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ABSTRACT

a

This reﬁearch is concerned with the development and
implementation of‘ an automaiéa conceptual schema design aid for
relational databﬁses. Baaed.on the concepts of 1logical normal
forms the “technique of schema decomposition is developed into a
pr;ctical and feasible software tool. This tool is then shown to
accept ‘a broader range of database descriptions than those

currently discussed in the iiterature. producing conceptual

schema designs which are both logical and efficient.

. The development of the principal algorithm embodied in phe
design aid ' is” fully described and contrasted Qith three
algorithms found 1in the current 1literature. i As necessary
background for the schema design algorithm we present a review of
the relational 'model. normalization and several fundamental
supporting algorithms including an Sriginal and improved
algorithm - for the &etermination and manipulation of the
dependency basis. Fiﬁally. both the capabilities and limitations

of binary decomposition methods in general and this desigﬁ aid in

particular are discussed.
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CHAPTER 1

0

THE RELATIONAL DATABASE DESIGN PROBLEM

1.1 INTRODUCTION AND THESIS ORGANIZATION.

* One of the most significant trends in dodern czmpuéing is
clearly the rapfdly' inereasing demand for gcéess to very large
stores of non-numerical data - the 'database'. 'The traditional

concept of the database ;s 3 vast library accessible only to'
. application prggramqgrs is now outdated. In its place there ‘aré
sophis;icéted database management systems (DBMS) which offer
services at a range of levels to meet the requifements of the
user, database administrator‘(DBA) and system ma}ntainer. which
enable eaﬁier and more effective use of the intrinsic
'information' value of th; data.- As"a result personnel with very
little basic t;afning are now allowed access to aextremely' large

stores of data in the course of their duties.

~
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.Database management 3ystems do not simply provide access to
the raw datalitself but prévlde a means to 'map' the data of the
real worlﬂ system into the hardware anp software implementation
in such ; way'thab access is both loéical and efficient and that
the costs of maintaining the data 1in a consistent state are
mihimized. Two key developménts continue to hasten this trernd:
firstly, the gr%uing demand for products to support the ‘office
of thee futuré'  is placing terminals in more and more locations
within the business environment. Secondly, at the same time, the
decreasé ‘in cost per bit of on-line mass storage 1is bring{ng
about én increase in both the number of database installations
and tﬁgir"average sizei It is therefore a demanding role for the

4

DBA to maintain a logical and efficient system under these

conditions,.

This work deals with design and implementation of an
automated tool. to&’assist the DBA to design and maintain an
efficient conceptual schema. We begin by presenting the concepts

~

of the ‘'relational model dnd logical normalization in the first

chapter. In the second chapter we present a series of algorithms

"

which are u;;d to deal with the basic elements of the design

problem: ‘the attributes, dependencies and queries. In Chapter 3
we then describe the development of the complete design
algorithm comparing it with three current methods. Next, in
Chapter 4, we describe the Relational Database Design Aid (RDD)

software which implements the design algorithm. Chapter 5 then
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presents a series of examples to highlight both the capabilities
and limitations of the design aid. Finally we conclude in
Chapter 6 with a summary of the contributions of the work and

suggestions for further resea;chvin this area.

1.2 RELATIONAL DATABASE DESIGN - AN OVERVIEW

<
In order to describe informatiétn in a computer oriented.
manner two groubs of conceptual data models have been developed,
The first group emphasizes the 'datalogi;al' content of the '
~database  which is to say that it is more concerned with what the
data elements look like and how they are to be linked together.
These inclﬁde the original hierarchical. ne@work and relational
models although the latter has the greatest degree of data
independence and therefore many of the desir®eable properties
found in the second group. This more recent group, <called
'infological', 1is, as the name suggests, more concerned with the

information content of the data.

The relational model was introduced by E.F. Codd in 1970
[CODD70] and has has received considerable atlention and research
effort. Commercial relational products are now available for all
sizes ofrqoméuters (micro, mini and mainframe) and, perhaps more
significantLy,‘in an effgrt to capture the customers' attention ,

many older non-relational products often cite a suppopsed

'relational appearance' to the user. The apparent simplicity to



the wuser and 4inherent flexibility are the main reasons for the

)

success of relational products,.
.

The Entity-Relationship model described in [CHEN80] is the
most suctessful of the infological models and will also be
discussed in this wo?k. There are two digtinct elements in the
ER model . the entity and the relationship. An entity is a
conceptually congcrete object such as an employee, a project or a
department, ;hile a relationship is a semantic link between two
entities representing a one-to-one, one-to-many or many-to-many
correspondence. These are shown 1in graphical form using
rectangles for entities and diamonds for relationships with a
descriptive céption to explain their meaning. For example we may
refer to the one-fo-many correspondence between the entities
employee -and department as 'works on' to indicate the nature of
the relationsip. We then add a third figure, the circle, to
enclose unique attribute labels that are associated with gither
an éntity or rélationshib. Hence the &entity Employee will be
shown with the unique attributes Employee Name or Address while a
relationship between employees and projects might possess

S
information such as 'Hours Worked' or'Supervisors Name'.

Analysis of these ER diagrams augments the relational approach by
graphically presenting these correspondences in a clean and

.concise manner. ;

To support a layered ‘approach to the design and
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implementation of a DBMS we follow the three level architecture

put forward 1in the ANSI X3/SPARC document [ANSI75]  which

describes:

1. the user view or enterprise schema;
2. the conceptual schema; and

3. the physical schema.

The focus of this work is the <c¢onceptual schema. In the
relational model a 'schema' is described as a series of tables or
relations each with a set of \column headings to describe the
ﬁaterial contained in the rows of the table. It is through thiss
description that the DBA exercises the majority of his control of
the database. In addition to describing what combination of
column headings he will define for his system the DBA designates
certain columns as 'keys', ereates various 'index tables' and
assigns the authority to read, insert or modify to the system
users, The table or 'relation‘ is theréfore é basic unit of the
relational system qnd the schema 13 an overall map of these
relations. The ‘'user view' 138 also defined as a series of
relations although they may differ from the underlying conceptual
schema in many ways in order to simplify the user; understanding
of what data is available, to protect some of the data from
unauthorized access or to summarize or pre-process the data in
some manner. fig. 1-1 highlights an example of these two

levels. In this case perhaps for reasons pf security the user is

not allowed access to the performance rating of the manager or to
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-

the actual budget - which is currently authorized. Furthermore,
although to the user it appears that only one table is involved,
he 1is actually using data from three relations in the conceptual

schema.

The User View

DEPT_NO DEPT_NAME.MGR_NAME EMP_NO EMP_NAME BUDGET

(3

The Conceptual Schema

DEPT_NO DEPT_NAME  MGR_NAME  MGR_PERFORMANCE_RATING
DEPT_NO EMP_NO EMP_NAME _
DEPT_NO .  REQUESTED_BUDGET ALLOTTED_BUDGET

An Example of the User View and Conceptual Schema Layers

Figure 1-1

-

Below the conceptual schema lies the physical schema where. we
défine the (actual storage details, create ghe index tables and
estéblish the searching Efchniques. Relational‘DQMS do not allow
the DBA very much control over these internal activities although
he can usually seléct the 1indicies and determine whether the
relations will be stored in adjacent disc storage areas {(called
clusters) to improve the performance of the system.

The problem facing the database ﬁesignef therefore - is that
of effectLveiy dealing with the large . number of design

alternatives presented by the data that constitutes the

information system. An  automated tool to assist the DBA or
& -




T

database designer in this task - whether it is part of the DBMS
or an independent product - wWwould be of great help when the
number of alternatives become too numerous for simple analysis.
The 1implementation of an automated tool to assist in this task

and a discussion of its usefulness is the aim of this work,.

\

1.3 THE RELATIONAL MODEL

1.3.1 BASIC DEFINITIONS

A b}ief summary of the definitions aéd assumptions Jsed
throughout this work 18 given in this section. ‘We‘attempt to
conform ¢to the accepted nomenclature found in the —current
references, The basic element of the relation is the unique

-

attribute 'am' chosen from a fixed set

{ {1, 8, ag ... 3 b
We will use the lower case to represent a single attribute and
upper case to indicate a set of attributes such as
B = { , 8., @, ... a }.
3 » % 33 10 -
The letter 'R' will also be used to describe both a relation ‘and
’ ¥
a scheme where the context will clarify the particular case.
Each attribute is given a unique identifier such as PART NUMBER,
or EMPLOYEE NAME and has associated - with it a specific domain of

acceptable Qalues from which the attribute assumes a particular

value, We refer to the attribute EMPLOYEE NAME and to the value



Mr. Jones. The meaning should be <clear 1in the context. We
therefore write that the value

. a, € dom a.
; (ay)

We define a relation R (X) as a set of m-tuples (or records)
where m = X} and R (X) is a subset of the Cartesian product
dom (al) X dom (32) X ... X dom (%‘). L
Thus the relation can be considered to be a table of information
having m columns with each m-tuple being a distinct row of the

¢ .

table.

We will "use .the term '‘scheme'’! to represent only the
attribute (or column heading) information while 'relation\ refers
to a table filled with tuples. A 'schema' <consists of all
schemes associated with- the detabase of interest. fhe order of

attributes within the relation is immaterial. An example of-%his

is presented in Fig. 1-2.

vy -
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A RELATION

PART_NO DESCRIPTION PRICE
1700110 Wheelbarrow $45.95
2223022 Lawn Mower ‘ $99.99
4512334 Hedge Trimmer $35.25
2678909 Wheelbarrow $42.95
. A_SCHEME
‘
PART_NO DESCRIPTION PRICE -
A SCHEMA
PART_NO DESCRIPTION PRICE
PART_NO ‘SUPPLIER
"SUPPLIER LOCATION

Terminclogy - Relaticn, Scheme, Schema
Figure 1-2

We define the following operations cn the relaticn R(X):

PROJECT The projecticn of R(X) cn attribute set Y is yritten
as
- RILY] whefe Y S X.
This may simply be thought of as the selecticn °©of only the
columns headed by attributes in the set Y with all duplicate rows

remcved.

NATURAL JOIN The natural join of R1(A) and R2(B) 1s
defined . €«

if and only if A n B#£ ¢ /
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and is written A*B, The term equi-join 1implies that chosen
tuples in A and B have the same values for their ¥ntersecting
attributes. The use of a predicate may impose other conditions
on a natural join such as an acceptable range of values
(0 < a; < K) or specific value (q = K).

RESTRICTION We restrict the admissibility of tuples by
defining a specific value or range of values for attributes

within the scheme. Thus a restriction reduces the number of

tuples selected while projection reduces the number of attributes

to consider :within a given tuple.

o« 4 -

1.3.2° DATA DEPENDENCIES

Ha;ing defined the atlributes of the data which will
*cpmpkise the database we must now consider the semantic
constraints  which are pre@eﬁt in the information to be
maintaineg. We will consider semantic constraints presented as

data dependencies of the following forms:
] o

¢ -
1

1. functional dependencies (FD): .
2. multivalued dependencieg®(MVD); and briefly discuss
3. Jjoin depeqdencies. ‘

Although there :are many other dependencies disahssed in the

literature ‘([AROR81] lists 17 of them) these are by far the most

important.
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EXAMPLE 1.1 T¢ demonstrate these dependencies we

present the sample relaticen 1in Fig. 1-3. This relation

might well represent a small instance <¢f an engineering

hfirm's database where administrative and peﬂéohnei

infcrmation is maintained. The parallel ER diagram is ‘shcwn

in Fig. 1-=4.

-

.

EMP# EMP_NAME DEPT# PROJ# HOURS SKILL# CHILD_NAME
111 Brown Car A 3.5 Machinist Mary
111 Brown Car A 3.5 Welder Mary
111 Brown Car A 3.5 Machinist Sue
111 Brown Car A 3.5 Welder Sue
111 Brown Car B 1.0 Machinist Mary
111 Brown Car B - 1.0 Welder Mary
111 Brown Car B 1.0 Machinist Sue
111 Brown Car B 1.0 Welder Sue
222 White Paint C 5.5 Painter Alice
333 Black Paint C 2.5 , Painter Davwid

Sample Database Relaticn
Figure 13
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N\ N\ 7N\
CHILD_RAME E!ETE9 qui;fgs
5 1 m
CHILD PARENT OF EMPLOYEE
DEPARTMENT FROJECT
\ ,

@ S

Entity-Relationship Representation
of Figure 13
Figure 1-4



™

1=-13

Let us now describe which of these ccrrespondences can be
interpreted uéing these dependencies.

3

We refer toc a functiocnal dependency (FD) and write X->Y

’

(read as .X determines Y) if and only if fcr each vélue of X we

have asscciated only one value of Y, - :

Tﬁis models the classic cne-to-one ccrrespondence. A full
functional dependency X->Y exists if nc¢ proper subset of X, say .

X' determines Y ¢r Xt'->Y. Referring to the example database of

Fig. 1-3, we 'state that the FDs

1. EMP# -> EMP_NAME
2. EMP# -> DEPT#; and

3. EMP# PROJ# -> HRS

[

held in the datapase frcm our Semantic knowledge of | the
situaticn. Notice that it is not immediately apparent from the
dependency whether it represents a semantic link between
entities, attributes or relationships and so all dependencies
must be considered of equal importance. Since none of the tuples’
violate the depende;cy constraints they are al} consid%red to be
valid and the relation accuratély reflects the real world
situation. Furthermcre it isz important fo note that the
existence of dependencies should not necessarily’'be inferred from

the tuples found in the relation but are in fact imposed from the

real werld semantics.
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The nature of functionidl dependencies has been studied
extensively [ARMST74] ([BEER77) {HEER78] and a proven complete
axiomatization has been realized. It has therefore been proven

that the following inference rules hold for FDs :

1. FD1 PReflexitivity IF Y £ X then X->Y
2. FD2 Augmentation IF X->Y and Z £ W then XW->YZ
3. FD3 Transitivity IF X->Y and Y->Z then X->Z

4, FD4 Pseudo-Transitivity IF X->Y and YW->Z then XW->Z
5. FD5 Union IF X->Y and X->2 then X->YZ

6. FD6 Decomposition ° IF X->YZ then X->Y and X~>Z.

The juxtapositidn of attributes AB implies the union of A and B

or AU B in all cases.

I3

We also note that FDs possess projectivity and inverse

.

projectivity; that is, for X=->Y:

@ 1. 1f X->Y holds in R (S) then X->Y holds in R (S"')

where S' € S and X € S'; and

2. if X->Y holds in R (S') then X->Y holds in R (g)Lwhere

St ¢ 8,

A

Based on the above inference rules we may develop the set of

all derivable FDs from a given set F. Because these rules form a
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complete system [BEER77] we refer to this set of dependencies as
the closure of .F and represent it with .the symbol F+. A
'covering' is a set of dependencies such that we may derive the

closure from it using the above inference rules. We write this
~ .

as any set T' such that T'+ z T+. There are a finite number of

possible <covers to consider for any given database. A covering
is nonredundant (or minimal) if no ﬁf:per subset forﬁ‘ .a ”cover;
The group of dependencies that we are 1initially given must
contain a cover or else we cannot infer the remaining valid

. e
dependencies and the final design will be in error.

The 'key' of a relation R is a set of attributes X such that
X->R ¢ T* and thus it uniquely determines each distinct tuple in .
R. A 'superkey' is any set of aﬁtributes S such that S contains
a key plus other attributes as well. All members of a key are

called 'prime attributes'.

Obviously not all relationships are functional in nature and
an extension is therefore required to model both the one-to-many
and many-to-many cor?espondences described in the ER diagram. A
speéial class of dependency called-*multivalued' has been shown

. e N
to model <certain cases of these correspondences (FAGIT9a]

[ZANIB81]. A multivalued depeﬁdency (MVD) X=->=>Y (read as X
multidetermines Y) s said to exist in the context X+YsZ if, for

each value of X that we choose, the:assodiated values of Y are

the same independent of our choice of Z. Expressed in éeneré&
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”
terms, the sets c¢f wvalues (X', Y'} fcrmed from gge operation
Wdefined by: o

‘vﬁ/

R(X , Y., Z ) [XY]

is the same fer all valid‘ q< values, N¢t all c¢ne-tc-many cor
many-tc-many ccorrespcndences meet this' criteria and sc¢ MVD's are

nct as readily useful as we might like them to be. The example

in Fig. 1=3 highlights twc valid instances wh}gh we méy write

as:

1. EMP#~->~->SKILL - implies that each emplcyee possesses
a distinct set of skills; and .

2. EMP#->->CHILD_NAME - implies that each employee may
have more than one child.

We therefore observe in Fig. 1-3 that tuples exist tco shew that

Mr. Brown is a machinist independent of the choice of the values

»

of his CHILD_NAME attributes.
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Complete axiomatization of MVDs is also cited 1in [BEERT77]

with the following 1inference rules for the general case where
X UYUuUu Z =R and YN Z < X:
1. MVDO Complementation ~>Y holds in context R where

X=>
" ' R = X+Y+Z if and only if
X=>=>Y and X=->-=>2

2. MVDi1 Reflexitivity IF Y £ X then X->->Y

3. MVD2 Augmentation IF X=>=>Y and Z £ W then
XW->YZ

4, MVD3 Transitivity IF X->->Y and Y-=>->Z then
X=>=>Z

‘5. MVD4 Pseudo-Transitivity IF X->->Y and YW->->Z then

IW=D>=>7 =YW
6. MVDS5 Union IF X=>=>Y and X->->Z then
. X=>->YZ
7. MVD6 Decomposition IF X->=>Y and X=>->Z then.
X=>=>Y N Z, X=>->Y-Z, and
X=>=>7-Y

and two additional rules which link FD and MVDs
1., FD-MVD1 Duality IF X->Y then X->->Y
2. FD-MVD2 Geperation If X->->Y and Y->Z then X=>Z-Y

FD-MVD2 is the only rule which can generate new FDs from MVDs.

*
The <closure due to MVDs is given the symbol G although in some

referencges this implies the closure due to both FDs and MVDs.

The. most useful properties of the multivalued dependency are
complementation and decomposition (MVDO and MVD6) which we can

use to effect the decomposition of a scheme by dividing it into 2

“
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Sub-schemes, without the loss of any of our original information

and with a significant reduction in the duplicaiion of data.
Given

R (X,Y,Z) with X->=>Y
from MVDO we infer X->->Z and decompose R into

R1 (X,Y) and R2 (X,Z).

While MVDs possess the projectivity property, they do not
possess inverse projectivity because of the context within which
the dependency is said to be valid. That is, we —cannot 1infer
that a dependency which is valid in.a subset of the relation may

°
necessarily hold in the entire relation.

We can therefore have MVDs with a reduced context whi?h are
'embedded' or '"latent' within +the scheme and only hold in
projections w?ich are subsets of the schem;. Complete
axiomatization of these aependéncies has not been proven and some

references claim it is ultimately impossible [BEERBO]. For the

purposes of notation let us assume that X->->Y implies that the

context for the dependency includes all valid projections R' of
the entire scheme R provided:
1. X< R' ; such that all left side attributes are pregsent;
2. Yn R'# @ ; at least one attribute in the right side

is present.

An alternate notation may‘be used to detail all of the MVD's with
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the same left side and the same context. We write this as

s
fcllcws: ( note the ':' instead of the '=>=>' symbol )

A :B!C ! D /... Z fcr A,B,C,D .. Z disjoint..

We read this as A->->B, A->->C, A->->D,...A->=>2 which hcld in

the relation ccntaining A uB uCu Du-...uZ and ne other

attributes,. Reccgnizing that the MVD ¢r EMVD exists and defining

its proper context 1s very difficult in scmedsituaticns.

We now present two examples where the inccrrect use of an

MVD ¢r EMVD can cause erronecus results. In the first we show
the use q{ an EMVD cutside it proper context while the seccnd

sh¢ws the results when an MVD is used to inéorrectly repreéent a

many~-tc-many correspondence.

A

EXAMPLE 1.2 An embedded MVD (EMVD) exists 1in example
1.1 and can be written:

DEPT# : EMP# ?MP_NAMf CHILD_NAME SKILL#V: PROJ# °
where we a;e interested in the situation now that there 1is
no attribute linking PROJ# and EMP# ( by procjecting out
HOURS ). The context i3 therefore the scheme R1 (which is R
less the attribute HOURS). ' We now wish to state that a
DEPT has many employees and many projects and that all
employeées in that departmen; work on all of the departments'
projects.  Considering only tuples for EMP_NAME = Browﬁ we
can use MVD6 and show the decomposition of R1 intc Rt1 and

R12 in Fig. 1-5. A subsequent equi-join on EMP# returns
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the original relation R1, ' Fig. 1-6,: on the other hand,

shows the decomposition using the EMVD outside Tits valid
context (in this case the original relation R). Fig. 1-7
»

shows the results of a subsequent equi-join on DEPT 'and the

appearance of erroneous tuples.

EXAMPLE 1.3 Consider the relation R and its equivalent

ER diagram shown 1in Fig. 1-8(a). Let us assume that the
designer recognizes the many-to-ﬁany relationship between
INSTRUCTOR and STUDENT ;nd so defines the MVD -
INSTRUCTOR+>->STUDENT. By‘the complementation property thié’
also 1implies that INSTRUCTOR->->CLASS DAY ROOM as well and
we can therefore decompose the initial reiation into the

relations R1 and R2 in Fig. 1=-8(b). We now have, the

situation where all students are associated, through ‘their

instructor, with all classes that the instructor teaches - .

even those that the student does not take. A§ in our
previous example with a 1lossy join, when we attempt to
recover the original relation we will prqduce many invalid
tuples and so obviously our original assumption of the MVD

was in error.
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i
DEPT# PROJ # DEPT# EMP# EMP_NAME SKILL# CHILD_NAME
Car A Car 111 Brown Welder Sue
Car B Car 111 Brcwn Machinist Sue
Paint C Car 111 Brcwn Welder Mary
1 ] Car 111 Brown Machinist Mary
Paint 222 White  Painter _Alige
) . Paint 333 Black Painter David
i R11 R12
N Relaticn RV Decomposed intc R11 and R12
Figure 1-5
§
DEPT# PROJ# DEPT# EMP# EMP_NAME SKILL# CHILD_NAME HOURS
" Car A Car 111 Brown Welder Sue 3.5
Car B Car 111 Brown Machinist Sue 3.5
Paint C Car 111 Brown Welder Mary 3.5
Car 111 Brown Machinist Mary 3.5
- : Car 111 Brown Welder Sue 1.0
\ Car 111 Brown’ Machinist Sue 1.0
[ Car 111 Brown - Welder Mary _ 1.0
Car 111 Brown Machinist Mary 1.0
Paint 222 White Painter Alice 5.5
P Paint 333 Black Painter David 2.5
» / \\ B
o

Use of- an EMVD outsidé its context
Figure 1-6




EMPy# EMP_NAME DEPT# PROJ# HOURS SKILL# CHILD_ NAME

111 Brown Car A 3.5 Machinist Mary

111 Brown Car ‘A 3.5 Welder Mary

111 Brcwn Car A 1.0 Machinist Mary

111 Brown Car A 1.0 Welder - Mary
11 Brown Car A 3.5 Machini'st Sue
111 Brown Car A 3.5 Welder Sue
* 111 . Brown Car A 1.0 Machinist Sue
* 111 Brown Car A 1.0 Welder Sue

111 Brown Car B 1.0 Machinist Mary

1M1 Brown = Car ' B 1.0 *Welder Mary

111 Brown Car B 3.5 Machinist Mary

L S B Brown Car B 3.5 Welder Mary
’ 111 Brown Car B 1.0 Machinist' -Sue
' 111 Br¢wn Car, B 1.0  Welder Sue
* 111 Brown Car B 3.5 Machinist Sue
LR R RN Brown Car B 3.5 Welder . Sue

222 White Paint ¢ 5.5 Painter Alice

333 Black Paint ¢ 2.5 Painter David

[ . A Lossy Join with ' 1

Erronecus Tuples marked *
Figure 1-7 ' ot
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STUDENT

ASSUMED
MVD
) INSTRUCTS
NST )
: s o)
,, N
INSTRUCTOR TEACHES D3 LECTURE
- " =7
: 5
INSTRUCTOR STUDENT CLASS DAY ROOM
White A Math . Mon ME200
White B . Hist Tue ME300
Black A Hist " Tue MEL00
‘Black B Math Mon ME300
RELATION R
. Sample Relation and ER Diagram v
Figure 1-8(a)
- f
INSTRUCTOR STUDENT ' INSTRUCTOR CLAS DAY RObM
T e
e )
White A White Math Mon ME200
White B White Hist Tue ME300
Black A Black Hist Tue ME400
Black B Black Math Mon ' ME300
RELATION R1 RELATION R2

Incorrect Use of an MVD
Figure 1-8(b) .
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The appearance:of these erroneocus tuples 15 termed a 'lossy'
decomposition [AHO79] [ULLBO} in the sense that the original
relational information is now 1lost amongst the original and
erroneous tuple;. . We have seen that, by definition, valid MVD

decompositions are lossless. A theorem proven in [AHO79] gives a

’

necessary and sufficient condition to ensure that these errors do
not occur. It states that the join of the relations R(X) and
R'*(Y) will be lossless
if the intersecting attributes of R and R'
imply an FD or MVD for X-Y or Y-=X ;
That is @ X n Y > X-Y or X nY <> Y-X (for FD)

Xn Y =>=> X=Y or. X nY <><> Y<X (for MVD).

A third class of dependency, the n-join dependency [AHOT77]
(RISS77], deals with the lossless join constraint and is defined
for a relation that can be decomposed into n sub-relations, but

no fewer, in order to return the original relation using lossless

joins. An MVD may therefore’ be regarded as a two join

.

pependeﬁcy. Curr'ent techniques for schema design do*not handle

Join dependencies and therefore they are a limiting factor for .

all decomposition methods. An ekample of a join dependency along

with a discusston of its implications is deferred until the next

section.

L A
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1.3.3 COMMON ASSUMPTIONS:

The uniqueness assumption [BEER78) [BERN76) is an important,
though controversial, «concept in schema design. It states that
attributes must be-both syntactically and semantically distinct.
This ensures that the operations defined for relations (the
restrict, project and natural goin) result in meaningful tuples.
Furthermore a dependency is meant to imply a unique semantic
meaning. For example the use of EMP_NUMBER-S-)NAME_OF_CHILD to
imply the children of the employee as well as the children that
the employee will be responsible for on the company picnic 1is
said to violate the wuniqueness a;sumption. Another violation
follows from the ambiguous definition of an attribute such as

'age' if we use it to indicate:

1. the age of a child; and

2. the age of a wine bottle; and

3. a period in history.
Queries which join on ambiguousJattfibutes within the relation
will obviously be 1in error. Similarly the cléssic example is

given in [KENT81] for the case of the transitive dependencies:

1. Section -> Project; and

2. Project => Manager; from which we c¢an infer

3. Section -> Manager »

The manager implied or determined by 3 may not be the same type

of manager implied by 2, and thus a query to "Selegt all
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managers" may provide an ambiguous result including not only
Project Managers but Section Managers as well. Diagrammatic
representation such as the ER approach can be used to resolve

such ambiguities.

Following directly from the iuniqueness assumption 1is the
concept of a 'universal relation' in which we assume that all
information can be stored in one relation wusing all of the
attributes. Schemes are therefore simple projections onto
reduced sets of attributes from which we may recover the original
using é sequence of lossless joins. A complete discussion of the
implications of thgs may be found in [KENT811]; however, the
following probiems should be noted. Incomglete tuples, that is,
those with null entries for any attribute, pose problems under
this assumption. For example a foster child who has no employee
as a parent but who is to be recorded within the relation is one
case; another is the addition of a subsequent attribute such as
BUDGET which has no explicit relationship to any of the other
attributes. A further case would be the creation of two similar
relations with different semantic meanings such as R1 and R2
having (DEPT , BUDGET) and meaning

R1 Projected Budget,

R2 Committed Budget.

In all cases the assumption that a series of universal

tuples can record the information correctly is questionable.
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Normalization, as we shall see, i3 a partial solution to this
problem. In the case of the child ent}ty, we may create a scheme
where such a tuple could be entered ;ven though it does not
participate 1in the universal relation. Such a guple is said to
dangle [TSIC82). The latter instances require a modular approach
to the creatiﬁn of. universal relations with reduced scope. A
hospital database, for example, will certainly involve the use of
medical, financial, administrative and personnel data attribhtes
with many ihteractfons. To approach this in a modular fashion we
would cbnsider the attribdtes which concern each area separately
and theh study the i;:eractions of the a;eas for the given schema
design. The 'universal relation aésumptioh' is not quite as
universal as it implies! These factors lead one to conclude that
even though a formal set of axioms can be developed to cover

certain types of constraints there will always be situations

where the theory will require considerable human interpretation.

1.3.4 REPRESENTATION AND REDUNDANCY

When defining a 'good'! schema design it k6 18 common to

,describe ’its capability to 'represent' the. original scheme while

reducing any 1inherent 'redundagncy’'. Clearly these notions
require explanation. First, following the summary in [BEER78] we
can describe the representation of the schema in three ways,

namely:
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1. data representation - the relation(s) contain(s) only
valid tuples;

2. dependency representation - the relation(s) maintain(s)
all applicable dependencies; or

3. fuli representation - the relation supports both data
and dependencjes.

We. say that a schema ?epresents the data of the original
relation {if the natural -equijoin of the constituent schemes
yields the original relation. Hence we can use the lossless join

principle and decomposition property to constantly maintain this

relationship. On the other hand the maintainance of dependency

representation is more difficult to achieve.

We shall define that dependency representation for FD's |is

maintained

/

n
if and only if T = ( U d. ) .

4

That is to say that the closure of ihe union of all dependencies

di 1in the —constituent schemes must be the same as the original

closure. Consider the following brief example found in [DATES80]

using the scheme R(NAME, JOB,STATUS) with FD cover T :

v 1.« d1 : NAME -> JOB ;

e - 2. d2 : WOB -> STATUS ; and

377437 NAME -> STATUS.
In -this example decomposing with d3 gives

RY (NAME, STATUS) and R2 (NAME, JOB)

which does not support dependency d2 of the original scheme. An

L e s



- ‘ 1-29

s

extra 1integrity check will be r;quired to support the gxistence
of this inter-relational constraint and so this is not considered
a 'good' decomposition. If we use only those dependencies which
result in schemas from which we can recover the original FD cover
£hen we avoid the need to add these extra constraints. Using
MVDs in a similar manner has been proposed in [ZANI80] where a
'good' decomposition having 'complete relatability' is one in
- ]
which the FDUand MVD covers of the original relation R may be
derived from the FD and MVD covers of the sub-schemes R1 and R2,
Clearly the last form of representation maintaining both data and

dependencies 13 the preferred although as we shall see that this

i1s not always possible when seeking a schema without redundancy.

We say that a relation Ri is redundant:

if ‘and only if the join of all relations in the schema
without Ri yields the universal relation or

N

Similarily, an FD cover T is redundant: . |
] . \

+ : -
if and only if the schema ¢losure T may be derived from
. the union of all of the scheme covers, less cover Ti or
T+= (

Hucoco
-3
N’

Ca Ca
U
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EXAMPLE 1.4 An example of a redundant decomposition 1is
shown in figure 1-9. R2?k is redundant because R can be
rec}eated using a los;less join of R22 and R1 on b. A
non-redundant decomposition.could have been achieved instead

' . by using d3 and d4 to immediately get R1 and . R22.

Consider the scheme R (a b c d e f)

. . with the dependencies
' ©oodtr o ab=>=>f
d2 : e->->bed
.d3 : b=->=>af
d4 b->->cde.
Decomposing with d1 we~are left with
R (a b f) and
R2 (a b c de)

Using d2 to decompose R2 we have
Rt (a b f)
. R21 (a e)

. a" R22 (b c d e)

. An Example of a Redundant Decomposition
\ ‘ Fig. 1-9

. 1.4 NORMALIZATION

o 1.4.1 INTRODUCTION

In this section we discuss the potential anomalies and

redundancies that result from the use of certain schema designs

and review the process of normalization.







