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ABSTRACT

Many gases, including carbon dioxide and argon, have been considered as alternative
working fluids to air in a number of design studies for closed and semi-closed gas turbine
cycles. In many of these studies, it has been assumed that if the gas constant R and
isentropic exponent y are included in the speed and flow parameters, the compressor map
is applicable to other working fluids. However, similarity arguments show that the
isentropic exponent itself is a criterion of similarity and that the turbomachinery
characteristics, even when appropriately non-dimensionalized, will in principle vary as

the isentropic exponent of the working fluid varies.

A rotating compressor test stand was constructed to measure the aerodynamic
performance of a centrifugal compressor. The apparatus operates in closed cycle
arrangement to allow for testing of alternative working fluids. The performance of the
compressor was measured using air (y = 1.4), CO, (» = 1.29), and argon (y =1.67) as
working fluids to determine the influence of the isentropic exponent on the aerodynamic

performance of turbomachinery.

For the same value of non-dimensional speed, the pressure ratio, efficiency, and
choked flow are significantly different for the three test gases, confirming that the
isentropic exponent is an important criterion of similarity. The experimental results have
been found to be consistent with a CFD analysis of the impeller, and a meanline analysis
of the compressor stage. The changes in performance seen can be predicted reasonably
well with simple arguments based mainly on one-dimensional isentropic flow. These
arguments form the basis for correction procedures that can be used to project

compressor characteristics measured for one value of ¥ to those for a gas with a different

value.
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1.0 INTRODUCTION

While gas turbine engines used in power generation are relatively clean burning, the
carbon dioxide emitted by open-cycle gas turbine engines contributes to the greenhouse
gas contcnt of the earth’s atmosphere. Growing concern about global warming and
climate change makes it desirable to reduce the greenhouse gas emissions from all fossil

fuel combustion, including that in gas turbine engines.

The use of CO, as the primary working fluid in a semi-closed cycle has been
proposed as one method for eliminating the emission of CO, from gas turbine engines in
some applications. A clean hydrocarbon fuel, such as natural gas (CHy) and the oxygen
needed for combustion would be injected into the combustion chamber. The only
products of combustion would be water vapour and CO,. The water can be condensed
and removed, and the excess CO, generated by the combustion of the fuel can be bled

from the circuit and safely disposed of, or used industrially.

A number of design studies have been conducted to determine the viability of
semi-closed O2/CO, combustion gas turbine cycles. As will be discussed in chapter 3,
these studies address many important issues about the plant design and performance.
However, the authors have generally assumed that if the fluid properties are retained in
the speed and flow parameters, then a compressor or turbine performance map is valid for
any fluid that can be modelled as an ideal gas. As will be shown in the next chapter,
similarity arguments indicate that for an ideal gas, the performance of a turbomachine is
in fact a function of four non-dimensional parameters: appropriately non-dimensionalized
speed and flow parameters, the Reynolds number, and the specific heat ratio 3. The
influence of the Reynolds number is reasonably well understood and standard corrections
are available for predicting the performance of a turbomachine at a given Reynolds
number from performance data obtained for the same machine at a different Reynolds

number. However, there seems to be very little discussion in the literature of the
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influence of y on compressor and turbine aerodynamic characteristics. In a few studies,
the authors appear to be aware that matching of the speed and flow parameters for a given
compressor using two different working fluids will not necessarily result in the same
pressure ratio, but the magnitude of the change in pressure ratio that they predict is very
small. In addition, none of the authors seem to be aware that there is also potentially an

effect of the isentropic exponent on the efficiency of a compressor or turbine.

The present study was conducted to clarify the influence of 7 on turbomachinery
characteristics. It is part of a larger study related to semi-closed gas turbines using CO,
as the primary working fluid. The turbomachinery in such engines will see values of y
significantly different from that in air: About 1.29 for the compressor and as low as 1.18

at the turbine inlet condition (Irvine, 1994).

The study focused mainly on compressor characteristics but the implications for
turbines were also briefly considered. Three approaches were used. Firstly, the
characteristics of a small centrifugal compressor stage were measured for three different
working fluids: Air (y=14), CO» (r =1.29), and argon (y =1.67). Secondly,
computational fluid dynamics (CFD) calculations were conducted for the rotor for the
same working fluids. The computations were conducted at a constant Reynolds number,
which was not achievable in the experiment. In addition, the computations allowed the
choking mass flow rate to be determined, whereas it was not possible to achieve choking
in the test rotor. Also, a meanline analysis computer program was developed, and the
ability of loss correlations developed for air in predicting the performance of a
compressor using a working fluid other than air was evaluated. Finally, an attempt was
made to devise simple arguments, based mainly on one-dimensional and isentropic flow,
to explain the performance differences observed in both the measurements and the CFD

and meanline computations.
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2.0 SIMILARITY CONSIDERATIONS

2.1 BUCKINGHAM'S P! THEOREM AND DIMENSIONAL ANALYSIS

In fluid mechanics, as well as in other disciplines, a problem may sometimes be
solved directly by solving the equations of motion. However, for problems that are too
complex for analytical solutions, engineers and scientists often rely on dimensional
analysis as a means of expressing experimental data and physical relationships in a more
compact form. Dimensional analysis is a by-product of the principle of dimensional
homogeneity, which states that “the additive terms in an equation must have the same
dimensions in order for it to truly represent a physical phenomenon” (White, 1994). This
principle may seem self-evident, but it is an important concept in the development of the
method of dimensional analysis, and led to the conclusion that any dimensionally
homogeneous equation can be written in an equivalent and more compact dimensionless

form.

Buckingham (1914) presented an algebraic method for reducing the number of
dimensional variables to the more compact non-dimensional form. This technique is

referred to as Buckingham’s Pi theorem, and is based on the following principle:

If the solution to a problem depends on n physical properties, the number
of independent parameters v,, v,, ... , v, can be reduced by the number of
primary dimensions k that appear in these physical properties by non-
dimensionalization of the variables.  The solution, or dependent
parameter, will then be a function of these non-dimensionalized

independent parameters IT), I, ..., IT,.,.

Care must be taken to avoid duplication of the independent variables. For example,

if the performance of a prototype is assumed to be dependent on pressure, temperature,
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and density, it should be recognized that only two of these variables are independent, and
that the third can be obtained from an appropriate equation of state, such as the ideal gas

law.

The number of primary dimensions k is between 1 and 4, and in the SI system of
units, these dimensions are normally mass, length, time, and temperature (abbreviated
MLT6).! All other physical quantities have dimensions that are derived from these four
fundamental dimensions. For example, in the SI system, velocity has units of m/s, or

length divided by time (M’ T°'), and entropy has units of J/kgK, or m*s’K (L * T2 9"/ )-

To illustrate the concept of non-dimensional variables, let us consider a simple
example. Suppose one wished to develop an expression for the area of a rectangle. We
assume that the dependent variable, the area (4), is a function of two independent

variables: the length L, and width W of the rectangle.
A= f(L9 W)

Since there are two independent variables (n = 2) and one primary dimension
(length) present in the problem (k = 1), Buckingham’s Pi theorem implies that the
number of independent parameters can be reduced to a single parameter (n — k = /), or
criterion of similarity, by non-dimensionalization of the problem. One choice of
independent parameter could be the length to width ratio, or aspect ratio, of the rectangle.
The dependent parameter (area) must also be expressed non-dimensionally. Since it has

dimensions of length squared, we can non-dimensionalize the area by dividing by L °.

" In some cases, the mass dimension is replaced with a force dimension, but this set of fundamental

dimensions (FLT0) is no longer commonly used.
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The theorem then states that the non-dimensionalized dependent parameter should be a

function of the single dependent parameter:

12

By inspection, we determine that the function relating the normalized area to the
aspect ratio is: A/L’ = WIL. Therefore, by applying dimensional analysis, we have
reduced a two-variable problem to a single variable problem. Note that we could just as
easily have chosen to normalize the area by dividing by W* instead of L°, or defined the
independent parameter as the width to length ratio (W/L) and still arrive at a valid

solution to the problem.

Often, as in the above example, the non-dimensional parameters are fairly easily
determined. However, in more complex problems, it may not be possible to determine
the criteria of similarity by inspection. Buckingham provided an algebraic method for
determining the independent parameters in these cases. Although this method is not
presented here, most textbooks on fluid mechanics provide a discussion of the method.
An excellent and very readable summary of Buckingham’s Pi theorem, with examples, is
provided by White (1994). A more complete treatment of dimensional analysis and

similitude is provided by Kline (1965).

In the above example, application of Buckingham’s Pi theorem did not help much in
solving the problem, since the solution was already known. However, in cases where the
relationship between the dependent and independent variables is not known, the use of
dimensional analysis can greatly simplify the analysis, by reducing the number of
independent parameters that need to be varied experimentally. For instance, if the
relationship between the area and the geometry of the rectangle was not already known,
by applying Buckingham’s Pi theorem, we learn that we do not need to vary both the

length and width independently, but that we only need to vary the aspect ratio in order to
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arrive at the solution. This greatly reduces the number of experiments that we would
need to undertake in order to determine the relationship between the dependent and

independent parameters.

An additional benefit of using dimensional analysis is that it provides us with scaling
laws whereby one can use a smaller scale model to test the effects of certain parameters
on the full scale prototype (White). As an example, two geometrically similar airfoils
having the same ratio of span to chord length, (aspect ratio), will have the same
appropriately non-dimensionalized performance (e.g. lift and drag coefficient), provided
all of the independent parameters, such as the Reynolds number and angle of attack, are
the same in the model as in the full-scale prototype. This principle allows us to use
smaller and less expensive models in performance tests, and still allows us to predict the

actual performance of the prototype.

Finally, by grouping the independent parameters in non-dimensional form, it gives us
some insight into the physical phenomena involved in complex problems, and familiar
non-dimensional parameters will often appear in the analysis. This can greatly simplify
the analysis, especially when the influence of one or more of the independent parameters
is already well known. For instance, in the majority of fluid flows, one of the criteria of
similarity will be a Reynolds number in one form or another. The effect of Reynolds
number on most types of flows is well understood, and in many cases, as the Reynolds
number increases, its influence on the performance parameters decreases. The threshold
value beyond which the performance parameters are virtually independent of Reynolds
number depends on the nature of the flow, but it can often be estimated by comparison to
other similar flows. It is therefore possible to make predictions of the performance of a
full scale prototype based on tests conducted on a scale model, even in some cases when

not all of the independent parameters can be matched exactly.
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2.2 APPLICATION OF BUCKINGHAM’S P! THEOREM TO COMPRESSOR PERFORMANCE

2.2.1 Independent Parameters

In order to determine the independent non-dimensional parameters that govemn the
performance of a compressor, we must first list the independent dimensional variables
that are of importance. Assuming the working fluid is a perfect gas, it requires eight
independent variables to fully specify the performance of a particular member of a family

of geometrically-similar turbomachines:

aol\' Fo
N.D.m., orJ, or (\u,R.y
To) \po

where

N = rotational speed of the machine
D = characteristic length of the machine (typically its tip diameter)

m = mass flow rate
agr = /¥ RT,, = inlet stagnation speed of sound

Ty, = inlet stagnation temperature

Py; = inlet stagnation pressure

Poi = inlet stagnation density, p,, = P, / RT,, for a perfect gas
M = viscosity

R = perfect gas constant for working fluid

¥ = ¢p/c, = specific heat ratio of working fluid
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With eight independent parameters and four basic dimensions (mass, length, time and
temperature) Buckingham’s IT Theorem indicates that the independent parameters can be
grouped into four non-dimensional independent groups (or criteria of similarity). These

parameters are presented here without derivation:

(1) Speed parameter:

m, - L(LJ Eq.21

VI VPR

The speed parameter is effectively the Mach number based on the rotor tip speed.

(2) Elow parameter:

m, = ﬂ(i\/E ) Eq. 22

E)l D’ Y

The flow parameter can also be interpreted as the Mach number based on the axial

velocity through the machine.

(3) Reynolds number:

Re=PL Eq. 23
u

For centrifugal compressors, the blade speed at the impeller tip U/, and the vane
height at the tip b are usually used as the velocity and length scales in the Reynolds

number. Thus:
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Pal,b,

Re,, = Eq. 24
(4) Specific heat ratio:
y==2 Eq. 2.5

c,
The specific heat ratio relates changes in pressure to ideal changes in density and

temperature in a compressible flow ~nd therefore is also referred to as the isentropic

exponent.

All other performance parameters are then functions of these four independent

ﬁ—:,'I:ﬁ“(F(ﬁ] m;’{,._[l) ‘/:J Rewy}

In practice, turbomachines are often tested using a full scale prototype, using the

parameters:

service gas during the tests. In these cases, the geometric constants and fluid properties
are often omitted from these performance parameters, leaving the more familiar

quasi-dimensional performance parameters:

[T
P‘”,n fns X P o ,R"bz]

N

Note that there is one fewer criterion of similarity, since the isentropic exponent is a

fluid property that is constant for an ideal gas.
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Compressor performance is normally presented on a compressor map, with the
pressure ratio plotted against the mass flow parameter, and with lines of constant speed
parameter and efficiency also shown. Since compressors are normally designed and
tested using the same working fluid, the fluid properties are usually omitted from the
speed and flow parameters, and the isentropic exponent is not included as a criterion of
similarity. However, such a map is only valid for fixed values of both the Reynolds
number and the isentropic exponent. There is not normally a strong effect of the
Reynolds number on the performance of the compressor, except at very low values of
machine Reynolds number (Re;, < 90,000 for centrifugal compressors). Also, empirical
corrections to the efficiency are widely available in the literature, and minor corrections
can also be made to the pressure ratio and flow parameter (Strub et al., 1987) to account
for differences in machine Reynolds number between the test and operating conditions.
As will be discussed in the following chapter however, the literature provides virtually no

guidance on the influence of y on the performance map, and most authors have assumed

that the performance is at most a weak function of Y.

2.2.2 Dependent Parameters (Performance Parameters)

In compressors, the usual performance parameters of interest are the pressure ratio
and efficiency. These parameters can be defined in terms of static or stagnation
properties, and the efficiency can be defined as polytropic or isentropic. However, the
most widely used definitions of these parameters are the total pressure ratio, and

isentropic efficiency.

(1) Total Pressure Ratio:

The compressor total pressure ratio is defined as the ratio of the absolute stagnation

pressure at the discharge to the absolute stagnation pressure at the inlet:
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pr=tu Eq. 2.6

Fo

The pressure ratio is a simple means of expressing non-dimensionally the increase in total

pressure produced by the compressor.

(2) Isentropic Efficiency:

If there is no heat transfer into or out of the compressor, it can be shown that the
minimum compression work is for an isentropic process. The isentropic efficiency for a
compressor is thus defined as the ratio of the work input required for an isentropic

compression to the actual compressor work input at the same pressure ratio:

ﬂ hozs — h0|
W(‘ hoz - hm

e =

where the stagnation enthalpy h, = cpTy for a perfect gas. For an isentropic process

involving an ideal gas:

Thus, if the working fluid can be modelled as an ideal gas, the isentropic efficiency
can be expressed as a function of the measured inlet and discharge stagnation pressures

and temperatures:

[POZ] r _l
- P
,7=Tozs T0| —\o Eq. 2.7
7:)2_To| T02 -1
T,
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The temperatures and pressures in Eq. 2.7 must be expressed in absolute terms.

The above definitions of these performance parameters are used exclusively
throughout the text, and future references to pressure ratio and efficiency represent the

total pressure ratio and isentropic efficiency.

Real Gas Effects:

One of the assumptions of the ideal gas approximation is that the fluid properties are
constant. However, in real gases, the properties ¢, and y vary with temperature, and to a
lesser extent with pressure. It was therefore necessary to examine the validity of using

the ideal gas approximation for the three test gases.

For the modest pressure ratios measured in the experiments, the fluid properties of
all three test gases did not vary significantly with pressure. The greatest temperature
changes seen in the experiments were for argon, where the difference between the inlet
and discharge temperature was as high as 200°C. For argon, there is virtually no
variation in fluid properties over a wide range of temperatures, and like other monatomic
gases, argon can be modelled successfully using the ideal gas assumption of constant
fluid properties under normal circumstances. For air and COs, the greatest change in
temperature seen in the experiments was approximately 100°C. Within this range of
temperatures, there is only a 0.4% change in the isentropic exponent and specific heat for
air. Of the three test gases, the fluid properties of CO, vary the most with temperature,
and the change in isentropic exponent for the range of temperatures in the experiments

was approximately 3% for CO,.

These variations in fluid properties are considerably lower than the maximum
variations allowed by the Performance Test Code (ASME PTC 10, 1997), which

recommends the use of ideal gas relations when the difference between the inlet and
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discharge isentropic exponent is less than 9% for pressure ratios up to 4. At lower
pressure ratios, the difference in fluid properties can be as high as 12%, without any

significant error in the efficiency calculation (PTC 10, 1997).

For the temperature range and pressure ratios seen in the experiments, use of the
ideal gas approximation results in a deviation in the calculated value of the efficiency of
less than 1% for all gases at all pressure ratios, when compared to the equivalent real gas
efficiency calculations. In general this deviation is less than the uncertainty in the
efficiency measurement (which is discussed in chapter 5). Thus, over the range of
temperatures seen in the experiments, the variation in fluid properties for all three test
gases was small enough that the fluid properties could be considered constant, and the

isentropic efficiency could be calculated using the ideal gas approximation.

In the calculations, the specific heat at constant pressure ¢y, and the isentropic
exponent y were evaluated at the average temperature between inlet and discharge. The

methods used to evaluate the fluid properties for all test gases is described in section 5.4.
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3.0 LITERATURE REVIEW

3.1 MorivaTion

Environmental concemns have created a need to reduce the emissions of carbon
dioxide and other airborne pollutants produced by fossil fuel burning processes, including
gas turbine engines. It is estimated that gas turbine power generation will account for
24% of world-wide electricity production in the period from 1995 to 2004 (Stein, 1996).
The reduction of CO, emissions by these plants therefore represents a significant
reduction in the total global greenhouse gas emissions. In the 1996 Kyoto accord,
Canada and 37 other developed countries agreed to reduce their emissions of greenhouse
by 5.2% compared with their 1990 levels, by the year 2010. Although there is some
concern that Canada and some other countries will no longer honour the accord, the
Ministry of Natural Resources Canada, as well as other national and international
organizations, are currently working to develop economically viable technologies that

will allow them to meet the goals of the agreement.

Many methods have been propesed for capturing the CO, emissions of fossil fuel
combustion processes using air as the oxidant. However, the capture of CO, emissions
for gas turbine power generation represents both a significant increase in capital cost, as
well as an additional energy usage that reduces the overall efficiency of the plant. The
penalty in efficiency is estimated to be between 10% and 32%, and the power generation
costs are increased by 30% to 130% when compared to cycles without CO> emission
control (Zhou & Gauthier, 1998). In addition, CO: capture does not necessarily reduce

the emissions of other airborne pollutants, such as nitrous oxides (NOy), and sulphur.

An interesting alternative to CO, capture is the use of a closed cycle gas turbine
using CO; as the working fluid (Fig. 3.1), as proposed by De Ruyck (1992) and Mathieu

et al. (1993). Oxygen, and a clean burning fuel such as natural gas, are injected into the
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combustor in stoichiometric amounts. Thus the only products of combustion are water
vapour and CO,. Rather than extracting CO, from the exhaust gases, it can be bled from
the circuit and safely disposed of, or stored for later use. Other airborne pollutants are
eliminated, thus introducing the possibility of a zero-emissions plant (Jackson et al.,

2000).

Fuel
Air
O Air Separation
; —— ¢+—————
CO. Disposal Unit
t— ,
' on
| Combustor |
Compressor Turbine
%\'\L Y / Generator
Condenser _\/\/W*/ Heat Exchanger

w| W

Coolant

Figure 3.1: Schematic Representation of a Closed Cycle 0,/CO,

Combustion Gas Turbine Power Generator
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Although an additional energy usage is required to produce oxygen for the
combustion process, it is generally believed that the additional energy requirements of a
closed cycle plant are much lower than those of air-cycle plants employing CO,
sequestration, and that such cycles may be economically viable (Zhou & Gauthier, 1998,
Ulizar & Pilidis, 1999). An additional advantage of the closed cycle gas turbine is that by
varying the circuit pressure, the power output of such cycles can be reduced during off-
peak periods without changing the operating point of the compressor or turbine, thus

allowing the plant to be operated at its peak efficiency at all times.

3.2 ALTERNATIVE WORKING FLUIDS FOR GAS TURBINE CYCLES

The concept of using an alternative working fluid to air in gas turbine engine cycles
was first proposed as early as the 1940°s (Ferguson, 1963, Shepherd, 1956, Lee, 1954).
Various investigators at NACA investigated the advantages of using gases other than air
for research into compressor acrodynamics at high Mach number (Shepherd). In
particular, these researchers recognized the advantages of using gases with high
molecular weights. Since such gases have low sonic velocities, high aerodynamic
loading can be achieved at lower rotational speed, and the size of the machine is also

reduced, due to the high density of the gas.

These early researchers also recognized the isentropic exponent as a criterion of
similarity in the performance of turbomachinery, and there was some research conducted
on the effects of changing the working fluid on compressor performance, mostly using
Freon 12 as the working fluid (¥ = 1.12 at 1 atm. & 20 °C). von Doenhoff & Braslow
(1953) concluded however that the isentropic exponent does not have a significant effect
on compressor performance. Although Shepherd expresses some doubt about these
findings, it appears that no further research has been conducted to address specifically the
effects of y in terms of compressor performance, and it is widely assumed in the recent

literature that the isentropic exponent is not an important criterion of similarity.
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