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- ABSTRACT
SAW filters used in the IF section of. a digital microwave radio system
must be designed to very high standards to ensure the signai f,idelity for
high level modulation schemes. _ .
In an effort to maintain strict control over the designed frequency
response from filter to filter, a highly accurate SAW filter Y-matrix model

has been developed based on the modal analysis theory. Combining this

with models for the buffering electronics surrounding the SAW filter, the

—
———

overall circuit response has been predicted to give very close agreement
with experimental results.

The ?pplication of this mo&el in the SAW filter design cycle allows the
undesired frequenc;' response distortion arising from the interaction

between the interdigital transducers and the buffering electronics to be

L

identified in the design stages. An-iterative correction algorithm has been

b

developed which . predistorts the SAW filter frequency response to correct .

for these undesired second-order effects.

The advantage of this iterative design technique is that.t second-
order effects are identified prior to device fabrication, reducin the need
v
for experimental design iterations. The work presented in this thesis will
provide a substantial decrease in the design cycle time for prototype SAW

filters and increase the level of ciuality which may be achieved.

1i1
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= CHAPTER1
- INTRODUCTION

1.1 Surface Acoixitic Wave Technology
Surface Acoustic Wave technology has jmatured to the point where a wide
variety of '—SAW devices are availdble for co;nmercial and military use [1,2].
Over the last decade the global SAW components market has increased by
approximately 25% per year from $10M to more than $100M and it is
predicted by Hartmann [3] that a $1B market is feasible by the end of the

next decade.

The widespread growth of the SAW components market may be
attributed to the many attractions offered by SAW technology. Typical

SAW devices operate at a center frequency between 10 MHz and 2 GHz,

with bandwidths from approximately 10 KHz to greater than 500 Mhz [1].

SAW ‘tecﬁnology excels in this frequency range where conventional lumped °

-

components and microwave technologies display limited capabilities.

]

The signal energy (in acoustic form) propagates along a path on the

surface of a SAW device substrate, allowing theﬁsignal to be

simultaneously sampled at several points along the propagation path. This |/
p ‘

property - results in a unique flexibility of device design enabling many
signal processing functions to be achieved.

Also, the planar nature of SAW technology enables the circuit pattern to
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be deposited entirely on the substrate surface. By exploiting
photolithographic {nanufacturing .techniques which have been developed in
the semiconductor_industry, very reproducible and rugged devices may be
produced at a reasonable cost.
- SAW technology shares some common characteristics with thick/thin film
hybrid techndlogy. To exploit th%se sir’ilaritie;s, it has begn sugg_}ested that
these two compatible technologies be integrated into one package [4]. This
type of integration will enhance the reliability and economy of S.AW
devices, and this trend is predicted for all future SAW based systems.
Although this level of integration has not been attempted here, the
models which have been developed will make it possible to reliably

3

integrate SAW devices and active electronics in future work.



1.2 Analysis and Synthesis of SAW Devices
The simplest SAW device is a d&iy line such as that shown in Figure 1.1.

A typical SAW device consists of two electro-acoustic transducers on a

polished piezoelectric substraté.
Transducers

R.F. Source ("\u 5

Load

Piezoelectricc Substrate

Figure 1.1 A simple nondispersive delay line . . {

The ‘electro,-acoustic transducers convert electrical signal ‘encrgy to
acoustic energy jﬂd vice versa. Each transducer acts as a multi-el‘e'ment
antenna in such a way that the geometry demonstrates a direct‘first—order
correspc‘ndenge to the impulse response. To a googi approximation, the
impulse response ofs the SAW filter is the convolution of the impulse
responses of the ‘input and output transducers. ‘Subsequently, the
frequency response of the filter is the product éf the frequency responses

of the individual transducers [S]. This relationship is the basis for the



design of ali SAW devices. This concept is developed rigourously later in

the thesis.

Due to technological advances in the communications industry, there
-~
¢ €xists a stromg motivation to develop :SAW filters to meet very stringent

4
N -

specifications. For typical applications in the IF sectiain of microwave radio
links, the passband response must be within 0.1 dB of the design
specification. The phase ripple over the passband must be less than one
degree and the out of band rejecti(;n gfeater ‘than 60 dB [6].

In order to maintain strict control over the frequency response from -

A device to device, a highly accuraie design procedure must be developed.'
N ) : - )

The design procedure c¢an be based on simple f\inite impulse response
theory, but in order to achiev enuoned design requnremems all
second order effects _muse be g’counted for and; if necessary, compensated
for in the filter design. .

In many cases, the design procedﬁ;'e consists of repetitive physical”
iterations. That is, an initial design is fabricafed based on a simple model.

-

The filter is then measured and the design is modified to compensate “for
, »

the deviation from the desired response caused by second-order effects.

This iteration process continues until the achieved response falls within the

given specifications. Needless to say, such an iterative procedure is time

consuming and the development cost increases with the number of
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iterations. \ .

ﬁ
An ideal design procedure must be based on a rigorous computer model

hd

which will accurately predict the ‘response @f any SAW filter when inserted

in a network. This will allow the phy\sicai ‘iterations to be replaced by
faster, less costly computer iterat.ions.

At the present time there appears to be no rodel which is-
comprehensive enough to completely describe the complicated behavior of
a SAW filter. The most accurate models, which account, for some second-
order effects are, By necessity, unwieldy and limited to analysis [7].¢

For economic reasons, the design process is usvally limited to a simple
first order model. As previously mentioned, to a good approximation, the 4
fréquency response of a transducer may be designed- using the Fourier
transform of she impulse response based on its relationship to the
transducer geometry. However, the frequency response of a transducer is o
also dependent Pn the non-ideal imeractioq between the transducer and
the electrical so\u;ce via the intervening matching circuit. This "circuit

<
factor” [8] creates some distortion from the  ideal magnitude and phase

responses of the ar.



1.3 Thesis Objectives

The two main objectives of this thesis are to model the effects of the
embedding network (i.e. the circuit factor') on the SAW filter performance
and to derive\a compensation algorithm to eliminate the distortion which it
introduces.

The major $tumbling block in modelling the‘circuit factor is the ability to
accurately model the input admittance of a SAW transducer. To a first-
order approximation, the conductance of a SAW transducer varies as the
square of the theoretical frequency response [9]. "I‘hish ;imple' model "has
been implemented to yield excellent results, howeyer it is limited. to
narrowband filters on qua;tz substrates {6].

In this thesfs, a three dimensional modal analysis [10,11] has been used
to more reliably model the input admittance of z; SAW ransducer. This

theory is based on the solution of the propagating suTface wave modes

v

which are supported by the planaf transducer structure. - The model,

implemented in FORTRAN code, produces very gbod agreement with
experiment for several different transducer geometries.

This model of the input admittance of the SAW transducer combined
with the matr'iing circuit components can then be analyzed to predict the
circuit factor. By cascading the input and output circuit factors with the

response of the SAW filter, ‘the overall response may be predicted to a very

s

) Kl



high degree of accuracy.

Although the ability to predict the response of a SAW filter with a given
source and load is very advantageous, it does not seem very practical or
economical to'redesign a SAW filter to compensate for the different circuit
factors encdumered in 1individual systems. For this reason, t'he third
objective of this thesis is to design a circuit which will enable SAW filters
to operate independent of the surrounding network.

The network shown {n Figure 1.2 consists of a SAW filter surrounded by
wideband buffer amplifiers and the necessary matching structures. The

buffer amplifiers compensate for insertion loss through the SAW filter

and allow the input and output ports to be matched to 75Q.

b -

The overall response of the circuit Hy is the product of the responses of

the amplifiers H , and H,,, the matching circuits C, and C,, and the SAW

filter. The amplifiers are designed with a wide bandwidth so that they
have very little undesired effect on the overall response. Therfore, given
the ability to accurately model the response of the SAW filter and the

matching circuits, the overall circuit response may be é:urat'ely predicted.



BUFFER AMP BUFFER AMP
75Q
, MATCH FILTER MATCH
}
H OO O H (D cfn H (0

Figure 1.2 Schematic of cascade circuit

The SAW filter response can then be designed to compensate for
' . .
non-ideal circuit factor distortion to give the desired overall circuit
response. Establishing such a design procedure is the fourth objective of
this thesis.

This type of design proceduré will provide the ability to manufacture

reliable SAW filters with low insertion loss and no need for tuning of the

matching networks. From the point of view of a system designer it will be ™

advantageous to have the ability to specify a desired SAW filter response
and .have the confidence that it will operate to the given specification
independent of the system configuration.

This should not only increase the usage of SAW filters, but should also
make SAW technology a more competitive alternative to conventional

technologies.



1.4 Thesis. Outline
. [ >}

Chapter 2 provides an introduction to_the physical principles of SAW
filters. To ensure proper background, material characteristics of substrates
and microwave acoustics are discussed. This includes terms and definitions
commonly encountered as well as a brief summary of the physical
operation of a SAW filter.

As previously mentioned, the electro-acoustic transducer is the

fundamental compofnent of all SAW devices. The interdigital transducer

(IDT) is developed in some detail as it is important to have a clear

]
‘3

understandin‘g of its operation.

Pertinent secd-order effects arising from undesired reflections and
spurious signals in the actual filter are dc;scribed and illustrated. There
have been a variety of methods developed to compensate for most of the
second-order effects over the past several 'y;ars. The .most successful of
these will be expldined and others will be mentioned for completeness.

The second-order effects of greatest interest in this text arise from circuit
considerations. The baéis of SAW circuit theory is the equivalent circuit
model developed by Smithv et. al. .[12]. Starting with this simple model,

extensions are added to account for metallization loss and parasitic

elements.
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To achieve minimum insertion loss a SAW transducer may be matched to

the source and the load. Due to the fact that the transducer is

.
predominantly capacitive, a séries or shunt inductance is usually sufficient
to match the transducer at the filter's center frequency. The issues to be
considered when matching will be illustrated in an example of a shunt-
matched IDT. .

The circuit factor will be mathematically derived and the effects on the
filter response will be explained. To illustrate these effects, the circuit
factor for a shunt matching structure will be provided. From the given
example the circuit factor effects should become obvious.

Chaptcr 3 covers the basics of SAW filter design. In this thesis a filter is
designed as a finite impulse response (FIR) filter using a Fourier Transform
approach. Another design method called the Remez exchange algorithm
Will be mentioned to provide a complete background.

The Fourier Transform method stems from the fact that the impulse
response of a transducer has a direct relationship to its physical geometry.
Combining this with tt;e property that frequency response is the Fourier
transform of the impulse response, the transducer geometries may be
determined to produce the desired frequency response.

Due to the finite length of an IDT, some undesired ripple may result. In

some cases a smooth window function is necessary to achieve the desired
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response. The use of a smooth window .function is described although only
a simplé rectangular window was actually used to design the filters in this
thesis.

To illustrate the“Fourier Transform design algorithm, a 70 MHz bandpass
filter is designed as an example. The filter is specified t0o have 30% relative
bandwidth, inban‘d ripple of less than 0.01 dB and out-of-band rejection to
60 dB.

Chapter 4 commences with a survey of the notable works published with
regards to the modelling of the input admittance of an IDT.

The most impressive work is that of [11] presented at the 1985
Ultrasonics Symposium. . This modal - analysis is developed in detail
beginning with the solution of propagating surface wave modes. From the
determination of modes, expressions are derived for the charge induced on
an IDT by an applied voltage. From the calculated charge, expressions for
induced current and admittance ha;/e been derived.

The model has been applied to- various transducers and re‘sults have been
compiled dembnstrating excellent agreement with experiment.

As previously mentioned, a circuit has been designed combining a SAW
filter with buffer amplifiers. Chapter 5 discusses the design and

implementation of a D.C. coupled buffer amplifier with a 3 dB bandwidth in

excess of 500 MHz. The amplifier exhibits high input impedance and very
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low output impedance as well aswver,y sz;nall gain ripple.

The amplifier was desigped with the aid of a SUPER-COMPACT!' computer
modelk to idcmify‘ the parasitic elements and to optimize the frequency
response. The actual circuit was constructed using surface mount
components mounted on a DUROJD? substrate, and placed in a metal
package.

Chapter 6 begins'with the design of a test circuit comprised of a SAW
filter bufféred by two amplifier; on a px;inted circuit board. Several design
considerations are presented which improve thev circuit performance by
reducing second-order effects.

A computer model has been designed to predict the response of' this

circuit. The theoretical model based on the circuit factor has been described

&N . .
and the results compared with experiment.

Given this ability to model the response of the cascade circuit, a
compenéation algori'thm was developed to predistort the SAW filter

\rfsponse to produce the desired circuit response.

s
.

—

1. Product of COMPACT software.

2. Trademark of Rogers Corp.
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Chapter 7 presents the development and implementatign/ of the
: |‘

_-design  which
;o

eliminates the undesired effects modeled in the original \~SP;W filter. The

[

algorithm, Simulated results are presented for a new
- .

experimental results of this design are presented ‘in comparison to the

response predicted by the model.

Conclusions are drawn and improvements for future work are suggested

in Chapter 8.

Vi
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CHAPTER 2 _—

PHYSICS OF SAW DEVICES

i ' .

2.1 Surface Acoustic Waves and SAW Materials

A mechanical perturbation appljed to an isogropic solid will distort the
surface inasuch a way that a "slow” wave will form and propagate. The slow
wave of particular interest here is the Rayleigh- wave, commonly known as

the surface acoustic wave (SAW) [ 1 ].

Generally, the energy of a SAW is confined to within a few wavelengths

. [
of the surface (Figure 2.1). Also, for a forward propagating wave, the

particle motion follows a retrograde elliptical path. Typical phase velocities

are in the order of 3000 to 4000 m/s.
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Figure 2.1 The propagation of a Rayleigh wave on the surface
of an isotropic solid.
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For SAW devices, single crystal pieizoelectric substrates -are used. In a
piezoelectric material, an applied elsctric field has associated_with it a
mechanical stress or strain. The inherent reciprocity of th\is piezoelectric
effect implies that a propaﬁating SAW has components of electric field as
well as physical displacement.

In general, piezoeléctric crystals are anisotropic with respect to phase

velocity. Consequently, when identifying a crystal it is necessary to specify

both the'plane of the crystal surface as well as the direction of SAW
propagation. For example, the term Y-Z lithium niobate [LiNbO,] describes a

crystal with its surface cut normal to the Y crystalline axis and the Z axis as
the direction of propagation.
The phase velocity of a SAW on a particular substrate is usually

- presented as a continuous function of the propagation angle. Figure 2.2
displays .such curves for a SAW on 128° rotated YX LiINbO,. Cases for both a

free sut:face [open] and a surface coated with an infinitesimally thin
Eonductor [shorted] have been included. Similar curves for many substrate
materials have been documented in [13].

As may be observed, the velocity‘curves exhibit both maxima and
minima over the angular :range. At each of these extrema, the power flow

vector of the SA\\{ is parallel to the propagation vector. The *vector which

corresponds to such an angle is known as a pure mode axis [15].

- -
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‘Figure 2.2 Surface wave velocity versus direction of propagation
for 128° lithium niobate (LiNbO,) '
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If, due to some unintentional misalignment of the transducer, the SAW is
not launched along a pure mode axis the acoustic beam (power flow

vector) will diverge from the propagation vector. Such a condition_is

referred to as beam steering [14].

The power flow angle, 0; is defined as the angle between the power floW

vector and the propagation vector. More--important is the slope of the






