|

16

EEEERE

S EEE

uw—m_m_._”_._.:.m

2f|

———

I

|

e
—
——
—
——

E

|.25
emm—
—
—
—
—
-
£

ll=

|
I

———

Bibliotheque nationaw
~duy Canada

Nationa! Library
of Canada

Canadian Thetes Service

Ottawa Canada
K*A ON4

CANADIAN THESES

.

NOTICE .,

The quality of this microfiche 1s heavily depehdent upon the:
quatity of the ortginal thesis submitted for microfilming Every
effort has been made to ensure the highest quality of reproduc-
tion pdssible

‘R pages are missing, contact the university which granled the
degree”)

Some pages may have indistinct print especially if the original
pages were typed with a poor typewniter nbbon or if the unwer-
sity sent us an inferior photocopy '

Previously copyrighted matenals (journal articles, published
tests, etc.) are. not filmed

°

Reproduction in full or in part of this film 1s govern <) the
Canadian Copyright Act, R.S C. 1970, ¢ C-30 PleaSe read
the authorization forms which accompany this thesis

THIS DISSERTATION
HAS BEEN MICROFILMED
EXACTLY AS RECEIVED ™.

R

NL 339 1 B6/M1)

s

Services des theses canadiennes

" THESES CANADIENNES =,

AVIS -

La qualite de cené(mcroﬁche depend grandement de la qualité
de 13 thése soumise au microfilmage Nous avons tout fait pour
assurer une quahte supérieure de reproduction

.

S manqie des pages. veuillez communiquer avec f'univer-’
sité qui a conféré le grade

La qualté d'impression de certaines pages peut laisser
désirer. surtout si les pages originaies ont €1é€ dactyiographiées
a f'aide d'un ruban use ou s 'université nous a fait parvenir
une photocopte de qualté inférieure .

Les documents qui font déja 'objet d'un droit d'auteur (articles
de revue, examens publiés. etc) ne sont pas microfilmes

La reproduction, méme partielle. de ce microfilm est soumise
a fa Lor canadienne sur le droit d'auteur, SRC 1970, ¢ C-30
Veuillez prendre connaissance des formuies'd'autorisation qui
accompagnent cette thése

B B
"

o

LA THESE A ETE
MICROFILMEE TELLE QUE
NOUS L'AVONS REGUE

-Canadi

» N

> ‘ 14
1 National Library Bibliothbque nationale CANADIAN THESES THESES CAN ADIENNES
of Canada du Canada ON MICROFICHE SUR MICROFICHE
. ' o 0-315-22185-2 7
s -) -
'

ANcls HAL-Cpuvg MA

AME OF AUTHOR/NOY DE L°AUTEUR

Y LE SEACFECATION AaD

ITLE OF YTHESIS/TITRE DE LA THESE. A CMPALATIVE

v < RAF AT ION C TECaniGuiS Eﬁ—,t’ FRROALLE L

PROCESS AL, >y s FEMC

- i LT - T oa
¢ NIVERSITY/UNIVERSITE Camee Ten oA NS

EGREE FOR WHICH THES!S WAS PRESENTED/, A ek e e A
GRADE POUR LEQUEL CETTE THESE FUT PRESENTE M A5 re 4 Cr ENONIEN N g
!) ' PR

EAR THIS DEGREE CONFERRED/ANNéf D OBTENTION DE CE GRADE
DX M oDy PE

AME-OF SUPERVISOR/NO. DU DIRECTEUR DE THESE

ermission -is hereby granted to the NATIONAL LIBRAR‘ OF L'autorisation est, par la p;ésenle. accordée 2 Is BIBLIOTHE-
'ANADA to microfilm mis‘th?sis and to lend or sell c;pies QUE NATIONALE DU CANADA de microfilmer cette thase et
* the film. - ' [de préter ou de vendre des exemplaires du fiim.

1e a2uthor raserves other publication rights, and neither the L’auteqr 'se réserve I# autres droits de publication; ni Ia

1esis nor extensive extracts friup it may be biintéd or other- thdsenf de longs extraits de celle~ci ne daivent &tre imprimds

ise reproduced wf‘lt\\éut'ihe suthor’s written permission. ou autrement reproduits sans I'autorisation écrite de Iauteur,
k) .) . .

[k;;‘ 'L‘ Sy
— Tt (W SIGNED/SIGNE, J‘ﬂ\,,)/i('

ATED/DATE f

: ‘ v o | '
:RMANENT ADDRESS/RESIDENCE FIXE 7ol - tive Rockihnpgm AVE.

) OTThivA . ONTAKIY 7 ;

S ANADA U 4

- Cd

? L o ’ ‘j

L1 4374} ' /) ,ﬁ V. g ' ;
j:

q?

TUDY PECIFICATION AND VERIFICATION

PR NG SYSTEMS
b4
. by
1Y ,i‘
" (N T
"'@#a,\é) Angus H.C. {ta, B.Sc. (E.E.)
- Queen's University, 1980 '
A Thesis .
submitted to the'ﬁaculty of Graduate Studies in
partial. fulfillment of the requirements for the degree of
- "~ MASTER OF ENGINEERING

Depériment of Systems and Computer Engineering
A Carleton University
Pttaya, Canada
: K
. . © "Ap§il, 1984

e

v emyen

LICENCE TO CARLETON UNIVERSITY

In the interests of facilitating research by others at this
institution and elsewhere, I hereby grant a licence to:

CARLETON UNIVERSITY

to make copies of my thesis:

V3

- h oo, 3

ey N S i TV Y] e
or substahtial parts thereof, the copyriZht which is invested in
me, provided that the licence is_, subject to the following
conditions:

»

Yy -

Only singled copies shall be made or authorized to be made
at any one time, and only in response to a written reguest
from the library of any university,or similar institution
on its own behalf or on behalf of whe of its users,

This licence shall continue for the full term of the
copyright, or for so long as may be legally permitted,

The Universal Copyright Notice shall appear on the title.
page of all copies made under the .authority of this
licence,

This licence does not permit the sale of authorized copies
at a profit, but does permit the collection by the
institution or institutions concerned of charges covering
‘actual costs,

All copies under the authority of this licence shall bear
a statement to the effect that the copy in question "is
being made available in this form by the authority of the
copyright owner solely for the purpose of private study
and research and may not be copied or reproduced except as
permitted by the copyright laws without written authority
from the copyright owner."

The foregoing shall in no way preclude the granting by the
-author of a licence to the National Library of Canada to
reproduce the thesis and to lend or to sell copies of the
same. For this purpose it shall also be permissible for
Carleton University to submit the abovementionmed thesis to
the National Library of Canada. f:%&{

Signature of Witness Signature of Student

y/pey ‘M.?Zr : gﬂjjfawr ¥ Lawp? Erp

Date’ Degred’ Department of Student

ii

The undersigned recommend to the Faculty of Graduate
Studies. and Research acceptance of the thesis
A COMPARATIVE STUDY OF SPECIFICATION AND VERIF&CAfIUN
TECHNIQUES FOR PARALLEL PROCESSING SYSTEMS -

! : it
i
submitted by Angus H.C. Ma, in partial fulfillment of the

requirements for the degree of

mASTER OF ENGINEERING

4

Thesis Supervisor

P
. Chairma artment
of Systems and Computer Engineering

’

Carleton University
April, 1984

iii

ABSTRACT

-

Thi;\tﬁgsis is a cbmparatiﬁe study ‘of ways to specify and to
verify/ the interactions betuween indebendent and asynchronous
processes in a parallel processing énuironment._ In recent
years, as a result of decreasing cost of hardware, dis-
tributed processing systems have become increasingly cost
effective. In these distributed processing systems, there
are usually a large number of processes. The task of pro-
gramming is difficult because these systems are typically
concurrent, asynchronous and non-deterministic. A methodology
is therefore needed to help designers specify and verify the
operation of these systems.)

.In this thesis, three distinqt approaches to the problem afe
identified - transition model{, programming language models
and hyRrid models. The thfee models Ere examined in terms of
their relative stréngthé and. weaknesses, This study indi-
cates that programming Lanaﬁhge models offer the greatest

flexibility for general ¥pplication.

Beginning with a programdfﬁa lgqgué@e (CsP) that Hoare has
proposed, some extensioﬁs are pfoposed in this thesis to make
it more comblete. The technigue of symbolic execution is
generalised so that ;ﬁ can be applied to CSP. In order to
test the usefulness of CSP and-sympolic execution, a hypo-
thetical telephone switching systemw is modelled and verified.
This exercise shows that syﬁbolic execution, while éasy to
understand, is powerful enough to handle most of the problehs
in program verification. It is further concluded that more
research in symbolic execution is necessaryrtd investigate
new techniques to detect race conditions without causing a

"hath explosion”,

A}
4
H
i
%
¥
'

iv
ACKNOWLEDGEMENTS

The author wishes to express his gratitude and respect for
the late Professor Sigurdson uwho acteg as Thesis Supervisor
before his premature death. Without his support and assjs-
tance, this study probably would never have started. The
author also wishes 'to thank Professor Woodside who acted as
Thesis Supervisor, for his encouragement and advice

throughout this study. T

The author also wishes to thank his family and close friends

for their patient support.

4 2 -»
v

" ‘page number

CHAPTER 1 INTRODUCTION

¢ .
1.1 Thesis Ubjective .I...'.'.......’..........'..... 1.1

102 The-SiS Urganizatioﬂ ..no----oo--‘oov';-n--c-.ol-- 1-2

CHAPTER 2 BASIC CONCEPTS

System Proceéses (Internal Processes) .se.evevess 2.1

2 External Processes Gsecsesnssrressensesens 243
Process Stateeeeevenenn. b eerreesreearennans 2.3

2.4 System State Gsesrteseesussesrtscrssassesecsssans 2.4
S5 Process Specifigation cvsescessanssssnessvssnvas 2.9
2.6 System Specification - 20 -
Parallelism,....:..............,....... 2.5

2.8 Inter-Process Communications sieieieeeeceseonese 2.5

CHAPTER 3 SPECIFICATION AND VERIFICATION

3.1 The Hierarchy of Specifications eivecesescecsnee 341
2 Correctness Criteria of a PPS ...ovevveennennons ﬁ.a
3.3 Verification and the Hierarchy of -
Specifications .ciiieceeesivscocrsoncesosancsasaas 3.6 ‘{
3.4 Specification Canguage Mot recsestersasersetnssann 3.6
3.5 Commonly Used Specification and Verification

TEChniQUES LA I R L WA B B B B B B B N B R S R R SR R N N N Y 3.8/

> |

CHAPTER & STATE TRANSITION MODELS |

4,1 Finite-State Machine (FSM) Model ...c.vevveeneees 4.1

|

CHAPTER

5.1

ZKEIIEr'S MOC’EI .l.lCC0.00..'I....OCQ'I‘.I'0....!0.

CHAPTER

6

6.2

6

.1

'3

CHAPTER

o,

o1

page number

2 Verificatiop of a FS5M Model ...cccevtbencccccance 4.3

petri NBt MOdBl ® 20 6 008NN LIBES NS CELOETISIESIBIEEDS

4 Verification of Petri Net Modeis‘...............

Strengths and Weaknesses gf Transition Models .. 4.8

5 HYBRID MODELS

Enhanced Fsm MOdel @ s s 000 IR ORECESIOSPRPRORNSEIOESIEPEDOETBDS 5.1

3 A Bounded -Buffer: An Example ...ccivvecevrennnas
4 Strengths and Weaknesses of Hybrid Models

4

6 A PROGRAMMING LANGUAGE MODEL - CSP

Rdvantages and Disdvantages of a Prcgfawming

Language MOdBl ...vevevrootvsvoocroasoscasennase Bu1
Communicating Sequential Processes (CSP) 6.2
6.2.1 The Parallel Commandeevvvsccensnnnnes 6.3
6.2.2 Inter-Process Communicationsc00000.. 6.4
6.3.3 The Guarded Commandcec0ceivcecncasse 6.5

6.2.4 The Alternative Command ...ccoeecieocseces 5.5

.6.2.5 The Repetitive Command ...cececsccnscesose B.7

EXtenSiOI’IS tD CSp ® 8 6.8 5 60 0006220808600 807
6.3.1 The Exit Statement 5.8

6-3.2 The Else clause L I BT I I B B R Y B I BN BN BB AN 5.9
6.3.3 Constructors and Sigpalsce00eeeee.. 6.10
Relationships between>g§2/and Keller's Model .. 6.11

7 VERIFICATION OF A PROGRAMMIN? LANGUAGE MODEL

pngram prOVingﬂ,.....-ao.--..-.--....-o-....... 701

page number

.2 Proof 2ystems Based on CSP ... iiieecnaneennonces 1.3
7.3 Basic Concepts of Symbolic Execution 7.6
7.4 I1/0 COMMANDS s4eveersrssnsassnoseossoansernssacse 1.8
7.5 Parallellism:.............. 7.9
7.6 NON-DELEIMINACY +veerennrvnossncesonaeenanennes 7217
7.7 Strengths and Weaknesses of Symbolic Execution

in Csp ® ¢ 600 0 amse 5 6 00 9 0 LN EN IS e e BPEIOEEEEES 7.1:7

CHAPTER 8 MODELLING AND ANALYSIS OF A TELEPHONG SWITCHING SYSTEM

8.1‘Bésic Concepts in Telephony and Telephone

Switching s.vveeeenes creasacna Creserssssaansas .. B.1
.2 Trunk-to-Trunk Call iiceceevonoserasssrsasonssess B.2

B.3 TSS as a Stared Program Controlled Digital Toll
Switch e seseeesacesanarecras s ns A -
g.3.1 TelephoneLSwitching‘Equipment T - N
8.3.2 System Architecture of T35 eevesvavs 8.5
8.3.3 Trunk Supervision and Fault Petection ... B.8
8.3.4 A Trunk-to-Trunk Call in the Context of

Tss ® 6 8 8 8 B & 20 ¢ S0 0B P N O S eE SRS SNE s 8.9
* 8.4 Modelling TSS Using CSP veveeeoflirennnn. veee.. B.10
8.5 Verification of TS5 Using Symbodic Execution .. B.11

' !

CHAPTER 9 CONCLUSIONS . _ v

Appendix A: CSP Model of T5S
Appendix B: Verification Procedure of T5S

REFERENCES

- P

e

GCreater Than or Equal to
Less Than or tqual to
Multiplication

LIST OF FIGURES

Figure

Figure

Figure
Figure

2.A
3.A

4.A
4.8

Figure 4.C

Figure 4.D

Figure

4.t

Figure 4.F

Figure

Figure

Fiqure

Figure 5.A

Figure 5.8

Figure

Figure 6.A

Figure 6.8

Figure 6.C

Figure 7.A

Figure 7.8

Figqure 8.A

Figure B

Figure

Figure 8
,Figure 8.
Figure 8

An Example of a PPS

The Hierarchy of Specifications in the Design
of a Communication Protocol

An Example of a FSM

A Simple Computer Protocol with Two Users and
Two Communication Stations

FSM Model of the Communication Protocof
Global State Transition Diagram for the °
Communication Protocol

An Example pf a State Transition Diagram with
a Deadlock and a Livelock

‘An Example of a Petri Net

The Same Petri Net After Transitions A and 8

-Have Fired

Petri Net Model of the Communication Station
in Figure 4.8 o

Global State Transition Diagram for the Petri
Net in Figure 4.H

Enbanced FSM Model for a-Boundea Buffer
Keller's Model for the Bounded Buffer -

State Transition Diagram for Keller's Model
Keller's Model of I/0 Commands

Keller's Model of an Alternative Command
Keller's Model of a-Repetitive Command
Verification Tree with Race Conditions Checked
Verifiéation Tree with Race Conditions nﬁt
Checked ,

A Sample Telephone Network

A Block Diagram of TSS

A Trunk-to-Trunk Call between Trunks i and j
TSS within a Telephone Switching Network
Timing Diagram of a Trunk-to-Trunk Call
Verification Tree for TSS

[N, R

L

CHAPTER 1 INTRODUCTION

1.1 Thesis Objective i \
This thesis is a comparativé study of ways to“épecify and to
verify the interactions between independent and asynchronous
logical entities in a Parallel Processing System (PPS),*Each ~
logical entity corresponds to a physical entity such as a
chip, a processor Oor even a person. Howev%r.«mogt of these
logical entities fhat will be considered in this thesis will
be software entities, that is, processes. R
.
In recent years, as a result of the decreasing cost of
hardware, there has been a proliferation of distributed
processing systems. Examples of such systems are computer
networks, real-time control systems and distributed data
bases. In these distributed processing‘systems, there are a
large humber of asynchronous and parallel processes each of
. which has te be programmed to do precisely the right things
at the right time in order to produce the correct results.
The task of programmiqg is difficult because these systems
are inherently concurrent, asynchronous and non-deterministic.
The objective of this thesis is to treat these systems as
parallel processing systems and to analyse their behaviour.
+ In general, a PP5 consists of a network of communicating
processes which cooperate to produce some "desirable"
results. The "desirable" results are commonly quantified by
a set of assertions which have to hold for the system to be

considered correct.

Current research into this problem can generally be found
.in three different areas - communication protocols; '
distributed algorithms and softuware engineering. In a
communication protocol, the processes represent the various

communication stations (or parties) which interact in order

. -

Il

- 1.1 - -

to achieve the ultimate goal of synchronization and data

transfer. Researchers in protocol dedign are interested in

finding ways to represent protocols and to analyse them to

reveal potential deadlocks. [SCHwW8B2], [BOCHBQ], [DAY73] and
[SUNS7?78] contain surveys of research in this area. In
distributed algorithms and other resource sharing systems,
researchers are interested in analysing systems toc ensure
that mutual exclusion is achieved and that the scheduling
scheme is fair such that nobody will be deprived of a re- " '
source permanently. Examples of such research can be found)
in [KOHL81] and [RICA81]. Finally, there is interest in PPS

from the point of view of software engineering. Here, re-

searchers are interested in developing a ;umign methodology

for parallel programs in general, that is, how should a

parallel program be specified, How should it be written

(with what synchronisation primitivés) and how should it

be analysed in order te_achieve correctness. [CHEN83],

[owics2], [MISRB1] and [FLON81] are some examples of veri-

fication techniques for general parallel programs. Another
objective of this thesis is to survey the techniqyes'used in

these different areas and to find a general method that can

be applied to all of tﬁese problems,

1.2 Thesis Organization ' ’

In this thesis, three classes of specification techniques
will be examined in detail - transition models,'pfeg;amming
language models and hyfrid models which combine”tradsition

models with programming language models.
A

\ﬂ-\

Having studied the three classes of specification techniques i
the author hées cencluded that for general applications, i
programming lanquage models offer the greatest flexibility. |
Beginning with a programming language (CSP) that Hoare

proposed in [HOAR78], the author has added some extensions i

Y

to it to make it more complete. The author also adapted
the technique of symbolic execution to verify CSP models,
Finally, the author applied the technques to a hypothetical
telEphoné switching system. A CSP model was developed for
the switching system and was verified usimg symbolic

execution.

To summarize, the author's contributions in this research

are as follows.

1. Extensions to CSP,

2., Rpplication of symbolic execution to CSP.

3. Modelling of: a telephone switching system using CSP with
extensions.

4. Verification of the model using symbolic execution, v

The thesis is organized into nine chapters. The next

chapter describes the basic components and characteristics

of a PPS. Chapter 3 defines the meaning of specification

and verification with respect to a PPS. Currently used

techniques are surveyed and the three classes of modelling
techniques are identified, Chapter 4 introduces two

transition models, the finite state machine model and the

Petri Net model., Verification technigques for each will be
discussed. Chapter 5 will describe two hybrid models based

on the two transition models in chapter 4. Chapter 6

introduces CSP as a programming language model. The

author's propoesed extensions to CSP will also be described,

Chapter 7 éﬁfveys and compares verifigation techﬁidues for

parallel programs and demonstrates how symbolic execution

can be adapted to verify CSP models. Chapter 8 introduces

a hypothetical telephone switching system TS5 and presents .
its CSP model. The model will be analysed to verify that

the telephone switch is deadlock free and it releases all

system resources when a telephone call is terminated. *

Chapter 9 concludes the thesis by discussing the strengths

- 1.3 -

\

¥

and weaknesses of the teehnique proposed in the thesis.

s nas

- 1.4 -

%
i

I

CHAPTER 2 BASIC CONCEPTS

This' chapter discusses the basic components of a PPS,.
Since this the51s is concerned mostly with softuware ’
entities, they w111 hereafter be referred to as processes.
A process is also known as qwﬁask‘in some programmlng
languages such as ADA. A PPS conéists of a network of
communicating processes. These processes are known as
system or internal processes and they are designed tow
co-operate in order to produce some "desirable" results,
Most of the concepts discussed in "this chapter are taken
from [CHENB3], [MISRB1] and [KELL76}. The reader is also
referred to [CASHBO] for a survey of synchronization
primitives in various parallel programming languages;

’
Figure 2.A shows an example of a PPS. It consists of 7
system processes which run on 3 processors. The PPS

interacts with 2 external processes.

2.1 System Processes (Internal Processes)

AR PPS consists of a set of network of system processes. In
this thesis, all system processes communicate exclusively
via messages. While in some systems, processes communicate
via shared variables instead of messages, it can be shoun
that interactions through shared variables can be achieved
‘through messaging and vice versa ([CASHBO]). However,
message-based systems have two distinct advantages. First
_ of all, some systems may not ha&e shared memory that is
.accessible by more than one syste@ process. In a
distributed system for example, the private memory of one
processor may be accessible only to the process(es) running
on that processor. While it is possible to implement
shared memory in a distributed system, message-based

- 2.1 -

sdd ® Jo erdwexy uy y°'z eandty

59689001d
TeuIe1Xy

e ——
T - ==

dd

sas89d0xd
welshs mm -1

YUTT
CO..HP.QO Tunwuwo p

— — —

systems are by far cheaper to implement and hence mare , -
common. Secqndly, process interactions in a message-bésed

system are more controlled in that a sender names an

expliéit receiver. 1In a shéred-memory system, a process

essentially "broadcasts" its messgge by writing to common

memory and may cause unintentional -reactions by ény process

which happeﬁs to be‘accéssing the shared memory.

Thus all systems will be assumed to be message-based.
Where this is not the case, the system will be modelled as

an equivalent message-based system,

R system process is said to be a slave process if is
totally input driven, that is, in the absence of any input,
the process‘will forever stay in the same state and will
not generate any output. For example, a server process is
a slave process which remains idle until it receives an
order to do work. An autonomous process is one that can
undergo state transitions and generate outputs without any
input. A fault generator is an autonomous process which
under non-determinate conditions, introduces faults to thg

system,

R terminating process is one which is designed to terminate
after a period of operation. An examplé of such a process
may be a maintenance process which is created whenever a
fault is detected in the system. It will perform a series
of tests to isolate and diagnose the problem and will then
terminate., A non-terminating procesé is one that runs
forever. An example is a server process which renders a
frequently required service. When it receives a request
for service, it performs some actions and then waits for

the next request to arrive.

If all the internal processes of a PPS are terminating
processes, then the system itself may eventually terminate

- 2.2 -

when all of its processes have terminated.

2.2 External Processes

External processes are processes which interact with the
PPS. In most cases, they are also the users of the PPS. An
example of a PPS is a computer system. Each user of the
system can be considered an external process.lxlnputs from
the user are received by a command interpreter\(a system
process) which then transmits the request from the user to
other system processes such as a magnetic tape brocess to
mount a tape or a batch process to rumn a batch job. The
replies from these processes are sent back to the command

interpreter which then displays the messages to the user,
i

2.3 Process State

The state of a process at a given time defines what the
process is doing at that particular moment. The state of
the pfocess implicitly defines what inputs the process is
waiting for and what actions it will take when it receives

an input,

In [KELL?76], Keller defines a process state to be a product
of the control state and the data state. In terms of the
program which. defines the operation of the process, the
control state i' the instruction pointer whereas the data
state is the vector of all the\private variables of that
process. Keller also defines the operation of a process as ;
a sequence of state transitions each of which takes the ' :
form q -> q' where g is the current state and q' is the
next state. The state transition is considered an

indivisible operation,

O el o S

Consider the follbwing example. If we are designing a
microprocessor-based telephone set, we might program the
telephone process- to be in one of the following states -
idle, dialling, ringing and talking. In the idle state,
that is, when the handset is onhook and the phone is not
ringing, the process can accept two inputs, one being a
ring signal from the central office and the other being an
offhook signal gererated when the subscriber picks up the
handset. In the case of the first input, the telephone
will ring aéd the telephone process is now in the ringing
state. In the case of the second input, the proceﬁs will
react by sending an offhook signal down to the central
office and the telephone process will now be in the
dialling state.

A process-{s a finite-state process if it can only be in a
finite number of states, It should be noted that the state
transition of a slave process can always be attributed to
an input (or‘inputs) from other processes. In contrast,
the state transition of an autonomous process may be

spontaneous,

2.4 System State

The state of a PPS is the Euclidean product of the states
of all the system procegbes. If there are n system
processes in the system, the system state will be
represented by the n-tuple

(510 $2, 53, «e. Sn)

where Si is the process state of the«process Pi.

&
3

2.5 Process Specification

The process specification defines the behaviour of a

.process, OGiven the present state and the present input of

a process, the process specification defines the next state

qf the process and its output.

In chapter 3, the characteristics of a process specification

will be discussed in detail,

2.6 System Specification

While the individual process specificatiops determine the
behaviour of the individual processes,’ the system speci-
fication determines the behaviour of the whole system, In a
PPS, the system specification is simply the specifications
of all the internal processes and the specification of the
process topology, that is, the interconnections of all the

processes,

2.7 Parallelism

In a PPS, it is assumed that all processes are truly
parallel, that is, they can all be running at the same time
which will be the case if each process runs on a dedicated
processor. In reality, at least some of the processes will
share .the same processor. However, the sharing of a
processor affects only the real-time behaviour but not the

logical behaviour of a system,

2.8 Inter-Process Communications

As mentioned before, a PPS is assumed to be message-based.

It will further be assumed that basic communication is

'205' 1

reliable, that is, if one process sends a message to
another process, the destination process will be able to
receive the message without any data corruption. Where the
is not the case, the communication medium itself will be

modelled as _a separate system process which is capable of

“'corrupting or losing mesdages ([BRAN78]).

y

CHAPTER 3 SPECIFICATION AND VERIFICATION

This chapter describes the meaning of specification and
verification in the context of a PPS., To a large extent,
specification and verification of a PPS is a direct
generalisation of the concept of program specification and
program proving. In this chapter, the concept of a
hierarchy of specifications will be introduced. It will be
shown that a specification is in fatt an implementation of
a previous specification. The meaning of verififgation and
the specific verification conditions will be outlined
followed by a discussion on the characteristics of a good
model. The last section contains a summary of current

modelling and vefification techniques.
\

3.1 Hierarchy of Specifications

To understand the concept of design verification, we must
first understand the relationships between the speci-
fication and the implementation of a design. In this
section, the concept of a hierarachy of specifications will

be introduced which explains these relationships.

The concept of the hierarchy of specifications is a
generalisation of the concept of the equivalence of
programs in [BIRM76]}. In the paper, Birman and Joyner
define program correctness 'in terms of the equivalence of
two programs, the "specification®™ and the "implementation",
In other words, one verifies an implementatien by proving
that it is equivalent to its specification. This concept
can be generalised as follows. By employing a top-down
designlapproach, a hierarchy of specifications will be
generated during the design process. Top-down design
[WIRT71] refers to the design approach whereby an initial

- 3.1 -

*\\

\

——

idea is refined in ;‘Qﬁepwise fashion with more details
(and hence design decisions) added during each iteration
until an implementable design is generated. The hierarchy
of specifications is generated when we start with an
initial specification and during each iteration of the
design, implement the previbus specification which then
becomes Fhe new specification for the next iteration.

e &

To illustrate the concept, consider the hypothetical design
process of a computer. The initial specification of a
computer might be a device that c¢an calculate projectiles
automatically. After carefully considering the problem of
calculating projectiles, the designer comes up with an
algorithm which involves the use of some variables and some
basic primitives such as FOR, GOTO, +, -, * and / with
which one will be able to calculate projectiles auto-
matically. Thus after the first iteration, the speci;
fication for a computer has changed from "a device which
calculates projectiles automatically" to "a device which
can execute a set of predefined primitives such as FOR,
GOT0, +, -, *, and / on a set of variables". During the
next iteration, the designer comes up with an even lower
level implementation of those primitives using instructions
such as PUSH, POP, JMP, ADD, SUEi etc. whi£;~o ate on the
stack, memory registers and memory locations. ese
"machine instructions" then become the new specification
for the computer. Finally the designer designs a circuit - ﬁ
which implements those instructions using gates, flip-flops

and memory.

In [BIRM74] for example, the instruction set of the
S-machine implements all the functions required by a high
level language. The instruction set itself must then be
implemented at the micro-instruction level by microcode,
Thus the high-leveY‘language, thes S-machine and the
microcode are three different specfﬁications al computer

- 3.2 -

in a descending order of abstraction,

To summarize, during the design process, a sequence of

specifications

s0, S1, S2, ... » Sn
¢

are generated with SO being the initial specification and
Sn being the directly implehengatable specification. The
sequence appears in a descending order of abstraction. SO
describes the design in the broadest and most abstract
terms., After each iteration, more and more implementation
details are added until all design issues have been
resolved in Sn., Each design is an implementation of the
preceeding specification which is also the specification

for the succeeding design.

Far example, in the area of protocol design, it is usually
possible to identify a hierarchy of three specifications -
protocol intent, protocol specification and protocol
implementation ([SCHWB2], [BOCHBO] and [SUNS78]). The
protdcol intent, also known as service specification,
defines the environﬁent that the protocol must operate in
and what the protocol is supposed to achieve. Thus the
protocol intent is concerned with issues such as the number
of parties involved, whether transmission is half-duplex,
full-duplex and whether or not there is a master-slave
relationship among the parties. In other words, it
describes what services the protocol must deliver to the
useés. Knowing what conditions and constraints thgre are,
the protocol specificatioh implements the protoéol'inﬁent o
by defining the mechanics of a protococl that meets the
requirements of the protocol intent. Thus the protocol
specification is concerned with the syntax:and semantiﬁs of
a protocol, For example, a protocol specification for HOLC
[CARLBO] will contain the meaning and usage oﬂ commands

- 3.3 -

e

LISKﬁOF\&@BREVIATIONS AND SYMBOLS

AR/D Analog-to-Digital
cc Centgal Control
co : Central Office B
cpP Call Process d
CsP Communicating Sequential Processes
oms Digital Muliplex System
D/A - Digital-to-Analog
FG - - Fault Generator
FSm Finite State Machine
NM Network Madule
1 Set of Inputs
1/0 " : " Input/Output / ~)
m . " Output Function

- N State Transition Function
NP Network Process '
0 ' Set of Optputs i
p ' M Set of Places .
Pést ' Backward Incidence Function
Pre) Forward IncidenEe Function
PPS . . Parallel Processing System
T . . Set of Transitions
TK) Trunk
™ : : Trunk Module .
10 . Tollg0ffice

. TP . . Terminal Process
TSS ‘ Telephone Switching S:jﬁsﬂ’
ve . ’ Vérification Cenditios .
. X ' " . Set of Syggqp}SQates

=> Implication
‘! ' Output
»? ' Input
HER Assignment - N
<o Not Equal ®

roisiohany

such as Receive Ready (RR), Receive Not Ready (RNR), Reject
(REJ), Selective Reject (SREJ) etc. and how data transfer
" can be abcomplished using these commands. The pratccol
implementation implements the protocol specification by
efining a particular algorithm that satisfies the
i& n. Thus the
pf the protocol is
uit if the

‘. R .
requirements of the protocol specificat

protocol”implementation can be a progr
implemented in softuare or a chip or ci
protocol is implemented in hardware. In the latter case,
it is possible to split up the protocol implementation into
a high level implementation and a low level implementation.
Figure 3.A shows the hierarchy of specifications in '

protocol design,

’

-
3.2 Correctness Criteria of a PPS

s v

Proving that .a sequential program is correct generally
involves proving two things - program termination and partial
correctness. Program termination means that the program,
will eventually terminate and partial correctness means that
whenever the program terminates, a set of assertions which
define the intent of the program will be true. The correct-
ne;g;cgitgfia for parallel programs are generalisations of
these tuwo Eonditions ([owics2]), [FLONB1], [APTBO], [SUNS73],
[mERL79], [KELL76]) and are listed as follouws.

1. Partial Correctness ([LAMP80])
For a PPS that is designed to terminate after a period «
oy #0f operation, partial correctness is defined in exactly
the game way as in a éequential program, UWhenever the
¢ PPS terminates, a set of assertions which define the
intent of the system must hold. In & non-terminating
PPS, the processes are designed to return to their

home-states (instead of terminating) after a period of

- 3.“ -

Protocol Intent

6\\\ , (Service Specification)

Protocol Specification

(High Level) ' C e~

o Protocol Implementation

— 3

/’.
" (Low Level)

Protocol Implementation.

Tk
~

Figure 3.3 The Hierarchy of Specifications in the

Design of a Communication Protocol

'

-

operation, In this .case, partial correctness requires
4

that the set of assertions hold true whenever the

system.reaches its home-state (which is the state where

all the internal processes are in their home-states).

Absence of Deadlock ([CHAN79])

Absence of deadlock means that during system operation,
the system will never reach a state where no further
state transition is possible, that is, all internal
processes have been suspended and no external inputs
can cause any of the system ﬁrocesses to resume
execution, This condition is also known as a global
deadlock because in this state, all the system

processes are locked up.

Absence of Livelock ([0OwICB2])

Absence of livelock means that during system operation,
the system will never cycle through a set of states
indefinitely without making any rﬁﬁl progress, In the
case of a communication protocol, a livelock arises if
two stations keep transmittinglthe same piece of data
to each other over and over again. To prove that a PPS
is free from livelock, a function of the system state
which measures brogress must be shown to be increasing

monotonically.

Absence of Starvation and Degqradation ([FLONB1], [RICAB1])

A condition of starvation exists in a system if a

system process is~permanently deprived of a resource

that it needs. A condition of degradation exists if a .
process is suspended forever. In either case, there~is .

one fewer active process in the system. Since only one

process is locked up, this condition is also known as a

local deadlock.

3.}~¥Zrification and the Hierarchy of Specifications

During the design process, a hierarchy of specifications is
generated where each specification is an implementation of
the previous design. To ensure that the final design is
correct, every specification at each stage.must be
independently verified, that is, each specification must be
showun to be correct according to the criteria outlined in

the previous section, 1f

In [BIRM76]), partial correctness is defined to be an
equivalence between the specification and the implementation.
Similarly, the partial correctness of the specification Si

can be established by showing that Si implements Si-1,

In section 3.1, three possible specifications were
identified in protocol design . the protocol intent, the
protocol specification and the protocol implementation, In
the literature, protocol verification typically refers to
the verification of the protocol specification instead of
the protocol implementation. When one verifies X.21, one

is in fact tryiné to verify that the protocol specification
is correct with respéct to the protocol intent, namely,

that data can be transfered reliably and that the protocol
will not lead to a system deadlock. Once the protocel
specification has been verified, it can then be implementated
and the profocol implementation itself must also be verified

to ensure that it satisfies the protocol specification.

3.4 Specification Language

&
The way a specification is expressed and the language in
which it is expressed affect very much its usefulness.
Just as-the syntax and the semantics of a natural language

imposes limits on what can be expressed in that language, a

- 3.6 ~

specification language imposes similar limits on a speci-
fication. Thus a good spécification language must be
power ful enough to allow a designer to succintly express
his ideas. Moreover, the designer must also be trained to
use the specification lanquage in an effective and

efficient manner.

In [BOCHBO], [SUNS79] and [CCIT76], the characteristics of
a good specification lanquage are discussed and they can be
summarized as follows. It should be noted that a speci- '
fication is also a model of the final implementation,

Hence a specification language is alsoc referred to as a

modelling language in the literature.

1. Completeness
A good specification language must provide the designer
with the necessary tools to describe all pertinent
aspects of a desigh. The description must be complete

and precise so that no ambiguities or incomsistencies

. exist in the specification.

2. Abstraction .
R good specification language must be sufficiently

abstract so that the reader will not be burdened with

details that are not relevant at that point of the

design’process. In the hierarchy of specifications,

each specification is an abstfaction of its succeeding

design. Furthermore, a specification language must be

abstract enough so that a family of solutions can be

generated. The more abstract a specification is, the

fewer implementation restrictions it imposes on a \
solution and the larger the family of acceptable

solutions will be from which the most suitable one can

then be chosen. .

3. Ease of Understanding

R good specification language must be easy to learn and
easy to understand. O0One way to achieve this is to make
the language modular-so that a large model can be

broken down models of the major components,

4, Amenity to Formal Analysis
Since every specification has to be ultimately verified
to ensure correctness, the ideal specification language
should lend itself to verification. A similar statement
is also true in programming. If a programmer intends
to prove the correctness of his program, he will be
tempted to write it in a strwstured language such as
Pascal rather than say, FORTRAN,

3.5 Commonly Used Specification and Verification Technigues

Y el

ARlthough computer scientists have always been' interested in

program proving, the interest in proving parallel programs
has multiplied in recent years because of the widespread
use of distributed processing. Numerous models and
extensions to basic models have been proposed each equipped
with unigue features that enable them to handle different
situations. Surveys of some of these techniques used in
protocol design can be found in [SUNS789], [DAY79], [SuUNS78]
and [BOCHBO]. N

One of the most commonly- used techniques for specification
is still the narrative form written in a natural language.
If carefully written, it has the advantages of being direct
and easy to understand. However, with the complexity of
modern day parallel processing systems, the narrative form
quickly becomes clumsy and convoluted because a natural
language lacks the control and data structures necessary to
express complex algebraic and logical relationships. Thus

in recent years, the interest has been mostly on formal

- 3.8 -

/

methbds of specification. Nevertheless, the narrative form
will still remain ds a useful auxiliary specification
teqhnique that can be used to supplement formal models.

In [BOCHBO], formal maodels have been classified into three
"main categories, namely, the state transition models} the

programming langauge models and the hybrid models,

State transition models are based on the observation that
iﬁ a PPS, each process goes through a sequence of state
transitions during its operation and by defining the logic
of the state transitions, the behaviour of the process can
be specified. Transition models are usually expressed in
terms of graphs and hence are also referred to as graphical
models. Examples of such methods in protocol design
include the finite state machine model [BOCH78], Petri-Nets
[MERL79], grammars [HARA73], duologues [ZAFIBO] and UCLA
graphs [POST76]., Verification of state transition model is
usually achieved through a reachability analysis. In
[YAus3] and [NELS83], a state transition model (Petri Net)
is;used on general parallel programs although such use of

|
stgte transition models are less common.

/
j

Prbgramming language models describe the operation of a PPS
takough the use of a (usually high-level) programming
ldﬁguage. A programming language is inherentlylsuited for
the specification of variable assignments, conditionals,>
repetitive actions, numeric and logical relationships. The
prograqming language has an added advantage in that it is
very close to the final implementation. This means that
the sﬁecification can be translated into an implementation
very/easily. Verification of a programming lanquage model °
is/gchieved through logical deduction based on the
sgmantics of the model. By analysing the structure of the
lrogram, one can deduce for example, that a certain

/relationship between some program variables exists whenever
/ .
/

/

/
/

{

- 3.9 -

a certain point of the program is reached. CSP [HOAR78] is

an example of a programming language model designed for .
concurrent programming. An example of the use of a

programming language to specify a communication protocol

can be found in [STEN76].

Hybrid models ([BOCH77] and [KELL76]) attempt to combine
the two approaches and thereby maximizing its usefulness
and minimizing its limitations. A hybrid model tries to
separate a PPS into two aspects, the control aspect which
defines the state transitions of the system and the data
manipulation aspect which describes the effects of state
transitions on state variables. The former is described by
a transition model and the latter by a programming language
model, The advantage of this approach is that the control
aspect can be captured in a concise and easy-te-understand
model., It will ?e seen in chapter 5 that this method can
also reduce the humber of states necessary to describe the
system, Verification of a hybrid model involves a
reachability analysis on the control structure of the model
to reveal any deadlocks, livelocks or degradations and
logical deduction to establish relationships between

variables.

In the next four chapters, the three approaches will be .
described in greater detail but in a slightly different

order. Chapter 4 will describe two transition models,

namely the finite state machine (FSM) model and the Petri

Net mod.l. Chapter 5 will descfibe the enhanced FSM model

and Kelder's model. Chapter 6 will describe CSP as a

programming language model and chapter 7 will describe

verification te%hniques for CSP.

{

CHAPTER 4 STATE TRANSITION MODELS

A transition model is one which specifies a PPS in terms of
itg state transitions. Two such models will be described

in this chapter, the finite state machine model and ‘the Petri
Net model. Verification techniques for these two models will
also be discussed. The strengths and weaknesses of the state

transition models will then be discussed.

4,1 Finite-State Machine (FSM) Model

In a PPS, a system process progresses through a number of
process states during its operation., If the number of
process states is finite, then the process specification
can be expressed in terms of a FSM. In a similar way, if
the system progresses through a finite number of §ystem
states, fhe system specification can also be expressed in
terms of a FSM, FSM models are commonly used in the
modelling of computer protocols {{BOCH78], [DANT78]). In
protocol design, the FSM that represents a communication
station (or party) is the local protocol machine whereas
the FSM which represents the state transition of the whole
system (which comp}ises all the pafties) is the global
protocol machine [DANT78].

A FSM is a S5-tuple represented by

KX, I, 05 N, m>

where
finite set of states; : . \

is

is

a

is a finite set of inputs;
a finite set of outputs;
a

2 0O -

state trfansition function of I x X -> X;

- 4.1 -

