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ABSTRACT -

The initial'objgctives of detennjning.thevcomposition and
structure of’ferriF‘chloridé_tomp]exes present in frozen.HC1,solupions
were met. However;,théiresu1ts obtained are only partly applicable to the

\kggfwfifperature conditions which:apply in Bydrometa]]urgical processes
using acidic ferric chloride as a leachant. The‘extraction of Cu-bearing
“ores by .these processes has betome increasingly popular in recenttyears.
The efficiency of extraction being dependent on both the ferric ion and

ac1d concentrat1ons, a detailed 1nvest1gat10n of the ferric ch]or:de

comp]exes;pr sent in these chloride so]ut1pns would help to better
understand the process and, possibly, to improve it. |
Thekgajor part of this work consists of the study,‘by Mossbauer
spectroscopy., of the ferrié_chloride system in a yidelrange(ofochloride
ion and acid concentrations, as well as at various temperatures. Prior
to the measurement of its Mossbauer spec#rum,leach sg]utién wa§ frézen
using a fast or,'sometimes é slow freezing rate. -Also,many solid
f¢§¥8§k§i) and iron(II]) compounds, aﬁong which are the series of
fecric chloride hydrates were stud1ed to afford a basxs of comparison
with the work on frozen solutions.
o ‘The structure of each member in thé hydrate series 'FeCl;-nH,0 .
(n =2, 2%, 3%, 6) was determined to be a comptex cation, [FeC]z(Oﬁz)~]+
where the’ counter anion was either C17 or FeCl,". The cis configuration |
of. the hexacoordinate cqtfon appeargd to be related to ‘an even-number

of lattice water molecules while the trans configuration seemed

" associated with an odd number of water mo]eculés.




v v 'k e * ( . 'v
~. The magnetically-split spectra of many frozen solutions
were processed with a fast Fourier transform method which enabled

the separation of individual peaks composing these spectra. Each

peak was assigned to a_specific ferric complex. The assignments

‘were based on the assumption that, in the ferric hexaquo complex,

*

the internal magnetic field at the iron nucleus decreases linearly

wo ’
with each subsequent water substitution by a‘chloride ligand.

The complexes [Fe(OH,)¢]%%, [FeCl(OH.)s]%t, [FeC]z(OHz)..]+
and [FeC1.{OH;),] were ident1f1ed in dilute HC1 frozen so]ut1ons of
Fe(III) jons:. The measured amount ‘of .each complex was in poor
agreement with va]ues ;alculat;a from stab111ty constants, p0551b1y
due to crystalllzatlon during freez1ng of the solutions. Up to
four separate complexes,,including.FeCl§(0Hg)3, were also found
in more concentrated HC1 solutions. Houevér. when these frozen‘
so]ut1ons so]1d1f1ed as glasses, aswa,result of either h1gh ionic
strength or fast freezing, the agreement between the measured and

-

ca]culated species distribution appeared to. be better

v
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I.  INTRODUCTION

A. Statement of the problem

The problem of determining the structures of ferric chloride
complexes in aqueous solutions has int#?guéd numerous workers in the
past. This problem is of particular relevance in hydrometql1urgy.
Hydrqmeta]iurgical processes have been qeveloped for the recovery
of copper from low grade ores as an alternativé to existing | . i
smelting technologies, thereby eliminating some serious pollution problems ‘
(1). For example, a typical procedure for the recovery of éopper
{nvolyes the leaching of copper sulphide ores by ferric ions in acidic

media (2).. Since most base metal sulphides require a fairly strong

oxidizing agent to effect their dissolution, ferric ions are frequently
chosen for this purpose ;(1). The use of triQa]ent iron avoids the |
formation of H,S;as the sulphide ions are further oxidized to elemental
;u]phur. '

“ It is now generally believed that, in the leaching process,
the dissplution of copper from chalcopyrite proceeds in two steps (1). The
first step, which is independent of the ferric ionvconcentrationffcontfols_the
formation of CuS (wﬁich 1s‘simi]ar to the natural mineral Eqvelfi@g)g
buring ghe second step, when both temperature and ferric ion concenfk&fion

play a very important role ut or Cu+ ions are producéd'together with

elemental sulphur. The (hémical equation describing.the overall

e o i+




reaction in dilute acid can be i]]ustrated as follows for the mineral

chalcopyrite:

. CuFeS; + (4-x)FeCly » x CuCl + (1-x)CuCl, + (S—x)Feélz +2 S°

where 0 < x <1 (3). Little is known about either the identity bf
cdﬁp]exes present in.such solutions or their structures. It
théreforetbecomes important to investigate in greater detail the questions
as to which chloro-cdmpjexes of “iron(III1) are formed in acidic solutions.
Comp]exes‘of iron(iII) wﬂich might be expected in aqueoﬁé hydrochloric

acid solutions include the following:

Ion . Symmetry ‘ Ion
Fe(OH,)e** O, | Fe(OH.)4**
FeCI{OH,)s2F €, -  FeCl(OHp)s?*

| FeClo(0My)\* . oéb Cyys thans Dy  FeCl,(0Hy),*
FeC13(0H;) 3 fae Cg 5 men Gy FeCl3(0H,)
‘ FeClP(OHZ)z‘ eis Gy 5 trans Dy FeCl,~
FeCls(0H,) 2 C4v'
FeCle®" 0,
Not all of thesé will in fact be present, and perhaps no
- more than two or threg'will be detectable at a time. Depending on
the pH and the iron concentration, partly hydrolysed or ‘polymerized

~ complexes, such as [Fe(OH)C1(OH2)4I*, [(H20)sFe-0-Fe(OH,)s1**,




¢

sand partiEu]ar]y [Fe,(OH)2(0H2) 1", may als& be present.

The study of.complex équilibria present in Fe(;II% aqueous
solutions requireg a_technique which is both non-disruptive and
non-destructive. Mﬁssbauer'spectroscopy iéﬂsnch a techniqué.
Other techniques that could be used haQe proved to be less informative.

"o For example, X-ray diffraction m&y\reveal the presence of one or more
complexes in thg solutions being investigated. However; it cannot |

determingwith certainty their structures nor can it determine

their relativé\distribution. Furthermore, it is of very limited

v  use when examining dilute solutions since in these the amount of

' ﬁe}gl<*bn-wa r pairs is small compared to that of the water-water
v:/;pﬁifs. On the other hand, Mossbauer spectroscopy can distinguish
between geometrical isomers even in dilute solutions, e.g. ¢is and
thans isomers of octahedral complexes, provided the .solutions can
be frozen for measurement of their spectra. Y

‘ Mossbauet .spectroscopy probes directly the electronic

interaciidns at fhe iron nucleus so that changes in electronic
densities are -dbserved when a change 'in oxidation state occurs,
and also when ligands are substituted-or assume different érrangemenpsw
Thus one can often deduce the oﬁidation state of iron atoms in solfd
Substratesl}rom measurements of the positions of the resonance peaké.
The re}ative contributions of 45 .and 35 electron populations depend

on the degree ¢f o bonding and 3d-r back-donation, respectively, and

¢ are more difficult to determine separately.

b —————— = <0 =
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' o ) " The degree of asymmeiry of the coordination cage strrounding

| the iron determines thé magnitude of‘AE, the quadf;pole sblitting.
An ion such as Fe(H,0)e3* is cubically symme£ﬁic and AE = 0, while
FeC1(H,0)s%" has Cp, symmetry and AE > 0. The ;fﬁmetries of cisa and
trans-FeCl,(H,0) Wt C,, and D, . respectively, aré sufficiently

- . different than their AE valyes differ by a factor of .two or more.

The.objectives of .the present study were

i) to measure the Mdssbauer 'spectra of a large number ef
. cryéta]line iron(I11) chloro éompounds for reference ]

”

* purposes.
. ii) to study.the Mosshauer spectra of d range of frozen
ferric chloride sp]utions at various temperatures.
n‘iii) to determine from the above, insofar ;E possible, the -
compositions and structures of -iron(II1I)-chloride .
cpmﬁleXeP which may be present in acidic aqueous

solutions.

The first of these objectives involved the study of several
compounds which ﬁad never been measured as well as repetition and
confirmation of previous measuremeqts‘of other compounds. The
second involved the detailed -analysis of a great many frozen solution spectra
measyred at a variety of¢temperatures.- These temperatures ranged -
‘from 90- K to the melting point or the transition temperature 6f the

" solutions - usually between 180 and 210 K. The final objective.

involved the interpretation of the Missbauer spectra based on

assumptions perfaining to the validity of applying frozen solution

y _data to -liquid solution problems.

e e e e e e




L

P

et et s

b aer

PR,

- bl
B.- Literature survey o - ' —/)‘
1.. Crystalline state
¢ . The local symmetry of many complexes can bé inferred using

properties\(5a) and structure (5b) in series of analogous complexes.
In addition, conclusive identification of géometrica] isomers, although

not easy, is often pqgsib]e. For example, it has been demonstrated that,

e

in octahedral iron(II) low-spin compounds, the quadrupole gplitting
of the trans-MA,B, isomer was approximateﬁy double that@oﬁ;£hg)f
ci{s-MA,B, isomer (5¢). This result is in agreement with theobexiéal
calculations of the electric”fie]dlgradient tensors assuming a
',point charge model‘and a zero asymmetry paraﬁeter. B

A similar correlation has not been done for iron(III)
high-spin complexes mainly because of a 1ack‘of an appropnfate
series. However, th§<re1ationshfp between the quadrupole splitting
of cis and thans isomers wou]dlstill be valid for iron(III) ch]oroaqﬁa
complexes, [FeC]n(OHQ)s-n]s-Q, ;;= 0-6.

A]l_members in this series, except those for,whiCh n=3

4

~ and 4, have begh isolated.as crystalline compounds. Among these, )
the compound with n = 1 has not yeE/pgen/studied by - X-ray _ |

‘*f~—*“~*~*difff;ction;“ﬁowever;ZénalySii/;; its electronic $pectrum has
suggested that thfsvcomplex shows octahedral symmetry in solution (6).
A1l &gther solids have been characterized by X-ray crystallography

and. are listed in Table 1. Octjggdral syuhetry about the metal

-
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TABLE 1. Structure of iron(III) chloroaqua complexes, [FeCln(OHz)s_n]F'"

’
n 'CompOund \1\\Structure Ref;
0  Fe(NOs)s+9H,0 ¥ [Fe(OHz)](NO3)5-3H,0 7
6 Fe,(S04)s*9H,0 [Fé(OHz)s]ﬂa%-[Fe(OHz)3(50?)3]’ 8
2 FeCls 6H,0 znanA-[FéC1z(0H?)u]Cl'2H20 9
2 FeC13~Sb615'8H2Q Drans-[FeCl2(0H,)41SbCT6-4H0 10
5 Ko[FeCls(OH,)] [FeCls(0HZ) 1%~ 11
5 (NHy)o[FeCl5(OH,)] [FeC]s(OHz)]z'( 12
5 Lanhydrous FeCls. [FeCle13~ 13,14
6 Co(NHg)GEFeC]G] C [FeCle ]’ 15
T
.

‘*"q‘
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ion is a common characteristic of iron(I1I) ch]oroéqua complexes. This
has been corroborated. for all complexes that have been studied by
" Mossbauer spectroscopy (16-20). '

Another structurally impgrpant family’of’%erric chloride
‘complexes consists of solids in w“ich the ferric ion assumes
tetrahedral symmetry..'ln most of1the'compouh5%~;solated the FeCl,” ‘
anion is stabilized by a bu]Ey cation, e.g. tetraButy] ammonium 1ion,
However, stable complexes ex{st in which the cation is gigher an
ammonium ion or one of -the alkali metal ions. Where Mossbauer
spectra of ‘these éomplexgs have been measured, the observed isomer
shift is indicative of a feréﬁc-compound with tetrahedral. symmetry.

In fact, an extensive study has shown that, at 90 K, the isomef

shift 9f octghedra] compounds is approximétely 6.20 mm/sec greater
than that of tetrahedral cgmpounds (21). MGssbauer spectroscopy has
also indicated that the FeCl, tetrahedron is slightly distorted in
some complexes (19,22,23). Thisdeparture from tétrahedra] symmetry

. is.reflected by the appearance of a quadrupole splitting, AE, in tﬁe
measured spectra. The greater the distortion, the greater the value
of AE. X-ray crystgl]ography has confirmed. the presence of distO(tipn

in these FeCl, tetrahedra (24,25). The distortion is probably- ¢

due to van der Waals forces between neighbouring atoms.
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2. Solutions and'frqzen solutions

a) Solutions

Numerous authors have studied the formation of iron(I11)
chloride comblexes in various solutions over a temperature range of
18 to 45 °C by Egtentiometry (26-29), UV and visible spectrophoto-
metry (30-49).’kaﬁan spectroscopy (50-53), ion-exchange extraction
(54-59), fadio-tracer technique (60-67§, pressure and temperature ‘
jump (68,69), stopped-flow (70-73), electron magnetic resonance
(74-75), nuclear magnetic resonance (76), X-ray diffraction (77-79) ,»
as well as quasi-elastic neutron scattering (80). The solutions
investigated had hydrochlor1c acid concentrations rang1ng from dilute .
(27) to concentrated (32,36).

The resu1t5‘03§ained using éhe phystochemical methods
nentioned above show a lack of consensus regarding whicﬁ species are
peg;ent in ferric chloride solut10ns Nevertheless, in the literature
rev1ewed most workers seem to agree that 1ron(III) solutions having

HC1 concentrations of 1 M or less contain only two complexes, those

being [Fe(OH2)e]®t, and [FeC1(OH,)s]1**. According to Marcus (81),

dilute ferric chloride solutions can be selected where oply one type
of complex is predominant depending on the hydroch]dric
ation. These findings are based on ion-exchange and
studies which suggest that, up to 0.5 M HC1, Fe’t is
Marcus (81) claims that, between 0.5 and 2 M HC1, the predominant

species is FeC'Iz+ from 2 to 6 M, it is FeCl,", from 6 to 9 M, it is

FeCla, while from 9t 12 M FeClg predominates. However, such a
-

v
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statement is suspicious since thé author did not specify how many
water ligands were associated wAth the metal.ion, thereby avoiding
the problem of determining the “structure of these ferric complexes.
Iron(Ifi i3 considered to be a ﬁar& acid according to the
Pearson notation (82). That is, it belongs to the complex-forming
metal class “a" which, in solution, forms more stable compounds with
the firsi element of each §roup in the periodic table. Hard acids;
(acceptors) bind strongly to hard bases by predominantly electrostatic
forces thereby favouring more ionic bonding. As a result, iron(III)
forms more stable complexes with chloride ions_than with bromide ¥

jons, and the s;abi]ity constant, K,, for [FeCl(OH,)s]?*, measured

at 25 °C and zero ionic strength is greater than the corresponding

K, for [FeBu(OH,)s]?t by approximately one order of magnitdde (83).

According to spectrophotometric studies (30-49) the value of K,

for\[FeCl(0H2)5]2+, at an ionic strength, u, of+1.0 and at 25 O,

» -

varies from 3,0 to 4.6 depending on the mS;hﬁg/of extrapolation. b~
‘ . In the frequently quoted work of Rabinovitch and Stockmayer

(32) the measured spabi]ity constants should be approached with caution
since the authors did not take into account tﬁe variation of extinction
coeffjéients with température: The same caution should.be used

when considering the results obgained'by Connick and Coppel (4Q).

In a later UV study by Heistand and Clearfield (45) a value of

Ky = 3.9 at u = 1.0 and 25 °C was obtained. This value of the
stability constant can be accepted as fairly accurate as it has since
been cé;Ijrmed by more recent studies involving a variety of techniques

(42,44,61,67,69,76).
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The, ocBahedral species [FeC1(OHz)s]1** can be described as

an inner-sphere complex, a fact which is strongly supported by fesuits

from UV (45), NMR (84) and Raman spectroscopy (51). In these and

in other kinetic studies the perchlorate anion is used as a supporting

electrolyte due to its rglative inertness towards ferric ions. It

is generally accepted fhat €10,” does not form inner-sphere complexes

with iron(II1), as shown by Raman spectroscopy (85) and NMR (86)."

However. there may be significant outer-sphere interactions in ferric

chloride solutions depending on the perchlorate concentration (87).

As early as 1952, Sutton recognized the existence of Fe3+,C10,  ion

pairs in solution (88). Subsequent studigs by other workers shpport

this conclusion (89). arz and Dodson (90) recently exaﬁined A
- the kinetics of.dissociatibn of ferric chloride comp]e}eslby pulse

radiolysis and suggested that Fe®*,C10,” outer-sphere comglexes are

e

_ present for ionic strengths as low as 1 M. «These interactions could
be responsible, in part, for the significant differences ¢bserved in
the literature values of the stabi]ityhbonstants.

The investigation methods referred to in the opening paragraph

of this section have identified several iron(III) chloride complexes.
quever, in most i;stances, there i$ little certainty about the
stereochem{stry of these gomplexes, especially the higﬂer\%rloro—
complexes. This is probably due to the difficulty involved in
isolating them in a pure form (91). For example, the neutral species

[FeCls(qy{)g], assumed to be of octahedral symmetry, is generally

included in equilibrium calculations. Yet, there is no solid evidence
P § . -




“equilibrium between the octahedra).[FeC1,(0H;),]™ and tetraheﬁra]

'extract1b1]1ty Qs\yFeC1~ 1nto Oxygenated so]vents does not support o

£hat this species is present in aqueous solutions. Some studies have
suggested that there is a rapid octahedra] tetrahedral equilibrium
between [FeCl3(0Hz)s] and [FeC130H,] but none offe conclusive
evidence of this effect (46,76)." .
| 1t is g&ra]]y assumed that tetrahedral [FeC1.1" »is present
in acidic solutions since it can be readi]y expracted from these
solutions by organlc so]vents, such as diethyl Ether and nitrobenzene,-

thereby forming the we]] known tetrahedral complex HFeCl, (92). It~

is also known from klnetlc stud1es thats in aqueous solutions, ratios -
¢ - : - :

‘of successive metal ion stability constants, Ki/Kp4y» are usually

sihilar in value (93) +Since the K3/K, rat%o is much bigger than the

prev10us ratlos it has,been 1nferred ‘that the tetrach]oro comp]ex has

_a tetrahedral rather than an octahedra1‘cqnf1gurat1on. However, this

assumption does not take -into account the possibility of a rapid

[FeCl.] configurations, the latter being favoured in organic_

solvents. 1In add1tlon ‘the ‘"foESEIQP available coneérnlng the ( $

the belief that significant amounts of the tetrachloro species are

" present in aqueous solutions. Indeed, the presence of FeCl," anion in

'orgahic solvents could be exp]aingd-by the egistence of ; fast
equilibrium between <the aqpeous and 6rganic phases resulting.in the
successful extraction of this-aniop from aqueous solutions.

When woréjng with ferric chloride solutions one has to.consider

the possib]e fprmatipn of higher chloroferrate complexes, especially

as the HC1 concentration increases. Recent laser-Raman investigations k

s

(51-53) have suggestéd the presence of~the.Speciesf[FeC150Hz]?' and

P e A et s IR = amn 4
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[FeC1¢])®~ in ferric chloride solutions. These solutions consist
of concentrated ferric chloride hexahydrate (3.44 M) -dissolved in

,:1;/r‘ relatively dllute HC1 (3 M) as we]] as concentrated HC] (11.5 M),

However, it is unlikely that these species occur in dilute ferr42
. oL R

chlordle solutions, even in the presence of very high chloride

concentrations (77). Hence, these two chloro-iron(III) compfexes

will not be considered to -form to any significant extent in the

solutions studied in this project.
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) ¥ b) Frozen solutions . ~

°

Mossbauer spectroscopy has been used extensively for the
investiga?ion‘of.frozen aqueous solutions. However, most.of the
previous studies have been done on salts of iron(Il). Comparatively,

* very few studies have e;gmined in Eetéi! the distribution of ferric
chloride complexes in aqueous solutions (91,94-103). This is probab]y’
' reiated to the difficulty of interpreting complex iron(III) Mdssbauer
spectra. Unlike iron(1I) spectra, iron(III) spectra often show -
magnétic hyperfine splitting (Qfs) due to the magnetic interaction 5
between ihe nutleds and the e]eﬁtronic spin. Moreover, the spectra
can be affected by re]aiation of;the electronic spin among the
' o Jonig levels.
. The data available %rom Mﬁssbauer;stu&ies“of frozen ferric
chloride solutions are at best contradictory (91,102). Whether
or not the highest chloro-complex of iron(III) in concentrated HCI
solutions is fetrahedrél‘tFeC]“]_ or octahedral [FECIu(sz)z]" is

still being debated. Plachinda and Makarov (91) have presented

evidence thcg ;hggests ferric Ehloride équeous éo]utions &ont@in L

an equilibrium mixture of tetrahedral and octahedral tetrachloro- /

complexes.. The hexacoordinate anion would be the most prominent

species in these aqueous solutions whereas, in the ‘course of extraction

by an organic solvent, the tetracoordinate anion solubilizes in

the organic phase. This would account for the discrepancies observed
e

between the results obtained by MOssbauer and optical spectra.

o
-




The same authors have measured Mdssbaﬁer spectra of ferric
chloride solutions in 1.0 and 4.0 M HC1. Their results show the ]
presence of at ~]east tvéiron(lll) ch]or:ide complexes. They suggest
that these complexes poééess'octahedral coordination based.on the
measured values of the magnetic field, Hn. However, they did not
attempt any further identification of the complexes. _Similarly,

Mprup, Knudsen, Nielsen and Trumpy (102) have suggested that

octahedral complexes were present in FeCl; aqueous solutions but

could not determine whether the ferric ions :Eﬁp coordinated td_

one, two, or three.chloride ions. k_’\q_//—‘
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C. The Mdssbauer effect

Even though the presence of resonant absorption in optical
systems had been kefbwn since the beginning of this century, its
nuclear counterpart was not observed until 1951 (108). A few years
later, the phenomenon of recoilless nuclear resonance was discovered
by Rugplf L. Mdssbauer (105). A growing number of chemists began
td“ﬁ?ﬁZ"hse of this new technique during the early '60's and its
. potential in studies of chemical bonding (106), oxidation states
(107,108), crystal structure (109-111), lattice dynamics (112}, as
well as magnetic properties (113) proved enormous. Mdsshauer
‘spectroscopy is now well accepted by scientists in all fields and
is frequent]y used to camplement yprk done by other spectroscopic
techniques such as N@B%ENQR, EPR and X-ray diffraction.‘ Indeed,
it is a technique wh%ch has a wide range of applications in not

only chemistry and physics but metallurgy and geo]ogy'ﬁs well.

1. Nature of the phenomenon

The basis of the Mdssbauer effect is Ehat both the enerqgy -
loss dué to nuclear recoil and the Doppler broadening? which is due
to thermal motion, can be eliminated under certain circumstances.
The effect=d4¢self results from the fact that, in a solid, the emitting
or absorbing ngc]eus is not free to mdve but is instead bound to
neighbouring atoms. Upon emissiog of a gamma-ray, the crystal
lattice acting as a whole absorbs the energy due to recoil and,

‘ consequently.>this recoil becomes negligible. This description of
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the Mﬁ?sbauer effect will be illustrated using °’Fe which is by .

far the most widely studied nucleus.

The chargcteristics of the excited‘(l* = 3/2) and ground states
(I = 1/2) for an gdeal 57Fe nuclide are 1i§ted in Table 2 while ‘the
nuclear interactions involved in the °’Fe MUssbauer effect are-

(
shown in Fig. 1.

57
7 2700
- -7 270 days
rd
2
2
136.5 keV 122.1 keV
9% - 91% ~ . ‘///,_ g
-“%' 97.8 nsec
14.4 keV ' :
y-ray
1 1 )

57
2¢Fe stable

Fig. 1. Decay scheme of *’Co, showing the energy
Tevels in 7Fe. The 14.4 keV is the .
recoilless y-ray or Massbauer transition. e

g

In this example, the *’Fe excited state is produced by radioactive i
decay from a source of long-lived *7Co nuclei. These nuclei decay

by electron-capture with high efficiency to the 136.5 keV level of







