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ABSTRACT 

It is increasingly clear that there is an intimate link between cellular metabolism and 

macrophage function. Several studies in the last decade have established that alterations in cellular 

metabolism both drive and regulate macrophage function, allowing them to mount a functional 

immune response against viruses by promoting viral resistance, antigen presentation and the 

production of inflammatory and antiviral cytokines. As a result, metabolic reprogramming of 

macrophages allows them to adapt the spectrum and magnitude of their response depending on the 

microenvironment, stimuli, and stage of infection. Yet, it is unclear how different viral ligands alter 

metabolism to induce specific immune responses and if specific metabolic components can act as 

rheostats to amplify these responses based on the microenvironment. 

The central hypothesis of my thesis is that cellular metabolism is crucial to regulating 

antiviral immune responses. Specifically, I hypothesized that differential mitochondrial 

reprogramming allows macrophages to modulate ligand-specific effector response. Moreover, 

mitochondria further function as rheostats, fine-tuning immune responses based on the 

microenvironment.  

First, I used publicly available microarray datasets to develop a metabolic signature 

associated with early IFN-Ŭ responses in mouse BMMs and human MDMs. >500 metabolic genes 

related to cellular bioenergetics, cellular redox status, amino acid, and lipid metabolism were 

identified. Next, I show that TLR3 and TLR4 engagement in mouse BMMs drive differential ETC 

remodeling, linked to differential mitochondrial activity and subsequent ROS generation, to 

support ligand-specific inflammatory and antiviral profiles. Furthermore, when exploring different 

types of TLR3 engagement, based on ligand length, they trigger distinct inflammatory and antiviral 
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programs, due to unique regulatory mechanisms surrounding HIF-1Ŭ function as well as altered 

ETC architecture and function, respectively. 

The aim of this thesis is to gain a more thorough understanding of the critical role of cellular 

metabolism in regulating macrophage antiviral responses. A systematic understanding of these 

critical processes to regulating effector function under non-diseased conditions can provide critical 

insights into the dysregulation of metabolic processes during chronic viral infections. The data 

presented may be the foundation towards the development of new antiviral therapeutics by 

targeting selective mitochondrial components.  
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PREFACE 

 This thesis ñMetabolic Regulation of Antiviral Immune Responses in Macrophagesò is 

comprised of four chapters adapted from research manuscripts. Chapters 2 (Mediators of 

Inflammation, 2018) and 3 (Scientific Reports, 2019) have been published. Chapter 4 (Journal of 

Immunology, 2020) has been submitted for publication and Chapter 5 is in preparation for 

submission at Frontiers of Immunology. D.A. is the primary co-author on each of these chapters. 

The authors contributions for each chapter are as follows: 

Chapter 2 

 This chapter is a finished manuscript published at Mediators of Inflammation in 2018 and 

is a collaborative work of D.A., Jaworski, A., Roy, D., Willmore, W., Golshani, A., and Cassol, 

E. entitled ñTranscriptional profiling suggests extensive metabolic rewiring of human and mouse 

macrophages during early interferon alpha responses.ò D.A. is the main contributor, having 

curated the dataset and conducted the analysis, aided by A.J, D.R., W.W., and E.C. A.G. and E.C. 

supervising the research. All contributors contributed to the writing and editing of the manuscript. 

Chapter 3 

 This chapter is a completed manuscript published at Scientific Reports in 2019 and is a 

collaborative work of D.A., Roy, D., Jaworski, A., Edwards, A., Abizaid, A., Kumar, A., Golshani, 

A., and Cassol, E. entitled ñDifferential remodeling of the electron transport chain is required to 

support TLR3 and TLR4 signaling and cytokine production in macrophages.ò A.G. and E.C 

supervised the work in this chapter. D.A. performed all of the experiments, with D.R. assisting and 

D.A. and E.C. designing the experiments. A.J., A.E. and A.A. helped procured the mouse bone 

marrow progenitors used in this chapter. D.A., D.R., A.K., and E.C. assisted in the analysis and 

interpretation. All co-authors contributed to the writing and critiquing of the manuscript. 
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Chapter 4 

 This chapter is a completed manuscript submitted at Journal of Immunology in 2020 and 

is a collaborative work of D.A., Humphrey, A., Roy, D., Sheridan, M-E, Jaworski, A., Edwards, 

A., Donner, J., Abizaid, A., Willmore, W., Kumar, A., Golshani, A., and Cassol, E. entitled ñHIF-

1Ŭ regulation of pro-inflammatory cytokine production following TLR3 engagement is dependent 

on viral nucleic acid length and glucose availability.ò D.A. is the main contributor of this 

experiment, conducting all of the experiments with the help of A.H., D.R., M.E.S, and J.D, 

supervised by A.G. and E.C. The experiments were designed by D.A. and E.C. A.J., A.E. and A.A. 

helped harvested the mouse bone marrow progenitor cells used in this study. D.A., A.H., D.R., 

M.E.S., J.D., W.W., A.K. and E.C. participated in the analysis and interpreting of the data. All 

contributors on this chapter assisted in the careful writing of this manuscript. 

Chapter 5 

 This chapter is a manuscript in preparation to be submitted at Frontiers of Immunology and 

is a collaborative work of D.A., Humphrey, A., Roy, D., Sheridan, M-E, Versey, Z., Jaworski, A., 

Edwards, A., Abizaid, A., Kumar, A., Golshani, A., and Cassol, E. entitled ñdsRNA strand length 

dictates the manner of mitochondrial reprogramming and ROS-activated antiviral response during 

TLR3 engagement.ò D.A. is the primary co-author, conducting all of the experiments of this 

chapter with support from A.H., D.R., M.E.S, and Z.V, with supervision from A.G. and E.C. The 

experiments of this chapter were designed by D.A. and E.C., and mouse bone marrow progenitors 

were collected A.J., A.E., and A.A. D.A., A.H., D.R., M.E.S., Z.V., A.K. and E.C. contributed to 

the analysis and interpreting of the data. All co-authors on this chapter assisted in the creation of 

this manuscript. 
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Chapter 1. INTRODUCTION  

The immune system consists of a variety of cells and complex biological processes that 

protect the host organism against foreign agents (1). It is made up of two interconnected 

subsystems: the innate and adaptive immune systems. The innate immune system provides the first 

line of defense against pathogens by undertaking nonspecific defense mechanisms against foreign 

microorganisms (1-3). This first line acts quickly to prevent the spread of the infection via the 

sensing of conserved components and the initiation of inflammation (1-3). They also phagocytose 

and destroy local invaders, secrete antibacterial and antiviral molecules, and recruit other cells to 

the site of infection through the release of chemokines (1-3). The innate immune system is 

comprised of a diverse set of cells capable of exerting tissue-protective mechanisms in their fight 

against pathogens, such as neutrophils, dendritic cells (DCs), natural killer (NK) cells, monocytes 

and macrophages (1, 3). DCs, monocytes, macrophages, known as antigen-presenting cells 

(APCs), can engulf the pathogen and present an antigen to activate adaptive immune cells (2).  

Once activated, the adaptive immune response provides an antigen-specific response 

against pathogens (1, 4). Adaptive immune cells include B cells and T cells, named based on the 

initial tissue of discovery: the bursa of Fabricius of birds and the human thymus respectively (1, 

4). B cells are responsible for producing antigen-specific antibodies that can bind to the pathogen 

and facilitate their recognition by APCs, triggering phagocytosis via Fc receptor recognition (1). 

T cells can trigger the death of infected cells, activate B cells, and secrete cytokines to attract other 

immune cells to the site of infection (1, 4). After the initial infection, adaptive immunity maintains 

immunological memory against the defeated pathogen, leading to a quicker and heightened 

response upon secondary exposure (1, 4). Together, the innate and adaptive systems provide host 

defense against a vast number of organisms of bacterial, viral, or fungal origin. 
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1.1. Macrophages and the Mononuclear Phagocyte System 

Macrophages were first discovered by Ilya Metchnikoff in 1882, who was later awarded 

the Nobel Prize in Physiology or Medicine in 1908 for this discovery (5, 6). Van Furth et al. (7, 8) 

proposed that macrophages are derived from bone marrow progenitors, which differentiate into 

circulating monocytes. However, recent work has found that macrophages can originate from at 

least three different progenitors that give rise to macrophages at different stages of fetal 

development and adulthood: Yolk sac-derived macrophages, fetal li ver-derived macrophages, and 

bone marrow-derived macrophages (9-11). Macrophages originating from yolk sac progenitors are 

initially developed during the embryonic phase prior to fetal monocyte development, 

circumventing the monocytic intermediary stage (12). These cells are maintained locally and 

persist throughout the life (5, 6). Yolk sac-derived macrophages make up the majority of tissue-

resident macrophages found in the body. Examples include heart macrophages, alveolar 

macrophages of the lung, microglia of the brain, Kupffer cells of the liver and Langerhans cells of 

the skin (10-12). Later in development, hematopoietic stem cells seed the fetal liver and their 

progenitors also lead to the development of tissue-resident macrophages excluding microglia, 

which only originate from the yolk sac (6). The third known macrophage lineage is the well-

discussed bone marrow progenitors (6). Cellular descendants of this lineage give rise to circulating 

monocytes in adults, which are newly recruited into inflamed tissue microenvironments during 

infection and stress. A small number also maintain tissue-resident populations under conditions of 

homeostasis (5, 6). As a result, macrophages populations can arise through different origins which 

may be a contributing factor to the plasticity of this cell type. 

Circulating monocytes can be classified based on specific surface marker expression in 

mice and humans. In mice, circulating monocytes are categorized based on Ly6C expression (13). 
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Ly6C+ monocytes are inflammatory cells, infiltrating tissues in response to damage or infection 

and differentiate into macrophages (14). Conversely, Ly6C- monocytes do not enter tissues and 

survey the vascular system to clear damaged endothelial cells (14, 15). Human circulating 

monocytes are separated into three distinct classes based on the expression of Cluster of 

differentiation (CD)-14 and CD16 (14, 16-19). Similar to Ly6C+ monocytes in mice, 

CD14++CD16- monocytes are recruited to inflamed tissues and they differentiate into inflammatory 

macrophages (14, 19). CD14+CD16++ monocytes shared functions similar to mice LyC6- cells, in 

that they patrol the vascular system and contribute to wound healing (16-18). CD14++CD16+ 

monocytes are intermediary monocytes, performing the functions of the other two classes (17, 18). 

Once in the tissue, resident tissue macrophages maintain their ability to detect 

microorganisms and cellular debris while adapting suppressive strategies to prevent hyper-

activation and associated cellular damage due to the constant exposure to microbes and cellular 

debris (20). When these immunomodulatory mechanisms are absent, macrophage hyper-activation 

can lead to severe inflammation and tissue damage (21-23). As a result, macrophages display 

regional heterogeneity depending on the specific tissue microenvironment (24). For example, 

alveolar macrophages in the lung express higher levels of pathogen recognition receptors (PRRs) 

and scavenger receptors to clear pathogens and inhaled environmental particles (25). Yet, these 

cells are relatively anergic due to high levels of Transforming growth factor-ɓ (TGF-ɓ) expression, 

critical for the development and differentiation of alveolar macrophages (26). Another regional 

tissue macrophage, Kupffer cells of the liver, possess heightened scavenger and bactericidal 

activities (27), yet are highly sensitive to entering a state of hypo-responsiveness due to stimuli 

overexposure (28). Intestinal macrophages are also inflammatory anergic due to TGF-ɓ-driven 

inhibition of NF-əB-associated inflammation (29, 30), yet retain their scavenger and bactericidal 
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activities (29, 31). This highlights the immense pressure that a macrophageôs microenvironment 

places on its function and the versatility of the macrophage to adapt its function to its environment. 

Macrophages perform a diverse set of roles that are central to a proper immune response. 

During early infection, this includes the ability to phagocytose microorganisms or pathogenic 

components, to produce pro-inflammatory cytokines that can help recruit and activate other innate 

and adaptive immune cells, and the processing and presenting of pathogen-specific antigens to 

further activate adaptive immune cells. To promote the resolution of the inflammatory process, 

macrophages expressed anti-inflammatory cytokines to quell inflammation and take up apoptotic 

debris to help facilitate tissue remodeling and repair (24, 32-34). This establishes the macrophages 

as an invaluable link between the innate and adaptive immune systems. This adaptability of 

macrophages to facilitate a wide range of response is governed by the metabolic re-programming 

that occurs due to specific pathogen recognition and the resulting cellular microenvironment (35). 

1.2. Host Pathogen Recognition by Macrophages 

Macrophages survey their tissue microenvironment for pathogens, microbial 

components/proteins or host biomolecules by recognizing conserved molecular motifs known as 

pathogen-associated molecular patterns (PAMPs) or host components released from damaged or 

dying cells, that otherwise would not be present in the extracellular space, known as danger-

associated molecular patterns (DAMPs) (1, 36). PAMPs and DAMPs are detected by specific 

extracellular and intracellular PRRs (1, 36). Several classes of PRRs have been identified that 

sense viruses, among the most important are Toll-like receptors (TLRs) and Retinoic acid-

inducible gene I (RIG-I)-like receptors (RLRs) (37, 38). 
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1.2.1. Toll Like Receptors (TLRs) 

The best characterized class of PRRs are TLRs. Each member is a single-pass type I 

membrane protein with a N-terminal ectodomain of leucine-rich repeats and a cytosolic C-terminal 

Toll/Interleukin-1 receptor (TIR) domain (37). Mammals possess up to 12 distinct TLRs that can 

be categorized by their ligand specificity and by their location (Figure 1.1). Bacterial PAMPs are 

detected by surface TLRs such as TLR1/2/6 (lipoproteins from Gram-positive bacteria), TLR4 

(lipopolysaccharide [LPS] of Gram-negative bacteria), and TLR5 (Flagellin) (39-44) (Figure 1.1). 

Viral PAMPs are detected by TLRs that mainly reside in endosomes including TLR3 (dsRNA), 

and TLR7/8 (ssRNA) (45-47) (Figure 1.1). TLR9 can detect both bacterial and viral unmethylated 

CpG DNA motifs (48, 49) (Figure 1.1). 

PAMP engagement results in TLR dimerization and the initiation of downstream signalling 

either through Myeloid differentiation primary response 88 (MyD88) or TIR-domain-containing 

adapter-inducing interferon-ɓ (TRIF) (50). All TLRs except TLR3 utilized MyD88-dependent 

signalling, which recruit Interleukin (IL) -1 receptor associated kinase (IRAK) proteins to activate 

Tumour necrosis factor (TNF) receptor-associated factor 6 (TRAF6) (2) (Figure 1.2). TRAF6 then 

drives the activation of the Nuclear factor of kappa light polypeptide gene enhancer in B-cells (NF-

əB) inhibitor (IəB) kinase (IKK) complex, which subsequently phosphorylates IəBŬ. This results 

in the detachment of IəBŬ from NF-əB, allowing free NF-əB to translocate into the nucleus and  

induce the expression of inflammatory cytokines (51). To maintain this activation state, NF-əB 

also directly suppresses the expression of other gene targets, such as Fos and the early growth 

response protein (EGR), as well as up-regulate NF-kB-induced transcription factors, including 

Myc and Interferon regulatory factor 1 (IRF1) (52). Both TLR3 and TLR4 employ the TRIF-

dependent pathway (2) (Figure 1.2). For TLR3, TRIF triggers both the activation of TRAF6-



6 

 

mediated NF-əB signalling and TANK-binding kinase 1 (TBK1)/IKKŮ-mediated IRF3/7 

signalling (50). Conversely, TRIF activation during TLR4 engagement only results in the 

activation of TBK1/IKKŮ-mediated IRF3/7 signalling (53) (Figure 1.2). The phosphorylation and 

dimerization of IRF3 and IRF7 triggers the expression of type I interferons (IFNs), a family of 

antiviral cytokines (50, 54). 
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Figure 1.1: A summary of the bacterial and viral PAMPs that are detected by Toll-like 

receptors (TLRs).  Bacterial-sensing TLRs are located along the surface of plasma membrane 

whereas, RNA/DNA-sensing TLRs are primarily located in the endosomes. Image created with 

BioRender.com. 
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Figure 1.2: TLR3 (viral dsRNA) vs TLR4 (bacterial LPS) signaling dynamics.  TLR4 

induces MyD88 and TRIF activation to support the production of pro-inflammatory cytokine and 

Type I IFNs, respectively. Conversely, TLR3-mediated TRIF activation results in the activation 

of the same pro-inflammatory and IFN cascades. Image created with BioRender.com. 
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1.2.2. RIG-I -like Receptors (RLRs) 

RLRs are a family of DExD/H box RNA helicases found in the cytosol and are responsible 

for the detection of cytosolic viral dsRNA (55). These receptors possess a C-terminal domain and 

catalytic helicase core responsible for binding viral RNA, accompanied by N-terminal caspase 

active recruitment domains (CARD) which are essential for downstream signalling (55-57). There 

are two major receptors responsible for triggering effector responses: RIG-I and Melanoma 

differentiation-associated protein 5 (MDA5). These receptors detect dsRNA of specific lengths. 

RIG-I recognize short RNA strands preferentially (<1kb) whereas MDA5 prefers longer RNA 

strands (>2kb) (58, 59) (Figure 1.3). This differs from the TLR family, where one receptor (TLR3) 

is responsible for dsRNA engagement irrespective of length (46).  

Upon engagement, both RIG-I and MDA5 form filaments along their preferred dsRNA 

strands, leading to the polymerization of their respective CARD domains (60-63). These 

oligomeric formations facilitate the recruitment of the mitochondrial antiviral signaling protein 

(MAVS), forming the MAVS signalosome along the outer membrane of mitochondria (61, 64-67) 

(Figure 1.3). Additional MAVS proteins are then recruited to the signalosome site, leading to 

signal amplification (67). The MAVS signalosome drives the activation of NF-əB-mediated 

inflammation and the IRF3/7-driven antiviral response, via the recruitment of the IKK complex 

and TBK1/IKKŮ respectively (56) (Figure 1.3). 
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Figure 1.3: Overview of RLR signaling.  RIG-I and MDA5 detect dsRNA of different lengths 

before engaging MAVS, initiating NF-əB and IRF signaling. The activation of NF-əB results in 

pro-inflammatory cytokine production while IRF3/7 activation leads to type I IFNs production. 

Image created with BioRender.com. 
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1.2.3. Type I IFN signalling 

The one commonality between TLR and RLR signalling is the induction of type I IFNs, 

triggered by IRF3/7 signalling. Type I IFNs are the largest class of IFNs, consisting of IFN-ŭ, IFN-

Ů, IFN-ə, IFN-Ű, IFN-ɤ, IFN-ɓ, and 13 different subtypes of IFN-Ŭ (68, 69). They act in an 

autocrine and paracrine manner to induce antiviral states in infected and bystander cells in the local 

microenvironment (Figure 1.4). This state is associated with the upregulation of IFN-stimulating 

genes (ISGs) and expression of antiviral proteins, which prevent further viral propagation and 

replication. Type I IFNs also regulate antigen presentation and phagocytic activity to support 

adaptive immune system activation, which is critical to the locating and killing of infected cells 

(70-72).  

Type I IFNs interact with either IFN-Ŭ receptor 1 or 2 (IFNAR1/2) leading to IFNAR 

dimerization (73) (Figure 1.4). This results in the autophosphorylation and activation of the Janus 

activated kinase (JAK) proteins, JAK1 and Tyrosine kinase 2 (TYK2), which are constitutively 

associated with IFNAR1 and IFNAR2 respectively (73). Both proteins activate the signal 

transducer and activator of transcription (STAT) proteins STAT1 and STAT2, leading to their 

subsequent nuclear translocation (74). Two different mechanisms exist resulting in ISG 

expression. First, STAT1 and STAT2 can bind to IRF9 to form the IFN-stimulated gene factor 3 

complex (ISGF3) which recognizes the IFN-stimulated responsive elements (ISREs) resulting in 

ISG expression (73) (Figure 1.4). Second, phosphorylated STAT proteins can form homo- or 

heterodimers that are capable of binding to IFN-ɔ-associated sites (GAS) elements leading to ISG 

expression (75). ISGs can have an ISRE site and/or a GAS site, thus a combination of different 

STAT complex formations may be required for the expression of >1000 known ISGs and therefore 

facilitating specific immune responses (76) (Figure 1.4). In addition to the traditional JAK-STAT 
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pathway, IFNAR engagement can also activate the phosphoinositide 3-kinase (PI3K)-Akt-

Mechanistic target of rapamycin (mTOR) pathway, critical for the transcription and translation of 

ISGs as well as the phosphorylation of STAT proteins (77-79). In addition, this pathway is 

responsible for the expression of genes related to energy metabolism in activated immune cells 

such as Hypoxic-inducible factor-1Ŭ (HIF-1Ŭ) and pyruvate kinase muscle isozyme 2 (PKM2) (80-

82). 
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Figure 1.4: Traditional type I IFN signaling cascade.  Type I IFNs act through IFNAR1 and 

IFNAR2, leading to the activation of JAK proteins JAK1 and TYK2. They, in turn, phosphorylate 

STAT family of transcription factors. STAT proteins can either form homo- or heterodimers and 

activate GAS-mediated ISG expression. In addition, STAT1 and STAT2 interact with IRF9 to 

form the ISGF3 complex and drive ISRE-mediated ISG expression. Image created with 

BioRender.com. 
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1.3. Mitochondria: Master Regulator of Cell Function 

Mitochondria are the central hub for several metabolic processes and play a critical role in 

modulating diverse cellular functions. These functions include catabolizing nutrients for energy, 

producing biosynthetic precursors for macromolecules (e.g., nucleotides, proteins, lipids), 

maintaining redox balance, and regulating apoptosis (83-85) (Figure 1.5). Here, I will outline these 

mitochondrial-associated processes and highlight their importance in regulating immune function. 

1.3.1. Mitochondrial Bioenergetic Pathways 

Glucose is the primary source of energy to the mitochondrion (86, 87). Its breakdown via 

glycolysis involves a ten-enzyme pathway and nets 2 pyruvate, 2 nicotinamide adenine 

dinucleotide (NAD+ or NADH) and 2 ATP molecules per glucose molecule (86, 87). Other sugars, 

such as fructose and galactose, can feed into this pathway at various points, providing a focal point 

for the breakdown of sugars in cells (88) (Figure 1.6). The intermediates produced by this pathway 

also serves as metabolites for several different pathways critical to immune function. For example, 

naïve DCs build up their glycogen stores by taking up extracellular glucose and initially use these 

stores to support DC function in the early activation phase (89) (Figure 1.6). The pentose phosphate 

pathway (PPP) (responsible for nucleotide and NAD phosphate (NADPH) synthesis) has been 

linked to T cell activation and its need for NADPH (90, 91) (Figure 1.6). Glucose-derived amino 

acids, such as serine, are also used during T cell activation to drive their proliferation due to its 

link to de novo purine biosynthesis (92) (Figure 1.6). This highlights the fundamental role of 

glycolysis in cell function.  

 



15 

 

 

Figure 1.5: Mitochondria are the central hubs for innate immune responses.  Mitochondria 

play a central role in several metabolic and immune processes such as functioning as scaffold for 

antiviral signaling, energy production via oxidative phosphorylation (OXPHOS), as well as 

mediate apoptosis and facilitates inflammation through regulation mitochondrial reactive oxygen 

species (ROS) production and inflammasome activation. Image created with BioRender.com. 
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Figure 1.6: The importance of Glycolysis and the TCA cycle intermediates as building 

blocks for various biosynthetic pathways.  Glucose and the other sugars that feed into its 

catalytic pathway (fructose and galactose) are processed and can be used in the generation of 

nucleotides, NADPH, glycerol, serine, and glycine. TCA cycle metabolites can be used to 

produce sterols, fatty acids, and a variety of amino acids. Image created with BioRender.com.   












































































































































































































































































































































































































































































































































































