
Understanding How Developers Reuse
Stack Overflow Code in Their GitHub Projects

by

Razieh Tekieh

A Thesis submitted to

the Faculty of Graduate Studies and Research

in partial fulfilment of

the requirements for the degree of

Master of Computer Science

Department of Computer Science

Carleton University

Ottawa, Ontario, Canada

August 2021

Copyright ©

2021 - Razieh Tekieh

The undersigned recommend to

the Faculty of Graduate Studies and Research

acceptance of the Thesis

Understanding How Developers Reuse Stack Overflow Code

in Their GitHub Projects

Submitted by Razieh Tekieh

in partial fulfilment of the requirements for the degree of

Master of Computer Science

Dr. Olga Baysal, Supervisor

Dr. Mehrdad Sabetzadeh, External Examiner

Dr. Rabe Abdalkareem, Internal Examiner

Dr. Alan Tsang, Chair of Defence

Dr. Michel Barbeau, Department Chair

Carleton University

2021

ii

Abstract

Stack Overflow and other popular Q&A forums include a variety of reusable code

snippets for software developers. Instead of writing new code, most software devel-

opers prefer to reuse existing code which in a software projects, this reuse of code

is referred to as “code cloning”. In this study we look into how software developers

reused and adopted code snippets from Stack Overflow in projects hosted on GitHub.

To achieve our goal, we create a code pair dataset that maps Stack Overflow code

snippets to GitHub commits with the help of SOTorrent and GHCodeSnippetHistory.

Our dataset consists of code pairs from four programming languages including Java,

JavaScript, PHP, and Python.

The first part of the study concentrates on finding clones between Stack Overflow

and GitHub code snippets and its challenges. The result of first part indicates around

77% of code pairs do not have clone. However, around 15.8% of code pairs have Type

I, 5.89% and 11.71% have Type II and III, respectively. Based on these findings,

developers are more likely to integrate Stack Overflow code snippets rather than use

them directly in their projects. However, if developers reuse code snippets, they more

prefer to copy&paste them to make modifications.

In the second part we develop and test multi-label classifiers for predicting the

types of code clones for four feature sets. The extracted feature sets are based on

TF-IDF, Code2Vec, and Word2Vec models in addition to the statistical feature set

derived from the programming paradigms. The results of applying classifiers to our

iii

extracted feature sets reveal that most of our models are likely overfit for the majority

class. Also, statistical feature set was slightly better than other feature set. For this

feature set, all multi-label classification techniques which used Random Forest as

based algorithms were able to predict clone types with a F1-Score more than 76%.

iv

Acknowledgments

Two years after starting my Master’s program, now I’m pleased to write the last note

in my thesis. This research work expanded my expertise on a very interesting aspect

of computer science dealing with software engineering, mining software repositories,

and data science. I would like to mention the people who have continuously supported

and directed me all the way through my graduate school journey.

My special thanks go to my research supervisor, Dr. Olga Baysal, for providing

me with this great opportunity to work under her supervision. I am sincerely thankful

for all of her support, attention, kindness and encouraging spirit. This research would

not be possible to conduct without her ongoing help.

I am also grateful to the thesis committee members: Dr. Rabe Abdalkareem and

Dr. Mehrdad Sabetzadeh for their time and invaluable feedback on my research work.

Besides, I would like to acknowledge the help of Nathaniel Salami in evaluating iClones

results. And also I am thankful to my peer Saraj Manes for his help and support.

Moreover, I take this opportunity to highly thank my parents for all of their

endless support and encouragement through my life.

v

Table of Contents

Abstract iii

Acknowledgments v

Table of Contents vi

List of Tables x

List of Figures xii

Nomenclature xiii

1 Introduction 1

1.1 Code Reuse . 1

1.2 Motivation . 3

1.3 Research Questions . 5

1.4 Contributions . 7

1.5 Organization of the Thesis . 7

2 Background and Related Work 8

2.1 Code Reuse . 8

2.2 Code Clone Types . 10

2.2.1 Type I Code Clones . 11

vi

2.2.2 Type II Code Clones . 12

2.2.3 Type III Code Clones . 12

2.2.4 Type IV Code Clones . 13

2.3 Code Clone Detection Techniques . 14

2.4 Classi�cation Problem . 22

2.5 Mining Software Repositories . 24

2.6 Code Reuse in Mining Software Repositories 26

2.7 Source Code as Natural Language . 30

3 Methodology 32

3.1 Datasets . 32

3.2 Code Clone Detection . 39

3.2.1 Overview of the Tools Used 40

3.2.2 Manual Assessment of Code Clone Detection 42

3.2.3 Clone Detection UsingiClones 44

3.2.3.1 Preparing the Source Code 44

3.2.3.2 Source Code Cleanup 45

3.2.3.3 RunningiClones 45

3.2.3.4 EvaluatingiClones Results 46

3.3 Predicting Code Clone Types . 47

3.3.1 Preparing Dataset . 47

3.3.2 Data Cleaning And Pre-processing 48

3.3.3 Split Dataset . 49

3.3.4 Feature Extraction . 50

3.3.4.1 Statistical Features 51

3.3.4.2 TF-IDF . 51

3.3.4.3 Word Embeddings 53

vii

3.3.5 Multi-label Classi�cation Models 54

3.3.6 Balancing Multi-label Classi�cation 58

3.3.7 Evaluation Metrics . 59

4 Results 62

4.1 Code Clone Detection . 62

4.1.1 RQ1: How Accurately Can Clone Detection Tools Identify Code

Clones Between Stack Over�ow and GitHub? 63

4.1.2 RQ2: What Types of Clones Are Present in the Code Snippets

Reused From Stack Over�ow in the GitHub Projects? 68

4.2 Code Clone Prediction . 72

4.2.1 Dataset Overview After Pre-processing and Splitting 73

4.2.2 Feature Sets . 75

4.2.3 Balancing . 77

4.2.4 RQ3: How Accurately Can We Predict the Clone Type Given

Two Code Snippets? . 79

5 Discussion 83

5.1 Findings . 83

5.2 Implications . 87

5.2.1 Software Developers . 87

5.2.2 Researchers . 88

5.2.3 Online Programming Platforms 89

5.3 Threats and Limitations . 89

6 Conclusions 92

6.1 Summary of Contributions . 92

6.2 Future Work . 94

viii

List of References 96

Appendix A 107

A.1 iClones Con�guration Results . 107

A.2 Models' Results . 107

ix

List of Tables

2.1 Code clone types and their de�nitions. 11

2.2 An example ofType I code clone. 11

2.3 An example ofType II code clone. 12

2.4 An example ofType III code clone. 13

2.5 An example ofType IV code clone. 13

2.6 Code clone detection techniques and tools. 17

2.7 Code reuse in the MSR research �eld. 27

3.1 The number of code pairs for each programming language in the dataset. 38

3.2 A general overview of code pairs in terms of character count. 40

3.3 Statistical features. 52

4.1 Summary of the manual clone detection process. 63

4.2 Similarity ratio of iClones with manually detected clones by human

subjects. 67

4.3 Evaluation of the clone detection results on 60 randomly selected samples. 68

4.4 Summary ofiClones ' clone detection results. 69

4.5 Distribution of multi-clone types in our sample. 71

4.6 Distribution of clone types for each programming language after pre-

processing. 73

4.7 The number of samples in the train and test sets for each label. . . . 74

4.8 Label distribution in the train and test sets. 74

x

4.9 Range of statistical features. 75

4.10 Top 100 selected words by T�dfVectorizer. 76

4.11 Number of words that do not exist in the pre-trained models. 77

4.12 Distribution of labels in the balanced train sets. 78

4.13 Models' F1-score and hamming loss values for OriginalDB, Bal-

ancedDS1, BalancedDS2, and BalancedDS3. 81

4.14 F-score of statistical features forRandom Forestbased classi�ers. . . 82

A.1 iClones results for di�erent con�guration over selected samples. . . 108

A.2 Precision, recall, F1-score, hamming loss, accuracy, and execution time

over OriginalDS. 109

A.3 Precision, recall, F1-score, hamming loss, accuracy, and execution time

over BalancedDS1. 110

A.4 Precision, recall, F1-score, hamming loss, accuracy, and execution time

over BalancedDS2. 111

A.5 Precision, recall, F1-score, hamming loss, accuracy, and execution time

over BalancedDS3. 112

A.6 F1-score results per clone types over OriginalDS. 113

A.7 F1-score results per clone types over BalancedDS1. 114

A.8 F1-score results per clone types over BalancedDS2. 115

A.9 F1-score results per clone types over BalancedDS3. 116

xi

List of Figures

1.1 Our research roadmap. 5

3.1 SOTorrent dataset layout [1]. 34

3.2 GHCodeSnippetHistory dataset layout [2]. 35

3.3 Data collection: adding a Stack Over�ow snippet to the GHCodeSnip-

petHistory dataset. 36

3.4 The work�ow of creating our dataset. 38

3.5 A sample commit [2]. 39

3.6 Clone detection process. 41

3.7 Manual clone detection process. 43

3.8 Overview of the process of predicting code clone types. 47

3.9 Dataset schema in Pandas. 48

4.1 Ratio of detected clones for di�erent con�gurations ofiClones 65

4.2 Number of detected clones in Java samples. 65

4.3 Number of detected clones in JavaScript samples. 65

4.4 Number of detected clones in PHP samples. 66

4.5 Number of detected clones in Python samples. 66

4.6 Ratio of detected clones byiClones 70

4.7 Ratio of detected clones for each programming language. 70

4.8 Distribution of labels. 71

xii

Nomenclature

Abbreviations
This thesis makes use of certain commonly used abbreviations in the �eld of

computer science. The abbreviations and their meanings are listed in the table

below:

Abbreviation Name

SO Stack Over�ow

GH GitHub

ML Machine Learning

NLP Natural Language Processing

JS JavaScript

PY Python

GNB Gaussian Naive Bayes

LR Logistic Regression

RF Random Forest

xiii

Chapter 1

Introduction

In this chapter, Section 1.1 describes the goal of this thesis and highlights the im-

portance of studying code reuse. Section 1.2 explains the motivation behind this

work. Section 1.3 outlines the research questions which this study tries to address,

while Section 1.4 summarizes the key contributions of this work. Finally, Section 1.5

presents the organization of this thesis.

1.1 Code Reuse

Most software developers prefer to copy-paste program code instead of writing new

code from scratch. In other words, they reuse code or code fragments (i.e., snippets)

available on the web or from in-house developed projects in their own projects. A

code snippet is a small chunk of the source code designed for a speci�c purpose such

as a loop or a feature. In a software system, code clones are de�ned as similar or

identical fragments of code, and �code cloning� refers to this reuse of code. Code

cloning has both advantages and disadvantages which are still debatable. On the

one hand, as writing new codes consumes considerable amount of time and e�ort,

developers frequently search for code snippets on the other versions of a software or

on the web in order to write code quickly and easily. From this perspective, code

1

2

clones are bene�cial. On the other hand, if a reused code snippet contains a bug (i.e.,

software defect), all the copied instances must be checked for this bug. That is to say,

the code reuse may lead to bug propagation which may signi�cantly a�ect software

maintenance costs [3]. Therefore, detecting code clones has been an active area of

research in the past two decades [4,5].

Nowadays, popular question and answer (Q&A) forums such as Stack Over�ow [6]

provide an immense amount of reusable code snippets. According to the Stack Over-

�ow's statistics [7], about 50 million people around the world visit Stack Over�ow

website monthly, and around half of them are professional developers or university

students. Stack Over�ow provides rich information in the form of posts, each con-

sisting of several text and code snippets, so software developers can get help on their

software development problems by reusing readily available code snippets in their

projects.

This study investigates how software developers reuse Stack Over�ow's code snip-

pets in the projects hosted on GitHub. GitHub [8] is a software repository hosting

platform based ongit , and it allows version control and collaboration on projects.

There is a large number of references to the Stack Over�ow discussions in the GitHub

projects. Manes [9] has shown that open-source projects in GitHub reference Stack

Over�ow posts, and the average number of references to Stack Over�ow is 176 per

project. Code snippets from Stack Over�ow referenced in the GitHub code make

a great opportunity for us to study how developers reuse code snippets from Stack

Over�ow in their projects. Also, it can facilitate the studies about (i) detecting the

types of code clones that exist between Stack Over�ow and GitHub code snippets,

(ii) the distribution of clone types between these two platforms, and (iii) predicting

the types of code clones based on the reused code snippets on social coding platforms.

In this work, we leverage clone detection techniques to study developers' code reuse

3

practices. Based on the results of this work, we are able to: (1) identify which ex-

isting tools are able to detect clone types between Stack Over�ow and GitHub code

snippets, (2) o�er insights into the clone types presented in the code snippets reused

from Stack Over�ow in GitHub projects, and (3) develop and evaluate multi-label

classi�ers in predicting the types of code clones.

1.2 Motivation

Stack Over�ow, with 15 million users, 21 million questions, and 32 million answers, is

one of the most popular Q&A websites in the �eld of programming1. On the Stack

Over�ow website, programmers can ask questions and suggest solutions to the pro-

gramming problems. These questions and answers contain two kinds of information

blocks: (i) the text blockis either the description of an issue or the solution to it, and

(ii) the code blockis a code snippet as a part of the answer to the asked question.

Sometimes code snippets that are included in the answers are not directly authored

on Stack Over�ow, and instead, they are copied from other resources [10]. Reusing

these code snippets in other projects can lead to license violations, bug propagation,

reuse of outdated codes, or creation of vulnerabilities [10]. The main motivation be-

hind this work is to explorehow developers reuse code snippets from Stack Over�ow

in their GitHub projects � do they really copy-paste them entirely or do they adopt

these code fragments to their own code bases by making necessary modi�cations?

By considering the reuse of code snippets from Stack Over�ow as code cloning,

we are able to study the adoption of these code snippets in other projects in terms of

clone types. Code clones are divided to four di�erent categories based on the degree

of similarity between code pairs, which are Type I, Type II, Type III, and Type

IV [11]. Although there are some studies on the quality of code snippets from online

1Date as 18 June 2021 from https://stackexchange.com/sites

4

resources [12] and the frequency with which code snippets are reused from Stack

Over�ow in the GitHub projects [13, 14], there is no study focusing on the types of

code clones between Stack Over�ow and GitHub. Baltes et al. [15] have published a

dataset called SOTorrent based on the Stack Over�ow's data dump [16]. SOTorrent

provides access to all the contents of the Stack Over�ow website, their version history,

and �les on other platforms like GitHub referencing any of these contents. Thanks to

SOTorrent, we extend the dataset provided by Manes [9] in order to create correlative

code pairs on Stack Over�ow and GitHub.

The �rst part of this thesis focuses on the detection of code clones between Stack

Over�ow and GitHub code snippets. We try to discover the level of accuracy of

existing tools in detecting the types of code clones between these two platforms and

the challenges associated with using these tools. The second part of the thesis focuses

on the prediction of clone types by using multi-label classi�cation models. In a

software system, around 5% to 50% of codebase contains clones, and maintenance is

the most expensive phase of the software development cycle [11]. Code clones can

be consider as repeated patterns in a software system. Because clone types represent

the level of adoption that occurred in a cloned code, we will be able to better plan

maintenance operations and development resources by predicting clones. Thus, we

will be able to reduce the maintenance costs that arise as a result of cloning. The

outcome of this work can provide fresh insights into the reuse of online code resources

in software development. Moreover, the �ndings of this work can help in gaining a

better understanding and contributing to the existing body of knowledge on code

cloning in the context of empirical software engineering.

5

Figure 1.1: Our research roadmap.

1.3 Research Questions

The goal of this thesis is to gain better understanding and new insights into how

knowledge, in the form of code snippets, available on Stack Over�ow website is shared

and reused in other software development projects. Figure 1.1 illustrates the roadmap

we followed to answer the following research questions:

ˆ RQ1: How accurately can clone detection tools identify code clones

between Stack Over�ow and GitHub?

In a general context, code clones are similar fragments of code; however, there

is no agreement on this de�nition [17]. For instance, with regard to the degree

of similarities or the size of code fragments, one expert may consider the frag-

ments similar enough to be a code clone, while another expert may claim they

6

are so disparate to be accounted a clone. Thus, detecting code clones is chal-

lenging even for human beings. This research question is critical in this study

as it contributes the �rst step of detecting clone types. We try to �nd a tool

capable of accurately detecting clone types in the four programming languages

represented in the dataset. This research question involves both quantitative

and qualitative research methods. The approach adopted here can help en-

hance our understanding of clone detection and its challenges associated with

the multi-language code-snippet level.

ˆ RQ2: What types of clones are present in the code snippets reused

from Stack Over�ow in the GitHub projects?

This research question builds up the next step that elaborates the previous

�ndings in the RQ1 by analyzing the presence of di�erent clone types between

Stack Over�ow and GitHub snippets. In addition, the clone size, e�cacy of the

programming language, complexity of the code snippet, etc. are quanti�ed in

this research question.

ˆ RQ3: How accurately can we predict the clone type given two code

snippets?

In order to tackle the last research question, the study moves on from under-

standing the distribution of clone types over two platforms to predicting clone

types based on the prevalence of each type on these social coding platforms.

This research question can yield an invaluable insight about the best way of ex-

tracting features from code snippets, what classi�cation models can be utilized

to predict clone types over two platforms, and how accurately we are able to

predict clone types.

7

1.4 Contributions

The major contributions of this research work are as follows:

1. Conducting a �ne-grain analysis to understand how developers reuse code snip-

pets from Stack Over�ow in their own projects.

2. Evaluation of clone detection tools to detect clone types among Stack Over�ow

and GitHub code snippets.

3. Development and evaluation of machine learning models to predict clone types

between two platforms' snippets.

4. Empirical evidence of code snippets reuse from Stack Over�ow in GitHub

projects.

5. A list of recommendations to the software developers, researchers and online

programming platforms in supporting code reuse.

1.5 Organization of the Thesis

The structure of this thesis is as follows: Chapter 2 presents background and related

research work relevant to our study. Chapter 3 describes the methodology, dataset,

and data analysis techniques used in this work. Afterwards, the results and answers

to the research questions are reported in Chapter 4 followed by the discussion on

implications of this work in Chapter 5. Finally, the thesis concludes with Chapter 6

providing a summary of this study and future work directions.

Chapter 2

Background and Related Work

This chapter lays out the foundational information required for this study and sum-

marizes related work in this �eld.

2.1 Code Reuse

Code or software reuse is a common practice in software development. In the context

of software engineering literature, code reuse has been called by many names like cut-

and-paste or copy-and-modify reuse [18], code scavenging [19], ad-hoc reuse [20], and

opportunistic reuse [21]. In recent years, with the emergence of online Q&A websites

such as Stack Over�ow or online collaborative coding platforms such as GitHub, code

reuse happens not only between two di�erent versions of a software but also across

di�erent codebases since developers can access millions of open source projects.

Krueger [19] stated that reuse of code happens in three steps of selecting an entity,

adopting, and integrating it in the target system. For a high level categorization, we

divide software reuse into white-box and black-box approaches [22]. In the white-box,

developers are permitted to change the internal operation of a reusable artifact, while

in the black-box, they are not allowed to do so. Although, the black-box approach

for software reuse seems less �exible, developers do not need to know how an artifact

8

9

works. In contrast, the white-box approach enables developers to change an artifact

based on their needs with the additional e�ort to understand and change it.

Most of the software reuse research emphasizes the design of software in a reusable

fashion such as object-oriented programming [23] or component-based approaches [24,

25]. Parsons and Saunders [26] mention that developers are able to perform tasks by

anchoring their understanding to existing code and adjusting it based on their needs.

This study was a promotion of a white-box reuse paradigm.

In addition to the white-box and block-box approaches, code cloning can be a

simple way of reusing code. Code cloning refers to copied program code from a

source which is used with or without modi�cation. Although this is considered a

bad practice [27], most developers prefer to do so due to the availability of today's

online resources. Hence, similar to other approaches of code reuse, code cloning

is a mechanism for the reduction of development time, the increase of developers'

productivity, and the decrease of defect density [28,29].

Code cloning has both advantages and disadvantages. Since writing new code is

an expensive activity and needs considerable time and e�ort, developers frequently

search for code snippets on the web or other resources to be able to write code

quickly and easily. However, some researchers believe that code clones may cause

software maintenance to become more complicated [27]. For example, in the case of

an emerging bug in a reused code snippet, all cloned instances need to be checked for

the same bug, or alternatively, the modi�cations of the original code must be applied

to the duplicated code.

There is no universally accepted de�nition for code cloning in the literature. In

the Webster's dictionary [30], aclone is de�ned as �to make a copy of�, while code

cloning does not have a clear de�nition. In general, it refers to the approach of reusing

existing code. Because it is di�cult to distinguish which code fragment is original

and which is cloned, all code fragments that are identical or similar to each other are

10

referred to ascode clones[11]. Baxter et al. [31] de�ne aclone as a program fragment

that is identical to another fragment, and, anear miss cloneas a fragment which is

nearly identical to another. Other researchers use �similar code�, �duplicated code� or

�exact copy or a mutant of another function� [27,32,33]. All these di�erent de�nitions

of code cloning result in vagueness which makes the clone detection process hard.

Between two code fragments, there are two types of similarity. Two code fragments

can be textually similar or comparable based on their program text. This kind of

clones are often the result of copying a code fragment from a location and pasting it

to another location. In another similarity type, two code fragments arefunctionality

similar. In this case, there is no textual similarity between two code fragments, and

the functionalities or semantic of the two code fragments are the same [11].

Based on these two kinds of similarities, four code clone types have been de-

�ned [27, 31, 34, 35]. Table 2.1 illustrates the di�erent code clone types and their

de�nitions.

These types of clones de�ne the degree of change from Type I to Type IV. Also,

the table shows the analytical di�culty of detecting such clones rises from Type I

to Type IV, with Type IV being the most di�cult one. Even with extensive prior

knowledge of the program's architecture and software design, detecting Type IV clones

is not a trivial task. Whether the process is automated or not, the level of analytical

complexity increases from Type I to Type IV.

2.2 Code Clone Types

In this section, we describe each clone code type and o�er an example.

11

Similarity Clone Type De�nition

Textual

Type I Identical code fragments but may have some vari-
ations in white-space, layout, and comments.

Type II Syntactically equivalent fragments with some
variations in identi�ers, literals, types, white-
space, layout, and comments.

Type III Syntactically similar code with inserted, deleted,
or updated statements.

Semantic Type IV Semantically equivalent, but syntactically di�er-
ent code.

Table 2.1: Code clone types and their de�nitions.

2.2.1 Type I Code Clones

In Type I clones, also calledexact clones, two code fragments are identical. There

may be some di�erences in white space (blanks, new lines, tabs), comments, and/or

layouts. Two code fragments of Type I clones are shown in Table 2.2. After deleting

the white space and comments, we can observe that these two fragments are textually

similar and are considered as Type I code clones even though they have di�erent

layouts.

Original Code Cloned Code

for (i = 0; i < 10; i++)
{

// foo1
if (i % 2 == 0)

a = b + i;
a = a * 10;

else
// foo2

a = b � i;
}

for (i = 0; i < 10; i++)
{ if (i % 2 == 0)

a = b + i; // cmt1
a = a * 10;

else
a = b � i; // cmt2

}

Table 2.2: An example ofType I code clone.

12

2.2.2 Type II Code Clones

If there are some probable variations in user-de�ned identi�ers such as variable names,

methods, classes, and so on, two code fragments are consideredType II clones. But,

the sentence structure and reserve words are essentially the same. An example of

Type II clones is shown in Table 2.3. Although the layout, variable names, and value

assignments of the two code fragments di�er signi�cantly, both fragments have a

similar syntactic structure. Sometimes, Type II clones are also calledrenamed clones

or parameterized clones[11].

Original Code Cloned Code

for (i = 0; i < 10; i++)
{

// foo1
if (i % 2 == 0)

a = b + i;
a = a * 10;

else
// foo2

a = b � i;
}

for (j = 0; j < 10; j++)
{ if (j % 2 == 0)

x = y + j; // cmt1
x = x * 5;

else
x = y � j; // cmt2

}

Table 2.3: An example ofType II code clone.

2.2.3 Type III Code Clones

The duplicated fragment is further adopted in Type III clones, with the statement(s)

modi�ed, added, and/or deleted. As we can see in Table 2.4, the copied code is

extended by two statementse = True and a = 2 * b. Also, the a = a * 10 statement

is deleted. This copied fragment could be a Type II code clone if it did not have these

amended statements, but these changes in addition to the modi�ed identi�er name,

make it a Type III clone or near-miss clone.

13

Original Code Cloned Code

for (i = 0; i < 10; i++)
{

// foo1
if (i % 2 == 0)

a = b + i;
a = a * 10;

else
// foo2

a = b � i;
}

for (j = 0; j < 10; j++)
{ // new statement

a = 2 * b;
if (j % 2 == 0)

a = b + j; // cmt1
e = True;

else
a = b � j; // cmt2

}

Table 2.4: An example ofType III code clone.

2.2.4 Type IV Code Clones

In Type IV clones or semantic clones, there is semantic similarity between code

fragments. In other words, two di�erent code fragments have the same logic and

equivalent functionality. The degree to which the components behave similarly is

measured by functional similarity. Table 2.5 presents two code fragments which are

semantically equal. The cloned code is not necessarily copied from the original one,

but it was written by two distinct developers who used the same rationale.

Original Code Cloned Code

for (i = 0; i < 10; i++)
{

// foo1
if (i % 2 == 0)

a = b + i;
else
// foo2

a = b � i;
}

while (i < 10)
{ // a comment

a = (i % 2 == 0) ? b + i : b � i;
i++;

}

Table 2.5: An example ofType IV code clone.

14

2.3 Code Clone Detection Techniques

A variety of tools and techniques for detecting code clones, as well as several compar-

isons and evaluation studies have been introduced so far. Clone detection has become

critical in many software engineering topics such as aspect mining, program compre-

hension, plagiarism detection, copyright infringement investigation, code compaction,

software evolution analysis, code quality analysis, bug detection and virus detection,

extracting similar or synthetic similar code fragments is a need [36].

Each clone detection approach has its own set of characteristics. This set can be

created by answering questions like [11]:

ˆ What kind of transformation/normalization does it apply to a code?

ˆ What is the level of granularity?

ˆ What comparison algorithm does it use?

ˆ How much the computational complexity is?

ˆ What kind of clones can be detected?

ˆ Is it a language independent technique?

ˆ Is output in the form of clone pair or clone class?

Code clone detection is primarily a two-phase process. In the �rst phase, the

source code is converted to a format which allows more e�cient comparison techniques

to be used. The true matches are discovered during the comparison process in the

second phase. Clone detection approaches are generally classi�ed as follows [36]:

ˆ Text-based : Consider the source code as a string or a series of lines. Two

code fragments are compared against each other to �nd the sequences of the

same lines. When at least two code fragments are discovered to be similar, they

15

are returned as clone classes or clone pair using a detection approach. In the

text-based approaches, no or little change on the source code is applied. The

text-based approaches are able to detect Type I clones very well [37]. However,

they can detect Type II and Type III clones as well [38].

ˆ Token/Lexical-based : These approaches consist of two steps, lexical analysis

and clone detection. In the lexical analysis step, the source code is transformed

into a sequence of tokens with the help of laxer or parser. The token sequence is

inspected for duplicate token subsequences, and then the original code fragments

representing the duplicate subsequences are returned as clones [36]. Token-

based approaches are able to detect Type II clones e�ciently [37], while they

are also able to detect Type I and Type III clones [38].

ˆ Tree-based : In tree-based clone detection techniques, with the help of a laxer

or parser, the source code is parsed into a parse tree or abstract syntax tree.

Following that, a tree matching approach is used to �nd related subtrees. The

related source code of similar subtrees is returned as clone class or clone pair

when it matches [36]. Tree-based approaches are able to detect all kind of clone

types, speci�cally Type III clones [37,38].

ˆ Metric-based : In these approaches, metrics are used to measure clones in

the software after they have been calculated from the source code. Statement

metrics are calculated for syntactic units such as function software, or class,

and then the values of these metrics are compared. A clone pair is formed when

two syntactic units have the identical metric value. Like tree-based approaches,

metric-based approaches are able to detect all kind of clone types [36�38].

ˆ Semantic approach : The source code is represented as a program depen-

dency graph (PDG) in these approaches. Because they analyze the semantic

16

information of the source code, they are able to go one step further to get high

abstraction of source code representation than others. Control �ow and data

�ow information, which contain semantic information, are carried through the

PDG. After obtaining a set of PDGs, the isomorphic subgraph matching tech-

nique is used to locate related subgraphs, which are then returned as clones [36].

Although semantic approaches are used to detect Type IV clones, they can de-

tect other types of clones as well [36,37].

ˆ Hybrid approach : A hybrid strategy is one that combines two or more clone

detection approaches (textual, lexical, syntactic, or semantic). The hybrid

method yields better results than the traditional method [36].

We now report on some code clone detection tools and techniques used in earlier

studies. Table 2.6 summarizes the studies organized by year of publication. In the

table, we have concentrated on the most relevant characteristics of these tools and

techniques for our own study. According to the previous works, code clone detection

has been a research area of interest for software engineers over the past decade.

Although in recent years researchers have attempted to exploit the bene�ts of machine

learning in the domain of code clone detection, for e�ective code clone detection, the

current knowledge still needs to be expanded.

Kamiya et al. [39] provided a clone detection tool calledCCFinder . CCFinder

is based on transformation rules and a token-based comparison, as well as perfor-

mance and e�ciency optimization techniques. The authors have also given measures

for selecting intriguing clones, such as length, clone population, and radius. After

that, other versions of CCFinder like CCFinderX [58] and CCFinderSW [59] are in-

troduced. CCFinderX is a newly updated and developed version of CCFinder. Its

new design and technologies are aimed at boosting performance, allowing user-side

17

Author(s)/
Year

Name Classic/ML
App.

Approach Level Able to De-
tect Clone

Language

Kamiya et al.
(2002) [39]

CCFinder Classic Token-based No Limita-
tion

Type I, II, III Multiple

Basit and
Jarzabek
(2005) [40]

Clone Miner ML-based Token Ex-
traction +
FIM

Class or File Type I, II Java

Li et al.
(2006) [41]

CP-Miner ML-based Token Ex-
traction +
Sequential
Pattern
Mining

No Limita-
tion

Type I, II C, C++

Jiang et al.
(2007) [42]

DECKARD ML-based Tree Parsing
+ Clustering

Method N/A Multiple

Roy and
Cordy
(2008) [43]

NiCad Classic Text-based
hybrid

Function Type I, II, III Multiple

Gode and
Koshke
(2009) [44]

iClones Classic Token-based No Limita-
tion

Type I, II, III Multiple

Uddin et al.
(2011) [45]

SimCad ML-based Hash Finger-
print + DB-
SCAN Algo-
rithm

Function or
Block

Type I, II, III Java, C

Koschke
(2014) [46]

Su�x-Tree-
Based Inter-
System
Clone Detec-
tion

ML-based Su�x Tree +
Decision Tree

File Type I, II Java

Kodhai and
Kanmani
(2014) [47]

CLoneManager Classic Light Weight
Hybrid Ap-
proach

Method Type I, II,
III, IV

Java, C

White et al.
(2016) [48]

Learning-
Based Ap-
proach

ML-based AST + RNN Method Type I, II,
III, IV

Java

Sajnani et al.
(2016) [49]

SourcererCC Classic Token-based Method Type I, II, III Java, C, C#

Li et al.
(2017) [50]

CCLearner ML-based Token Ex-
traction
+ Deep
Learning

Method Type I, II, III Java

Wei and Li
(2017) [51]

CDLH ML-based AST-based
LSTM +
Hash Finger-
print

Method Type I, II,
III, IV

Java, C

Kim et al.
(2017) [52]

VUDDY Classic Text-based Method Type I, II C, C++

Saini et al.
(2018) [53]

Oreo ML-based Calculate
Metrics +
Siamese
DNN

Method Type I, II, III Java

Zhao and
Huang
(2018) [54]

DeepSim ML-based CFG & DFG
+ FFNN

Method Type I, II,
III, IV

Java

Yu et al.
(2019) [55]

TBCCD ML-based AST + Tree-
based CNN

Method Type IV Java

Na� et al.
(2019) [56]

CLCDSA ML-based AST + DNN Method N/A Java, C#,
Python

Zhang et al.
(2019) [57]

ASTNN ML-based AST +
BiRNN

Method Type I, II,
III, IV

Java, C

Table 2.6: Code clone detection techniques and tools.

18

preprocessor customisation, and giving interactive metrics analysis. CCFinder is lan-

guage independent and can detect clones in a variety of programming languages. It

can also detect clones of Type I, II, and III.

Clone Miner [40] is a tool for detecting simple clone types in the level of classes

and �les. It employs ANTLR to convert the source code into tokens, and then use

the su�x array algorithm to detect simple clones. Using frequent itemset mining

techniques, a consistent pattern of clone classes in distinct �les is discovered. This is

accomplished by identifying common clone patterns. The clustering technique uses

two metrics to group �les with similar clone patterns: �le percentage coverage and �le

token coverage. Clone Miner is tested on Java programs to detect Type I, II clones.

Li et al. [41] have introduced theCP-Miner tool. It uses closed sequential pattern

mining which is a type of frequent sub-sequence mining used by CP-Miner. To locate

common subsequences and prune false-positive subsequences, the algorithm performs

a depth-�rst search. CP-Miner locates clones without modifying the source code.

CP-Miner are able to work with C and C++ code to detect Type I, II clones.

DECKARD [42] is another machine learning based tool for clone detection. It is

a language-independent tool since the parser generator is built using the syntax gram-

mar of source code. Through the parser, the source code is transformed into a parse

tree. For subtree and subtree forest, vector generations are conducted. A comparable

vector is clustered to identify clones using locality sensitive hashing. Clustering vector

and the generic vector grouping techniques are used to detect size-sensitive clones.

Roy and Cordy [43] have introducedNiCad . NiCad is a text-based hybrid clone

detection tool. This method uses a two-stage approach: �rst, identify and normalize

prospective clones using �exible pretty-printing and code normalization, then com-

pare potential clones using simple text-line comparisons utilizing dynamic clustering.

NiCad is able to detect Type I, II, and III clones. It was designed to detect clones

in the functions written in C, but after developing the TXL grammar, it can now be

19

used with a wider range of programming languages.

iClones [44] is a token-based detector as well. It is an incremental clone detec-

tion technique that detects clones over numerous software versions. The results of a

revision's analysis are reused in the next revision's analysis. This eliminates the need

to re-analyze source code that has not changed between revisions.iClones has also

mapped clones of successive revisions based on the modi�cations to the generalized

su�x tree. iClones is able to detect Type I, II, and III code clones for multiple

programming languages.

SimCad [45] is a tool developed by Uddin et al. to detect near-miss clones. The

program accepts bits of source code and normalizes them. For each code snippet, the

Simhash algorithm is utilized to build a hash �ngerprint. The data generated by the

preceding technique is handled using two-level indexing. The DBSCAN technique,

which estimates Hamming distance between hash �ngerprint values, is used to group

similar code fragments into a cluster.

Koschke [46] has proposed an inter-system clone identi�cation approach based on

su�x trees. For clone detection, the approach transforms the subject system into a

su�x tree. The su�x tree is compared with �les in the corpus to �nd similar �les

between the subject system and the corpus. In addition, the hashing approach is

recommended for boosting the speed of comparison. If the hash values of two �les,

one in the subject system and the other in the corpus, are not the same, there is no

need to compare the �le and su�x tree.

With the computation of metrics combined with a simple textual analysis strategy,

Kodhai et al. [47] have suggested a lightweight hybrid approach to detect method-

level clones for both textual and functional similarity types. CloneManager , the

name of their tool, can detect all four types of clone in C and Java projects.

White et al. [48] have presented a technique based on learning. It is divided into

two tiers. The lexical level implements the recurrent neural network to turn fragment

20

into embeddings. The syntactic level entails converting an abstract syntax tree to a

binary tree, which is subsequently converted to an olive tree. A comparison between

nodes is performed using the greedy technique. A recursive neural network can �nd

a match using either embedding or tree nodes. In terms of evaluation, they sampled

and manually evaluated 398 �le- and 480 method-level pairs across eight real-world

Java systems; 93% of the both samples were evaluated to be true positives in all all

four clone types.

SourcererCC is a token-based accurate near-miss clone detection tool introduced

by Sajnani et al. [49]. SourcererCC is able to achieve large-scale clone detection on

a normal workstation by using an optimized partial index and �ltering heuristics.

Moreover, it is capable of detecting Type I, II, and III clones in Java, C, and C#

methods.

CCLearner [50] is a token-based clone detection procedure. In the feature ex-

traction procedure, tokens are taken out from both clone and non-clone method pairs.

Then, tokens are categorized in the eight groups. CCLearner generates a vector for

all tokens existing in the method. A sim score is used to measure the similarity of

vectors. A deep neural network binary classi�er is utilized in the training step to

train procedures for clone and non-clone method pairs. During the testing stage,

method pairs are extracted after loading the source code into the procedure, and

binary classi�ers identify clone and non-clone method pairs.

Wei and Li [51] have developed theCDLH (Clone Detection with Learning to

Hash) framework for detecting a functional clone. There are two distinct phases.

To obtain representations for all code snippets, code snippets are converted into an

abstract syntax tree (AST) and subsequently into long short term memory (LSTM)

during the extraction phase. The former phase's representations are converted into

hash codes during the hashing phase. A Hamming distance is used to determine code

snippets that are close to each other. CDLH could detect all types of clones in both

21

the Java and C languages used in the experiment.

VUDDY [52] is a technique for detecting vulnerable clones. VUDDY's model-

ing technique is divided into two stages: 1) pre-processing and 2) clone detection.

Its design principles focus on length �ltering while retaining accuracy and extending

scalability through functional-level granularity. So that allowing it to discover vul-

nerable clones from the rapidly growing pool of open source software. VUDDY can

detect Type I and II clones and supports source code written in C and C++.

Saini et al. [53] have proposed anOreo for clone detection. Oreo focused on

detecting clones in the Twilight Zone. When considering clone types as a spectrum,

the Twilight Zone is located between Type III and Type IV, where clones, while still

exhibiting some syntactic similarities, are extremely di�cult to detect. The �rst step

in the Oreo detection pipeline is metrics calculation from given source codes. The

query and candidate method portions are generated by input partitioning, and for

each candidate approach, an inverted index is produced. For each query method,

the index displays a group of candidate ways. When the metric hash of methods

is compared, Type I, II clones occur if they are equivalent. If they are not equal,

Oreo creates a pair of candidate methods and build feature vectors. Feature vectors

are then fed into a Siamese neural network to determine the presence of Type III,

IV clones in pairs. Oreo was tested on BigCloneChange which consists of clone and

non-clone pairs of Java language methods.

DeepSim [54] is another technique introduced by Zhao and Huang. It is divided

into two main stages. During the �rst stage which is the semantic representation stage,

the source code is turned into a control and data �ow graph. The feature matrix is

formed by encoding these graphs. The neural network extracts signi�cant properties

and reveals them in latent representation during the code similarity measure stage.

Classi�ers used this latent representation to determine coding similarity. Deepsim is

implemented for Java at the method level and is able to detect all types of clone.

22

Yu et al. [55] o�ered a tree-based convolution (TBCCD) approach for clone de-

tection. In this approach, the cosine similarity between code snippets is checked to

see if they are Type IV clones or not. At �rst, the code is transformed into an ab-

stract syntax tree and subsequently into embedding using the convolution layer. The

fully connected layer is utilized after pooling to determine the vector value of code

fragments for cosine similarity.

The CLCDSA approach [56] (Cross-Language Code Clone Detection Using Syn-

tactical Features and API Documentation) is presented by Na� et al. The language

of source code is �rst recognized. Then, an abstract syntax tree of source code is

used to extract features. After that, numeric metrics are computed for all features.

Cosine similarity is determined from the numeric metric value of two code fragments

to determine if they are clones or not. The metrics are immediately incorporated into

a model for learning and subsequently predicting the label of an unlabeled pair using

deep neural networks on a dataset consists of Java, C#, and Python programming

contests.

For clone detection, Zhang et al. [57] introduceASTNN (AST-based neural net-

work) approach. In this approach, a large abstract syntax tree is split into smaller

trees, and then a recurrent neural network (RNN) is utilized to generate vector rep-

resentations of the larger tree without a�ecting source code line order. This vector

representation is employed in the both detection and classi�cation of source code

clones.

2.4 Classi�cation Problem

Classi�cation is a supervised predictive modelling task in machine learning where a

class target/label is predicted for a given sample of input data [60]. In other words, a

classi�cation predictive model estimates a mapping function from input variables to

23

discrete output variables. In the training phase, to learn how provided input variables

relate to the target class, a classi�er uses some training data with many examples of

inputs and outputs. Classi�cation problems can be divided into three categories based

on the target classes:

1. Single label classi�cation. It entails assigning a target label to an input

sample. This classi�cation can be further subdivided as follows:

(a) Binary classi�cation. It refers to classi�cation problems that have two

class labels. In most binary classi�cation problems, one class represents

the normal state and the other represents the aberrant state. The nor-

mal state class is assigned the class label 0, while the abnormal state class

is allocated the class label 1. Some algorithms, such as Logistic Regres-

sion [61] and Support Vector Machines [62], are built primarily for binary

classi�cation and do not support more than two classes by default. This

type of classi�cation could be applied to a variety of situations, including

but not limited to spam detection [63], disease diagnosis [64], and quality

control [65].

(b) Multi-class classi�cation. Classi�cation problem with more than two class

labels are referred to as multi-class classi�cation. Character recogni-

tion [66] and face classi�cation [67] are two examples of real-world chal-

lenges that require this form of classi�cation. Although many real-world

problems are designated as multi-label classi�cation, binary classi�cation

methods can be extended to solve multi-class problems. This requires �t-

ting multiple binary classi�cation models for each class versus all other

classes (known as one-vs-rest) or a single model for each pair of classes

(called one-vs-one).

2. Multi-label classi�cation. Classi�cation tasks with two or more class labels,

24

where one or more class labels can be predicted for each sample, are referred to

as multi-label classi�cation. This di�ers from binary and multi-class classi�ca-

tion, which predict a single class label for each sample. Multi-label classi�cation

algorithms cannot be utilized directly with binary or multi-class classi�cation

techniques. For that, several machine learning algorithms have been developed,

which can be broadly classi�ed into three categories: 1) Problem Transfor-

mation Methods, 2) Algorithm Adaption Methods, and 3) Ensemble Methods.

Section 3.3.5 goes over these methods in detail. This classi�cation is continually

evolving as the number of real-world applications grows [68]. Its application in

classifying movies is a common example; the same �lm could be classi�ed as

both an action and a comedy at the same time [69].

3. Multi-output/task classi�cation. The purpose of multi-output classi�ca-

tion is to learn a classi�cation rule whose output is a set of labels, or vec-

tor. Solving a multi-output problem with machine learning entails creating

a predictive model that outputs a set of (two or more) labels that measure

di�erent concepts at the same time. It means two or more separate (but re-

lated) classi�cation problems are solved concurrently within the same model. A

multi-output classi�cation problem is practically equivalent to numerous simul-

taneous (multi-tasked) single-label classi�cation problems, which highlights the

fact that a multi-output classi�cation problem is multitask-classi�cation. Text

categorization, image generation, and visual question answering [70] are some

of the applications of this classi�cation type.

2.5 Mining Software Repositories

The amount of data associated with software projects is growing, which results in

developers and maintainers becoming overwhelmed. Mining software repositories

25

(MSR) research area allows researchers to acquire a better understanding of con-

tinually changing artefacts tied with long-term projects. Reusing components or

maintaining existing software systems account for the majority of the cost of software

projects, rather than new developments. As a result, project history knowledge or

patterns are extremely bene�cial for software evolution. One of the goals of the MSR,

as Thomas Zimmermann said, is to �learn from past achievements and failures to help

developers produce better software� [71].

Data mining is de�ned as �the process of automatically discovering useful informa-

tion in large data repositories [72]�, and MSR is described as �a �eld which analyzes

the rich data available in software repositories to uncover interesting and actionable

information about software systems and projects [73]�. MSR has a similar de�nition

to data mining, but data mining is a broader �eld than MSR. In contrast to data min-

ing, which analyzes quantitative, nominal, or text data, MSR analysis necessitates

software domain knowledge because its sources are mainly code, bug reports, test

suits, design documents, or other types of development artifacts [71]. Without soft-

ware engineering domain knowledge, extracting and processing this data is di�cult,

and cannot be understood just through statistics.

In MSR, problems like how developers make the most use of code, �nding and

predicting bugs are the more visited ones. The mining of software repositories to

discover the top utilized APIs has been described by Moritz et al. [74]. Hsu and

Lin [75] have also scanned software sources for code snippets that can be reused.

Chang and Blei [76] used topic modelling to exploit this knowledge for debugging

and traditional bug �nding. Similarly, such data can be used to search for earlier

problem �xes in code histories [77], which can be complemented by bug repositories

like Bugzilla [78]. Versioned software contracts extracted from software repositories

can be a useful tool for understanding and supporting evolution. Yan et al. [79] have

attempted to extract software evolution from Git repositories. They constructed

26

contracts for each method implemented in di�erent versions of source code, then

tracked how these contacts evolved over time.

This work is connected to MSR since we mine huge repositories such as Stack

Over�ow and GitHub, extract speci�c data, construct new dataset for research, ana-

lyze the extracted data, and present our �ndings.

2.6 Code Reuse in Mining Software Repositories

Code reuse is one of the topics covered by the MSR �eld of research. Code reuse

is de�ned as �the use of existing software or software expertise to develop new soft-

ware� [80]. Various researchers have attempted to build di�erent strategies on how to

reuse existing code as code reuse from in-house projects or online forums has become

an attractive problem [5,80�82]. Furthermore, some studies on code reuse from online

forums or repositories such as Stack Over�ow or GitHub are conducted [13,73,80,83].

The prior work in this �eld is summarised in Table 2.7. As we can see, this is a novel

topic of research that has attracted the interest of researchers in the past �ve years.

According to the Stack Over�ow licence, the original question and answer must

be referenced in the target code, as well as the adoption of a compatible licence by

the derived work. Baltes et al. [84] have reported the �ndings of an empirical study

comparing referenced and non-referenced usages of Stack Over�ow code snippets in

GitHub's Java projects. They have employed the PMD Copy-Paste Detector, which

is a token-based code clone detector, to locate non-referenced usages of three di�erent

sets of Stack Over�ow code snippets in a random sample of prominent GitHub Java

projects. Also, they have built regular expressions that matched the code snippets

from the ten most popular Java responses on Stack Over�ow. They have used these

regular expressions in BigQuery to discover non-referenced usages in all Java projects

in their data set. After that, they have manually analyzed random samples of Stack

27

Author(s)/Year Objective Approach Dataset

Baltes et al. (2017) [84] Examine how code snip-
pets from SO are used and
attributed in GH projects.

1) Create dataset, 2)
PMD Copy-Paste De-
tector to detect non-
referenced SO codes,
3) Regular expressions
matching, 4) Manually
analyzed random samples.

GH, Stack Exchange
APIs, GHTorrent, and
SO

Yang et al. (2017) [13] Look into how much the
SO snippets are used in
GH projects.

1) Extract Python func-
tion from GH & code snip-
pets from SO, 2) Cross ref-
erenced SO snippets with
GH functions based on
three measures of similar-
ity, 3) Analyze the results.

909k non-forked Python
projects in GH, and Stack
Exchange

Abdalkareem et al.
(2017) [85]

The impact of code reuse
from SO in the context of
mobile apps.

1) Extract Java code form
SO and 22 open source
Android apps, 2) Mea-
sure code similarity with
CCFinder tool, 3) Identify
reused code, 4 Analyze the
results.

22 Open source Android
apps from F-Droid, and
SO data dump (published
March 16, 2015)

Lotter et al. (2018) [80] How the use of online
Q&A forums a�ects fu-
ture software maintenance
and the correct use of li-
cences to avoid legal con-
cerns.

1) Extract java code from
SO, SourceForge, and GH,
2) Find clones with the
help of CCFinderX clone
detection tool, 3) Analyze
the results.

SO data dump, Source-
Forge, and GH

Nishi et al. 2019 [86] understand why develop-
ers copy code from SO to
the software development
tutorials website, and how
duplicated content evolves
over time.

1) Collecting data from
Android tutorial websites
& SOTorrent 2) Find
clones by a code clone de-
tection tool. 3) Applied
a coarse grained �ltering
to detect template snip-
pets to exclude. 4) Ana-
lyze the results.

599 Android tutorials, and
SOTorrent

Digkas et al. (2019) [83] Is there a di�erence be-
tween the quality of SO
code fragments and the
quality of the projects
where the code is reused?

1) Retrieved code snippets
from SO and selected GH
projects, 2) Matching SO
and GH code snippets by
looking for clones, 3) ana-
lyzing the results.

SO data dump, and GH

Ragkhitwetsagul et al.
(2021) [10]

Investigate how online
code clones occur, as well
as the potential conse-
quences of reusing them
in software systems.

1) Create dataset, 2)
Clone Identi�cation with
Simian & SourcererCC, 3)
Clone merging, 4) Vali-
dation & classi�cation, 5)
Analyze results.

SO, and Qualitas corpus

Table 2.7: Code reuse in the MSR research �eld.

28

Over�ow references in Java �les to see how developers refer to Stack Over�ow in

source code comments. According to their �ndings, at least one reference to Stack

Over�ow was found in 3.22% of all studied repositories and 7.33% of the popular

ones. Furthermore, they have noticed that developers would rather refer to the entire

Stack Over�ow thread than a single answer.

Yang et al. [13] wanted to know how often code snippets from Stack Over�ow

make their way into open source projects. For this, they looked at Python programs

and a collection of 909k non-forked Python projects posted on GitHub, as well as the

Stack Exchange. They took all of Stack Over�ow's multi-line Python code samples,

processed all of GitHub's Python projects, and broke them down into functions. The

Stack Over�ow snippets were then compared to these functions using three di�erent

measures of similarity: exact match, token match, and near-duplication. With the use

of SourcererCC tools, they discovered near-duplication similarities. They discovered

that exact duplication at the function level was extremely infrequent (less than 1%),

whereas token-level duplication was more common. Around 1.1% of GitHub blocks,

on the other hand, were near-duplicated to Stack Over�ow. For Stack Over�ow

blocks, which were used in GitHub, this ratio was roughly 2%.

The utilisation of Stack Over�ow code in mobile apps was investigated by Ab-

dalkareem et al. [85]. They have compiled a dataset from Stack Over�ow data dump

and F-Droid 1 that included 22 Android open source applications. The Stack Over-

�ow code snippets were all Java programs with at least 30 lines of code. CCFinder

clone detection tools found reused code from Stack Over�ow within mobile apps after

the corpus was developed. The authors have looked at Type I and Type II clones.

This work examined reuse in terms of both the percentage of Stack Over�ow posts

that were reused in mobile apps and the percentage of code in mobile apps that were

reused in Stack Over�ow in order to undertake analysis. They discovered that feature

1https://www.f-droid.org/

29

additions and enhancements are the most common reasons for Stack Over�ow code

duplication in mobile apps.

Lotter et al. [80] have investigated the impact of online Q&A forums on future

software maintenance and legal challenges. They have looked into the degree of code

reuse within Stack Over�ow as well as between Stack Over�ow and popular open

source software like Sourceforge2 and GitHub. This study only concentrates on

the Java programming language. They used CCFinderX with the default parameter

settings to �nd repeated codes. The results showed that about 77.2% of project �les

contained clones from Stack Over�ow. As a result, it advised that Java developers

should be aware of licence di�culties and the risks associated with adhoc copying.

Nishi et al. [86] have conducted a study to understand why developers copy code

from Stack Over�ow to the software development tutorials website, and how dupli-

cated content evolves over time. They gathered 2,504 Java code samples from 599

Android tutorials across �ve websites. Stack Over�ow code snippets were also gath-

ered from SOTorrent [1]. To determine clone codes, a scalable clone detection was

applied to the code snippets. The study's �ndings revealed a set of categories for post-

ings containing duplicated code blocks, as well as some of the most likely justi�cations

for transferring code from tutorials to Stack Over�ow.

Digkas et al. [83] have investigated the e�ect of reusing Stack Over�ow code snip-

pets on the target system's quality. They gathered Java code snippets from Stack

Over�ow and GitHub's data dumps. PMD 3 with the ability to detect copy/paste

code is used to check for duplicates between the two collected corpora. After that,

SonarQube calculated the Technical Debt (TD) density of code snippets. The �nd-

ings of this study backed up Stack Over�ow's strong developer reputation, suggesting

that code reuse can increase software quality in addition to increasing e�ciency.

2https://sourceforge.net/
3https://pmd.github.io

30

�Online code clones�, or code snippets transferred from software systems to online

Q&A websites, were introduced by Ragkhitwetsagul et al. [10]. The authors of this

study examined how online code clones emerge and the potential consequences of

reusing them in software systems. They mined Stack Over�ow posts, detected online

code clones, and analyzed the clones to reveal toxic code snippets (outdated code or

license-violating code). Their �ndings revealed that certain codes posted on Stack

Over�ow from Qualitas were out of date, while others may have violated the licence

of their original software.

2.7 Source Code as Natural Language

Programming languages are a bridge between human and computers. Because source

codes communicate with both humans and computers, they are naturally bi-modal.

The bi-modality of code causes it to have similarities and contrasts with text. Some

researchers believe that, despite the fact that programming languages are complicated,

versatile, and powerful in principle, and that the codes created with them are in

an arti�cial language, they are a natural product of human e�orts [87]. The term

natural relates to the �eld of natural language processing (NLP), which aims to

automatically process texts in natural languages such as English. Researchers have

used NLP techniques to extract features [88], search code snippets [89], and forecast

programming languages from source code [90].

NATURALIZE, a refactoring tool based on NLP, was introduced by Allamanis

et al [91]. It is the �rst tool to discover identi�ers that violate code standards and

make ideas to improve stylistic consistency by learning local style from a source.

NATURALIZE is a general tool that may be used to analyze any language that has

a laxer and a parser, since token sequences and abstract syntax trees are employed.

Sachdev et al. [89] have suggested a tool called Neural Code Search (NCS) that

31

could search through code snippets. With the help of the FastText model, they built

a continuous vector embedding of each code fragment at method�level granularity.

They also mapped the given query in a natural language to the same vector space.

Then, they employed vector distance to simulate code fragment relevancy to a given

query.

Using NLP and Machine Learning, Alreshedy et al. [90] have proposed a clas-

si�er to predict the programming language of questions posted to Stack Over�ow.

They used the TF-IDF model to extract three sets of features from: 1) the title and

text body of each post, 2) code snippets, and 3) a mix of both. Their �ndings sug-

gested that textual information is easier for a machine learning model to learn than

information from code snippet.

In this work, we have applied code clone detection and MSR techniques to answer

our research questions. Also, we have evaluated the use of NLP and machine learn-

ing techniques in predicting code clone types between Stack Over�ow and GitHub

snippets (as presented in Section 3.3.4).

Chapter 3

Methodology

We have discussed studies conducted on Stack Over�ow in Chapter 2. The majority of

these studies were concerned with determining whether there are code snippets from

Stack Over�ow in other projects and, if so, what impact they have on quality or bug

propagation. Manes and Baysal's study [2] revealed that GitHub developers do make

use of Stack Over�ow conversations in their code. In this study, we extended their

dataset by creating a set of code pairs from Stack Over�ow and GitHub in order to

investigate the amount of adoption developers applied to use Stack Over�ow snippets

in their GitHub projects. Furthermore, we want to see if we can predict clone types.

This chapter consists of three main parts: Section 3.1 explains the concept used to

built dataset for further analysis by mining Stack Over�ow. Section 3.2 describes the

overall methodology of code clone detection, while Section 3.3 presents our method-

ology for predicting code clone types based on multi-label classi�cation technique.

3.1 Datasets

In this study, we have used SOTorrent [1] to extend GHCodeSnippetHistory

dataset [2], in order to determine to what degree code snippets from Stack Over-

�ow are used in GitHub projects.

32

33

SOTorrent [15]. SOTorrent is a public dataset derived from the o�cial Stack

Over�ow data dump [16] and the Google's BigQuery GitHub dataset [92]. It provides

access to the version history of Stack Over�ow posts and referred Stack Over�ow

posts to external resources. In SOTorrent, a discussion thread is made up of a series

of posts. A question, a comment, or an answer to a question can all be included in a

discussion thread. Depending on how the authors prepare the content of a post, each

post may havetext and codeblocks. The textual portion of posts that are questions,

answers, or descriptions to a question is kept in text blocks. Code blocks are pieces of

code that explain a problem or a solution. In SOTorrent, version histories of changes

are preserved for each of these blocks.

Beyond the version history of content, SOTorrent links Stack Over�ow posts

to external resources in two ways: 1) by extracting external URLs from the post

text, and 2) by providing a table of links to Stack Over�ow posts located in the

source code of GitHub projects [15]. In the SOTorrent's schema, this table is called

PostReferenceGH. This connection is crucial for our research since it allows us to map

Stack Over�ow posts to GitHub projects and identify all Stack Over�ow snippets used

in GitHub projects. Two further tables in the SOTorrent schema were used to ex-

tract the code blocks from the Stack Over�ow post. These tables arePostHistory

and PostBlockVersions . PostHistory keeps track of the type and date of all the

changes made to each post, whilePostBlockVersion keeps track of all the changes

made to both text and code blocks [1]. The SOTorrent dataset schema is depicted

in Figure 3.1. We referred each code block from Stack Over�ow that is referenced in

GitHub as reused code snippet.

GHCodeSnippetHistory [2]. Manes and Baysal [2] have mined SOTorrent and

GHTorrent [93] to produce a dataset called GHCodeSnippetHistory. The goal was

�nding an insight about the evolution of code snippets on both platforms. There

are 22,900 projects in their �nal dataset, 33,765 Stack Over�ow references mapped

34

Figure 3.1: SOTorrent dataset layout [1].

	Abstract
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Nomenclature
	 Introduction
	Code Reuse
	Motivation
	Research Questions
	Contributions
	Organization of the Thesis

	 Background and Related Work
	Code Reuse
	Code Clone Types
	Type I Code Clones
	Type II Code Clones
	Type III Code Clones
	Type IV Code Clones

	Code Clone Detection Techniques
	Classification Problem
	Mining Software Repositories
	Code Reuse in Mining Software Repositories
	Source Code as Natural Language

	 Methodology
	Datasets
	Code Clone Detection
	Overview of the Tools Used
	Manual Assessment of Code Clone Detection
	Clone Detection Using iClones
	Preparing the Source Code
	Source Code Cleanup
	Running iClones
	Evaluating iClones Results

	Predicting Code Clone Types
	Preparing Dataset
	Data Cleaning And Pre-processing
	Split Dataset
	Feature Extraction
	Statistical Features
	TF-IDF
	Word Embeddings

	Multi-label Classification Models
	Balancing Multi-label Classification
	Evaluation Metrics

	 Results
	Code Clone Detection
	RQ1: How Accurately Can Clone Detection Tools Identify Code Clones Between Stack Overflow and GitHub?
	RQ2: What Types of Clones Are Present in the Code Snippets Reused From Stack Overflow in the GitHub Projects?

	Code Clone Prediction
	Dataset Overview After Pre-processing and Splitting
	Feature Sets
	Balancing
	RQ3: How Accurately Can We Predict the Clone Type Given Two Code Snippets?

	 Discussion
	Findings
	Implications
	Software Developers
	Researchers
	Online Programming Platforms

	Threats and Limitations

	 Conclusions
	Summary of Contributions
	Future Work

	List of References
	Appendix
	iClones Configuration Results
	Models' Results

