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Abstract

In a multiprogrammed multiprocessing system it is necessary to devise a mecha-
nism for allocating processors to arriving jobs as well as for determining the policy
to be used by the processors to execute the separate tasks in its local ready queue;
the objective being the minimizaticn of the overall response time and maximization

of average processor utilization.

Several policies have been suggested for achieving the above goal. These policies
are either time sharnng policies, in which processors execute tasks for fixed time
gquantums, in a round robin manner, or space sharing policies in which each jot is

assigned to a set of processors.

In this thesis a new processor scheduling policy is proposed, which uses a hierar-
chical task queue organization and combines the desirable features of space sharing

and time sharing to achieve better performance than most other existent policies.
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Chapter 1

Introduction

1.1 Background

This thesis deals with the problem of scheduling in multiprogrammed multiprocessing
systems. This chapter presents a brief introduction to the main features of multioro-

cessing systems that are relevant to the work presented here.

1.1.1 Multiprocessor Systems

Medium to large scale multiprocessing systems are now commonly used in numerous
scientific and industrial applications. These systems can have anywherce from less
than a hundred to several hundred processors, and are typically multiprogrammed,

i.e. several applications can be executed simultaneously on the system.




Numerous classifications of parallel processing systems have been proposed but
the most commonly used taxonomy scheme was introduced by M. J. Flynn in 1972
[14]). Since that time there have been revolutionary changes in the architecture of
parallel or multiprocessor systems and Flynn’s scheme can no longer be used to dif-
ferentiate clearly between the various architectures now present [31, 12]. However,
his classification scheme is still commonly used in the Literature and will be briefly

described in the following paragraphs.

Flynn's taxonomy divides systems into four broad classes based on the number
of instruction streams and data streams that they can operate on at the same time.

These classes are the following [12] :

e SISD (single instruction, single data stream): This class consists of sequential

computers.

e MISD (multiple instruction. single data stream): This a hypothetical class of
computers in which each processor in the svstem executes a different set of
instructions on the same datum. Such systems are not considered practical to

implement.

e SIMD (single instruction, multiple data streams): This is a class of multiproces-
sors in which, typically. a centrzl control unit broadcasts a single instruction to
all processors, which execute the instruction in lockstep fashion on local data.

Array processors like the Illiac-1V are examples of this class of multiprocessors.



e MIMD (multiple instruction. multiple data streams): This is the class of mul-
tiprocessors that are the subject of this thesis. MIMD systems consist of pro-
cessors that operate in an autonomous manner. They are asynchronous com-
puters, characte-ized by decentralized hardware control, in which the software
processes executing on the individual processors may be synchronized by pass-

ing messages through an interconnection network or by accessing data in shared

memory units.

As can be seen from the above definition, MIMD architectures can be further
classified as shared memory systems or distributed memory systems with the main
difference between them being that in the latter category processors can access con-
tents of memory modules associated with other processors by message passing only.
The Intel hypercube, iPSC/860 is an example of such a system. In shared-memory
systems, on the other hand, all processors share a common address space even though
the various memory modules may or may not be physically distributed. Several com-
mercial and experimental machines belong to this category. BBN’s Butterfly, IBM’s
RP3, NYU'’s Utracomputer, DEC’s Firefly, the Stanford DASH, and the Illinois Cedar
are some common examples. A schematic of a typical shared memory system, also
referred to as a multiprocessor, is shown in Figure 1.1(a). A distributed memory

system, also sometimes referred to as a multicomputer is shown in Figure 1.1(b).
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Figure. 1.1(a) A typical shared-memory architecture.

P
P
M M
| P |
M M

Figure 1.1(b). MIMD distributed memory architecture, {12].

In figure 1.1(a) a block labeled “interconnection network” is shown to provide the
connection between the processors and memory modules. Actually, there are three
main mechanisms for connecting processors to memory modules in shared memory

5



systems [12]. Based on the manner in which the memory modules of shared memory
systems are organized, these systems are further classified as Non-Uniformm Memory

Access (NUMA) or Uniform Memory Access (UMA) systems.

Bus based architectures might be thought of as being UMA systems because in
these systems all processors have the same memory access times. A typical UMA

architecture in depicted in Figure 1.2.

Some UMA systems also use crossbar interconnections, in which a crossbar switch
of n? crosspoints is used to connect n processors to n memories. A crossbar intercon-
nection scheme prevents contention for communication links by providing a dedicated
pathway between each possible processor-memory pair. However, power, pinout and

size considerations limit the scalability of systems that use this interconnection mech-

SIILL T

Figure. 1.2. A Shared Memory UMA Architecture.

anism.

The third interconnection mechanism used in shared memory systems, is referred
to as multistage interconnection network, or MIN, and systems that use this intercon-
nection scheme fall in the class of shared memory NUMA systems if each processor
has a local memory and is able to access the local memories of other processor with
the help of the MIN. In a such a system, memory modules are interconnected with

6



processors in a manner that the delay involved in accessing a module is different for
different processor-memoty pairs, with the minimum delay being incurred when a
processor accesses its own associated memory. One example of a MIN is an omega
network, depicted in Figure 1.3. In a N x N MIN, N processors are connected to N
memories using multiple stages of switches in the interconnection network pathway.
For instance, if NV is a power of 2, Ig 2N stages of N/2, 2 x 2 switches can be used. A
processor that requires to access a memory module specifies the desired destination
by issuing a bit-value that contains a control bit for each stage. The switch at stage
? exa - ines the i1th bit to determine whether the request is to be routed to the upper

or lower output of that switch.

-
(" Ma !ln

‘—‘
- el

 { 110
(]
0

e ———

Figure 1.3. An 8 X 8 Omega MIN, routing a P3 request 1o M3, [12).

The omega network shown in Figure 1.3 consists of eight processors and eight
memories. A control bit of zero indicates a connection to the upper output. In the
7




figure, the pathway indicated by the dark line indicates how processor Py accesses the

memory module AMj;.

An example of a commercial shared memory NUMA system is the BBN Butterfly.
Figure 1.4 depicts how the processors and memory modules are connected in the BBN
Butterfly. Only five processor-memory pairs are depicted. though it should be noted

that this system can be configured with up to 256 processors.

Figure.1.4 The BBN Buuerfly Interconnection Network, (2].

In this thesis our focus is on medium sized shared-memory NUMA systems.

1.1.2 Task Queue Organization

Consider a scenario of a shared-memory multiprocessing system where parallel appli-
cations (jobs) arrive continuously for service. In this thesis, the term job refers to any

8



parallel application. Each job might consist of several sequential units of computa-
tion. The smallest independently schedulable segment of computation is referred to
as a task. When the system load is moderate to heavy, jobs will have to wait for some
time before they can be assigned to processors. This means that arriving jobs need
to be queued somewhere in the system while they are waiting. There are three main

strategies used for queueing arriving jobs in a multiprocessing system. These aie :

e Cenlralized organization, in which all arriving jobs are enqueued in a single
shared queue (see Figure 1.5). Tasks are allocated to the processors from this
queue. In the absence of access contention, the performance of this queue is
superior to other queue organizations due to perfect load sharing. However, it
is impossible to eliminate queue access contention in real systems, and in such
a case the central queue becomes a bottleneck due to mutually exclusive access
and its performance deteriorates considerably for moderate to heavy system

loads and for large systems.

e Distributed organization, in which there is a job queue associated with each
processor, see Figure 1.6. Central queue access contention is eliminated in this
organization, but this scheme has several disadvantages. The main drawback
with this scheme is that it causes load imbalance due to the distributed nature
of the queues. Also, studies in [22] and [8] have shown that in some implemen-
tations, the overheads associated with the additional data structures and task

allocation policies required for this scheme might outweigh the benefit that is




obtained by eliminating queue access contention.

Hierarchical organization, has been recently proposed in [9]. In this scheme the
central queue is replaced by a tree of queues, see Figure 1.7. All jobs arrive
and are queued at the root node. The processors comprise the leaf level of
the tree. The tree nodes serve as intermediate queues. Whenever a processor
becomes idle, it searches the tree node immediately above it in the hierarchy,
for work. The search continues up the tree till tasks ure found. Each processor
that finds tasks carries down more tasks than it can process, so that other
processors in its sub-tree do not have to traverse the entire hicrarchy again.
This organization eliminates contention for a single queue and is scalable to a
large number of processors. Experiments in [9] indicate that the performance
of this organization is superior to the distributed organization and is very close
to the performance of the ideal situation of the centralized organization. This
is expected , since the hierarchical organization provides excellent load sharing,
similar to the centralized organization, but does not have the queue access
contention that is necessarily associated with the latter scheme. Also, even
though there are multiple queues in the hierarchical scheme, as there are in
the distributed organization, the hierarchical nature of the queue reduces the

number of times a processor needs to access a queue in order to schedule a task.

10
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Figure. 1.5 Centralized Queue Organization.
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Figure. 1.6 Dastributea Queue Organization
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Processors with their Local Qucucs

P

Root Task Queue
é

(e )=

P

Figure. 1.7 Hierarchical Queue Organization for Four Processors with Binary branching.

Scheduling policies that use centralized and hierarchical qucue organizations are

considered in detail in the thesis.

1.1.3 Workload Models

So far, two components of a multiprocessing system have been discussed — the mul-
tiprocessor and the job queueing models. A third component is the job itsclf. There
are many different kinds of parallel applications and several studies have been done
to characterize the various classes of parallel applications for use in evaluation of
scheduling policies [28, 3). For the purposes of this thesis it will suffice to consider

the following classification of parallel jobs:

12



e Independent Job Model, in which a job can be thought of as being composed of
N equivalent, independent tasks that do not communicate during the course of
their execution and synchronize with the other tasks on completion, as shown
in Figore 1.8. According to Towsley [33], this fork-join type of job structure is
a reasonable model for a large number of parallel applications, e.g. parametric

investigation of numerical models.

Fork
Center

N

Tasks belonging N
o the panalell application.

-—f T ——
. coooooooooo..o . . .

Jon
Center

Figure 1.8 The Fork and Join Job Structure.

e Dependent Job Model, in which the tasks belonging to an application must com-
municate or synchronize with each other, or require exclusive access to a shared
data structure. The former case is often referred to as barrier synchronization,
where a task must wait after reaching a certain point in its computation, until
all its peer tasks have reached that point or darrier. In the case where the tasks
need access *o a shared data structure a mechanism for locking the data in order
to ¢ isure mutually exclusive access is required [21]. Tasks waiting to acquire

the lock can go into a busy-wait loop till the lock is available or can be blocked.

13




Studies have been done to compare busy-waiting {spinning) and blocking in [16]
and [5]. It has been observed that in a multiprogrammed environment, block-
ing synchronization is preferred over busy waiting or spinning since it allows
tasks of other jobs to be scheduled while the current task is not able to proceed
due to synchronization constraints. The study in [16] indicates that an initial,
brief period of spinning followed by blocking improves the performance of most

applications.

Both classes of jobs mentioned above will be used to evaluate the performance of

the scheduling policies that are studied in this thesis.

1.1.4 The Multiprocessor Scheduling Problem

Now that all the relevant components of a multiprocessing system have been discussed,
the problem of multiprocessor scheduling can be described in greater detail. Given
a multiprocessor system, p(;ssibly consisting of a large number of processors, and a
steady stream of parallel applications arriving to be serviced, an eflicient mechanismn
is required to allocate the tasks of each application to processors in a manner that
the average response time of the applications is minimum and the average utilization
of the system is maximum. Two main approaches to scheduling —- time-sharing and

space-sharing — have been studied and analyzed quite extensively in the Litcrature.

In time-shaiing systems a set of processors are allocated to each waiting job for a
fixed period of time or guantum, in a round robin manner. Several variations of the
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basic round robin policy exist. For example, the quantum length could be a constant
for a)l tasks or could be dependent on the size of the job. Some common time-sharing

policies will be reviewed in the next chapter.

In space-sharing, also known as partitioning, processors are divided between all
waiting jobs. Usually all jobs are allocated at least one processor and if all proces-
sors are exhausted, the remaining jobs are queued. but again there can be several
variations to this policy. For example. allocating at least a certain minimum num-
ber of processors (maybe greater than one) to each job. Also. partitioning could be
static, in which the allocation. once made, does not hange until the job departs, or
dynamic, in which perniodic re-allocation of processors is done as jobs arrive, depart
or their requirement for processors changes. In [4]. Brecht considers partitioning to

be composed of two separate problems :

e The allocation problem, in which the scheduler must decide how many proces-

sors are to be allocated to each application. and

e The placement problem. in which a decision must be made regarding which

processors to allocate to each application.

Some common space-sharing policies will be studied in some detail in the next chapter.

It can be seen from the discussion so far that multiprocessor scheduling is not a

problem that lends itself to a straightfarward solution. Several factors determine the

overall performance of any policy and there have been a number of studies to evaluate
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the performance of different scheduling policies on a variety of multiprocessing systems
and workloads. As mentioned earlier, some of these studies will be reviewed in the

following chapter.

1.2 Organization of the Thesis

The rest of this thesis is organized as follows.

Chapter 2 describes the previous research in tiie area of multiprocessor schedul-
ing. Greater emphasis is placed on the studies that are directly related to the work

presented here.

In Chapter 3, a detailed description of the hierarchical scheduling policy (HSP)
is presented. The system, workload and locking models used are described and the

actual steps involved in making task allocation decisions are explained.

Chapter 4 presents the results of simulation experiments carried out to evaluate
the performance of the hierarchical scheduling policy for the independent job model.

Chapter 5 contains results for the dependent job model.

Contributions of this thesis are summarized in Chapter 6. Suggestions for future

research and concluding remarks are also presented in Chapter 6.
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Chapter 2

Process Scheduling in

Multiprocessors

Due to the existence of a large variety of multiprocessing systems and numerous kinds
of parallel applications, ih= problem of scheduling jobs on multiprocessors has become
extremely diverse. This implies that it is difficult, if not impossible, to find a general
algorithm that will be optimal for all systems and workloads. Therefore, any research
that attempts to provide a scheduling policy for a multiprocessor system, must limit

its scope to a subset of existing systems and applications.

Work in this area has focused mainly on shared-memory and to some extent on
distributed-memory systems. Various kinds of real and synthetic workloads have been
used to evaluate the performance of the proposed policies. The scheduling policies can

be classified into space sharing or time sharing policies. Most studies have assumed



a centralized queue organization, as described in the previous chapter.

In the following sections a review of the research that has been done in the last

few years in the area of multiprocessor scheduling is presented.

In all the work that has been done in this area as well as in this thesis the term
“performance” refers specifically to two metrics — the average job response time and

the average system utilization. How these metrics are actually calculated is described

in the next chapter.

2.1 Time Sharing Policies for Shared Memory Sys-

tems

In this section some scheduling policies that have been proposed for both UMA and
NUMA shared-memory multiprocessing systems will be reviewed. The simplest policy
is First Come First Serve (FCFS), in which tasks of arriving jobs are appended to
a central quene. When a processor becomes idle it removes the task at the head of
the queue and runs it to completion. This policy has the worst performance for most
offered workloads because jobs have to wait for long durations before they can receive
any processor time especially if larger jobs are in the queue in front of smaller jobs
[17). Since there is no sharing of resources between jobs in FCFS it also leads to low

system utilization.
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2.1.1 Co-scheduling Policies

One of the earliest attempts at devising a scheduling policy for systems with several
processors, executing more than one parallel application at a time was made by
Ousterhout, [23]. He proposed a scheme that is known as co-scheduling, intended
initially for the Medusa OS on the Cm* multiprocessor. In this scheme, all the
tasks of a parallel application were scheduled to run at the same time, for a fixed
quantum '. At the end of the quantum, all tasks were preempted simultaneously and
the tasks of the next application were then scheduled. Thus all waiting applications
were scheduled on the available processors in a round robin manner. The advantage
of this scheme was that, since all the tasks of an application were running at the same

tire, synchronization delays were reduced to a minimum.

However, as it stands, there are several obvious drawbacks in this scheme. For
instance, if the number of tasks in a job exceed the number of available processors 2,
then any synchromnization between tasks will be delayed and performance will deteri-
orate considerably. On the other hand, if the number of tasks in a job are less than
the number of processors available and the next job requires more than the remain-
ing processors then part of the system will remain idle for that time slice. Another
drawback. that has been mentioned earlier with reference to centralized queues, is

that at moderate to heavy system loads, the central scheduler becomes a bottleneck.

INote that the terms quantum and time slice are used interchangeably throughout this thesis.
?Most studies bound the number of tasks per job by the number of processors in the system, to
eliminate the mcntioned problem.
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The original co-scheduling policy was modified in [17]. In this study, Leuteneg-
ger and Vernon compared the performance of two modified versions of Ousterhout’s
scheme with several other policies. Their first modified scheme, known as (Cosched.
works in the following manner. The tasks of all arriving jobs were appended to a
single central queue. A slotted window in which the number of slots was equal to
the number of processors was moved along the list and all tasks that fell under the
window were allotted one time slice on a processor. At the end of the time slice the
window was moved till it coincided with the first task of an application that was not
completely scheduled in the previous time slice. This modified scheme attempted
to reduce some problems with the original scheme. In this version of coscheduling,
none of the processors were idle during any quantum. and since jobs that were not
completely scheduled in one quantum were scheduled again in the next quantum,
response times of these jobs was reduced as they were getting more processor time

than before.

The second modified co-scheduling scheme in [17], known as Cosched?, was the
same as Cosched, except that at the end of a time slice the processor window was
moved to the first task of the next job in the list even if that job had been completely
co-scheduled in the previous time slice. The effect of this modification was that
smaller jobs (i.e. those with fewer tasks), received multiple time slices and this offset

the deterimental effect of larger jobs dominating the processors.

Simulation experiments in [17] showed that for several workloads, which will be
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described later in the thesis, Cosched? performed better than Cosched, but in general
they both performed worse than other policies that allocated equal processing power

to all jobs, irrespective of the size of the job.

Another study that looks at the performance of co-scheduling, also referred to as
gang-scheduling, is {16]. In this study co-scheduling was compared with several other
policies, including priority scheduling, process control with processor partitioning,
handoff scheduling and affinity-based scheduling. This study noted that a major
cause of performance deterioration was the number of tasks in a job exceeding the
number of processors allocated to it and so the main aim of this study was to try
and improve the performance of such applications. Their proposed solution will be
examined in a later section. In the group of policies studied in [16]. gang-scheduling
demonstrated better performiance than most other policies since it was not as affected
by blocking or spinning synchronization primitives as the other policies. This was due

to the fact that all tasks that were coscheduled were preempted at the same time.

2.1.2 Round Robin Policies

This is an important class of time sharing policies with a few variants that in general
exhibit better performance than co-scheduling and are competitive with some of the

better policies known till now.

Majumdar et. al., studied the performance of a round robin policy, that they

termed RR, now generally referred to as RRprocess, in [18]. This study was an




early attempt at evaluating the performance of several scheduling policies for multi-
programmed systems. A number of policies were studied and compared by varying
factors like the job parallelism, variability in cumulative job demand, and context

switch rate.

In the RR policy, all tasks of arriving jobs were appended (0 a central queue, and
processors removed a task from the head of the queue and ran it for a fixed quantum,

at the end of which the task was placed at the end of the list and the next task at

the head was removed for servicing.

An important contribution of this study was the definition of two workload classes
that were used in later studies like [17, 7], and is also used by us, with some minor

modifications. The two types of workloads used were the following :

e Workload A, that generated jobs given the inf t parameters — the mean num-
ber of tasks per job, the coefficient of variation of the mean number of ‘asks,
the mean cumulative demand per job and its coefficient of vanation. The cu-
mulative demand for the job was generated independently of the number of
tasks in the job and then divided uniformly among all tasks. Previous research
has shown that for many scientific applications, e.g. those that involve matrix
operations, uniform task demands are fairly accurate representations of real

workload conditions [19].

o Workload B, was similar to the above, except that there was a linear correlation
between the number of tasks in the jobs and its cumulative demand. The
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demand was generated as the product of the number of tasks and an input

parameter, t.

The number of tasks and the cumulative demand for each job were generated using
a two-phase hyperexponential distribution that will be described in greater detail in

the next chapter.

Scheduling policies were also classified in [18] as those that used no information
about job characteristics, like FCFS and RR, and those that did, like Smallest Number

of Processes First (SNPF) and Shortest Cumulative Demand First (SCDF).

Several simulation experiments were carried out, each varying a different parame-
ter and studying its impact on the policies. The study concluded that the RR policy
was better than FCFS but performed worse than the other policies studied, i.e., SNPF
and SCDF, indicating that use of job characteristics in scheduling decisions improved

performance to a great extent.

Later, in [17], another round robin policy, referred to as RRjob, was studied.
Again, like in the previous work, a comparison of several policies was made under
varying conditions and for different workloads. As mentioned earlier, the workload
from [18] was used here and the same set of policies as [18] were compared with the

addition of RRjob and a space sharing policy known as dynamic partitioning [34].

In the RRjob policy, studied in {17] for the first time, prc-essing power was allo-

cated equally to all jobs, unlike RRprocess, in which all tasks were allocated equal
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