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ABSTRACT

It is increasingly clear that there is an intimate link between cellular metabolism and
macrophage function. Several studies in the last decade have established that alteratiolas in cell
metabolism both drive and regulate macrophage function, allowem to mount a functional
immune response against viruses by promoting viral resistance, antigen presentation and the
production of inflammatory and antiviral cytokine&s a result, m@bolic reprogramming of
macrophages allows them to adapt the specandhmagnitude of their response depending on the
microenvironment, stimuli, and stage of infectidfet, it is unclear howlifferent viral ligands alter
metabolisnto induce specific itmune responses arféspecific metabolic components can ast

rheostad to amplify theseesponsebased orthe microenviroment.

The central hypothesis of my thesis is that cellular metabolism is crudiagtdating
antiviral immune responses. Speally, | hypothesized that differential mitochondrial
reprogramming allws macrophages to modulate ligasykcific effector respons@&loreover
mitochondria further function as rheostafine-tuning immune responses based on the

microenvironment.

First, | used publicly available microarray datasets to develop a metabotatsig
associated with early IFNIresponses in mouse BMMs and human MDMs. >500 metabolic genes
related to cellular bioenergetics, cellular redox status, amino acid, and lipid metahaie
identified. Next] show that TLR3 and TLR4 engagement in mdsis#Vs drive differential ETC
remodeling, linked to differential mitochondrial activity and subsequent ROS generation, to
support liganespecific inflammatory and antiviral profiles. Huermore, when exploring different

types of TLR3 engagement, based gaihd length, they trigger distinct inflammatory and antiviral



programs, due to unique regulatory mechanisms surroundind HIF f uncti on as wel

ETC architecture and functiorgspectively.

The aim of this thesis to gain a more thorough undmding of the critical role of cellular
metabolism in regulating macrophage antiviral responses. A systematic understanding of these
critical processes to regulating effector function underdisaased conditions can provide critical
insights into the dsregulation of metabolic processes during chronic viral infections. The data
presented may be the foundation towards the development of new antiviral therapeutics by

targeting selective mitochondrial components.
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PREFACE

Thi s tMbatabslic Reguiation of Antiviral Immune ResponsedMacrophaged i s
comprisedof four chapters adapted from research manuscriptepters 2 Mediators of
Inflammation 2018) and 3%cientific Reports2019)have been publishe€hapter 4 Journal of
Immunology 2020) has been submitted for publication &tuhpter 5 is inpreparation for
submissiorat Frontiers of ImmunologyD.A. is the primary cauthor on each of these chapters.

The authors contributions for each chapter are as follows:

Chapter 2

This chapteiis afinishedmanuscrippublishedat Mediators of Inflammatiom 2018and
is a collaborative work of D.AJaworski, A., Roy, D., Willmore, W., Golshani, AandCassol,
E. entitl ed piofilingssuggestexieqsivemetabaidrewiring of human andnouse
macrophages duringarly interferonaphare s p o nB.A& $.the maincontributor, having
curated the dataset and conducted the anafidisciby A.J, D.R., W.W., and E.C. A.G. and E.C.

supervising the researchll contributorscontributed to thevriting andediting of themanusript.

Chapter 3

This chapteris a completed manuscripiublishedat Scientific Reportsn 2019 and is a
collaborative work of D.A.Roy, D., Jaworski, A., Edwards, A., Abizaid, A., Kumar, A., Golshani,
A., andCassol, Ee n t i Differerdial iéemodeling of the electron transport chiainequired to
support TLR3 and TLR4 signaling and cytokine production in macrophagjes A. G. and
supervised the worik this chapter. D.Aperformedall of the experiments, with D.R. assistiagd
D.A. and E.C. designing the experimemsJ., A.E. andA.A. helped procured the mouse bone
marrow progenitors usad this chapterD.A., D.R., A.K., and E.C. assisted in the analysis and

interpretationAll co-authorscontributed to the writing and critiquing of the manuscript.



Chapter 4

This chapter is aanpletel manuscript submitted dburnal of Immunologyn 2020 and
is a collaborative work of D.AHumphrey, A., Roy, D., Sheridan,-H, Jaworski, A., Edwards,
A., Donner, J., Abizaid, A., Willmore, W., Kumar, A., Golshani,#dCassolE.e nt i HIF-e d
1 U gulaton of preinflammatory cytokine production following TLR3 engagement is dependent
on viral nucleic acid length and glucose availahility D. A. i's the main
experiment, conductingll of the experiments with the helgf A.H., D.R., M.E.S,and J.D,
supervised by A.G. and E.C. The experiments were designed by D.A. and E.C. A.J., A.E. and AA.
helped harvested the mouse bone marrow progenitor cells used in this study. D.A., A.H., D.R.,
M.E.S., J.D., W.W., A K. and E.Capticipaked in the angkis and interpreting of the data. All

contributors on this chapter assisted in the careful writing of this manuscript.

Chapter 5

This chapter is a manuscriptpreparation to beubmitted aErontiers of Immunologgnd
is a collalorative work of D.A.,Humphrey, A., Roy, D., Sheridan,-H, Versey, Z.Jaworski, A.,
Edwards, A., Abizaid, A., Kumar, A., Golshani, AndCassol, Ee n t i dsRN&A dtrarid length
dictates the manner of mitochondrial reprogramming and-R&@i8ated antiival respnse during
TLR3 engagementd D . A primarysceauthoe conductingll of the experiments of this
chapter with support frorA.H., D.R., M.E.S, and Z.V, with supervision from A.G. and E.C. The
experiments of this chapter were designed by D.A. and &@ mouse bone mawgrogenitors
were collected A.J., A.E., and A A.D.A, AH,, D.R.,, M.E.S., Z.V., AKK. and E.C. contributed to
the analysis and interpreting of the data. AHazthors on this chapter assisted in the creation of

this manuscript.
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Chapter 1. INTRODUCTION

The immune system consists oVariety of cells andomplex biological processes that
protect the host organism against foreign #&gd€h). It is made up of two interconnected
subsystemghe innate anddaptive immune systems. The innate immune system provides the first
line of defense against pathogdrysundertaking nonspecific defense mechanisms against foreign
microorgansms (1-3). This first line acts quickl to prevent the spread of the infectigia the
sensingf conserved componenand the initiation of inflammatiofi-3). They also phagocytose
and destroy local invaders, secrete antibacterial and antiviral medeand recruit other cells to
the site of infection through the release of chemokifie3). The innate immune system is
comprised of a diverse set of cells capable of exerting tigatective mechanisms indin fight
against pathogens, such as neutrophils, dendritic €&lls)( natural killer (NK) cells, monocytes
and macrophagegl, 3). DCs, monocytes, macrophagésiown as antigepresentingcells

(APCs),can engulthe pathogen and present an antigen to activate adaptive immur(@)cells

Once activated, the adaptive immune response provides an aspigafic response
againstpathoges (1, 4) Adaptive immune dés include B cells and T cells, named basedhan
initial tissueof discovery the bursa of Fabricius of birds and the huntlymus respectivelyl,

4). B cells are responsible for producing antiggecific antibodies that can bind to the pathogen
and facilitate their recognitioby APCs, triggering phagocytosiga Fc receptor recognitiofi).

T cellscan trigger the death of infected cells, activate B catid,secrete cytokines to attract other
immune cells to the site of infectidh, 4) After the initial infection, adaptive immunitgaintains
immunological memory againshe defeated pathogeteading to aquicker andheichtered
responseipon secondargxposurgl, 4) Together, the innate and adaptivetsyns provide host

defense against a vast number of organisms of bacterial, viral, or fungal origin.



1.1. Macrophages and the Mononuclear Phagocyte System

Macrophages were first discovered by llya Metkbff in 1882, who was later awarded
the Nobel Prize in Physiology or Medicine in 1908 for this disco(&rg) Van Furth et al(7, 8)
proposed that macrophages are derived from bone marrow progenitors, which dafeneati
circulating monocytes. However, recent work has found that macrophages can originate from at
least three different progenitors that give rise to macrophages at different stages of fetal
development and adulthood: Yolk saerived macrophages, fetever-derived macrophages, and
bone marrowderived macrophag€8-11). Macrophages originating from yolk sac progenitors are
initially developed during the embwgic phase prior to fetal monocyte development,
circumwventing the monocytic intermediary stag?). These cells are maintained locally and
persist throughout the Iif(5, 6). Yolk sacderivedmacrophages make up the majority of tissue
resident macrophages found in the body. Examples include hesstophages, alveolar
macrophages of the lung, micragbf the brain, Kupffer cells of the liver and Langerhans cells of
the skin(10-12). Later in development, hematopoietic stem cells seed the fetal liver and their
progenitors also lead to the development of tigegelent macrophages excluding microglia,
which only originate from the yolkac(6). The third knevn macrophage lineage is the well
discussed bone marrow progenit(@¥ Cellular descendants of this lineage give rise to circulating
monocytes in adults, which are newly recruited into inflamed tissgeoenvironments during
infection and stress. A small number also mainiasueresidenipopulations under conditions of
homeostasis, 6). As a result, macrophages populations can #niseigh different originsvhich

may be a contributing factto the plastici of this cell type.

Circulating monocytes can be classified based on specific surface marker expression in

mice and humans. In mice, circulating monocytes are categorized based on Ly6C ex(k8¥ssion



Ly6C* monocytes are inflammatory cells, infiltrating tissues in response to damage or infection
and differentiate into macrophaggst). ConverselyL.y6C monocytes do rtoenter tissues and
survey the vascular system to clear damaged endothelial (&élls15) Human circulating
monocytes are separated into three distinct classes based on the expresSiosteofof
differentiation (CD)-14 and CD16 (14, 1619). Similar to Ly6C monocytes in mice,
CD14"CD16 monocytes are recruited to inflamed tissues and they differentiate into inflammatory
macrophageél4, 19) CD14CD16™ monocytes shared functions similar to mice LyGdls, in

that they patrol the vascular system and contribute to wound hdakatg). CD14*CD16"

monocytes are ietmediary monocytes, performing the functions of the other two cl@s&eE3)

Once in the tissue, resident tissue macrophages maintain their ability to detect
microorganisms and cellular debris while adapting suppressive strategmevent hyper
actvation and associated cellular damage due to the constant exposure to microbes and cellular
debris(20). When these immunomodulatory mechanisms are absengphage hypeactivation
can lead to severe inflammation and tissue danf2fy23). As a result, macrophages display
regional heterogengitdepending on the specific tissue microenvironm@4). For example,
alveolar macrophages in the lung express higher levg@atbbgen reognition receptors (PRRS)
and scavenger receptors to clear pathogens and inhaled envirdnpaetitées(25). Yet, these
cells are elatively anergic due to high levelsfansforming growth facteb T&F-b) expression,
critical for the development and differentiation of alveolar macroph@sAnother regional
tissue macrophage, Kupffer cells of the liver, possess heightened scavenger and bactericidal
activities (27), yet are highly sensitive to enitay a state of hypoesponsiveness due to stimuli
overexposurg28). Intestinal macrophages are also inflammatory anergic due tebidziven

inhibition of NFa Bassociated inflammatiof29, 30) yet retain their scavenger and bactericidal



activities(29,31) Thi s highlights the i mmense pressure

places on its function and the versatility of the macrophage to adapt its function to its environment.

Macrophages perform a diverse set of roles that areaténta proper immune response.
During early infection, this includes the ability to phagocytose microorganisms or pathogenic
components, to produce praflammatory cytokines that can help recruitiaactivate other innate
and adaptive immune cells, arfftetprocessing and presenting of pathegecific antigens to
further activate adaptive immune cells. To promote the resolution of the inflammatory process,
macrophages expressed anflammatory cyokines to quell inflammation and take up apoptotic
debrs to help facilitate tissue remodeling and refi2d;, 3234). This establishes the macrophages
as an invaluable link between the innate and adaptive immune systems. This adaptability of
macrophages to facilitatevede range of rgponse is governed by the metabolipregramming

that occurs due to specific pathogen recognition and the resulting cellular microenvir{@snent

1.2. Host Pathogen Recognition by Macrophages

Macrophages survey their tissue microenvironment for pathogens, microbial
componerg/proteinsor hog biomolecules by recognizing conservedlecular motifs known as
pathogerassociated molecular patterns (PAMPshost componentseleasedrom damaged or
dying cells that otherwise would not be present in the extracellspace known as danger
associated molecular patterns (DAMR%) 36) PAMPs and DAMPsre detectedby specific
extracellular and intracelluld?RRs(1, 36) Several classes of PRRs have been identifiad
sense virusesamong the most impomé are Toll-like receptors (TLRs) andRetinoic acid

inducible gene (RIG-1)-like receptors (RLRH37, 38)



1.2.1. Toll Like Receptors (TLRS)

The best characterized class of PRRs are TLRs. Each member is apasgjigpe |
membrane protein with a-drminal ectodomain of leucifgch repeats and a cytosolicteérminal
Toll/Interleukinl receptor (TIRdomain(37). Mammals possess up to 12 distinct TLRs that can
be categorized by their ligand specificity and by their location (Figure 1.1). Bacterial PAMPs are
detected by surface TLRs such as TLR1/2/pofiroteins from Grampositive bacteria), TLR4
(lipopolysacchade [LPS] of Grarmegative bacteria), and TLR5 (Flagell({8p-44) (Figure 1.1).

Viral PAMPs are detected by TLRs thatimig reside in endosomes inclind TLR3 (dsRNA),
and TLR7/8 (ssSRNA}45-47) (Figure 1.1) TLR9 can detect both bacterial and viral unmethylated

CpG DNA motifs(48, 49)(Figure 1.1)

PAMP engagement resslin TLR dimerization and the initiation of dowredm signalling
either throughMlyeloid differentiation primary response 88yD88) or TIR-domairrcontaining
adaptetinducing interferorb (TRIF) (50). All TLRs except TLR3 utilized MyD88ependent
signalling, which recruilnterleukin(IL) -1 receptor associated king#RAK) proteins to activate
Tumour necrosis factof NF) receptorassociated factdy (TRAF6) (2) (Figure 1.2). TRAF6 then

drives the activation of theuclear factor of kappa light polypeptide gene enhanceraalB(NF-

8 Bihhibitor( 8)Bi nase (I KK) compl ex, which subsequen:

in the det achmeaB,lowid fréedNBaUB ftroo nt rNaFn snlcteusand e i
induce the expression of inflammatory cytokir{gs). To maintain this activatiorstate,NF-o B
alsodirectly suppresses the expression of other gene targets, skols asd the early growth
response protein (EGRas well asup-regulate NFkB-induced transcription factors, incling

Myc and Interferon regulatory factor 1 (IRF@G2). Both TLR3 and TLR4 employ the TRIF

dependent pathwaf?) (Figure 1.2). For TLR3, TRIF triggers both the activation of TRAF6

nt



mediated NF-e B s i g n a ITANK bigdinga kindse 1(TBK1)/ | Krdddiated IRF3/7
signalling (50). Conwersely, TRIF activation during TLR4 engagement only results in the
activati on -metliate BRR317/signkllia@P3) (Figure 1.2). The phosphorylation and
dimerization of IRF3 and IRF7 triggers the expression of type | interée(IRNs), a family of

antiviral cytokineg50, 54)
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Figure 1.1: A summary of the bacterial and viral PAMPs that are detected by ToHike
receptors (TLRs). Bacterialsensing TLRs aretated along thsurface of plasma membrane
whereas, RNA/DNAsensing TLRs are primarily located in the endosomes. Image created with
BioRender.com.
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Figure 1.2: TLR3 (viral dSRNA) vs TLR4 (bacterial LPS) signaling dynamics. TLR4
induces MyD88 and TRIF activation to support the production ofrgfammatory cytokine and
Type | IFNs, respectively. Conversely, TLRR8diated TRIF activation results in taetivation
of the same prinflammatory and IFN cascades. Image edavith BioRender.com.



1.2.2. RIG-I-like Receptors (RLRS)

RLRs are a family of DExD/H box RNA helicases found in the cytosol and are responsible
for the detection of cytosolic viral dASRNAS). These receptors possess-geninal domain and
catalytic helicase core responsible for binding viral RNA, accompanigd-teyminal caspase
active recruitment domains (CARD) which are essefaralownstream signallin(b5-57). There
are two major receptors responsible for triggering &ffecesponses: RKb and Melanoma
differentiationassociated protei (MDA5). ThesereceptorsdetectdsRNA of specifc lengtrs.

RIG-I recogniz short RNA strands preferentially (<1kihereasMDAS5 preferslonger RNA
strands (>2kb}58, 59)(Figure 1.3) This differs from the TLR family, where one receptor (TLR3)

is responsibledr dsRNAengagemerntrespective of lengtk46).

Upon engagement, both RliGand MDA5 form filaments along their preferred dsRNA
strands, leading to the polymerization of their respective CARD dom@®$3). These
oligomeric formations facilit& the recruitment of the mitochondrial antiviral signaling protein
(MAVS), forming thre MAVS signalosome along the outer membrane of mitocho(®itie6467)
(Figure 1.3) Additional MAVS protens arethenrecruited to thesignalosome siteleading to
signal amplification(67). The MAVS signalosome drives the aetivon of NFa Bmediated
inflammation and the IRF3/d@riven antiviral responseja the recruitment of the IKK conhgx

and TBK1/ | KK (®6)(Figwepl8S)ti vely
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Figure 1.3: Overview of RLR signaling. RIG-1 and MDA5S detect dsRNA of different lengths
before engaging MAVS, initiating NB B a n dignalifyH he activation of Nf® Bresults in
pro-inflammabry cytokine production while IRF3/7 activation leads to type | IFNs production.
Image created with iBRender.com.
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1.2.3. Type | IFN signalling

The one commonality between TLR aRHR signalling is the induction of type | IFNs,
triggered by IRF3/7 signalling. Type | IFNs are the largest class of IFNs, consistifg-of, -1 F N
U, - FNUFNYTFNb, and 13 diff elt@8 69 Bheybattynpars o f
autacrine and paracrine manrterinduce antiviral states in infected and bystander cells in the local
microenvionment (Figure 1.4). This state is associated with the upregulation eftifaNlating
genes (ISGs) and expression of antiviral proteins, whictieptefurther viral propadgen and
replication. Type | IFNs also regulate antigen presentation and phageacyitiity to support

adaptive immune systeactivation, which is critical to the locating and killing of infected cells

(70-72).

Type | IFNs interact with either Il r ecept or 1 or 2 (1 FNAR1/
dimerization(73) (Figure 1.4). This results in the autophosphorylation and activation of the Janus
activated kinase (JAK) protes, JAK1 andTyrosine kinase 2T(YK2), which are constitutively
associated with IFNAR1 and IFN#2 respectively(73). Both proteins activate thsignal
transducer and activator of transcripti@TAT) proteins SAT1 and STAT2, leading to their
subsequent nuclear translocatigind4). Two different mechanisms exist resulting in I1SG
expression. First, STAT1 and STAT2 can bind to IRFfbtan the IFNstimulated gene factor 3
complex (ISGF3) which recognizes the Hshimulated respasive elements (ISRES) resulting in
ISG expression(73) (Figure 1.4). Second, phosphorylated STAT proteins can feomo or
heterodimers that are capable of binding to--akssociated sites (GAS) elements lagdo ISG
expression(75). ISGs can have an ISRE site and/or a GAS site, thus a combination of different
STAT complex fomations may be required for the expression of >1000 known ISGs and therefore

facilitating spetfic immune responseg§6) (Figure 1.4). In addition to the traditional JAKTAT

11



pathway, IFNAR engagement can also activate ghesphoinositide -Binase (PI3K)Akt-
Mechanistic target of rapamycin (MTOR) pathwetical for thetranscription and translation of
ISGs as well as #h phosphorylation of STAT protein@7-79). In addition, this pathway is
responsible for the expression of genes related to energy metabolism in activated irellsune c
such afypoxic-inducible factorl UHIF-1 U)  a watle kipagenuscle isozymé (PKM2)(80-

82).
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Figure 14: Traditional type | IFN signaling cascade. Type | IFNs act throug IFNAR1 and
IFNAR2, leading to the activation of JAK proteins JAK1 and TYK2. They, in turn, phosphorylate
STAT family of transcription factors. STAT proteins can either form hoondheterodimers and
activate GASmediated ISG express. In addition,STAT1 and STAT?2 interact with IRF9 to
form the ISGF3 complex and drive ISREediated ISG expression. Image created with

BioRender.com.
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1.3. Mitochondria: Master Regulator of Cell Function

Mitochondriaare the central hub faeveral metabatiprocesseand play aritical role in
modulating diverse celluldunctiors. These functions include catabolizing nutrients for energy,
producing biosynthetic precursors for macromolecules).( nucleotides, proteins, lipids),
maintaining redox balancand regulating apopsts (83-85) (Figure 1.5) Here,l will outline these

mitochondrialassociated processes and highlight their importen@gulating immunéunction.

1.3.1. Mitochondrial Bioenergetic Pathways

Glucose is the primary sowof energy to the mitochoridn (86, 87) Its breakdowrvia
glycolysis involves a teenzyme pathway and nets 2 pyruvate, i2otnamide adenine
dinucleotidgNAD* or NADH) and 2 ATP molecules per glucose moled8, 87) Other sugars,
such as fructose and galactose, can feed into this pathway at various points, providing a focal point
for the breakdown of sugairscells(88) (Figure 1.6). The intermediates produced by this pathway
also serves as metabolites for several different pathways critical to immunerfuRor example,
naive DCs build up their glycogen storgstaking up extracellular glucose and initially use these
stores to support DC function in the early activation pf@@KFigure 1.6). The pentose phosphate
pathway (PPP) (responsible for nucleotide and NAD phatsp(NADPH) synthesis) has been
linked to T cell activation and its need for NADR®D, 91)(Figure 1.6). Glucoseerived amino
acids, such as serine, are also used during T cell activation to drive their atiolifetue to its
link to de novopurine biosynthesi§92) (Figure 1.6). This highlights the fundamental role of

glycolysis in cell function.
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Figure 1.5: Mitochondria are the central hubs for innate immune responsesMitochondria

play a central role in several metdib and immune processes such as functioning as scaffold for
antiviral signaling, energy productieta oxidative phosphorylation (OXPHOS3s well as

mediate apoptosis and facilitates inflammation thraegjulation mitochondrialeactive oxygen
speciefROS)production and inflammasome activation. Image created with BioRender.com.
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Figure 1.6: The importance of Glycolysis and the TCA cycle intermediates as building
blocks for various biosynthetic pathways.Glucose andhe other sugars that feed into its
catalytic pathway (fructose and galactose) are processed and can be used in the geheration
nucleotides, NADPH, glycerol, serine, and glycine. TCA cycle metabolites can be used to
produce sterols, fatty acids, and aie®yr of amino acidsimage created with BioRender.com.
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