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Abstract

In this thesis. we study [/O-efficient algorithms for problems related to computing
shortest paths in outerplanar and planar graphs and in spanner graphs for point sets
in d-dimensional space and sets of obstacles in the plane.

In particular. we show in the first part of the thesis that the following problems
can be solved in sorting complexity or even in a linear number of I/Os: outerplanarity
testing. outerplanar embedding. planarity testing, planar embedding. computing op-
timal z-separators of planar and outerplanar graphs. breadth-first search. depth-first
search. and single source shortest paths on planar and outerplanar graphs.

In the second part of the thesis. we show that the well-separated pair decompo-
sition of [37] can be computed in sorting complexity. We use this decomposition to
construct two types of Euclidean spanners of linear size for point sets in d dimensions.
The first spanuer is derived in a natural manner from the well-separated pairs in the
decomposition. The second spanner is a supergraph of the first spanner. The partic-
ular structure of this spanner makes it possible to construct a data structure which
can be used to report spanner paths in an I/O-efficient manner. For sets of polygonal
obstacles in the plane. we use a subdivision derived from the fair split tree of a point
set to compute a planar Steiner spanner of the set of obstacles. Given the results
from the first part of the thesis and results from [2. 100. 177]. the planarity of the
graph can be exploited to compute spanner paths [/O-efficiently and to preprocess
the graph so that shortest path queries can be answered and paths in the graph can

be traversed in an I/O-efficient manner.



As part of the results in Part I of the thesis. we present improved and much
simplified algorithms for computing maximal matchings and maximal independent
sets of general undirected graphs. As an additional application of the well-separated
pair decomposition, which is at the core of the algorithms presented in Part [I. we
obtain nearly I/O-optimal algorithms for solving the A’-nearest neighbor and A™-

closest pair problems for point sets in d dimensions.
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Chapter 1

Introduction

1.1 Motivation

Strategies for systematically exploring graphs such as breadth-first search and depth-
first search are fundamental for the design and analysis of graph algorithms. Depth-
first search. for example. is applied in algorithms for solving such fundamental proh-
lems as computing the connected. biconnected. and triconnected components of a
given graph [98] and deciding whether a given graph is planar [97]. Shortest path
problems arise naturally in areas such as robotics. computational graph theory. and
computational geometry. Recent applications include the area of web modelling [32].
where depth-first search. breadth-first search. shortest paths. and connected com-
ponents are used to explore the structure of the web. and Geographic Information
Systems (GIS). where many fundamental problems can be solved using graph algo-
rithms. Our interest in shortest path problems arose in the context of computing
approximate shortest paths on triangular irregular networks [119. 120. 121]. which
are a commonly used data structure to represent elevation models in GIS [115. 116].

Web modelling applications and GIS often have to handle massive data sets that
do not fit into the main memory of state-of-the-art computers. Recent web crawls. for
example. produce graphs of on the order of 200 million vertices and 2 billion edges [32].

Thus. most of the data is stored on disk. while only a small fraction of the data can
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reside in main memory at any point in time. In this situation the transfer of data
between internal and external memory, and not the internal memory computation. is
often the bottleneck of the algorithm. as the seek time of state-of-the-art hard-drives
is about six orders of magnitude larger than the time it takes to access a memory
location in main memory [147. 171].

The largest portion of the time it takes to transfer a data item between disk and
main memory is spent on positioning the read-write head of the disk. Once the head is
positioned. successive data items can be read at a reasonable speed [147. 171]. Thus.
it is desirable to transfer more than one data element per [/O-operation between disk
and main memory. in order to amortize the large seek time over a larger number
of transferred data items. This has lead computer architects and operating system
designers to partitioning hard disks into blocks of consecutive data items. One block of
data can be transferred between main memory and disk in a single [/O-operation. In
order to take advantage of the resulting higher throughput. an algorithm should use as
many elements read in an I/O-operation as possible in subsequent computation steps.
The gain achieved by grouping the data items into blocks is lost if the algorithm uses
only few data items per block it reads and discards the remaining items in the block.
Thus. in order to be I/O-efficient. an algorithm should organize its computation so
that it follows the blockwise manner in which the data is stored in external memory.
For most non-trivial problems the design of such algorithms is a challenging task.

Given that an [/O-efficient algorithm should use all data in a block transferred to
main memory before loading the next block into main memory. locality of access in
such algorithms is desirable. while random access is what is to be avoided. In geo-
metric computations. locality of access can often be ensured by sorting the geometric
objects by their positions along one of the coordinate axes and then processing them
in this order. For graph algorithms. on the other hand. it is difficult to devise a general
scheme to make an algorithm access the vertices of a graph in a blockwise fashion.

This is true because a vertex can be connected to any other vertex in the graph. That
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is. interactions between vertices that need to be explored by the algorithm are often
of a non-local nature.

As a result, earlier algorithms for solving graph problems [/O-efficiently spend
O(1) I/Os per vertex. while the use of I/O-efficient data structures such as queues.
stacks. search trees. and priority queues allows these algorithms to access the edges
of the graph in a blockwise fashion. For dense graphs. the number of I/Os spent on
randomly accessing the vertices of the graph can be amortized over the larger number
of edges in the graph. so that these algorithms are [/O-efficient and often optimal for
dense graphs. For sparse graphs. however. such an amortization argument cannot be
applied. so that the design of I/O-efficient algorithms for sparse graphs is a field with
a large number of challenging open problems.

The lack of success in designing algorithms that are [/O-efficient on sparse graphs
in general suggests that one should try to exploit the structure of special classes of
sparse graphs to design [/O-efficient algorithms for these graph classes. This idea is
by no means new. as it has for instance been applied to obtain more efficient internal
memory algorithms for shortest path problems on planar graphs [73. 74. 111] or linear
time algorithms for problems on graphs of bounded treewidth which are NP-hard in
general [17. 27].

The first part of this thesis focuses on this idea. We propose I/O-efficient algo-
rithms for breadth-first search. depth-first search. shortest paths. and related prob-
lems on outerplanar and planar graphs. The choice of the problems is motivated by
the fact that they are fundamental. They are used as primitives in a wide range of
more complex graph algorithms. The choice of the graph classes is motivated by the
fact that they are well-studied. Thev exhibit sufficient structure to be exploited by
algorithms designed particularly for these graph classes and are still general enough
to hope that graphs arising in real applications may belong to these classes. For
example. the graphs studied in the work of [119. 120. 121] are close to being planar.

and algorithms for planar graphs can easily be adapted to handle these graphs.
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The second part of this thesis focuses on shortest path problems of a geometric na-
ture: the construction of sparse geometric spanner graphs and the reporting of short
spanner paths between two query points in these graphs. In internal memory. geo-
metric spanners have been applied successfully to a number of proximity and shortest
path problems including the computation of approximate shortest paths among a set
of polvgonal obstacles in the plane. The success of these graphs in internal memoryv
is based on the fact that they are sparse. Given a spanner which approximates the
complete Euclidean graph of a point set or the visibility graph of a set of polvgonal
obstacles sufficiently well. a spanner path provides a good approximation of the geo-
metric shortest path between its two endpoints. If the spanner is sparse. a shortest
path in the spanner can be computed efficiently using Dijkstra’s algorithm.

In external memory. the situation is more complicated. While a reduction of the
number of edges in the graph certaialy leads to a considerable speed-up of shortest
path algorithms. we would like to exploit the structure of the spanner graphs. in
order to either obtain algorithms that can compute spanner paths in the constructed
spanners in o(1) I/Os per vertex. or preprocess the spanner graph so that spanner
paths can be reported I/O-efficiently. These are the problems we address in the

second part of the thesis.

1.2 Summary of the Thesis

In this section. we summarize the results obtained in this thesis. The thesis is divided
into two parts. The first part of the thesis is dedicated to problems related to solving
breadth-first search (BFS). depth-first search (DFS). and the single source shortest
path (SSSP) problem in planar and outerplanar graphs. In the second part. we
present algorithms for computing sparse spanners of the complete Euclidean graph
of a point set in d-dimensional space and the visibility graph of a set of polygonal
obstacles in the plane. We also show how to build data structures for these spanners
so that approximate shortest path queries between two query vertices can be reported

efficiently. Next we discuss the results of each chapter in detail.
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Problem

Previous Result

Our Result

General graphs

Maximal matching

O ({fsort(IV)log, i) 1]

O(sort({V| + |E|)) [128]

Maximal independent set

o(Vvi+|£])

O(sort(|V] + |E]))

Coloring graphs of bounded | O(|V| + |El]) O(sort(|V| + |E|)) [126]
degree

Outerplanar graphs

Outerplanarity testing. O(N) [135] | O(perm(N)) [127]
outerplanar embedding

BFS. DFS. SSSP. weighted | O(sort(N)log N) [28. 43] | O(scan(N)) (127]
g-separator

Planar graphs

Planarity testing O(sort(N)log> N)  [112. 43] | O(perm(N)) [129]
Planar embedding O(sort(N)log N)  [145. 43] | O(perm(N)) (129]
BFS. SSSP O(N) [111] | O(perm(N))  [12. 129]
DFS O(sort(N)log N) [105. 43] | O(perm(N))  [13. 129]
Weighted <-separator O(sort(N'*<)log* N) [83. 43] | O(perm(V)) [129]

Table 1.1
Graph algorithms.

Part I: Graph Algorithms

Our work on graph algorithms focuses mainly on problems on planar and outerplanar

graphs which are related to solving BFS. DFS. and the single source shortest path

problem on these graphs. However. we also propose a simple framework to derive

[/O-efficient solutions for a number of fundamental graph problems on general graphs

from the internal memory algorithms for these problems. The solutions for the latter

problems are used as primitives in our algorithms for planar graphs as well as in our

spanner algorithms discussed in Part II. Table 1.1 summarizes our results. Next. we

discuss them in detail.
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Greedy algorithms. In Chapter 6. we study the properties a greedy graph algo-
rithm has to have. in order to be I/O-efficient. In particular, we want to simulate the
algorithm in O(sort(N)) I/Os using the time-forward processing technique. While it
is obvious that the simulation succeeds under the conditions we state. we still obtain
interesting new results using this approach. In particular. we obtain simple algo-
rithms for computing maximal independent sets and maximal matchings of arbitrary
graphs that outperform existing algorithms for these problems. We also obtain an
O(sort(.V)) I/O algorithm for (A + 1)-coloring a graph of degree \. This work has
been published in [126. 128].

Outerplanar graphs. In Chapter 7. we study the [/O-complexity of solving BFS.
DFS. and SSSP on outerplanar graphs. and of computing small =-separators of these
graphs. We show that these problems can be solved in O(scan(.V)) I/Os. once an
outerplanar embedding is given. represented in an appropriate manner. We also
show that an outerplanar embedding can be obtained in O(perm(.V)) [/Os and how
to augment the embedding algorithm to test any given graph for outerplanarity in
the same number of I/Os. We prove Q(perm(.V)) [/O lower bounds for all of these
problems. except outerplanarity testing and computing z-separators. Previous. more

complicated. versions of these results have been published in [127].

Planar graphs. In Chapters 8 through 11. we study the [/O-complexity of BFS.
DFS. and SSSP on planar graphs. and of computing small z-separators of these graphs.
In Chapter 8. we show that an unweighted :-separator of a planar graph can be
obtained in O(sort(.V)) I/Os. provided that the available amount of main memory
is sufficiently large. In Chapter 9. we use this separator algoﬁthm to develop an
O(perm(.V)) I[/O algorithm to test whether a given graph is planar and if so. compute
a planar embedding of the graph. We also show that Q(perm(.V)) I/Os are required
to compute a planar embedding of a planar graph. In Chapter 10. we discuss how
to combine these two results with existing results of [9. 12] to solve SSSP and BFS

on planar graphs in O(sort(:N)) I/Os and to compute z-separators of low costs and
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small s-edge separators of these graphs. In Chapter 11. we use the fact that a planar
embedding and a BFS-tree of a planar graph can be obtained in O(sort(V)) I/Os. in
order to develop an O(sort(.V)) I/O algorithm for DFS in planar graphs.

The results in Chapters 8 and 10 have been published in [129]. The result in Chap-
ter 9 has been published in [129]. The result in Chapter 11 has been published in [13].

Part II: Geometric Spanners and Proximity Problems

The first part of the thesis deals with shortest path problems in abstract graphs
whose combinatorial structure stems from their close relation to geometric structures.
In Part II of the thesis. we turn to the problems of solving proximity problems and
answering approximate shortest path queries in geometric domains. In particular.
we show that a number of well-known geometric spanner graphs can be constructed
[/O-efficiently. We propose techniques to report spanner paths in these graphs in an
[/O-efficient manner. The core of these algorithms is an I/O-efficient procedure to
construct a well-separated pair decomposition of a point set in d dimensions. We use
this decomposition to solve the K-nearest neighbor and A’-closest pair problems I/O-
efficiently. Tables 1.2 and 1.3 summarize our results. Next we discuss these results

in detail.

The well-separated pair decomposition and applications. The well-separated pair
decomposition (WSPD) [37] is a powerful tool to solve proximity problems in higher
dimensions. In particular. Callahan and Kosaraju [34. 35. 37. 38. 40] show that the
WSPD can be used to solve the A'-nearest neighbor and R™-closest pair problems in
O(Nlog N + A N) and O(NV log NV + K') time. respectively. In Chapter 12. we present
O(sort(A'.V)) and O(sort(.V + R')) [/O algorithms for these two problems. also using
the WSPD.

Another important application of the WSPD is the construction of sparse spanner
graphs. In particular. it has been shown in [35] that a t-spanner of linear size for a

point set in higher dimensions can be derived from a WSPD of the point set.
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Spanner Previous Result Our Result

WSPD-spanner { O(sort(N) log N') construction. O(sort(N)) construction.

in R4 O(log N) path reporting [34. 43] | O(log N) path reporting [91]

Dumbbell O(N log N) construction. O(sort(N)) construction.

spanner in R? O(log N) path reporting (18] | O(log N/(DB)) path reporting
(126]

Planar Steiner | O(N log N) construction [16] | O(sort(N)) construction  [126]
spanner. point

sets
Planar Steiner | O(N log N) construction [16] | O (D% log AL —5\—;3—) construction
spanner. [126]
obstacles

Table 1.2

Algorithms to construct geometric spanners and report spanner paths in these graphs.

In [34. 35. 37. 38. 40]. sequential and parallel algorithms for computing a WSPD
have been proposed. The sequential algorithm is based on a binary divide-and-
conquer approach. which can only be made to run in O(scan(.V)log.V) [/Os. Sim-
ulating the parallel algorithm using the PRAM-simulation technique of [43] leads to
an O(sort(.V) log .V) 1/O algorithm. We show in Chapter 12 that an O(sort(.V)) [/O
algorithm can be obtained by combining parts of both algorithms with existing
paradigms for I/O-efficient algorithms. This combination is non-trivial. and the
paradigms for I[/O-efficient algorithms are applied in novel. non-standard ways. This

work has been published in [91].

The dumbbell spanner. A disadvantage of the WSPD-spanner constructed by the
algorithm in Chapter 12 is that we do not know how to report spanner paths between
query points [/O-efficiently. In Chapter 13. we propose an O(sort(.V)) I/O procedure
to construct the dumbbell spanner of [18]. which is a supergraph of the WSPD-
spanner. This spanner has the desirable property that it can be decomposed into a

constant number of trees so that for any two points. there is a spanner path which is
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Problem Previous Resuit Our Result

K-closest pairs O(sort(N + K) log N) [34. 39. 43} | O(sort(N + K)) [91]

K-nearest neighbors | O(sort(KN)log N) [34. 39. 43] | O(sort(KN)) [91]
Table 1.3

Algorithms for fundamental proximity problems using the well-separated pair decomposition.

a subgraph of one of these trees. Thus. we can use existing techniques for reporting
paths in trees {100. 177] to report spanner paths in this graph. Our algorithm for
constructing the dumbbell spanner is based on the algorithm of [18]. Our contribution
is to show that the different phases of the algorithm of [18] can be performed [/O-
efficiently. This work has been published in {126].

A planar Steiner spanner. Even though the dumbbell spanner can be preprocessed
so that spanner paths can be reported I/O-efficiently. it is of little use when tryv-
ing to solve the approximate shortest path problem among polvgonal obstacles. Its
hierarchical nature makes it difficult to construct this spanner for sets of polvgonal
obstacles. In [125]. it is shown that another t-spanner. namely the f-graph of a set of
polvgonal obstacles can be constructed in O(sort(:V)) [/Os. Unfortunately. it is not
known whether there exists a data structure that allows spanner paths in the #-graph
to be reported in an I/O-efficient manner.

The planar Steiner spanner of [16] tries to show a way out of this dilemma. It
can be constructed for sets of polvgonal obstacles and has the desirable property
of being planar. Planarity is a useful property. as planar graphs allow the single
source shortest path problem to be solved I/O-efficiently. Also. planar graphs can
be preprocessed to answer shortest path queries and traverse paths in these graphs
[/O-efficiently [2. 100. 177]. On the other hand. it is known that it is in general
impossible to construct a planar graph with spanning ratio less than /2 for a given
point set. Hence. the construction in [16] reverts to adding additional (Steiner) points

to the point set. in order to achieve planarity. They show that a linear number of
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such Steiner points is sufficient. so that the complexity of reporting spanner paths
does not increase by more than a constant factor.

In Chapter 14, we show how to construct the spanner of [16] for point sets and
sets of polygonal obstacles in the plane in an I/O-efficient manner. The construction
for point sets is straightforward. once the underlving planar subdivision has been
obtained. We argue that a fair split tree. which is the underlying structure of the
WSPD. can be used to obtain a planar subdivision which is essentially as good as the
subdivision used in [16]. Thus. the spanner for point sets can be constructed [/O-
efficiently. For sets of polygonal obstacles. our algorithm simulates the plane sweep
of [16]. However. the algorithm of [16] uses two interacting binary search trees to
maintain the sweep-line status. In particular. queries on one tree need to be answered
immediately to drive the updates of the other tree. This creates problems because
the buffer tree [11]. which is the only known search tree which achieves optimal I/O-
performance in an offline setting. does not support immediate query responses. \We
show that the sweep-line status can be maintained in a single buffer tree. thereby
allowing the plane-sweep to be performed I/O-efficiently. We also believe that the
internal memory algorithm obtained by replacing the buffer tree by a standard (a. b)-
tree is simpler than the original algorithm of [16]. This work has been published

in [126].



Chapter 2

Model of Computation

Since the analysis of the I/O-complexity of algorithms is not as well-established as the
analysis of their running time or their space requirements. we dedicate a few pages
to the discussion of the model of computation we adopt in this thesis. We investigate
its relationship to well-established models of computation. which allows a comparison
between existing algorithms for the problems we consider and our algorithms. We
also mention other models that have been proposed for analyzing the I/O-complexity
of algorithms. and justifv our choice of a model. At the end of the chapter. we
present a simple technique to obtain an [/O-efficient algorithm from two I/O-efficient
algorithms that solve the same problem. The constructed algorithm achieves the

same perforinance as the faster of the two algorithms on the given input data.

2.1 The Parallel Disk Model

The first widely accepted model for analyzing the I/O-complexity of algorithms was
the [/O-model of Aggarwal and Vitter [6]. In this model. a single processor is equipped
with a random access (internal) memory capable of holding M data items and a
disk (external memory) of unlimited size. The disk is partitioned into blocks of
B consecutive data items. The processor is allowed to perform its computation only

on data items held in internal memory. In order to access other data items. the

11
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processor has to make room for these data items by transferring data from internal to
external memory and then loading the desired data items into internal memory. This
transfer of data is achieved by means of I/O-operations. In a single I/O-operation.
the processor can load up to D blocks of data into internal memory. or write up to
D blocks of data to disk. where D > 1 is the number of independent read-write heads
that can be used. The complexity of an algorithm in the [/O-model is the number of
I/O-operations it performs.

Note that the I/O-model completely ignores the time it takes to perform the ac-
tual computation. This is motivated by the fact that an I/O-operation is by about
six orders of magnitude slower than a computation step [147. 171]. Thus. an algo-
rithm that performs considerably less I/Os. even at the expense of performing more
computation steps. can be expected to be faster than an algorithm performing more
[/O-operations, as long as the amount of computation performed by the algorithm
stays within reasonable bounds.

The partitioning of the disk into blocks of size B is motivated by the fact that
the major share of time spent on an I/O-operation is spent on moving the read-write
head to the location of the block. Once the read-write head is at the right location.
it takes almost as much time to read B consecutive data items. as it takes to read a
single data item. Thus. existing file systems partition the disk into blocks of a certain
size. in order to amortize the seek time over a larger number of data items that are
read or written.

A characteristic of real disk systems which is not captured by the [/O-model is
that on a disk with multiple (independent) read-write heads. there is often only one
head per platter. Hence. every head is restricted to accessing the data stored on its
platter rather than being able to access any data item. Vitter and Shriver propose an
extension of the I/O-model. the Parallel Disk Model (PDM) [172]. as a more realistic
model to describe existing disk systems which takes the restriction just described
into account. This model is now the most widely accepted model for the design and

analysis of I/O-efficient algorithms. It is also the model we adopt in this thesis. In
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this model. D > 1 independent disks are attached to the processor. Each disk is
assumed to have a single read-write head. This is not a restriction. since the different
platters of disks with independent read-write heads can be modelled as separate disks.
As in the I/O-model. an [/O-operation can transfer up to D blocks of data between
internal and external memory: but now this is allowed only if each of these blocks is
read from or written to a different disk.

A number of simulation techniques have been proposed which allow algorithm
designers to benefit from the higher practicality of the PDM and the simplicity of the
I[/O-model at the same time. Most notably. Sanders et al. [152] propose a randomized
technique to achieve optimality for algorithms designed in the [/O-model when run on
a machine with multiple disks. A simple. suboptimal. deterministic technique is dzsk-
striping [149]. Using this technique. the D disks are viewed as one large “virtual disk”
of block size DB. where the i-th block of the “virtual disk™ contains the i-th block of
each of the D disks.

2.2 Relation to Standard Models

2.2.1 RAM Algorithms

The model. The most extensively studied and most broadly used model for design-
ing algorithms and analyzing their performance is the random access machine (RAM).
Algorithms designed for this model consist of a single thread of execution. That is.
the instructions of the algorithm are executed one at a time. Legal instructions are
elementary arithmetic and logical operations. instructions to read and write data
from or to memory. and elementary control constructs to realize branching. loops.
and recursion. Each of these operations is assumed to take O(1) time on a data item
representable by O(log.V) bits. where .V is the size of the input. Thus. in order to
estimate the time it takes an algorithm to solve a given problen. it is sufficient to

count the number of operations executed by the algorithm.
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A number of variations of this model have been proposed. which can be distin-
guished based on the set of arithmetic operations that are considered primitives of
the machine. Since most operations of a more powerful RAM model can be simulated
at a small. though non-constant. cost in a weaker RAM model. these variations are
of limited relevance in the context of this thesis. as we ignore the computation cost of
our algorithms. Nevertheless. the operations performed by our algorithms fit in the
algebraic model of computation. which allows only multiplication. division. addition.
and subtraction as primitive arithmetic operations of the machine. In particular. the
floor function is not considered a primitive.

Our geometric algorithms assume that the machine words that can be manipu-
lated in O(1) time per operation are real numbers. This avoids the hassle of dealing
with precision problems. However. these issues would have to be addressed when

implementing our algorithms.

The 1/0-complexity of RAM algorithms. Since every computation step of a RAM
algorithm can access at most one data item which is not in internal memory. every
computation step of the algorithm takes at most one [/O. Hence. any RAM algo-
rithm which takes T(.V) time performs at most T(N) [/Os. This simple observation
becomes important in combination with contraction or sampling techniques where
preliminary information about the given problem instance is gathered by applyving a
RAM algorithm to a problemn instance of reduced size. Due to the reduced size of the
sample or the contracted problem instance. even spending one [/O per computation
step is [/O-efficient in terms of the size of the uncontracted or unsampled problem

instance.

2.2.2 PRAM Algorithms

The model. The parallel random access machine (PRAM) is a generalization of
the RAM which allows programs to consist of several threads of execution. The

cost of an operation is the same as in the RAM model. However. the machine now
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consists of multiple RAM-type processors with access to a global memory shared by
all processors. The processors are emploved to collectively solve a given problem.
The time it takes to solve the problem is the maximal amount of time spent by
any one of the processors. Usually the goal is to design algorithms that take time

polylogarithmic in the size of the input using a polynomial number of processors.

The 1/0-complexity of PRAM algorithms. An interesting approach for design-
ing I/O-efficient algorithms has been proposed by Chiang et al. [43]. This approach
derives [/O-efficient algorithms from existing PRAM algorithms. It is based on the
observation that P simultaneous computation steps. one per processor. can be simu-
lated in O (sort(P) + b%) [/Os! as follows: Assume that the contexts of the P pro-
cessors are stored consecutively on disk. and the content of the shared memory is
stored on disk. In order to simulate the next computation step of each of the proces-
sors. assume that this computation step consists of a read access to shared memory.
followed by an arithmetic or logical operation. which in turn is followed by a write
access to shared memory. Instead of accessing the data item for processor number ¢
directly. the list of processor contexts is scanned in O (D—F;) [/Os to produce a list of
read requests. These read requests are sorted by their memory addresses. In a single
scan of the sorted list of read requests and the memory representation. the content of
the requested memory location is assigned to each read request. Now the list of read
requests is re-sorted by their originating processors. In a single scan of the sorted list
of read requests and the list of processor contexts. the requested data is transferred
to the contexts of the processors. Now each processor performs its local computation
and generates a write request. The list of write requests is processed in a manner
similar to the processing of read requests.

As each step of the PRAM algorithm can be realized in O (sort(P) + b\-B) [/Os.

a P-processor PRAM algorithm which runs in T(.V.P) time can be realized in

lsort(N)=© (,3\—,3 log y %) denotes the number of I/Os it takes to sort a list of N elements.






