from -60 to +59. For example, the
regsidue value of +23 and -23 1is given by:

23 = {2,3,7}

-23 = {|-23+120| ,|-23+120| ,|-23+120] } = {1,2,1} .
3 5 8

The simplicity of multiplication and addition with residue
numbers 18 in sharp contrast with the comparative difficulty of other
operations such as scaling, sign detection and magnitude comparison,

These functions usually require a partial or total conversion to



integer representation, a relatively difficult procedure when more
than two moduli are involved.

Dividing two integers often gives a non-integer resulé. Since
the residue number system does not represent fractions, division can
be impossible without resorting to a conversion process. Scaling in
a single modulus is calculated using the ‘multiplicative inversgse’ of
the denoﬁinator:

Let |(g)(b)| -1 (2.12)
m

Then, a 18 the multiplicative inverse of b, such that:

: a = |1//b] (2.13)
’ o

The multiplicative inverse of b will only exist if the highest
common factor of b and m i8 equal to one. As an example, the
multiplicative inversé of four exists in two of the three moduli used
in the previous example:

Let |(a)(b)| = |4a]| =1
\ m m

mod 3: |4a| = 1
3

Since three and four are relativeiy prime, the inverse exists

and by trial and error one finds that-

|1//4] = 1
3
Similarly, |4a| = 1, |1//4] = 4
5 - 5

Four and eight are not relatively prime (8= 2(4)), and therefore

the multiplicative inverse does not exist.



2.6

" When integer division of two numbers results in a zero remainder,
then this operation is possible without comnversion. In this case:

,

{la/v] ,la/b] , «.. ,|a/b] } =

n m m

0 1 N-1
{laC1//b)]  ,la(Ll//b)| , .. ,la(l//b)] } (2.14)
n m m
0 1 - N-1

Of courge, for the multiplicative inverse to exist, ‘b’ must be
relatiéely prime to all moduli. It is unlikely that this equation
will apply in general division, but it is used in mixed radix conver-
sion. The identity given below is useful in simplifying the

denominator:

| (1//2)C1//b)] = [1//Cab)| = |1//C|ab] )] (2.15)

m o m m
Appendix I contains a table of multiplicative inverses up to

modulus 32.
«

2.2 BINARY/RESIDUE CONVERSION

It 18 a fairly simple operation to transform a binary number into
a residue equivalent. Conversion in the other direction, from residue
notation to binary 1is gomparatively difficult, involving a complex
structure of ROM tables and}modulo addition.

A single ROM tabdle is often sufficient for binary to residue
conversién. When the length of a binary number is greater than
about twelve bits, memory size becomes prohibitive in terms of both

oo-

maximum propagation speed and number of memory cells. In this case,

-



2.7

it is easy to partition the integer into sets of bits - say the most
significant and the least significant bit sets - followed by separate
conversion and re-combination. This is fllustrated in Figure 2.1,
where a four bit residue valugi for example, mod 15) is calculated
from a sixteen bit binary numbféu The conversion itself is described

by equation (2.16):

Let b be the j'th bit of the binary number x

b
15 3
Then x= 2 b2
=0 3
7 j 15 3 '
And Ixl = | ] £ v2 | +|Z b2 | (2.16)

m =0 3 m j=8% 3 m m -
2.2.1 RESIDUE/BINARY CONVERSION

The binary equivalent of a residue number 1is calculated using
the Chinese remainder theorem (CRT) or mixéd radix conversion (MRC).

The CRT states that a unique solution exists in the range a £ x <

- .-

at+M, provided the moduli are relatively prime. The binary value is:

s

N-1 .
< [x] = | £ = (|r //ma' | )} . (2.17)
Ed M j=0 ) j jm M
' ]
N~-1
Where M = TT m
i=0 {1
_ N-1
m = M/m = TT m (2.18)
hi j 1i=0 4 '
in} . N

4

The conversion progedure can be demonstrated with the following
. b2
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8 8
. -
” P
Xg~ Xi5 X~ %
CONVERSION
256%4 ROM STAGE 256%4 *ROM
7 7
x, 23 x 21
IEO I 4 4 Eo i
P P
7 7
ADDITION
* .
256%4 ROM ekt

A Ky

" FIGURE 2.1 - 16 bit binary tol 4 bit residue conversion

m
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example:

Given: m* 3, m=5, m=38§ ...M = 120
0 1 2

. Design a formula to convert a residue number to a normal integer.

Solution: m = 120/3 = 40; m = 120/5 = 24; m = 120/8 = 15
0 1 2

From the table of multiplicative inverses in Appendix I,

Ve
N1/ 7m | = (L7186 | o= (1771 =1
O0m 3 3 3

0

Similarly |1//m | = {1//|24]| | = |1//4] = &
1 n 55 5
1

[1//m | = |1//7{15] | = |1/7/7] = 7
8 8 8

2 n
2
N-1 _
Hence: |x| = | o (|l //m|) |
M =0 J jm M
b
= | 40| Cr ()| + 26| (Cr D) | + 15[ (e D)} |
0 3 1 5 2 8 120
Thus 1f x = fO,l,l}. )
Then x| = | 40} (O)C1)| + 24 CL)(a)| + 15} CLY(TY] |
M 3 5 8 120
= |0 + 96 + 105]| = |201] = 81
120 120

This value is in the range M/2 { x {( M, and could be
expressed as a negative number: ¢

x = |x} - M= -39
M

Another approach suggested by Soderstrand and Vernia trades
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computational accuracy for simplicity of deaign [2.5]. The basic CRT

equation is modified by dividing each term with the dynamic range M:
Let x’ be the modified CRT result, where x’ = x/M - [x/M]
(recall that "[]" are used to indicate integer division).

N-1

"Then x’ = x/M - ( £ (m /M)(|r //a | ) )
=0 3 i Jm
3
N-1 _
= x/M-C Z (L/a)(Cr //a | ) ) . (2.19)
- j=0 . 3 3 ij ‘

The solution consists of the fractional portion of the x/M
division result (and eliminates any integer components). Since the
fraction is limited‘by a fixeéd number of bits, some roundoff or

quantization error is introduced.

The range of the correlation output has now been modified from

4

0 £ x <M1 to 0 x" <1, In most cases, this transformation will be

unimportant, since. the relative magnitudes have remain unchanged. The

v

zero to one rangée w}ll be particularly useful when further
manipulation 9f the filter output data is required.

Mixed radix conversion translates residue digits into a set of
radix coeffieientd a . A radix number system is based on a set of
i
radices R . In decimel number systems, all radices are equal to ten,

i
while they are equal to two in binary. In mixed radix systems,‘the
radices are not all the same, but are multi-valued, such as the bases

used for residue conversion. In this case the radices are set equal



2.11
to the moduli, such that R = m ,
i i
An integer x can then be expressed as:
N-Z »
x=a+aR+aRR+‘...+ a (TT r) (2.20)
0 10 201 N-1 1=0 {
The a coefficlients are unique for é given integer, and must lie
i .
within the range 0 { a < R . Conversion of an integer to mixed radix
i i T SR

form is demonstrated in the following example: N

Let »x = 43, R =3, R=25, R =328

0 - 1 2
Then x=a+aR+aRR=a+ 3a+ 15a
0 10 201 0 1 2
Hence a =2, a==4,a=1 .,.x =<a ,a ,a>=<K1,4,2>
2 o1 0 0 1 2
Here <1,4,2> = 1 + (3)(4) + (15)(2) = 43
Residue digits r are transformed into a <coefficients =
i i
sequentially, starting with a . Each stage of the procedure
0

calculates one more coefficient, while modifying the remaining
residue digits for the next stage, <

Starting with the init4&]l stage, or gtage 0, gives:

N-2
Let x(0) = a + am+amm+ .., + a ( TT m )
0 10 2 01 N-1 =0 1
Then a = x(0) - m [x(0)/m ] = ¢ «..by def’n of a residue
0 0 0 0 '
Let x(1) = (x(0) -~ a )/m = [x(0)/m ]
0 0 0
N-2
Then x(l) = a +am+amm+ ... + a (T n)

1 21 12 © N-1 i=1 1



S

' . A

And - a = x(1) - m [x(1)/m ] = |x(1)]
1 1 1 n
1

This can be expanded to find the general case equations:

N=-2
Let x(0) = a ¥ m+amn+ ... + a C TT o)
: 0 1“0*\\; 01 N-1 1=0 1
 Then x(k+1) = (x(k) - a )Xa .0 < k < N-2 (2.21)
k k )
Where a = x(k) - o [x(k)/m ] |x(k)| ...0 £k < N-1l  (2.22)
‘ k k k i
. k

Residue to mixed radix conversion requires that all operations be
- , o
performed using residue arithmetic. The term (x(k) - a )/m will
k k

always have an integer result (i.e., evenly divisible), hence the

residue division special case described by equation (2.14) can be

applied (|(x/k)| = |x(1//k)| ,.when x is evenly divisable by k).

m m
Let |x(0)] = r | (2.23)
m i
i

Then [x(k+1)| = |(x(k) - a )/m |

m k k m
‘ i . i

or Ix(k+1)| = [CIx(k)| = a )//m | (2.24)

m m k k m
v 1 i 1

vee0 <k { N-2, ...k+l £ 1 < N-1
Mixed radix converasion, as described by equations (2.22) to
(2.24) 1is {llustrated in the following example:

Given: R=m=3, R=*m=5, R=o=38
0 0 1 1 2 2

Find the integer equivalent of the residue number x = {1,3,4}



Solution:
Let x(0) = a+ am + amm=a+ 3a + 15a
0 10 2 01 0 1 2
|x(0)| = r =1, |x(0)| = ¢ =3, |x(0)] = ¢ = &
3 0 5 1 8 2
Then a=r =1

0 0
From equation (2.24),

[x(1)| = [(Ix(0)]

-a)//m | .1 <1 <2
m 0

m 0Om
i 1 » 1

Ix(1)] = [(Ix(0)| = & )//3] = |(3-1)(2)| = &
5 5 0 b 5
|x(L)] = | ¢|xC0)| = a )//3| = |(4=1)(3)| = 1
8 0 8 8
Then x(1) = a 4+ 5a = {=,4,1} A )
: 1 2 1
[x(2)] = |(x(1)] -a)//m | = ...2&0 <2
m m 1 lm
i i i
fx(2)] = [ Clx(1)]| = a )//5) = |(1-4)(5)| =1
8 8 1 8 8
Then x(2) = a = {-,-,1} eeea = 1 .
2 2 N

Finally <a ,a ,a > = <1,4,1>
0 1 2

x = a + 3a + 15a = 1 + 3(4) + 15(1) = 28
0 1 2

Check: {128] ,|28] ,|28]"} = {1,3,4} as expected.
3 S 8

Mixed radix conversion is a “progressive’ transformation,

perforﬁed in a series of successive stages. In comparison, the

4
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CRT requires a single transform stage, followed by addition of

partial product terams.

While seemingly more compléx than the Chinese remainder theorem,
mixed radix co#version does not ?equire the final mod M addition step
of the CRT., It is also a simple procedure to add an extra modulus to
an existing design, with the inclusion of another stage, and minor
modification of the previous stages.

2.3 SIMPLIFIED RESIDUEiMULTIPLICATION{USING INDEX CALCGLUS

A special property of residue arithmetic allows multiplication
to be performed in a way similar to logarithmic addition. 1If a
modulus p 1s prime, then mod phmultiplication with zero valued
elements deleted can be calculated using addition modulo p-1. Three
steps are needed to perform this operation: transformation of modulo p
integers into modulo p-! indices, addition of these values, and

final reconversion to the mod p system. -

One basis of this method is given by Fermats’ theorem, which

states:
Let ‘p’ be any priﬁe number
;,\\ ‘a’ be an integer
p-1
Then | a | = 1 (2.25)
P

The integer ‘a’ 1s called a generator, since it can be used to

" integers {in the range l..p-1 by raising it to some power
2
less than p-1 (for example, |3 | = 2).

7



2.15

Multiplication of two numbers is now performed by comversion and
modulo p-1 addition:
n

™
Let x=la), y=la]|
p p

|m+qL
m n Tp-1

Then xy = |a | (|la ] ) = |a | (2.:26)
. p P P

. Example: Multiply (6 by 5) mod 7, using 3 as a generator.

Solution: The generator look-up table is -

n
Let x= |3 |
7
x n
1 0
2 L2
3 1
4 4
5 5
6 3
TABLE 2.1 - Index calculus values for mod 7, generator = 3 .
3 5
i.e., 6 = |3 |, 5= |3 |
} 7 7
[3+5]
3 5 6 ° 2 .
And [¢6)(5)| = [3 (3 )| = |3 | = |3 | = 2
7 7 7 7

13

One must pick(ihe right number as a generator in order to express
|

all integers in a given range. In the previous example, 1f two had

been taken as the generator, it would be impossible to generate the




. n
Thus if x = |2 |
7
4
Then:
1 |
x n I ikt
1 0 !
| 2 1
I 3 -
4 2
5 -
6 -
I

-

TABLE 2.2 - Index calculus values for mod 7, generator = 2
To fully utilize the modulus range (which is required in residue
multiplication), the base must be a primitive root, i.e. one which

generates all the possible residue values for a given modulus.

2.4 SUMMARY

Multiplication and addition in the residue number system is
performed on a set of N different modulus basges. f%e operation of
each modular arithmetic unit is independent of the other moduli, such
that no carry bit propagation is required. Other functions, such as
division (scaling) and overflow detection are more difficult, and can
be performed more efficiently in the binary number system.

Binary to residue conversion i{s a relatively simple operation,
and can be performed using a small number of ROM look-up tables. On
the other hand, residue to binary conversion 1s comparatively complex.

Algorithms for residue to binary conversion include mixed radix
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conversion and the Chinese remainder theorem.

Fast multiplication similar to a logarithmic addition operation
is possible using index calculus. However, these techniques are very
modulus dependent, and may not be applicable to a general

multiplication system.

e X




3.0 METHODS FOR DIGITAL FILTERING

Discrete linear convolution of two sequences is denoted Sy the
expression:
N-1
y(n) = c(n)*x(n) = 3 c(i)x(n-1) (3.1)
i=0

A solution of (3.1) is obtained with either a direct summation of
the product terms, or by converting each sequence to a transform
domain (multiplication in a transform domain is equivalent to
convolution in the ®original domainj, and éerforming an inverse
transform to find y(n) (see section 3.2.1).

Several methods are available for computing a fast linear
convolution of two discrete sequences. A set of design criteria will
be presented in the following sectfon to serve as a basis for
determining the relative merits of ‘each approach. It i{s then shown
that use of a residue or modular number system allows greater

adaptability with respect to coefficient word length and number of

points, while maidtaining a high filter throughput.

3.1 FILTER SPECIFICATIONS

In order to satisfy most filter specifications, the following
criteria were defined:
(1) HIGH SPEED - the filter should be able to process data in
real time. To achieve this, the maximum clock
frequency'of the system must be as high as possible,

with one convolution point calculated per clock cycle.
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This implies a highiy p;}ailel structure, which may
include a; initial lag period of a number of clock
cycles before the first convolution point becomes
available.

(11) ADAPTABILITY - adaptable with respect to coefficient bit
length a;d number of points. Smaller filter sections
should be cascadable to meet designer specifications,
with a minimum of external hardware.

(141) ACCURATE - roundoff of partial product terms and final
oitput should be kept to a minimum. Quantization will
increase total noise and reduce the cascadability of
the system.

(iv) LOW POWER CONSUMPTION - allow greater chip density with
reduced cost.

(v) SIMPLE INTEGRATION - structure of the design must be such
as to allow easy layout with minimum chip area.

Selection of the best realization 1s determined by the circuit

complexity necessary to meet these requirements.

3.2 METHODS OF FILTER REALIZATION

Multiplication has often been the most difficult function to
complete in hardware. Operations such as addition and latching are
possible with comparatively simple circuits,

Most systems will require a high degree of parallel operation or

pipelining (dividing a function into two or more parts, which are then




performed in parallel) to increase throughput. In order to reduce
much of the complexity in system diagrams, signal flow graphs similar
to the system of Oppenheim and Schafer [3.1] will be presented. A
network of this type consists of nodes (summation, sources, sinks) and
branches (multiplication, unit delays, special functions). Figure 3.1

contains the network symbols, including some new modular functions.

3.2.1 CONVOLUTION IN A TRANSFORM DOMAIN T

Perhaps the most difficult decision to make in constructing a
digital filter is to whether select a time domain (direct form)
realization, or to convert to a transforﬁ domain and perfbrm the
convolution there. General transformation of an N-point é%quence is
given by the equa}ion:

N-1 ki

X(k) = 2 x(1)(q ) ‘ (3.2)
i=0

“
Multiplication in the transform domain is equivalent to
‘circular’ convolution in the time domain:
1f y(n) = x(n)*c(n)
Then Y(k) = X(k)C(k) | (3.3)
Circular convolution is calculated by ‘wrapping’ the x(n)
sequence around a circle, so that the point x(N-1) is followed by
the first point x(0) (in effect, forming a circle or ring instead
of a "linear’ sequence of points), Commonly, an N-point linear

convolution is derived using a 2N-point circular convolution, and

lacing an additional N zeroes on to the end of the original N-point
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FIGURE 3.1 - Signal flow graph éymbols
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gimple summation node
modulo summation (mod m) node

multiplication by 'a'; unit delay; modulo value (mod m)
typical operation :




sequence.

’ Digital filtering involves the convolution of an “infinite’
input sequence with a fixed length coefficient function. Small
convolutea blocks or sections (using the transformation described
above) can be pleced together using overlap-add or overlap-save
techniques (see Oppenheim and Schafer (3.1}, chapter 3).

?he discrete fourier transform (DFT) is commonly used for
convolution or spectral analysis. One inherent problem of this

function is finite accuracy, due to multiplication by quantized sine

and cosine values. New transforms have been presented based on number

theory and modular arithmetic (3.2, 3.3]. These functions (labelled
number theoretic transforms or NTT’s) are mqre exact, since they are
performed in an integer number field, and use modular index calculus
multiplication in place of trigonometric values (see section 2.3),
They retain the property that mgltiplication in the transformed
domain is equivalent to convolution in the original domain. ngever,
thé transform démain of éhe NTT'does not have t?e useful physical
interpretation that the Fouriler transform h;i.

A reduction in the quantity of multiplications in a
transformation is achieved using algorithms 'such as khe fast Fourier
tra£sform or prime factor algorithm, The original N-point transform

is subdivided into many smaller sections (two point transforms for ‘the

‘radix two FFT), which can be re-combined to calculate the complete

function. In this fashion, the number of multiplications becomes
2
approximately N/2(log N), much less than the original N .
2
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Both the DFT and the NTT suffer from a lack of adaptagility to
design modifications (design changes usually involve either the word
size -~ accuracy - or the number of taps). For the DFT, coefficient
word length (and hence accuracy) 1is determined by the accuracy of sine
and cos multipliers. Once the quantization ﬁas been fixed, expansion
to a more accurate system would require an increase in the word length
of each multiplier. Complexity of bit-slicing these multipliers is
ptoporsional to the square of the rel;tive increase; i.e., a sixteen
bit multiplication would require four eight bit multipliers in
parallel, with separate addition of the partial products.

While this squared increase 1s avoided by employing a number
theoretic transform, other difficulties arise that limlc the
suitability of this approach. These problems will be discussed later
in the chapter,

' An NTT 1is based on a set of finite or Galois fields (the finite
fields used here are the numbers quulo a prime number or a prime
number raised to some power; for example, five, seventeen and
forty-nine are finite fields). Arithmetic operations are completed
using residue arithmetic - there 18 a linear increase in complexity
with increasing bit lengths, as compared to.the squared Iincrease of
the DFT.

To {llustrate this-transform, iet one of the finite fields have

n

{
m = p elements, p a prime number, n an integer. An N-point transform

is given by the equation (N must evenly divide m-1):

Let m = p
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N-1 ki ~
Then IX(k)| = 2 |x(1)(q )| . (3.4)
m i=0 m

The form of equation (3.4) 1s similar to that of the DFT, where

q 1s the N'th root of one:

1

7/

N-1 ki
X(k) = I x(iL)(W ) vo W = cos(2TT/N) + jsin(2TT/N)
i=0 N N
The ‘q’ term of the NTT i1s a residue equivalent of the N'th root

of one, such that:

> lq | =1 (3.5)
. .

A practical design may be composed of a set of several different
finite fields. Each field has a different q value, but they must be
cyclic with a period equal to N, as described by the above equation.

In this case, the dynamic range of the system will be given by
M= T p (3.6)

Overflow is avoided by limiting the maximum output of the system

‘

to a value less than M: Lo

(M/2] > MAX(ABS(y(n)) = MAX(ABS(x(n)))(NEI ABS(c(n))) (3.7)
* i=0
ﬁquation (3.7) appli;s to all modular arithmetic FIR filters,
including direct form realizations. -
Since this is an residue number system, expansion to larger

coefficient bit lengths is possible by increasing M, Additional

modull can be attached to the original system as needed to support
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greater word lengths. Recombination at the last stage is accomplished
using methods described in section 2.2.

The similarities and differences between the NTT and the DFT may
best bg {llustrated by an exaEB)e. In the case given below a (rather
simple) three-point circular or periodic convolution is calculated in
direct form and by converting to a transform domain. Of course, 1in
this example the convolution length is too short to exploit the more
efficient fast transform algorithms (FFT, prime number, etc).

Example:

Perform a circular or periodic convolution on the three—-point
sequences given below, using direct calculation of the convolution
sum, a number theoretic transform calculation, and a discrete Fourier
transform.

x(0)= =7; x(l)= 3; x(2)= 5; eeex(n+3k)= x(n), k any integer

c(0)= 6; c(l)= =2; c(2)= 1;

y(n)= c(n) * x(n)

Solution:

(1) Direct Calculation

The convolution equation is given by -

N-1 -2
y(n)= 2 c(1)x(n-1) = T c(i)x(n-1)
i=0 i=0

Expanding this equation gives -
y(0) = c(0)x(0) + c(1)x(-1) + c(2)x(~2)
= c(0)x(0) + c(1)x(2) + c(2)x(1)

= (6)(=7) + (-2)(5) + (1)(3) = -49




. y(1) = c¢(0)x(1) + c(1)x(0) + c(2)x(2)
= (6)(3) + (-2)(-7) + (1)(5).' 37
y(2) = ¢(0)x(2) + c(1)x(1) + c(2)x(0)

= (6)(5) + (=7)(3) + (1)(-7) = 17
Thus, the solution to the convolution 1is:
y(0)= -49; y(l)= 37; y(2)= 17
(11) Number Theoretic Transform
In this example, a two modulus systém will allow sufficient
dynamic range for the solution. The moduii selected (both prime

ot

numbers) are m = 7 (q =2 ) and m = 13 (q = 3).

0 0 1 1
3 3
i.e., [2 | =1 i3 ] =1
7 13
®
Firgt, the coefficients must be converted to residue notation -
{{x(0)| ,[x(0)| } = {0,6}; {leC0)| ,lc(O)] '} = {6,6} ;
7 13 7 13 )
{I=C)| ,Ix(1)] '} = {3,3}; {leC1)} ,le(1)] } = {5,11}
! 7 13 7 13
(x| ,1x(2)] ) = {5,5}; {leC) | ,le()f ) = (1,1}
7 13 7 13
l
. A number theoretic transform is given by the equation -
% N-1 1k
[X(k)| = | Z x(i)q |
m 1i=0 m

The transformed values (as denoted by capital letters) are -

i 0 0 0
| |X(O)| = |x(0)q + x(1)q + x(2)q | = |x(0) + x(1) + x(2)]

r m n m
l ) .
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0 1 2 2
[X(1)| = |x(0)q + x(1)q + x(2)q | = |x(0) + x(1l)q + x(2)q
m m . m
0 2 4 E 2
IX(2)| = |x(0)q + x(1)q + x(2)q | = |x(0) + x(1l)q + x(2)q]
m m m

These equations can now be applied to the x and c coefficients -

- 2 1k 2 ik
Thus (IXG) | L%} = {I £ x(1)2 | ,| € x(1)3 |}
7 13 1=0 7 1=0
g
And {1xco)}l ,1%Co)} } = {|o+3+5] ,|6+3+5) } = {1,1}
7 13 7 13

(1LY LX)} = {|0+6+20] ,|6+9+45] } = {5,8}
7 13 7 13

{Ix¢2)| ,I1x(2)| } {{o+12+410] ,[6+27+15] } = {1,9}
7 13 7 13

In the same fashion,

{|cco)l ,lccoy|] } = {5,5}
7 13

{lc(1)| ,|c<1)|~’$ = {6,9}
7 13

{tcc2)| ,lc2y| 1} {0,4}
7 .

13
Convolution Iin the originaf domain 1is gguivalent to
multiplication in the transform domain. Therefore, the Y(k) values
are given by the equation -
Y(k) = C(k)X(k)

{1Y¢o)| ,lY¢oy)] } = {]c(0)X(0)| ,|c(0o)X(0)| } = {5,5}
7 ’ 7

13 I3

(leCuy ) L)Y ad ]y = {|ecC)x() |} ,|cC)x(1)| } = {2,7}
7 13 7 13

(T2 ] L182) ] ) = {1e()X(2)] ,lc(2)x(2)| } = {0,10}
7 7

13 13
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The inverse transformation is given by the equation -

N-1 -in
lyCn)| = [(-N")( Z X(1i)q )| ...where N’ = (m-1)/N
o i=0 m,

The N’ coefficients in this example are -
& -

N = (7-1)/3 = 2; ., N’ = (13-1)/3 = 4; '
1 2

Therefore, the y{n) values can be calculated using the above

inverse transform equation -

{1y0)] ,1y€0)] -} = {|~-2(5+2+0)| ,|-4(5+7+10)| } = {0,3}
7 13 7 13

{1yC1)| ,lyC1)] } = {{-2(5+8+0)] ,|-4(5+63+30)| } = {2,11}
7 13 7 13

{|yC(2)| ,ly€2)] } = {|-2(5+4+0)| ,|-4(5+21+90)| } = {3,4}
7 13 7 13

The result can be checked by converting the correct solution
(from:the direct calculation) into residue equivalents =
Thus -49 = {0,3}; 37 = {2,11}; 17 = {3,4} as expected

(111) Discrete Fourier Transform

The DFT is given by the equation -

N-1 ki
X(k) = 3 x(4)(W ) ...W = cos(2TT/N) + 3sin(2T]/N)
i=0 N N
N-1 ‘ -ni
x(n) = (1/N)( I X(L)(w )
i=0 N

For this calculation, the W sine and cosine values will be
N
rounded off to seven bits - fairly accurate when compared to the

magnitude of the x(n) and g&&i coefficients.,



Thus W= cos(2]T/3) + 38in(2TT/3) = -.5 + 1.859375
’ N

The calculation procedes 1in the 3tandardvfashion to give the .
result (intermediate results were not rounded off) -

y(0) = —48<95; y(1) = 36.824; y(2) = 17.}3

The quantizatéon error of the DFT can bevsee; by comparing these
answers to the exact solutlion, In comparison, the NTT gave the
correct values, since no coefficient rounding was required.

The length of a DFT 1is not easily altered. For example, FFT
algorithms are based on filter lengths equal to a power of two.
Increasing the number of points will require a higher order root of
one, and sequencing addresses w;ll be different., This is impractical
in a modular filter design, where each section must be cascadable. A
NTT is even less flexible with respect to length modifications, as
shown by equation (3.5). The generator or root q must be cyclic
with a period equal to N. Changing N requires changing both the
generator values and the modulus base. 1In effect, a totally new
design 18 necessary. A limited amount of flexibility can be retaiﬂed'
using residue number tables as described in [3.4]), where the generator
or modulus is altered in a new ROM.

An adaptable number theoretic transformer can be developed by
converting a one dimensional convolution into two or more dimensions
[3.5)]. A two dimensional algorithm is used to calculate an Nz-point
circular convolution, by performing the basic N-point transform 2N
times. Computational efficiency in this case 18 reduced by a factor

of two. Various transform lengths can be accomodat ¥ by controlling




the size of one dimension in the two dimensional equation. In this /
case, filter length is changed by completely replacing the second
transform stage.

While convolution using a NTT 1is often better than using a DFT,
neither approach offers the flexibility required for a cascadable
filter design. A change in sequence length 1s only posgsible with new
moduli and generator tables. Equally important, the control circultry
for a two dimensional transform (and block filter coptreol) will be
different for each specification, requiring in effect a programmable
microsequencer. Unless the filter has a large number of points, the
computational improvement will not be sufficient to compensate fo; the
difficulty of implementing a system of this type. Of courge, this,

argument is not valid Iin terms of mass produced devices with fixed

"coefficients, where adaptability 1is not required.  In this case, the

transform approach may offer the most efficient design.

3.2.2 DIRECT FORM CONVOLUTION

Convolution of two sequences (as illustrated in Figure 3.2(a)) 1is

given by the expression:
N~-1
y{n) = I c(1)x(n-1)
i=0

The simultaneous addition of N product terms is the most

difficult function to implement digitally. Maximum throughput 1is




Cc(2)

y(n)

(b)

FIGURE 3.2 -~ (a) simultaneous summation FIR filter
(b) eight tap pipelined simultaneous summation
(c) progressive summation FIR filter
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achleved with a tree structure and pipelining, as shown in Figure
3.2(b). G

A better structure has been developed by applying the
transposition theorem for digital networks [3.1]. This theorem
states that when the direction of all branches in a single-input
single-output network are reversed, the transfer function of the
system will remain unchanged. The result of reversing the
simultaneous summation circuit is shown in F;gure 3.2(¢).

Most fast direct form FIR filters are based on the progressive
summalion structure, since it 1is simple to realize digitally. Small
filter sections are directly cascadable without external circuitry,
provided that the dynamic range of the system is noé exceeded.

One common filter realization Is based on the simultaneous
summation of product terms. This is the bit slice approach of Peled
and Liu [3.6], where the convolution equation is written in single bit

form:

Let x (n) be the j th bit of x(n) (where x(n) is k bits long)

]
k-1
Then x(n) = I x (n)2
=0
And the counvolution can be rearranged into the form:
N-1 i k-1 j-N-l A
y(n) = T ce(1)x (n-1)2 = I 2 ( £ c(i)x(n-1)) (3.8)
i=0 b j=0 i=0

An efficient realization of (3.8) is possible provided that the
N
coefficients are fixed. The inner summation {is gtored inmn a 2 by

f—



! 3.16

log N bit memory, with an external shift and add circuit completing
thezouter sumﬁation. A general formulation for expansion in multiple
dimensions (the bit-slice approach described above 1s a partial
expansion) has been given by Burrus [3.7]1. For adaptive filtering
(L.e., variable coefficlents), the coefficient value must also be
brought into memory along with the data bits, requiring an excessive
table size.

Another filter, using the progressive gsummation technique has a
separate multiplier with accumulator for each point, such as the TRW
efight tap (four bit coefficient) FIR filter chip [3.8]. Each tap is
composed of a four bit multiplier with a thirteen bit binary adder
(eight bit product, cascade up to thirty-two points without add?tional
circuitry). Implementation of two filters (sixteen tap, four bit
coefficients and eight tap, eight bit coefficients) 1is illustrated in
Figure 3.3. The complexify of each circuit 1is linearly proportional
to the number of points, but proportional to the square of the
coefficient bit width. Thus, an eight bit coefficient filter requires
four filter chips in parallel, with external addition circuitry. The

multiplication in this case has been partially bit-sliced, such that:

7 | 4
If y(n) = 3T ec(i)x(n-1i)
i=0
7 7
Then y(n) = I ¢ (1)x (n-1) + 2 ¢ (1)x (n-1)
i=Q0 0-3 0-3 i=0 4-7 0-3
7 7
+ X ¢ (1)x (n-1) + T ¢ (i)x (n-1) (3.9)

i=0 0-3—~__4~7 i=0 4-7 4-7
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FIGURE 3.3 - (a) sixteen tap, four bit coefficient FIR filter
(b) eight tap, eight bit coefficient FIR filter

FIGURE 3.4 - Storedégquare multiplier FIR filter
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7 j 7 k
Where c(1) = 3 ¢ (1)2 , x(1) = T =x (n)2
j=0 k=0 k

Further exbansion, up to sixteen bit coefficients would
require sixteen chips with fifteen external pipelined adders (more
efficient methods are possible [3.9], but the squared relationship
18 unavoidable). The maximum clock speed of this circuit is specified
as twenty MHZ. Higher clock frequencies are unlikely without an
advance in technology. Larger order multipliers (such as eight by
eight bit) are slower, and consume more power than is desirable when
several units are to be integrated on a singlé chip. Therefore, while
this approach has been developed, it does not meet the requirement of
i minimum complexity.

A second multiplication technique 1is based on a stored square

approach [3.10, 3.11]:

2 2 2
Since (x+y) = x + 2xy + ¥
2 2 2
And (x-y) = x - 2xy + ¥y
| 2 2 |
Then xy = ((x+y) - (x-y) )/4 (3.10)

The squared terms are generated in a ROM look-up table, with an
address size equal to the coefficient width, rather than the data
width plus the coefficient width. Figure 3.4 descriﬁes a pipelined
implementation of this filter. With M bit coefficients, each point
requires two ZM by 2M bit ROM’'s, two M-bit adders, a 2M bit adder and

the final 2M+ bit accumelator, ‘along with the indicated pipelining

circuitry. For exémple, an eight bit, eight tap filter would have 64K
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