INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

in the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and continuing
from left to right in equal sections with small overiaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6 x 9" black and white
photographic prints are available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly to order.

ProQuest Information and Leaming
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

UMI

KMOT: A MOBILE CODE TOOLKIT FOR
RESOURCE-CONSTRAINED PORTABLE DEVICES

By
Yang Wang
A thesis submitted to
the Faculty of Graduate Studies and Research
in partial fufillment of
the requirements for the degree of
Master of Computer Science

Ottawa-Carleton Institute of Computer Science
(OCICS)

Carleton University
Ottawa, Ontario
April 2001

©Copyright

2001, Yang Wang

i+l

ofCarada " GuCanada o

uisitions and Acquisitions et

ibliographic Services services bibliographiques

365 Wellington Street 365, rue

Ottawa ON K1A ON4 Otawa ON K1A ON4

Canada Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

Your fip Votre réfdrence

Our Slo Notre rdidvance

L’auteur a accordé une licence non
exclusive permettant a la
Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L’auteur conserve la propriété du
droit d’auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou autrement reproduits sans son
autorisation.

0-612-66871-1

Canadi

The undersigned recommend to the Faculty of Graduate Studies and Research
Acceptance of the thesis

KMOT: A MOBILE CODE TOOLKIT FOR
RESOURCE-CONSTRAINED PORTABLE DEVICES

Submitted by Yang Wang B.S

In partial fulfillment of the requirement for
The degree of Master of Computer Science

" ” Dr. Thomas Kfinz, Thesis Supervisor

EA DD

Dr. Frank Dehne, Director of School of Computer Science

Carleton University
April 23, 2001

Abstract

With the convergence of two technological developments, wireless communication and
portable information appliances, a new paradigm of computing called mobile computing
is becoming a reality. However, due to the intrinsic constraints of mobility such as small,
slow, battery-powered portable devices, and variable low-bandwidth communication
links, the design and deployment of non-trivial mobile applications are complicated. How
to cope with these constraints is a hot research area as well as a demand of the PDA
market, especially with the advent of the PalmPilot. One promising technique to address
this problem is mobile code. Code mobility can make mobile applications adapt to the

context changes and hence improve its performance on mobile devices with the aid of a

proxy server.

In this thesis, we present our experiences from porting an existing mobile code toolkit
for Windows CE (DMOT) to a new kind of emerging resource-constrained portable
device, Palm IIc. The new version of DOMT for this environment is called KMOT:
KVM-based Mobile Object Toolkit. KMOT is designed as a platform for mobile code
applications on WinCE and PalmOS. Its performance has been evaluated by several
benchmarks, and hence we can conclude that, under certain conditions, mobile code is a
feasible artifact to overcome the constraints in mobile computing, even for resource-

constrained portable devices, and KMOT is a useful toolkit to realize the code mobility.

Acknowledgements

My graduate study would not have been possible without the technical and moral support
of many people. First and foremost, I would like to sincerely thank my thesis supervisor,
Dr. Thomas Kunz, for providing immeasurable guidance and enthusiastic encouragement
over the course of my thesis research. He introduced me the field of mobile computing,
and provided me with many opportunities for both personal and professional growth:
reading and writing research proposals; reviewing technical papers; writing and
presenting conference papers; and programming experiments to validate ideas. These
opportunities opened a door for me in the research community, and make me perceive
that academic research is an enjoyable thing in life. I consider myself fortunate that I had

access to his valuable supervision.

This work was financially supported by the Bell Mobility, which I gratefully
acknowledge to provide me with the funds with which to complete my graduate study. I
am also grateful to the staff members of the Department of Systems and Computer
Engineering who gave me the administrative and technical support to help finish my
thesis. In particular, I wish to thank Salim Omar for freely sharing with me his
considerable experience in Java and DOMT, and Thomas Barry for patiently setting up

the environment. Their work made my research start up quickly and proceed smoothly.

I will have fond memories of my days in Carleton University due to not only its
beautiful campus but also my good friends. They always bring me happiness in life, and

teach me how to take care of myself when I live alone. The great time together with them

iv

let me know in addition to storm, life still has sunshine. I will remember their name no
matter where I go: Shixin Wei, Lei Tan, Ying Wang, Hua Guo, Yan Cui, Ping Li, Angle
Tao, Chuncai Yang, Maoyu Wang, Liang Qin, Xuejun Xu, Chen Huang, Xuqing Wu, and

Zhaoshu Zeng. Thank you.

Last but not least, I wish to thank my family for their constant moral support. My
mother is always confident of her son, and keeps me motivated to achieve new goals of
life continuously. Her support has been a source of encouragement to me. My wife did
the best for me only in a short period during my graduate study due to her health. I will
treasure her love. This thesis is also dedicated to the memories of my father whose
optimistic and positive attitudes to life always inspire me to face the difficulty

confidently.

Contents

List of Tables
List of Figures

Chapters

1 Introduction

1.1 Wireless Data Networking
1.1.1 Wireless Network for Circuit-Switched Data
1.1.2 Wireless Network for Packet-Switched Data
1.2 Architecture of General Mobile Environment
1.3 Personal Digital Assistants
1.4 The Challenges of Mobile Computing
1.5 The Adaptive Approach
1.5.1 The Paradigms of Mobile Computing
1.5.2 DOMT: Our Motivation and Approach
1.6 Contributions of the Thesis
1.7 Thesis Road Map
Background
2.1 Introduction
2.2 Distributed Systems
2.2.1 Distributed Objects
2.2.2 CORBA
2.2.3 JavaRMI
224 DCE
2.3 Mobile Code System
2.3.1 Execution Model
2.3.2 Mobile Code Mechanisms

2.3.3 Mobile Code Paradigms
2.3.4 Java Language: A Case Study
2.4 Thread and Process Migration
2.5 Summary
DOMT Overview
3.1 DOMT Architecture
3.1.1 Library
3.1.2 Proxy Layer
3.1.3 Reference Layer
3.14 Transport Layer
3.2 RMI Protocol
3.3 Distributed Garbage Collection
3.4 Discussion
Design and Implementation of KMOT
4.1 Introduction
4.2 Fundamental Support
4.2.1 Object Serialization
4.2.2 Distributed Object Graph

4.2.3 Proxy Objects and Class Reflection

4.3 KMOT Architecture
4.3.1 Three Layer Structure
4.3.2 Monitor

4.4 Distributed Recursive Method

4.5 Scheduling Strategy

4.6 Implementation

4.7 Programming Model

4.8 An Execution Scenario

4.9 Limitations

Evaluations

5.1 Functionality

5.2 Performance

vii

25
28
31
33
35
36
37
37
40
41

R S

48
48
48
51
56
60
61
63

66
73
73
75
76
78
78
80

5.2.1 Experimental Setup
5.2.2 Benchmarks
5.2.3 The Performance of Basic Mechanisms
5.23.1 Object Serialization and Migration
5232 Class Reflection
5.23.3 Remote Method Invocation
5.2.4 KMOT in Mobile Environment
5.24.1 Bandwidth Effects
5.24.2 Platform Effects
5.2.5 Performance of Scheduling Strategy
6 Related Work
6.1 Mobile Aware Adaptation
6.1.1 Application-Transparent Adaptation
6.1.2 Application-Aware Adaptation
6.2 Mobile Code Toolkits
6.2.1 Java-based Toolkits
6.2.2 Other Language-based Toolkit
6.3 Summary
7 Conclusion and Future Work
7.1 Thesis Contributions
7.1.1 Object Serialization Protocol
7.1.2 Class Reflection
7.1.3 Distributed Object Graph
7.1.4 Distributed Recursive Method
7.1.5 Random Greedy Strategy
7.2 Conclusion
7.3 Future Work
References
Appendix A

viii

80
81
82
83
86
87
88
88
90
92
94
95
95
96
98
99
101
104
106
106
107
107
107
108
108
109
110
113
118

List of Tables

5.1 Comparison between the three toolkits
5.2 Comparison between Serialization Protocol
5.3 Tree Moving

5.4 Array Moving

5.5 Local Method Invocation (Searching)
5.6 Local Method Invocation (Sorting)

5.7 Remote Method Invocation (Searching)
5.8 Remote Method Invocation (Sorting)
5.9 Migration (57.6Kpbs)

5.10 Migration (19.2Kpbs)

5.11 RMI (57.6Kpbs)

5.12 RMI (19.2Kpbs)

80
83

86
86
87
87
90
91
91
91

List of Figures

1.1
3.1
32
33
34
35
4.1
42
43
44
45
4.6
4.7
4.8
49

Architecture of a Wireless Network
DOMT Architecture

Proxy Objects with their associated Objects
DOMT Object Migration

DOMT LMI Operation

DOMT RMI Operation

KMOT Stream Format

Object Migration

Migration Categories

Snapshots for Object Cache
Method Invocation

DOMT Communication Setup
KMOT Architecture

Nested Method Invocation

RGS Scenario |

4.10 RGS Scenario 2

4.11 KMOT Execution Time
4.12 Tracing Problem in ARGS
4.13 KMOT Execution Scenario

5.1
5.2
5.3
54

Experimental Testbed Configuration
KOMT Object Migration

RMI Performance

RGS Performance

37
38
38
42
43
50
52
53
54
56
60
62

69
69
71
71
75
81
89
90
92

Chapter 1

Introduction

With the convergence of two technological developments, wireless communication
facilities and portable information appliances, a new paradigm of computing called
mobile computing is made a reality. Mobile computing is distinguished from classical,
fixed-connection computing by the characteristics of many resource constraints such as
small, slow, battery-powered portable devices, and variable low-bandwidth
communication links. These constraints are not artifacts of current technology, but are
intrinsic to mobility. They complicate the design of mobile information systems and
require rethinking traditional approaches to information access and application design. In
order to overcome these challenges, various computing paradigms and techniques are
proposed and investigated. In this chapter, we will introduce some basic concepts and

issues pertaining to mobile computing and define the goal of the thesis.

1.1 Wireless Data Networking
Wireless networking technologies allow the users carrying portable computers to access
the capabilities of the global network at anytime without regard to their location or

mobility. These technologies are highly application-oriented. Circuit and packet switched

Chapter | Introduction 2

communications are the two networking alternatives. Each one of them is provided
through a variety of technology offerings.
1.1.1 Wireless Network for Circuit-Switched Data
Cellular networks [39] and cordless telephony [39] are two main current systems utilizing
circuit switching technology. Although voice was the first major application for these
systems, they have evolved to provide data circuits through the wireless infrastructure.
Cellular networks such as GSM [34], TDMA, and CDMA [10] are suitable for wide-area
mobility which features slow and unreliable wireless data transmission, whereas cordless
systems, for instance CT2 [39], or DECT [7] can be applied to local-area mobility such as
conference rooms, university campuses, etc. with relatively high-speed data transmission.
Circuit switching technology is optimized for isochronous data traffic transmission and
hence, suitable for applications with a large amount of data to be transferred smoothly.
1.1.2 Wireless Network for Packet-Switched Data
Circuit-switched data is a somewhat selfish way of using limited resources. On the
contrary, a wireless packet-switched data service is designed for sharing both radio
resources and network resources. There are mainly two alternatives: mobile data network
[43] and wireless local area networks (WLANSs) [39]. They both employ packet switching
technology and are ideal for asynchronous data traffic transmission, which is the
characteristic of applications with short, bursty data transmission patterns like in web
surfing.

Mobile data network can be generally characterized as providing high mobility, wide
ranging communication to the users. The typical systems are ARDIS [43], CDPD [21],

and the emerging GPRS [43]. These technologies provide economical means for the

Chapter 1 Introduction 3

realization of mobile computing. However, due to physical layer constraints, these
systems suffer from low-speed data transmission, typically on the order of 9600 b/s. In
order to overcome this barrier, the combination of GPRS and EDGE (enhanced data rates
for global evolution) promises to improve the utilization of the radio network and provide
the potential for a whole range of mobile multimedia services in such fields as Internet
and Intranet.

Wireless local-area networks (WLANs) can be viewed as providing low-mobility
high-speed data communications within a confined region, e.g., a campus or large
building. Although WLANSs have been evolving for a few years, the success of efforts to
standardize them is very limited. The market is active with various products whose data
rate range from hundreds of kb/s to more than 10 MB/s depending on link technologies.
Roughly speaking, these technologies can be divided into two categories: using radio
frequency or using infrared. Radio frequency technology recently witnessed a new
advance called Bluetooth. There are two overall network architectures for designing of
WLANS. One is a centrally coordinated and controlled network in which base stations
exercise overall control over channel access. The other type is the self organizing and
distributed controlled network where all mobile devices have the same function and
networks are formed ad-hoc by communication exchanges among mobile devices.
Typical WLAN systems are Motorola’s Altair, NCR’s WaveLAN, Proxim’s RangeLAN,

WinDATA's Freeport, and Cabletron’s Freelink.

Chapter 1 Introduction 4

1.2 Architecture of General Mobile Environment

The wireless architecture partially inherits the cellular concept, adopting fixed backbone
networks extended with a number of mobile hosts (MH). The fixed backbone connects
fixed hosts called Mobile Support Stations (MSS), or Base Stations (BS). The radio
coverage area of an individual base station is called a cell which could be a real cell as in
cellular communication networks or a wireless local area network. Figure 1.1 displays the

architecture of a wireless network [22].

Fixed Network
Mbps to Gbps

Figure 1.1 Architecture of a Wireless Network
Wireless networking allows the roaming mobile hosts to communicate with other units,
mobile or fixed, only through the base station of the cell in which it resides. As a mobile
host moves, it may cross the boundary of its current cell and enter a new cell covered by
a different base station. This process is called handoff, which can transfer a call in
progress on a radio channel automatically to a new radio channel without interruption to
the call. However, management of the handoff process in data transmission is non-trivial

due to the limited tolerance to information loss.

Chapter 1 Introduction 5

1.3 Personal Digital Assistants

Since the invention of computers, their capability, size and form factor experienced
dramatic changes from mainframe to desktop to palmtop, accompanied by increasing
performance and decreasing cost. Personal digital assistants (PDAs) are one of the great
successes along these lines. A PDA is effectively a handheld PC, capable of handling all
the normal tasks of its leather-bound ancestors—address book, notepad, appointments
diary, phone list as well as other applications such as spreadsheet, word processor,
database, financial management software, clock, calculator and games. With equipment
for wireless connectivity, PDAs have achieved another giant leap in their capacity since it
is no longer necessary for them to connect to the PC or laptop through cables and cradles.
Synchronization can be achieved through an infrared port or new radio technologies such
as Bluetooth. This capacity can be also extended to communicate with WLANS, inducing
an affordable reality to many powerful applications represented by PalmPilot in the
mobile application market.

PalmPilot enables mobile users to manage their critical personal and business
information on their desktop and remotely. They obtained market leadership with their
distinguished features including shirt-pocket size, an elegant graphical user interface, and
an innovative desktop docking cradle which facilitates two-way synchronization between
the PC and the PDA. With the launch of the Palm VII devices, which have the capability
of wirelessly accessing the Internet, great interest in mobile computing in the context of
PalmPilot has arisen in both the industrial and the academic community. Currently,
several well-known projects such as TACOMA [24] and Grasshopper [18] have been

migrated or are in the process of being migrated to the PalmPilot platform.

Chapter 1 Introduction 6

1.4 The Challenges of Mobile Computing

Wireless networking technologies, together with portable devices set up the fundamental
structure to mobile computing, but also pose new challenges. The principal challenges
faced by a mobile application stem from three essential properties of mobile computing.
® Wireless Communication

The common property of wireless technologies we discussed above is that the signal or
data has to go through an air space with various barriers, which may interact with the
signal, block the signal path and introduce noise and echoes. These factors may result in
weak connectivity characterized by lower bandwidths or high bandwidth variability,
higher error rates, and more frequent spurious disconnections. As a consequence, the
quality and performance of wireless connections is much worse than that of wired
connections due to the techniques adopted to overcome these difficulties such as
retransmissions and error control protocols.

® Portability

In addition to the weight and limited input systems, portable devices, especially like the
PalmPilot, still have many other constraints: low power, hightened risk of data loss, small
user-interfaces, and limited on-board storage. For example, the Palms V weights 115g at
a size of 115mm x 77mm x 10mm and at the same time is equipped with a 160x160 pixel
backlit screen. These limitations are inherent properties of portable devices, and add a
new dimension to the design of applications for mobile devices.

® Mobility

Mobility is a unique feature in mobile computing. This advantage introduces other

challenges: the whole configuration of the system, including fixed and mobile hosts,

Chapter 1 Introduction 7

changes dynamically. Assigning a fixed topology is no longer valid in mobile computing.
Location management adds extra cost to locate mobile elements when computing is in
progress. Connectivity becomes highly variant in performance and reliability, the number
of devices in a network cell changes with time, and so do both the load at the base station
and bandwidth availability.

These challenges require mobile application designers to rethink the traditional design
approach to reflect the new constraints. For example, mobile applications should
minimize dependence upon data obtained over such limited, unreliable connections and
data stored in limited, unreliable resources on a mobile host. Finding approaches to
overcome these challenges and to improve application performance is a vital and
interesting problem. The techniques proposed range from system level to application
level.

Data hoarding [23] and lazy write-back are simple system-level support for
disconnected operation. The principle of this technique is that when a network
disconnection is anticipated, data items and computation are moved to the mobile client
to allow its autonomous operation during disconnection. Upon reconnection, updates
performed at the mobile hosts are reintegrated with updates performed at other sites.
Update reintegration is usually performed by re-executing the log at the fixed host. Data
hoarding indicates that the more autonomous a mobile client, the better it can tolerate
network disconnection. A critical issue in this technique is how to anticipate the future
needs of the mobile unit for data. One approach is to allow users to explicitly specify
which data items to hoard. Another approach is to use information about the past history

of data access to predict the future needs for data. Another technique to hide both round-

Chapter 1 Introduction 8

trip latency and short disconnection is operating asynchronously. In asynchronous
operation a client sends multiple requests before asking for any acknowledgment. These
techniques have the potential to mask some network failures. Low bandwidth can be
increased effectively by certain software techniques. For example, filtering and
compressing the data stream between a client application on a portable device and a
server executing on a stationary host sometimes almost double the throughput [2, 13, 25,
55]. This filtering and compression are generally realized at the system-level by
employing a “split-TCP” approach based on the client-proxy-server model which will be
discussed later, and hence is transparent to the application-layer protocol (such as HTTP).
However, this technique also suffers from an important flaw. The mobile client has to
recover the transformed data stream by consuming some resources. For example
uncompressing the data stream will consume CPU cycles and battery power, which will
degrade the performance and undermine portability—users may have to recharge
frequently. Another set of system-level techniques provides an end-to-end approach,
where “Wireless Logical Link Control (WLLC) [51] “ is designed to deal with the
specificities of the wireless link. WLLC resides directly below IP with the aim at
reducing the error rates on the wireless link. It has been shown [14] that the interaction of
those mechanisms in the link layer (here, WLLC) and the transport layer (here, TCP)
becomes beneficial if the error rate of the network exceeds a given threshold. The
advantage of the end-to-end approach is that it does not imply any change in semantics of
any of the protocols in the TCP/IP protocol suite. However, it must be also recognized
that the use of error correction in the link layer will introduce variable delays, which will

be observable by the application. High bandwidth variability can be approached at the

Chapter 1 Introduction 9

application level by adapting to the currently available resources, providing the users
with a variable level of quality of service.

Power consumption is another main concern in mobile computing since the battery
size and weight have to be limited to some small range for easy portability. There are
several important approaches from hardware to software to save power [17]. (1) Battery
size can be reduced by greater levels of VLSI integration and multichip module
technology. (2) Voltage can be reduced by redesigning chips to operate at lower voltages.
(3) Clock frequency can be reduced by trading off computational speed for power saving.
Other power-saving methods come from management software which can power down
individual components when they are idle, for example, spinning down the internal disk
or turning off screen lighting, even leading the computer into a doze mode in which clock
speed is reduced and no user computation is active. Doze mode will return to normal
operation upon receipt of a message.

Coping with limited storage is not a new problem in mobile computing. Solutions
include compressing file systems, accessing remote storage over the network, sharing
code libraries, and compressing virtual memory pages [16). However, due to network
disconnections, these network-dependent technologies are less appropriate for mobile
computers. A novel approach to reducing program code size is to interpret script
languages, instead of executing compiled object code, which are typically many times the
size of the source code. The typical examples are General Magic’s Telescript and Apple
Technology Group’s Dylan and NewtonScript. An equally important goal of such
language is to enhance portability by supporting a common programming model across

different platforms.

Chapter ! Introduction 10

Although these techniques attack some inherent challenges of mobile computing, they
do not address the problem of deploying a non-trivial application on the resource-
constrained mobile devices. Here, non-trivial applications refer to those which have a lot
of CPU-bound work as well as require a large address space to execute. These
applications are typically power consuming, such as a MP3 player. In order to achieve
this goal, offloading computationally intensive application components from portable
devices to more powerful servers in the access network is a promising approach. This
kind of computation migration results in an adaptive application whose efficiency has

been demonstrated in [1, 25, 30].

1.5 The Adaptive Approach

In mobile computing, adaptation means mobile applications need to take advantage of the
changing availability of resources in the mobile environment to adjust their behavior, so
as to maintain the semantics of the application for the user, and at same time achieving
better overall performance. Due to the different nature between the wired and wireless
network, an adaptive application is usually built based on a new kind of computing
paradigm known as Client-Proxy-Server model to keep the application server in the
access network unchanged.

1.5.1 The Paradigms of Mobile Computing

The Client-Proxy-Server Model is considered commonplace in today’s heterogenous
network environments. This model is generated by adding another component to the
traditional Client-Server Model. It takes the form of an intermediary placed between two

communicating end-points such as a client and server. The purpose of the intermediary is

Chapter 1 Introduction 11

to improve the quality of the network as perceived by the client along some dimension
which is constrained and blur the boundary of functionality between client and server.
Hence, this architecture somewhat alleviates the impact of the limited bandwidth and the
poor reliability of the wireless link. The typical functionality at the proxy includes
support for messaging and queuing for communication between the mobile client and the
proxy, moving some responsibilities from the client to the proxy. The proxy can also
cache data to minimize long round trips on the network and thus reduce application
response time.

However, this model also has an important drawback, the communication between a
mobile host and a correspondent host in the access network is no longer “direct contact”,
since they are interacting through a “relay” (i.e. the proxy host). This invalidates the end-
to-end semantics of a transport protocol, and may jeopardize some application layer
protocols like fip or rlogin, which assume end-to-end reliability from TCP. In addition to
this, security is another problem to proxies, unless authoring mechanisms are introduced.
1.5.2 DOMT: Our Motivation and Approach
Adaptation has different targets ranging from those attempting to alleviate the effects of
congestion and weakly connected operations to User Interface Management System
which attempt to adapt to the display capabilities through battery management systems
within the operating system. Adaptation can be realized in different components of the
systems with different technologies. The rise of middleware has generated interest in
providing a generic adaptation architecture and mobile code techniques provide a feasible
approach to make it a reality. DOMT [30] is a mobile code toolkit implemented as a

middleware based on Java technology for WinCE to reflect the confluence of these two

Chapter |1 Introduction 12

technologies. It adopts the application-aware strategy to handle the mobile characteristics
of the environment, and employs the mobile code technique to support the design of
adaptive applications. The fundamental mechanisms provided by this toolkit are dynamic
object migration and remote method invocation. The key task of the programmer in
building such applications with DOMT is to define movable objects. The toolkit runtime
system can dynamically divide the program into portions that run on the mobile client
and portions that run on the proxy server according to the current environment
parameters. The two parts communicate by means of remote method invocations.

DOMT is a promising approach to support the building of adaptive applications.
However it does not run on the resource-constrained portable devices like PalmPilot. We
noticed that this phenomenon also happens in many projects like Coda, Odyssey, Rover
and BARWAN which are designed for supporting adaptive applications on various
mobile platforms, including PDAs. Only very few studies [24] focused on building
applications on PalmPilot and identify the benefits and tradeoffs involved. As a
consequence, a wider acceptance of adaptive application based on code mobility is
presently hampered by the fact that the soundness of the abstractions and mechanisms
proposed is not verified by quantitative evaluations and experimental evidence. Hence,
our motivation is twofold. First, we build a mobile code toolkit called KMOT (KVM-
based Mobile Object Toolkit) for these portable devices. Second, based on this toolkit,
we try to evaluate the efficiency of code mobility of an application between a resource-
constrained portable device and its powerful proxy servers. Our approach is to extend
DOMT to PalmPilot devices with KVM as a porting platform. KVM is a scaled-down

version of Java Virtual Machine for resource-constrained portable devices. However, due

Chapter 1 Introduction 13

to the limitations of the KVM technology, some fundamental functions and mechanisms
used by DOMT are not provided, and the architecture adopted by DOMT cannot be
reused directly under the scarce memory of PalmPilot device. Therefore, KMOT is far

from a simple compile-and-run portability exercise.

1.6 Contributions of the Thesis

The contributions of the thesis can be summarized as follows:

® Extending DOMT to PalmPilot platform as KMOT, in which the mechanism to
support object migration, construction of distributed object graph and remote method
invocation are provided. This mechanism is based on Java Serialization and Class
Reflection which are not present in KVM.

@ The architecture of DOMT is adjusted for KMOT. A new implementation method,
i.e., Distributed Recursive Method, for Nested Method Invocation is realized which
can simplify this kind of method invocation on resource-constrained mobile devices.

@ A performance evaluation of dynamic object migration between resource-constrained
portable devices and the proxy server is presented.

® Early insights “KMOT: A Mobile Code Toolkit for Resource-constrained Portable
Devices” are published in Proceedings of the Symposium on Software Mobility and

Adaptive Behavior, pp 89-97, York, United Kingdom, March 2001.

Chapter 1 Introduction 14

1.7 Thesis Road Map

There are 7 chapters including this one in the thesis. They are organized as follows. In
Chapter 2 we survey technologies to support adaptive application design. One promising
technique is mobile code, which can make mobile applications adapt to the context
changes dynamically and hence improve the application performance on mobile devices
with the aid of a proxy server. In Chapter 3, we give a brief overview of the DOMT
Toolkit’s abstractions, architecture, and its fundamental functionality. DOMT is our
starting point to realize KMOT. Chapter 4 outlines the design and implementation of
KMOT including its fundamental support and its architecture as well as its limitations.
Chapter 5 provides an evaluation of KMOT. Experimental setup and results are
presented. Chapter 6 discusses the related work including some well-known mobile-
aware adaptive systems such as Coda, Odyssey and Rover as well as other mobile code
systems. Finally, Chapter 7 draws our conclusion and raises some problems for future
work. Appendix A describes our further research on the strategies of scheduling objects
between the mobile client and its proxy server so as to improve the application

performance.

Chapter 2

Background

2.1 Introduction

Due to the well-known characteristics of mobile computing, we need the applications to
adapt to the changing constraints of the resources available in the environment in a quick
manner. In order to achieve this goal, one of the approaches requires that the computation
and communication between the client and its proxy server can be traded off in the
progress of computing. By moving computational components from the mobile device to
its powerful server, or vice versa, the communication cost such as the bandwidth
requirement, and the battery drain can be reduced dramatically. A component in an
object-oriented program can be a group of objects to accomplish some task. Component
movement can be done in an offline or online manner, depending on the application
properties. The offline approach requires the application designer to figure out the
program components to reside at different sites prior to their execution. This approach
will naturally result in a distributed object computing system. CORBA [48], DCOM [6]
and Java RMI [54] are typical object-based distributed systems to realize this approach.
The online approach is more flexible than its offline counterpart since it can ship the

components during the program execution, and hence can adapt to the mobile

15

Chapter 2 Background 16

environment more gracefully. The effect of this approach is well-exemplified in mobile
code techniques.
In this chapter, we discuss some background knowledge to realize adaptive

application in the mobile environment.

2.2 Distributed Systems

Performing a computation on top of networked computers is called a distributed
computation, since they are not physically resident in the same host and have autonomy.
This distribution enjoys many advantages such as collaboration through connectivity and
networking, performance improvement through parallel processing and extensibility
through dynamic configuration and reconfiguration. During the last decade, object
technology gained wide acceptance, favoring its characteristics of abstract data typing,
inheritance and polymorphism. The composition of these two techniques created a new
research area called Distributed Object Computing (DOC) [15] based on a client-server
architecture. These techniques made life easier for platform developers and application
developers. In this subsection, we first discuss the common characteristics of object-
based distributed system and then look at some concrete systems including the Common
Object Request Broker Architecture (CORBA) defined by Object Management Group
(OMG), and Java based solutions such as JavaRMI. Finally, we briefly introduce the
Open Group’s Distributed Computing Environment (DCE) model[38], which is deemed a

competitor to CORBA.

Chapter 2 Background 17

2.2.1 Distributed Objects

An object-oriented program consists of a collection of interacting objects which are
entities encapsulating data and methods to process them. Objects communicate with each
other by sending and receiving messages. Each object has an identifier in the underlying
object system; for example, the value of a Java object reference is an object identifier or
OID. A class describes a potentially infinite set of similar objects and can be used as
types for defining parameters and results in signatures. Multiple inheritance allows a
class to make use of the code of several other classes. Java does not provide multiple
inheritance. But it does allow classes to implement several interfaces as well as inheriting
from one class. In Java, an interface is an abstract definition of the signatures of a set of
methods. The method executed is chosen according to the class of the recipient of the
message. This is called dynamic binding.

Objects in distributed systems are called distributed objects, which have some unique
features. First, the distribution of objects in different address spaces or physical sites will
result in remote method invocations (RMI), provided that the class implementation is
available. Second, an object may be accessed concurrently by more than one remote or
local objects, and hence the possibility of conflicting accesses must be addressed.
However, the fact that the data of an object is accessed only by its own methods allows
objects to provide methods for protecting themselves against incorrect accesses. For
example, they may use synchronization primitives such as condition variables to protect
access to instance variables. The difficulty of the first problem is that RMI should be
transparent. That is, an object should be able to send a message to another object and to

receive a reply without being aware of whether the receiver is local or remote. This

Chapter 2 Background 18

transparency may be achieved by providing a local proxy for each remote object that can
be invoked by a local object. The role of a proxy is to behave like a local object towards
the message sender, but instead of executing the message, it forwards the message to the
remote object. The remote object performs the message and replies without being aware
that its reply is sent back to a sender on a remote site. A remote object has a ‘skeleton’
object whose class has the server stub procedures as its methods. The classes for the
proxy and the skeleton used in RMI are generated automatically by an interface compiler
like the client and server stub procedures in RPC [5].

Distributed object systems may adopt the client-server architecture. In this
architecture, objects are managed by servers and their clients invoke their methods
through proxies. Objects can be replicated in order to obtain the usual benefits of fault
tolerance and enhanced performance. The Clouds system and Shapiro’s Larchant system
[46] use distributed shared memory to replicate objects at the point of use, whereas the
Emerald [32] system experimented with object migration with a view to enhancing the
performance and availability of objects.

2.2.2 CORBA

The CORBA specification defines an abstract object model similar to the one described
in the previous subsection. It includes an IDL (interface definition language) to provide
facilities to define interfaces, types, attributes and method signatures. Each remote object
has an IDL interface specifying the methods that may be requested by clients. An IDL
interface compiler generates client stubs in the language of the client and IDL skeletons
in the language of the server. The CORBA architecture is designed to support an Object

Request Broker (ORB) that enables clients to invoke methods in remote objects that have

Chapter 2 Background 19

been implemented in a variety of languages. These invocations are realized by the
cooperation between the client stubs and server skeletons for marshaling, transmitting,
and unmarshaling the parameters and the results, and hence the language-neutral property
is achieved. A server in CORBA is a process that is executing the implementation of one
or more remote objects. These objects are allowed to become clients of other remote
objects, thus enabling clients to perform invocations that cause chains of related actions
on distributed objects. The Object Adapter deals with everything that a client needs at run
time in order to invoke a method in a remote object such as the registering object
implementation in an implementation repository, activating an object implementation in a
server process whenever a client needs it, and registering the servers currently offering
activated objects and accessing them as needed by clients. CORBA extensions are also
enriched to provide transactions or some form of concurrency control and recovery. It
also provides some form of object replication, which facilitates the effectiveness of
interactive programs.

CORBA does not state anything about the semantics of remote objects or how they
are implemented because it was designed to provide services based on existing software.
Client software can be designed with caches, but the design of a cache is difficult when
the semantics of server objects are unspecified. CORBA objects are generally fairly
large-grain objects due to the considerable performance overhead for RMI, and therefore,
object migration and object to be passed by value are not supported by CORBA. On the
other hand, the language-neutral nature limits the kinds of data to be transmitted to the
basic data types that can be represented in all the target languages. Furthermore, in

object-oriented terms, no polymorphism is allowed—the transmitted object’s type (or its

Chapter 2 Background 20

reference type) cannot be a subtype of the type expected by the skeleton. This requires
that the receiving process know exactly what the sending process places on the wire.

Although CORBA provides distributed applications on heterogeneous systems, its
current technology is not designed for use in a mobile computing environment. First, its
specification, including Inter-ORB protocol (IIOP) does not indicate whereabouts to
address the mobility of the clients or the servers. Second, its implementations are not
typically built upon micro-kernel architecture. This makes it difficult to modify the
CORBA runtime down to its bare essentials, which is important for embedded system
development. Finally, its implementations do not give developers low-level control over
the management of system resources like heap allocation. All these limitations prevent
CORBA from deploying on mobile devices to support adaptive applications.

To better meet the need of adaptive applications and the mobile system programmers,
CORBA specifications and implementations need to be redesigned.
2.2.3 JavaRMI
Although on the surface, the RMI system is just another RPC mechanism, much like
CORBA, it represents a very different design philosophy, one that results in a system that
differs not just in detail but in the very set of assumptions made about the distributed
systems in which it operates. These differences lead to differences in the programming
model, capabilities, and way the mechanisms interact with the code that implements and
builds the distributed systems.

As we described above, CORBA was built on assumptions of heterogeneity. These
mechanisms assume that the distributed system contains machines that might be different,

running different operating systems. However, the Java RMI system is built on an

