
Comparison of finite and infinite mixture models for

capturing compositional heterogeneity across sites

by

Thomas Bujaki

A thesis submitted to the Faculty of Graduate and Postdoctoral

Affairs in partial fulfillment of the requirements for the degree of

Master of Science

in

Carleton University

Ottawa, Ontario

c©2018

Thomas Bujaki



Acknowledgements

I would like to thank Dr. Rodrigue and Dr. Avis for being my co-supervisors.

I would like to thank Hao Wang and Omar Kazmi for helping me understand and work

with the statistics and computer science aspects of phylogenetics research.

I would like to thank Emma Groulx for her tremendous emotional support over the course

of this Master’s.

Finally, I would like to thank my family and friends, especially my parents, Merridee and

Peter Bujaki for their financial support and wise council throughout my education.

ii



Abstract

Phylogenetic modelling of the variation of the evolutionary process across sites from multi-

species sequence alignments has garnered increasing attention over the last few decades. One

of the main approaches, sometimes known as random effects modelling, adopts the view that

the heterogeneity across observations is a result of the data set having been emitted from

several different models, each drawn from a distribution. When little is known about the

form of the across-site heterogeneity, finite mixture models provide discretizations of the

unknown distribution into a pre-determined set of sub-models, or components. Choosing a

level of discretization that is sufficiently fine-meshed to reflect the underlying heterogeneity

is typically done from a set of likelihood-based model comparisons using different numbers of

components. In the infinite mixture framework, accounting for the uncertainty regarding the

number of components is another layer built into the model formulation (i.e., a hierarchical

modelling framework), providing a rich non-parametric fitting of the distribution of across-

site heterogeneity. Here, we use Bayesian cross-validation to compare a wide range of finite

mixture models, along with the infinite mixture modelling approach known as categories,

‘CAT’, and gamma-distributed rates-across-sites approach. We study the model comparison

approach on simulations, and apply it to five real multi-gene alignments. Our findings

indicate that the potential improvement in model-fit from finite mixture models is attained

when the number of components of the mixture is between 20 and 60. The magnitude of

improvement from the mixture model is highly dependant on whether or not the gamma-

distributed rates-across-sites approach is invoked. Moreover, in all cases that we considered,

the fit of the CAT-GTR+Γ model matched or exceeded the best-fitting finite mixture model.
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1. Introduction

Fundamentals of Phylogenetics

The modern process of determining the relatedness of different groups of related organ-

isms starts with collection of DNA from specimens of each species of interest. This collection

can be the entire genome, specific genes present in all organisms under study or other collec-

tions of genetic information. Regardless of the genetic markers used, the DNA is collected

and combined into a multiple sequence alignment. The multiple sequence alignment is then

used to infer a probable topology which represents the evolutionary history of the specimens

collected. A example of a possible tree topology given a multiple sequence alignment is given

in figure 1.

Figure 1. Example of a phylogenetic tree and nucleotide multiple sequence alignment
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Multiple sequence alignments are DNA sequences collected into a matrix where each row

represents a different species and each column (position) represents the nucleotide (or amino

acid, or codon) state across multiple organisms. There are many methods which can be used

to reconstruct the phylogeny of aligned genes. The most used are probabilistic phyloge-

netics methods including maximum likelihood phylogenetic inference (Felsenstein, 1981) and

Bayesian phylogenetic inference (Li et al., 2000; Yang and Rannala, 1997; Larget and Simon,

1999).

Different models are used to perform phylogenetic analysis on multiple sequence align-

ments. These models vary in their complexity, but nearly have some common parameters.

The substitution matrix, Q, is used to represent the infinitesimal rates at which one state

(nucleotide or amino acid or codon) changes to another. The entries in this rate matrix are

specified from two sets of parameters, and are given by:

Qij = ρijπj. (1)

Here, ρij is the exchangeability between the initial state, i, and the final state, j. Ex-

changeability parameters can be inferred from the data set under analysis, or can be taken

from empirical studies conducted beforehand. The exchangeability value is multiplied by the

frequency of the final state, represented by πj.

A common phylogenetic model, and a primary model used in experiments in this paper, is

the General Time Reversible (GTR) model (Tavaré, 1986). The GTR model has symmetrical

exchangeabilities, meaning that the same value is used for an exchange from A to T as from

T to A, or any other pair of states; in other words ρij = ρji. All of these symmetrical
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exchangeability parameters are inferred from the data set. The frequency parameters, πj,

are also inferred from the data under study, either by maximum likelihood or Bayesian

inference.

Empirical models are often used in amino acid level data because they have been shown to

have adequate fit and can decrease run time due to less parameters having to be inferred. A

typically used set of empirical exchangeability values are those of the Whelan and Goldman

(2001) matrix, displayed in figure 2.

The simplest possible substitution model, referred to as Poisson in this paper, treats all

exchanges as having equal probability (Jukes et al., 1969; Tavaré, 1986). It is also possible

have intermediate approaches. For instance, the F81 model (Felsenstein, 1981) assigns equal

exchangeability parameters between all pairs of states, but infers the frequency parameter

values.

Likelihood Calculation

Probabilistic phylogenetics rests upon the likelihood function. This function is defined

as the probability the data (D) at hand given all parameters of the models being used. In

symbolic notation, we write p(D|θ), where θ collectively denotes all parameters. The first

step of computing the likelihood is the calculation of the probability of transitioning from

one state to another at a particular position over a evolutionary time period, or branch

length (λ, representing the expected number of substitution per site along the branch). This

probability can be calculated from the rate matrix, Q, by matrix exponentiation:

p(G|A, θ) =
[

eλQ
]

AG
, (2)
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Figure 2. Relative rates of exchangeability from Whelan and Goldman (2001). Larger
circles represent higher relative rates of exchangeability between two amino acids.

where A represents the initial state, G represents the final state. This step is central to the

likelihood calculation.

The likelihood calculation requires that we compute the transition probability from one

state to another for all branches of a particular internal node state configuration. An internal
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node state configuration is an arbitrarily chosen set of ancestral states at each node in the

phylogeny. The transition probabilities across all branches for a particular internal node

state configuration are then multiplied together. An example of a possible internal node

state configuration with transition probabilities is given in figure 3.

Figure 3. Phylogenetic tree with a possible internal node state configuration

The internal node states are not known. For this reason, the process above is repeated

for every possible node state configuration. The products of transition probabilities for every

internal node state configuration are then summed, giving the likelihood value for the site

under consideration. As a final step, the processes described above are repeated for every

site in an alignment and the product of these site likelihoods is the overall likelihood.

A summary of the likelihood calculation follows:

1. Use the matrix exponentiation step (equation 2) of the likelihood calculation to calcu-
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late the probability of transition from a starting state at a node to the ending state;

2. Apply step 1 on all branches for a particular node state configuration;

3. Repeat step 2 for every internal node state configuration;

4. Sum the products for every internal node state configuration;

5. Repeat previous four previous steps for all sites and take product across sites.

There are some assumptions inherent to the likelihood calculation, most of which are

motivated by reducing the computation time required. One assumption is that there is in-

dependence of evolution between sites. This assumption, though likely not realistic due to

the possible interactions between amino acids encoded by the underlying DNA sequence,

is what allows us to take the products of site likelihoods. Another assumption is that of

independence across lineages, or branches. Again species are likely to have evolutionary in-

teractions, but the assumption of Independence allows for taking of the product of transition

probabilities.

In maximum likelihood phylogenetic inference, the parameters are adjusted in order to

determine the set of values that results in the highest likelihood score (Felsenstein, 1981).

In Bayesian phylogenetics the likelihood is combined with a prior probability in order to

compute the posterior probability. In this paper, we focus on Bayesian phylogenetics.

Bayesian Phylogenetics

The primary difference between maximum likelihood phylogenetics and Bayesian phylo-

genetics is that maximum likelihood only gives a point estimate on parameters. Bayesian
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phylogenetics provides a distribution of estimates for a parameter. This distribution of esti-

mates is conditional on the data. There are benefits and drawbacks to each method. Max-

imum likelihood methods can be significantly faster than Bayesian methods, which allows

for phylogenetics with vast quantities of data such as in whole genome phylogeny. Bayesian

phylogenetic analysis is the method primarily used for studying more complex models of

substitution, such as those with across-site heterogeneity.

The basics of Bayesian statistics is the equation of conditional probability (Bayes’ theo-

rem):

p(θ|D) =
p(D|θ)p(θ)

p(D)
(3)

There are four expressions in Bayes’ theorem. First, p(θ) is the prior probability. This

prior probability is meant to represent the investigator’s degree of belief in parameter values

before having considered any data. In practice, prior probabilities are often defined by the

developers of the Bayesian software to be used. With sufficient data, prior definitions do

not change results, though with small data sets the effect of the prior on results must be

carefully considered. The second expression, p(D|θ), is the likelihood function, which we

have discussed how to calculated previously. The third expression, p(D), is the marginal

likelihood, which serves to ensure that the total posterior probability equals 1. Finally the

posterior probability, p(θ|D), represents our degree of belief in the parameter values after

considering the data at hand.

The marginal likelihood cannot be calculated analytically, which means that the posterior

probability cannot be calculated analytically. Though it is not possible to calculate the
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posterior, it is possible to sample from it. The most common method of sampling from the

posterior is the Markov chain Monte Carlo (MCMC) algorithm.

The general idea behind MCMC is to construct a ‘random walk’ in the space of all

possible sets parameter values. By this we mean that given a particular set of parameter

value, θ, we move to another set of parameter values, θ’. Such moves are repeated multiple

times over the course of the random walk. This random walk is biased according to the

Metropolis-Hastings rule (Metropolis et al., 1953; Hastings, 1970). The bias is constructed

so as to visit sets of parameter values that have probability more frequently than sets of

parameter values that have low probability. The MCMC algorithm is as follows:

1. Draw an initial set parameter values, θ, from the prior;

2. Change current parameter values (mechanisms for such changes are reviewed in

Rodrigue and Lartillot, 2012), these new parameters are θ′;

3. Compute the acceptance probability, ϑ = min{1,MH-ratio}, where MH-ratio is the

Metropolis-Hastings ratio expression, equal to p(θ′|D,M)
p(θ|D,M)

q(θ′,θ)
q(θ,θ′)

; f

4. If ϑ = 1, replace θ with θ’; If not, draw a random value from a uniformly distributed

unit interval (i.e., between 0 and 1) and replace θ with θ’ if this draw is less than ϑ;

5. Record θ;

6. Go to step 2.

By looping over these steps a very large number of times, we gather a large sample of

sets of parameter values. High posterior probability values occur more frequently in our
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sample. In fact, the frequency of occurrence of a set of parameter values in our sample is

our approximation of the posterior probability of that set of values.

It is important to note that the key to the algorithm relies on the Metropolis-Hastings

ratio in which the marginal likelihood cancels:

MH =

p(D|θ′)p(θ′)
p(D)

p(D|θ)p(θ)
p(D)

q(θ′, θ)

q(θ, θ′)
(4)

=
p(D|θ′)p(θ′)

p(D|θ)p(θ)

q(θ′, θ)

q(θ, θ′)
. (5)

The Hastings ratio, q(θ′,θ)
q(θ,θ′)

, serves to correct for biases in the proposal mechanism from step 2

(see Rodrigue and Lartillot, 2012). The long term behaviour of the algorithm is independent

of the proposal mechanisms used and the initial draw from the prior. In practice, given our

finite sample size from the posterior, the first cycles (also known as the ‘burn-in’) from

the algorithm are generally removed due to them not being in the equilibrium state of the

MCMC.

Across-Site Variation and Phylogenetic Modelling

Gamma Distributed Rates Across Sites

When working with phylogenetic data, one of the implicit assumptions that is made in

simple models is that all of the sites from an alignment are governed by the same set of

parameters. This is unlikely to reflect the underlying processes in biological systems. There

are many cases where different base pairs in DNA sequences have vastly different selective

pressures acting on them. For example, some sections of DNA may code for hydrophobic

sections of proteins, therefore these sections will not have high chances of transitioning into
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codons which encode for polar amino acids (Echave et al., 2016). There are many examples

of this selectivity, such as selection for a certain charge on amino acids or selection for amino

acid size, aromaticity, sulfide presence, and particular amino acids key to protein shape.

Attempting to account for the complex evolutionary patterns across sites was the impetus

for the creation of the gamma-distributed rates-across-sites model (Yang, 1993).

The gamma-distributed rates-across-sites is used in phylogenetics to allow for heterogene-

ity of overall rates to be introduced into a model. It allows different sites to have different

branch length multipliers, which, in effect increase or decrease branch lengths for those sites.

This approach does not distinguish between the states of the substitution process, but simply

increases or decreases the rates of substitution across sites. The gamma-distributed rates-

across-sites model is applied by treating these branch length multipliers as random variables

from a gamma distribution of mean 1 and of variance 1/α 1. The parameter α, which controls

the shape of the distribution, becomes part of the overall inference. The distribution is a

discrete approximation of the gamma distribution. Under this model, the likelihood function

at a particular site i becomes a weighted average of the likelihood across all possible rate

values at that site, ri, permissible by the gamma law;

p(Di|θ) =

∫

ri

p(Di|ri, θ)pα(ri)dri. (6)

In practice, the integral given in equation 6 has no analytical solution and is therefore

approximated through a discretization approach. This reduces the integral into a weighted

1The gamma distribution has two parameters which determine its properties, α and β. The shape
parameter is α and β is the rate parameter. The gamma distribution has mean of α/β and variance α/β2.
The mean of the gamma distribution is restricted to 1 by holding β to be equal to α. This simplifies the
variance to 1/α.
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sum:

p(Di|θ) =
K
∑

k=1

p(Di|rk, θ)wk, (7)

where wk is a weight associated to the kth class of the discretization. Typically the discretiza-

tion is done so as to have four classes which is a good compromise between computational

costs and a suitable rendering of the gamma distribution (Yang, 1994). When invoked, this

approach is denoted with the suffix +Γ, as in GTR+Γ.

Partitioning

Partitioning is another method of allowing variation across sites in probabilistic phylo-

genetics. Partitioning involves explicit a priori definitions of the the sites of an alignment

which are believed to have the same underlying evolutionary pressures in a collection known

as a data block (Kainer and Lanfear, 2015). When working with protein coding DNA, these

partitions typically fall along the sites which are from introns or exons, different genes in

the alignment and different codon positions in those genes (Shapiro et al., 2005). For amino

acid level data, partitioning is generally limited to data blocks containing entire proteins.

Each data block uses a separate model from the others for inference and the parameters as

part of the inference.

Partitioning can be a valuable method of introducing heterogeneity to probabilistic phy-

logenetic modelling but there are flaws which limit its utility. Partitioning, by relying on

a priori site assignment, is limited in the data blocks which can reasonably be created.

For instance, with amino acid data, partitioning completely overlooks heterogeneity within

proteins.
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Mixture Models

Another perspective on the issue of capturing across-site heterogeneity is to explicitly

model the uncertainty in partitioning, by adopting a random-effects framework (Rodrigue and Lartillot,

2012). In this framework, the model considered to have generated a particular datum is it-

self drawn from a statistical law. For some random-effects-based modelling objectives, it is

feasible to work with a characterized statistical law, such as in the gamma-distributed rates-

across-sites models (Yang, 1993, 1994). For other objectives, when no obvious statistical law

is forthcoming, finite mixture models provide a means of discretizing the unknown distri-

bution into a predetermined number of components, each consisting of a set of amino acid

frequencies, with respective weights (Pagel and Meade, 2004; Le et al., 2008b; Wang et al.,

2008; Susko et al., 2018).

Finite mixture models were first explored on nucleotide-level data (Pagel and Meade,

2004), but have since been of great interest for models operating directly in the amino

acid state space (Le et al., 2008b; Wang et al., 2008). The heterogeneity within a protein is

highly pronounced in amino acid alignments, with numerous columns displaying signatures

of substitution histories over a limited sub-set of amino acid states (see, e.g., Echave et al.,

2016). Le et al. (2008b) worked with finite mixtures of amino acid profiles of up to 60

components, while assuming even amino acid exchangeability parameters. In effect, such

a model has 60 different substitution matrices, as defined in equation 2, with each matrix

having a distinct set of frequencies (π). Wang et al. (2008) worked with finite mixtures of

profiles combined with free amino acid exchangeability parameters, but with relatively few

components (4 or 5). Recent work by Susko et al. (2018) combined empirical amino acid
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exchangeability parameters (Le et al., 2008b; Le and Gascuel, 2008) with finite mixtures on

amino acid profiles in a maximum likelihood context, and suggest that generic finite mixtures

of profiles (Le et al., 2008a) are surpassed by data-adjusted finite mixtures.

Infinite mixture models, such as those based on the Dirichlet process (Lartillot and Philippe,

2004), are a form of random-effects approach that is not restricted to the manifold of any par-

ticular parametric family of distributions. As such, it is often described as a non-parametric

means of capturing across-site heterogeneity (Lartillot et al., 2007), although this should

not be considered to imply that no parameters are involved in its specification. Rather,

parameters are invoked to specify a prior distribution over a family of discrete distributions,

allowing the model to flexibility ‘pixilize’ the true underlying distribution. Although con-

ceptually more elaborate than finite mixture models, the infinite mixture models utilizing

the Dirichlet process prior have been more extensively studied (e.g., Lartillot et al., 2007;

Feuda et al., 2017).

Cross-Validation Model Comparison

There are many methods of comparing statistical models. A common method, such as

the Akaike information criterion (AIC) (Akaike, 1974), can work equally as well as cross-

validation in maximum likelihood context (Stone, 1977), though these methods are not as

useful in a Bayesian context. These methods for model comparison do not explicitly test

model predictive power, they instead penalize for introducing new parameters into the model.

Cross-validation on the other hand explicitly tests for predictive power thus limiting model

dimensionality inherently.
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As discussed previously, there are many different types of substitution models. When

performing an analysis on real data one requires a means of choosing the model which is most

appropriate. Many different statistical approaches exist for this task (see Sullivan and Joyce,

2005). Cross-validation is a useful and general method for comparing the statistical merit of

different models.

Cross-validation analysis begins with some of the data being set aside. This data (the

test set) is not used until the end of the process. The remaining data (the learning set) is

used to infer model parameters. Having obtained an inference of model parameters from the

learning set, the parameter values are then used on the test data set. By calculating the

likelihood function on the test data we get a cross-validation score for a specific model. In

the Bayesian context the cross-validation score is averaged over all parameter values of our

sample from the posterior distribution:

p(D2|D1) =

∫

θ

p(D2|θ)p(θ|D1)dθ, (8)

whereD1 is the learning data set, D2 is the testing data set and θ is the set of parameters for a

specific model. The posterior in equation 8, p(θ|D1), is incalculable though it can be sampled

via the MCMC approach resulting in a collection of parameter values, θ(k), 1 ≤ k ≤ K. This

sample of K sets of parameter values can then be used to approximate equation 8 as a

summation:

p(D2|D1) ≈
1

K

∑

k

p(D2|θ
(k)). (9)

where p(D2|θ
(k)) is the likelihood on the test data.
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Cross-validation schemes can split the data in many different way. Common methods to

split the data are 1/2 (half of the data as the test set and half as the learning set) and 1/10th

(one tenth of the data as a test set, nine tenths of the data as the learning set). The process

of separating the data into testing and learning data sets is usually done at random, and

repeated multiple times. In such cases, the mean cross-validation score and the standard

deviation are reported.

Here, we use Bayesian cross-validation to produce a ranking of both finite and infinite

mixture models accounting for across-site variation in amino acid frequency parameters (or

profiles, for short). We expect to find that infinite mixture models provide a improved fit

over homogeneous models, however the level of complexity of finite mixture models required

to compete with infinite mixture models is difficult to foresee. We also attempt to evaluate

the relative merit of two different modelling strategies: gamma-distributed rates-across-sites

(Yang, 1993, 1994) and mixtures of profiles across sites (Lartillot and Philippe, 2004). We

expect both strategies to yield good model fit, especially when these strategies are combined,

however the relative improvements are difficult to estimate.

Our results confirm recent findings by Susko et al. (2018), in that finite mixture models

always out-perform their homogeneous counterparts, and that data-adjusted finite mixture

always out-perform the generic empirical finite mixtures of Le et al. (2008b). Improvement

in model fit, provided by finite mixture models, is highly sensitive to Whether or not the

gamma distributed rates model is invoked. We also find that infinite mixture models always

match or out-perform the best-performing finite mixture models.
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2. Materials and Methods

Data Sets

We selected 3 data sets from Kainer and Lanfear (2015) to work with. Selection was based

on the size of the alignments in both number of taxa and number of sites. Computational

resources restricted the total number of possible data sets which could be analyzed to 3. We

make use of a shorthand to refer to our data sets, indicating the name of author, number of

taxa, and number of sites

• Broughton-61-19997 - Broughton et al. (2013) - A concatenation of 20 nuclear genes

and 1 mitochondrial gene from 61 different species of fish.

• Lartillot-78-15117 - Lartillot and Delsuc (2012) - 17 protein-coding genes aligned from

73 placental mammals.

• Wainwright-188-8439 - Wainwright et al. (2012) - DNA sequences collected from 10

protein coding nuclear genes from 188 species of perch-like fishes.

Sequences were converted into amino acid format from their original nucleotide format.

These data sets are sufficiently large thus the prior is not expected to effect the final results

of cross-validation analysis.

Substitution Models

We used 5 types of substitution models. The first is the general time-reversible models

(GTR) (Tavaré, 1986), which is a homogeneous substitution process across sites. The sec-

ond is the CAT model, which is an infinite mixture of state profiles across sites, but with
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flat (Poisson) exchangeabilities between states. The CAT-GTR model combines the homoge-

neous substitution processes across sites and infinite mixtures (Lartillot and Philippe, 2004).

We also use finite mixture models, which we refer to as fixed component CAT-GTR (CATf -

GTR) which are models where we can specify the exact number of components with profiles

and weights estimated, and where we explore several values for the number of components.

Finally we used empirical profile mixture models (C20, C40 and C60) (Le et al., 2008b).

In addition to this, we invoked the gamma-distributed rates approach, with 4 discrete cat-

egories (Yang, 1994). We also analyzed models which suppressed the gamma-distributed

rates-across-sites.

Cross-validation

We used a 5-fold, 5-replicate cross-validation approach to compare substitution models.

This procedure randomly splits data sets into two parts, the learning (or training) part and

the testing part. The training data set, under five fold cross-validation, contains four-fifths

of sites from the original data set (chosen at random from the whole data set) and the testing

set contains the remaining one-fifth. The model parameters, inferred from the learning set

are then used to analyze the test data set, a data set which, in effect, the model has never

seen before. In this way, the test provides a genuine measure of the predictive power of a

given model. This process is computationally intensive, but allows for comparison of any set

of models of interest. Five fold cross-validation was chosen to ensure that the learning data

set was significantly larger than the testing data set while still having a significant portion

of the data available for testing.
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Cross-validation analysis on the real data sets was carried out with training data that

was run until 1000 cycles of the MCMC occurred in the Phylobayes software (Lartillot et al.,

2009). The values of the likelihood were visually inspected for convergence. The most com-

plex model used in this analysis, CAT-GTR+Γ, was used to assess the required number

of cycles required for suitable convergence. Tree topology was also treated as a free pa-

rameter rather than specified, a decision which does increase computation time. Running

cross-validation under a fixed topology reduces computation time and should not cause

less significant results as long as the models compared are sufficiently distinct. The cross-

validation scores were computed without the 400 burn-in cycles. In effect the analyses used

600 MCMC cycles to compute cross-validation score.

Cross-validation analysis on the simulated data sets followed the same procedure as that

of the real data analysis with the exception of the number of cycles. The simulations used

500 cycles with a burn-in of 400, leaving 100 effective cycles for analysis to be carried out

on. The number of cycles used after burn-in for both real data and simulation analyses

were selected due to computational time constraints. The limited number of cycles used did

not hinder the robustness of the cross-validation analysis results as multiple independent

replicates yielded similar results.

Following analysis, cross-validation scores were calculated and compared relative to GTR+Γ

cross-validation score for all models analyzed.
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Simulations

To test how these models performed when the evolutionary signal was increased or de-

creased, we generated data using the tree topology obtained from the Lartillot-78-15117.

This tree was generated using phyML (Guindon and Gascuel, 2003) with the GTR+Γ model.

Some simulations used this topology and branch length directly, whereas others had branch

lengths multiplied by a factor of 10 or 0.1. The variable branch lengths were used to assess

how the models performed on substitution rich and substitution poor data sets. This infor-

mation can be used to provide a basis for interpreting results from real data. By observing

the cross-validation results under different levels of substitution we can determine which

cases allow for accurate model comparison. Following the multiplication of branch length

values, alignments were generated using Whelan and Goldman (2001) exchangeabilities and

different empirical frequency sets from Le et al. (2008a). The frequency sets used were C20,

C40, and C60. Each alignment was 6000 amino acids long. When simulating with the C20

profiles, 300 positions were produced using each of the 20 sets of profiles. When simulating

with 40 profiles, 150 positions were produced using each of the 40 set of profiles. Finally,

When simulating with 60 profiles, 100 positions were produced using each of the 60 set of

profiles. composed of 20, 40 or 60 different alignments generated under each of the C20, 40 or

60 frequency data sets. The gamma rate heterogeneity was not invoked in these simulations.

For example, the parameters used to generate panel A in figure 4, was the Latilloit-78-

15117 topology generated from a phyML Guindon and Gascuel (2003) analysis. This tree

had its branch lengths multiplied by an order of magnitude down. This tree was used as

the base tree in Seq-gen. Each of the 20 empirical profiles was used with length of 6000/20
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given to that frequency set. The parameters used to generate each portion of the total

6000 amino acid alignment were; the WAG general rate matrix, a continuous gamma rate

parameter and one of the frequency parameters from Le et al. (2008a). After generation of

all 20 alignments, with the different empirical frequencies from C20, they were concatenated

into one single alignment 6000 amino acids in length. This alignment was the one used for

cross validation analysis under the models GTR+Γ, CAT-GTR+Γ and the CATf -GTR+Γ.

Cross validation analysis under these simulations was carried out on chains that were ran

for 500 cycles instead of the 1000 used for the read data sets. This change was made due to

time constraints. A burn-in of 400 cycles was still used, making the effective cycles used for

analysis 100.
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3. Results and Discussion

Simulations

We first explored the Bayesian cross-validation framework using simulations. Our ob-

jective here was to assess if the Bayesian cross-validation can recover the appropriate finite

mixture model when applying models treating amino acid exchangeabilities and all aspects

of the mixture as free parameters: if a sufficiently rich data set was produced with 20 com-

ponents, for instance, a finite mixture model with 20 components should be elected as most

appropriate.

Figure 4 shows example results of several model comparisons on simulated data sets,

with the abscissae corresponding to the number of components in finite mixture models,

and the ordinates are the Bayesian cross-validation scores relative to the GTR+Γ model.

The top panels (A, B, and C) report results on simulations with C20-WAG, the middle

panels (D, E, and F) on C40-WAG simulations, and the bottom panels (G, H, and I) on

C60-WAG simulations; left panels were based on simulations with branch lengths one-tenth

of the original tree branch length, middle panels with the original branch lengths, and right

panels with branch lengths ten times those of the original tree. At very shallow evolutionary

depths, such as with the simulations conducted over the tree with branch lengths one-tenth

of the original branch length, invoking the finite mixture models provides a very weakly

improved cross-validation score over the GTR+Γ model (panels A, D, and G), with their

difference in score only slightly above 0 (and error bars often encompassing 0). The C60-

WAG simulations are the only case, with one-tenth branch lengths giving a statistically

significant improvement (panel G). This result is explained by the fact that over such short

21



AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

−10

0

10

20

30

  1  20  40  60  80 100 120 140

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB

0

500

1000

  1  20  40  60  80 100 120 140

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

0

2500

5000

7500

10000

  1  20  40  60  80 100 120 140

DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD

−20

0

20

40

  1  20  40  60  80 100 120 140

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

0

300

600

900

1200

  1  20  40  60  80 100 120 140

FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

0

3000

6000

9000

  1  20  40  60  80 100 120 140

GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG

0

25

50

  1  20  40  60  80 100 120 140

HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH

0

500

1000

1500

  1  20  40  60  80 100 120 140

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

0

5000

10000

  1  20  40  60  80 100 120 140

C
V

S
co
re

R
el
at
iv
e
to

G
T
R
+
Γ

CATf -GTR value

Figure 4. Cross-validation scores for simulated data. Solid black lines represent scores
for CAT-GTR+Γ models, dotted black lines represent the associated standard deviation.
Blue points represent score for the CATf -GTR+Γ models with component numbers (f)
corresponding to their associated x-axis position, blue error bars represent standard deviation
for each CATf -GTR+Γ model. Each panel represents a particular model and set of branch
lengths as simulation conditions: C20-WAG at one-tenth branch lengths (panel A); C20-
WAG with original branch lengths (panel B); C20-WAG at ten times branch lengths (panel
C); C40-WAG at one-tenth branch lengths (panel D); C40-WAG with original branch lengths
(panel E); C40-WAG at ten times branch lengths (panel F); C60-WAG at one-tenth branch
lengths (panel G); C60-WAG with original branch lengths (panel H); C60-WAG at ten times
branch lengths (panel I).
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evolutionary distances, the substitution process defined by the C20-WAG, C40-WAG, and

C60-WAG models has not been actualized; with so few substitutions simulated, the Bayesian

cross-validation score suggests the use of the comparatively compact GTR+Γ model. Even

with the simulations conducted with un-altered branch lengths (panels B, E, H), the Bayesian

cross-validation scores indicate that a model with fewer components than the true generative

model used to simulate is preferred. Nonetheless, there is a clear preference for mixtures

models over the plain GTR+Γ model. It is only with the simulations conducted over a tree

with branch lengths multiplied by 10 that the best-performing finite mixture model matches

the true generative model in number of components, with the Bayesian cross-validation score

reaching a plateau between 20 and 25 components for the C20-WAG simulations (panel C),

between 40 and 45 for the C40-WAG simulations (panel F), and between 60 and 65 with

C60-WAG simulations (panel I).

The plateau of cross-validation scores reached is itself noteworthy. Although Bayesian

cross-validation implicitly penalizes for model dimensionality, it seems this natural penalty

is often weak; once a sufficiently rich mixture model is invoked, adding more components

does not provide any improvement. Finite mixture models, though the Bayesian framework,

adjust the parameter values by assigning a weight to them near 0, so as to suppress super-

fluous components. In general, over-parameterization is less of a issue in Bayesian contexts

(Efron, 2005). Also noteworthy is the fact that the plateau of cross-validation scores reached

with finite mixture models is at CAT-GTR+Γ levels. The flexibility of the Dirichlet process

apparatus circumvents any time-consuming model comparisons of finite mixtures, always

leading to the top-scoring configuration in a single run.

Altogether, these experiments indicate that the Bayesian cross-validation procedure per-
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forms well, but in order for rich substitution models to be fully expressed in simulations, a

great deal of evolutionary signal is required. With information-poor data sets, finite mixtures

with fewer components, or even homogeneous substitution processes across sites, become pre-

ferred. Finally, the CAT-GTR+Γ model automatically adjusts to a configuration matching

the best-fitting finite mixtures, or essentially reverting to the plain GTR+Γ substitution

model if no particular heterogeneity is warranted.

Real Data Analyses

We next conducted the Bayesian cross-validation procedure on real data sets. Figure 5 is

a compilation of all the data gathered through cross-validation analyses on the Broughton-

61-19997 data set. We summarize the models considered below:

• GTR: Model with free exchangeabilities and no gamma-distributed rates-across-sites;

• GTR+Γ: Model with free exchangeabilities and gamma-distributed rates-across-sites;

• CAT-Poisson: Infinite mixture model with equal (Poisson) exchangeabilities and no

gamma-distributed rates;

• CAT-Poisson+Γ: Infinite mixture model with equal (Poisson) exchangeabilities and

gamma-distributed rates;

• CAT-GTR: Infinite mixture model with free exchangeabilities and no gamma-distributed

rates;

• CAT-GTR+Γ: Infinite mixture model with free exchangeabilities and gamma-distributed

rates;
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• CATf -GTR: Finite mixture model with f components, free exchangeabilities and no

gamma-distributed rates;

• CATf -GTR+Γ: Finite mixture model with f components, free exchangeabilities and

gamma-distributed rates;

• C20-GTR: C40-GTR: C60-GTR: Empirical mixture models with free exchangeabilities

and no gamma-distributed rates;

• C20-GTR+Γ: C40-GTR+Γ, C60-GTR+Γ, Empirical mixture models with free ex-

changeabilities and gamma-distributed rates;

• C20-Poisson, C40-Poisson, C60-Poisson, Empirical mixture models with equal (Pois-

son) exchangeabilities and no gamma-disturbed rates;

• C20-Poisson+Γ, C40-Poisson+Γ, C60-Poisson+Γ, Empirical mixture models with equal

(Poisson) exchangeabilities and gamma-distributed rates.

GTR and GTR+Γ

In cross-validation analysis, different models are compared to a specific reference model.

The reference model used for all cross-validation analyses was the GTR+Γ model. This

model was chosen as the reference due to its prevalence in phylogenetics. All cross-validation

scores reported are in fact the difference between the natural log-likelihood cross-validation

score of a particular model and the cross-validation score of GTR+Γ.

As can be seen in figure 5, the GTR model, without any accounting of heterogeneity

across sites, gives a much poorer score than GTR+Γ, by over 2000 natural logarithmic
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Figure 5. Cross-validation scores on the Broughton data set for all analyzed models

units. It has long been known that inclusion of gamma-distributed rates-across-sites into

phylogenetic models improves the fit (Yang, 1996). This holds true in our experiments.

CAT-Poisson and CAT-Poisson+Γ

The CAT-Poisson model cross-validation score was only slightly above zero, with the

standard deviation across the five replicates almost encompassing zero. This shows that the

CAT-Poisson model, without Γ, only has slightly better model fit than GTR+Γ, though the

improvement does not appear to be statistically significant. It is interesting that through two
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completely different modelling rationales, one which accounts for heterogeneity in amino acid

profiles (CAT-Poisson), and another which models variation in rates-across-sites (GTR+Γ),

the overall model fit is nearly equivalently. In the other data sets analyzed (see table 1), CAT-

Poisson outperforms GTR+Γ for one of the data sets (Wainwright-188-8439), and performs

worse for the other (Lartillot-78-15117). The CAT-Poisson+Γ had notably higher cross-

validation score than GTR+Γ and CAT-Poisson. The magnitude of the difference between

CAT-Poisson and CAT-Poisson+Γ (306.18) was much smaller than the difference between

GTR and GTR+Γ (2226.74). The smaller difference highlights how even though the CAT-

Poisson model makes some simplifications in its assumption that all of exchangeabilities

are equal, the treatment of the data as a heterogeneous collection of sites with their own

substitution matrices has a large effect on model fit. CAT-Poisson, by treating the data as a

heterogeneous collection of sites, which get assigned to specific categories, appears to occupy

some of the benefit that is gained by adding in gamma-distributed rates-across-sites. In other

words, invoking the gamma-distribution of rates-across-sites has a much weaker impact when

working with mixture models, than when working with the GTR model. This effect is seen

when comparing the difference in cross-validation score between CAT-Poisson and CAT-

Poisson+Γ and how it is much smaller than the difference between GTR and GTR+Γ. The

addition of CAT to a model is known to result in improved model fit (Lartillot and Philippe,

2004, 2006; Lartillot et al., 2007) and these analyses of CAT-Poisson and CAT-GTR are

consistent with literature in showing that use of CAT in a model is an improvement over the

homogeneous version of that model.
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CAT-GTR and CAT-GTR+Γ

Final among the infinite mixture models, we have CAT-GTR and CAT-GTR+Γ. For

every cross-validation analysis performed CAT-GTR+Γ was the best performing model, or

matched any other model performance (see table 1). The difference in score between CAT-

GTR and CAT-GTR+Γ was much smaller than the difference between between GTR and

GTR+Γ for all data sets analyzed (see table 2). Specifically for the Broughton-61-19997

data set used to make figure 5, the difference between CAT-GTR and CAT-GTR+Γ was

one-tenth the difference between GTR and GTR+Γ. When comparing the different infinite

mixture models, it is apparent that CAT-GTR outperformed CAT+Γ. This indicates that,

at least for infinite mixture models, the use of free exchangeability parameters is of greater

importance than including a gamma-distributed rates approach. Although, as previously

mentioned, combining free exchangeabilities and rate heterogeneity into with the infinite

mixture model provides the highest fit. This result holds for all data sets (table 1).
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Table 1. Cross-Validation Score For Every Model and Data Set Using GTR+Γ as Reference

Broughton Lartillot Wainwright

GTR -2226.7±91.9 -2013.7±81.4 -1342.7±168.7

GTR+Γ Reference Reference Reference

CAT-Poisson 9.7±7.6 -245.9±112.0 167.7±53.6

CAT-Poisson+Γ 315.9±19.3 -134.0±125.3 353.5±80.5

CAT-GTR 437.4±41.4 471.5±54.1 404.9±92.7

CAT-GTR+Γ 675.3±25.5 554.0±39.5 1645.9±479.9

CATf -GTR 459.1±35.2 478.1±58.0 398.8±52.9

CATf -GTR+Γ 673.5±31.8 554.4±47.7 469.5±58.1

C20-GTR -1234.9±34.9 -1243.9±50.4 -699.3±131.1

C40-GTR -926.4±6.8 -1083.5±41.4 -580.8±135.1

C60-GTR -703.3±27.1 -985.2±56.7 -520.2±120.8

C20-GTR+Γ 401.2±43.3 258.7±20.8 337.4±56.9

C40-GTR+Γ 460.1±36.1 343.5±20.9 376.8±66.3

C60-GTR+Γ 497.9±36.3 344.6±26.7 398.4±68.6

C20-Poisson -2573.1±142.6 -3263.4±102.6 -1478.1±138.1

C40-Poisson -2334.5±126.7 -3014.6±100.9 -1334.8±134.9

C60-Poisson -2132.6±117.0 -2822.7±110.2 -1246.4±134.9

C20-Poisson+Γ -393.4±50.7 -1363.5±64.2 -67.7±55.0

C40-Poisson+Γ -248.9±37.1 -1196.7±55.7 39.0±61.6

C60-Poisson+Γ -122.9±40.9 -1058.6±77.9 105.3±51.1

Note: CATf -GTR and CATf -GTR+Γ correspond to the finite mixture models with the number of compo-
nents where cross-validation scores were maximized
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Table 2. Relative cross-validation score improvement gained by including Γ

Broughton Lartillot Wainwright

GTR vs GTR+Γ 2226.7 2013.7 1342.7

CAT-Poisson vs CAT-Poisson+Γ 306.2 111.9 185.7

CAT-GTR vs CAT-GTR+Γ 237.9 82.5 1241.0

CATf -GTR vs CATf -GTR+Γ 214.4 76.3 70.7

C20-GTR vs C20-GTR+Γ 1636.1 1502.6 1036.7

C40-GTR vs C40-GTR+Γ 1386.5 1427.0 957.7

C60-GTR vs C60-GTR+Γ 1201.2 1329.8 918.6

C20-Poisson vs C20-Poisson+Γ 2179.6 1900.1 1410.4

C40-Poisson vs C40-Poisson+Γ 2085.62 1818.0 1373.8

C60-Poisson vs C60-Poisson+Γ 2009.71 1764.0 1351.7

Note: Difference between CATf -GTR and CATf -GTR+Γ correspond to f values that had highest cross-
validation score

CATf -GTR and CATf -GTR+Γ

We explored finite mixture models which treat all aspects of the mixture as free parame-

ter. When using a finite mixture model, one must choose the number of components. Here,

we explore many different values for the number of components (f), ranging between 1 (a

non-mixture models) and 150 (a very rich mixture model), and compute the cross-validation

score for each.

The cross-validation scores for the finite mixture models CATf -GTR and CATf -GTR+Γ

follow a similar pattern across the range of f values. Both settings had cross-validation scores
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which began at low values and rose quickly as the number of components was increased. As

the number of components further increased the model began to encounter diminishing

returns. For the Broughton-61-19997 data set (figure 5), these diminishing returns began

occurring at roughly 10 components. The scores of CATf -GTR and CATf -GTR+Γ then

plateau at similar values to those of CAT-GTR or CAT-GTR+Γ, respectively, at around

f = 40 components. For the other two data sets the number of components required for

CATf -GTR and CATf -GTR+Γ to have roughly equivalent cross-validation scores to those

of CAT-GTR or CAT-GTR+Γ varied but was always between f = 20 and f = 60.

Empirical Mixture Models With and Without Γ

The final models displayed in figure 5 are the empirical mixture models C20-WAG, C20-

Poisson, C40-WAG, C40-Poisson, C60-WAG, C60-Poisson, with and without their gamma-

distributed rates variants. All of the empirical mixture models followed a similar pattern.

The worst performing of any empirical mixture model set (C20, C40 and C60) was always

the C20 version. The model with the next highest cross-validation score was the C40 variant

in each set. Finally the C60 variants performed best of the three. This trend holds regardless

of any other aspects of the model. In other words, regardless of the context, C40 outper-

formed C20, and C60 outperformed C40. This indicates that the richest empirical mixture

model better captures across-site heterogeneity than the more compact empirical mixtures,

as observed in the original work by Le et al. (2008a).

The configuration with the least complexity are the Poisson substitution process models

without gamma-distributed rates-across-sites (C20-Poisson, C40-Poisson, and C60-Poisson).

These versions were observed to have cross-validation scores equal to or below the GTR
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model. In other words, given the choice between free exchangeability parameters or an

empirical mixture model of Le et al. (2008a), the free exchangeabilities are preferred.

The next best performing set of empirical mixture models were those combined with

free exchangeabilities but no Γ (C20-GTR, C40-GTR and C60-GTR). Performing even

better than the set with free exchangeabilities was the set with Poisson exchangeabili-

ties and gamma-distributed rates-across-sites (C20-Poisson+Γ, C40-Poisson+Γ, and C60-

Poisson+Γ). This result is significant because it shows that addition of gamma-distributed

rates-across-sites has a higher impact on how well these empirical models are able to fit the

data than addition of free exchangeabilities. This contrasts with results observed under infi-

nite mixture models (CAT and CAT-GTR), where the introduction of free exchangeabilities

has a higher impact than gamma-distributed rates-across-sites. The finite empirical mix-

ture models proposed by Le et al. (2008a) assumed even exchangeabilities. The frequency

profiles that make up C20, C40 and C60 do not appear to harmonize well with variable

exchangeabilities.

The top performing set of empirical mixture models was the permutation which included

free exchangeabilities and Γ (C20-GTR+Γ, C40-GTR-Γ, C60-GTR+Γ). The C40-GTR+Γ

and C60-GTR+Γ models performed slightly better than CAT-GTR (without Γ). In this

context, all three empirical mixtures perform better than the finite mixture model variants

with the same number of categories (C20-GTR+Γ was better than CATf -GTR with f = 20

components, C40-GTR+Γ was better than CATf -GTR with f = 40 components and C60-

GTR+Γ was better than CATf -GTR with f = 60 components) although showing lower

cross-validation scores than the CATf -GTR+Γ model with the same number of components.

The best performing empirical mixture model set also did not have higher cross-validation
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scores than CAT-GTR+Γ.

The second best set of empirical mixture models (C20-Poisson+Γ, C40-Poisson+Γ, and

C60-Poisson+Γ), performed well below GTR+Γ. In other words, given the choice between

free exchangeability parameters or an empirical mixture of amino acid profiles, the former

is preferred. Inclusion of the C20, C40 and C60 empirical mixtures into the GTR and

GTR+Γ models resulted in a improvement in model fit. C20-GTR, C40-GTR, and C60-GTR

performed better than GTR and C20-GTR+Γ, C40-GTR+Γ, and C60-GTR+Γ performed

better than GTR+Γ. These results are similar to those of Le et al. (2008a) who showed that

empirical mixtures in a model models perform better than the homogeneous version of that

model.

In all models analyzed the addition of gamma-distributed rates-across-sites saw a im-

provement in model fit, this is consistent with previous research on the use of gamma-

distributed rates-across-sites (Yang, 1996).

Exceptions

Most of these results discussed for the Broughton-61-19997 data set, follow the same

trend for the other data sets. There are, however, some exceptions.

Cross-validation analysis on the Lartillot-78-15117 data set resulted in GTR+Γ having a

higher score than CAT-Poisson and CAT-Poisson+Γ. The data set Lartillot-78-15117 is one

of placental mammals and highlights that the introduction of a complex mixture modelling

approach, such as CAT, may not always provide the highest model fit, especially when

important factors, such as amino acid exchangeabilities, are ignored. In the Lartillot-78-

15117 data set, CAT-GTR+Γ still retained the highest overall cross-validation score.
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In the Wainwright-188-8439 data set, the standard deviation for the cross-validation

analysis of CAT-GTR+Γ was very large. It is unclear why this data set had high variability

in cross-validation score, but the trend was consistent across three separate replicates. In this

data sets, the cross-validation score at which CATf -GTR+Γ plateaued at was lower than

the score attained by CAT-GTR+Γ. This unusual variability did not appear when analysis

of these models was done without use of Γ. We suspect this data set have low evolutionary

signal, but further research is required to better understand this behaviour.

Finally, when analysis of the Lartillot-78-15117 using the empirical mixture models the

results were incongruent with the results in the other two data sets. The least complex em-

pirical mixture models (C20-Poisson, C40-Poisson and C60-Poisson) performed much worse

than GTR, with cross-validation scores roughly 1000 below GTR. The order of improvement

for the empirical mixture models were also different for the Lartillot-78-15117 data set. Addi-

tion of gamma-distributed rates-across-sites saw less improvement in the models than did the

addition of GTR exchangeabilities. The magnitude of the difference in cross-validation score

was small between the C20-GTR, C40-GTR, and C60-GTR models and C20-Poisson+Γ,

C40-Poisson+Γ, and C60-Poisson+Γ models (119.6, 113.2, and 73.4 respectively). For this

data set it appears that use of gamma-distributed rates-across-sites is much less important

than use of free exchangeabilities in phylogenetic analysis, although use of both has the

highest cross-validation score regardless of the type of model used.
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4. Conclusions and Future Directions

For all data sets analyzed, CAT-GTR+Γ was always the top performing model. The

cross-validation score attained by CAT-GTR+Γ was often matched by CATf -GTR+Γ, with

a sufficient numbers of components, typically between f = 20 and f = 60, depending on the

data set.

For some data sets (Broughton-61-19997, Lartillot-78-15117), the empirical mixture model

C60-GTR+Γ definitively outperform the infinite mixture model CAT+Γ and the other

(Wainwright-188-8439) it performed roughly as well as CAT+Γ. It is noteworthy that

C60-GTR+Γ never attained a cross-validation score comparable to CAT-GTR+Γ or CATf -

GTR+Γ. Considering that the C60 frequency profile set assumed equal amino acid exchange-

abilities, a new set of empirical mixture models could be created where the components of

the finite mixture are estimated jointly with exchangeabilities. Our results suggest that this

theoretical empirical mixture could have a high degree of model fit on amino acid data, while

enjoying the computational speed of finite mixture models.

The present study does not address the potential impact of modelling across-site amino

acid heterogeneity on phylogenetic inference per se. The current literature includes many

instances in which GTR+Γ and CAT-GTR+Γ produce fundamentally different topologies

(e.g., Lartillot et al., 2007; Feuda et al., 2017). Most of the differences in topologies have

been attributed to the long branch attraction artifact (Felsenstein, 1978). It is also possible

to modify branch lengths to induce long branch attraction artifacts in simulated data. By

utilizing our systematic scan of mixture models on such data sets, both real and simulated,

we should uncover the level of heterogeneity that must be recognized by a model to suppress
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long branch attraction.

This analysis was done wholly in amino acid space. Repetition of this analysis, with

the absence of empirical mixture models, in nucleotide space and codon state space could

prove valuable. Analysis on nucleotide data would be beneficial in confirming that CAT-

GTR+Γ is still the top performing model. It would also be useful to quantify how much

impact gamma-distributed rates-across-sites had on model fit on different data types, and to

determine how many components are required for CATf -GTR+Γ to achieve cross-validation

scores equivalent to CAT-GTR+Γ. Analysis of the relative merit of empirical mixture models

versus CAT-like models in codon state space would be valuable to quantify how finite and

infinite mixture models perform in the data rich codon environment.

Five fold, five replicate cross-validation were used as the test settings for model compar-

ison. Although there was no empirical justification for these particular settings, the results

were significant, having adequate resolution between model cross-validation scores. Doing

similar analyses as these, under different partitioning schemes would be a valuable method

for determining the optimal settings required for Bayesian cross-validation analysis.

Recognizing across-site heterogeneity in amino acid profiles has also been explored within

models that operate in a codon (nucleotide triplet) state space, applying the mutation-

selection principle (Rodrigue et al., 2010; Rodrigue and Lartillot, 2014). These models all

rely on the infinite mixture model paradigm. Significant computational improvements could

be achieved by establishing a suitable finite mixture version of these models. Applying the

methodology used in this study within the codon substitution framework could help establish

such a finite mixture.

Altogether this study emphasized the usefulness of Bayesian cross-validation in phyloge-
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netics and highlight the robustness of CAT-GTR+Γ to adapt to all data contexts.

37



References

Akaike, Hirotugu. 1974. A new look at the statistical model identification. IEEE transactions

on automatic control 19:716–723.

Broughton, RE., R. Betancur-R, C. Li, G. Arratia, and G. Orti. 2013. Multi-locus phyloge-

netic analysis reveals the pattern and tempo of bony fish evolution. PLOS Currents Tree

of Life. 5(1).

Echave, Julian, Stephanie J Spielman, and Claus O Wilke. 2016. Causes of evolutionary rate

variation among protein sites. Nature Reviews Genetics 17:109.

Efron, Bradley. 2005. Bayesians, frequentists, and scientists. Journal of the American Sta-

tistical Association 100:1–5.

Felsenstein, J. 1978. Cases in which parsimony or compatibility methods will be positively

misleading. Syst. Zool. 27:401–410.

Felsenstein, J. 1981. Evolutionary trees from dna sequences: a maximum liklihood approach.

J. Mol. Evol. 17:368–376.

Feuda, Roberto, Martin Dohrmann, Walker Pett, Hervé Philippe, Omar Rota-Stabelli, Nico-
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