INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI
films the text directly from the original or copy submitted. Thus, some
thesis and dissertation copies are in typewriter face, while others may be

from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
" illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indicate

the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and
continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in reduced
form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6” x 9” black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly to

order.

UMI

A Bell & Howell Information Company
300 North Zeeb Road, Ann Arbor MI 48106-1346 USA
313/761-4700 800/521-0600

hon e e N i

SOFTWARE DEVELOPMENT PROCESS AND STRATEGIES USED TO
EXPEDITE SOFTWARE DEVELOPMENT

Suparna Kurdi, B. Eng. (Computer Science)

A thesis submitted to
the Faculty of Graduate Studies and Research
in partial fulfilment of
the requirements for the degree of
Master of Management Studies

School of Business
Carleton University
OTTAWA, ONKI1S5B6

May 13, 1997

© Copyright
1997, Suparna Kurdi

i+l

National Library
of Canada

Acquisitions and
Bibliographic Services
395 Wellington Street

Ottawa ON K1A ON4
Canada

Bibliotheque nationale
du Canada

Acquisitions et)
services bibliographiques
395, rue Wellington

Ottawa ON K1A ON4

Canada
Your file Votre réldrence

Our file Notra référence

The author has granted a non- L’ auteur a accordé une licence non

exclusive licence allowing the exclusive permettant a la

National Library of Canada to Bibliothéque nationale du Canada de

reproduce, loan, distribute or sell reproduire, préter, distribuer ou

copies of this thesis in microform, vendre des copies de cette thése sous

paper or electronic formats. la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

The author retains ownership of the L’auteur conserve la propriété du

copyright in this thesis. Neither the droit d’auteur qui protége cette thése.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

el

Canada

0-612-22136-9

The undersigned recommend to the Faculty of Graduate Studies
and Research acceptance of the thesis

SOFTWARE DEVELOPMENT PROCESS AND STRATEGIES USED TO
EXPEDITE SOFTWARE DEVELOPMENT

Submitted by Suparna Kurdi, B. Eng.
In partial fulfillment of the requirements for the degree of
Master of Management Studies

\A\LW_,:‘;-/

Thesis Supervisor

ot K e

Director, School of Business

Carleton University
May, 1997

ABSTRACT

This study investigates the software development process in Canadian and Indian high technology
firms. Furthermore, it determines the strategies that are considered to be effective in reducing the

software development time.

From the interview results, two models were devised to describe the software development process.
One model describes the software development process followed by Canadian high technology firms
and the other describes the process followed by Indian high technology firms. The results of the self-
administered questionnaire reveal that application of prototyping approach, application of object-
oriented approach, use of project management techniques, and verification of requirements were

perceived to be the most effective strategies in reducing the software development time.

ACKNOWLEDGMENTS

I would like to express my gratitude to my supervisor, Dr. Uma Kumar, for providing continuous
insightful guidance during the research and writing stages of the thesis. I also appreciate the concrete

input provided to my thesis by my committee members, Dr. Vinod Kumar and Dr. Darren Meister.

My special thanks go to Jean Blair, who has always provided me with the best possible administrative

assistance.

Finally, I would like to dedicate this thesis to my parents, who are my constant source of inspiration.

TABLE OF CONTENTS

ABSTRACT

ACKNOWLEDGMENTS

TABLE OF CONTENTS

LIST OF TABLES

LIST OF FIGURES

INTRODUCTION

LITERATURE REVIEW

2.1

SOFTWARE DEVELOPMENT PROCESS

2.1.1 SOFTWARE DEVELOPMENT MODELS
2.1.1.1 THE WATERFALL MODEL
2.1.1.2 THE SPIRAL MODEL

STRATEGIES TO REDUCE SOFTWARE DEVELOPMENT CYCLE TIME

22

23 A PRIORIMODEL

RESEARCH OBJECTIVES

METHODOLOGY

4.1 RESEARCH DESIGN AND STRATEGY
42 SAMPLE SIZE AND SELECTION

43 FIELD WORK

44 PRELIMINARY INVESTIGATION

4.5

DATA COLLECTION AND ANALYSIS

iv

i

1ii

v

vi

vii

14

18

23

31

34

35

35

36

37

37

38

TABLE OF CONTENTS

DISCUSSION OF RESULTS
SOFTWARE DEVELOPMENT MODEL
5.1 SOFTWARE DEVELOPMENT PROCESS MODEL
5.1.1 DETAILED DESCRIPTION OF THE STAGES IN THE MODEL

5.1.2 FORWARD AND FEEDBACK LINKAGES AMONG THE
STAGES

5.1.3 SOFTWARE DEVELOPMENT MODELS IN CANADA AND INDIA
STRATEGIES USED TO REDUCE SOFTWARE DEVELOPMENT TIME
CONCLUSIONS
LITERATURE CITED

APPENDIX

APPENDIX I: REQUEST LETTER GIVEN TO RESPONDENTS PRIOR TO
THE INTERVIEW

APPENDIX II: QUESTIONNAIRE FOR THE TWO RESEARCH OBJECTIVES

42

42

43

50

57

61

79

85

90

92

LIST OF TABLES

TABLE DESCRIPTION

1 TYPES OF SOFTWARE PROJECTS STUDIED

2 THE LINKAGES EXISTING BETWEEN THE STAGES OF THE MODEL
3 PRESENCE OF LINKAGES AMONG VARIOUS STAGES OF MODEL

4 MEAN EFFECTIVENESS OF STRATEGIES

5 USE OF VARIOUS STRATEGIES

53

54

65

67

FIGURE

LIST OF FIGURES

DESCRIPTION

THE WATERFALL MODEL

THE SPIRAL MODEL

A PRIORI MODEL

SOFTWARE DEVELOPMENT MODEL FOLLOWED IN CANADA
SOFTWARE DEVELOPMENT MODEL FOLLOWED IN INDIA

MEAN EFFECTIVENESS OF STRATEGIES

15

20

32

55

56

68

1. INTRODUCTION

In today’s information age, software development plays a very important role in the
smooth functioning of high technology industries. In such industries, software interprets
and manipulates information in order to obtain desired functions and performance. In
terms of computer terminology, software is a program or a set of programs that resides in
a computer memory in the form of binary information. Software acts as an interface
between humans and machine or rather between programs, in order to facilitate easy
retrieval, manipulation, storage, and transfer of data or programs. Software also

incorporates data structures in order to manipulate desired information.

Software development has attracted the imagination of scientists and researchers
throughout the world. The United States of America and Canada, leading software
developers, spend billions of dollars each year on software. In Canada, large multinational

and national companies develop software purchased by industries throughout the world.

Software production is an intellectual process requiring engineering, imagination and
intellect. In a competitive atmosphere, cost, quality and time are major considerations. To
reduce the cost of production and to remain competitive, the western world is tapping
Asian intelligentsia, available at lower costs. India is one of these sources. In the process,
India is developing as one of thc largest manufacturers of software for the world market.

The cost of labor is less than a fourth of cost involved in the United States and Canada
(Samyukta Karnataka, 1996).

The purpose of this research was to understand the software development process and to
investigate the strategies being adopted by high technology industries to reduce time taken

for the development of software to enable themselves to remain ahead in today’s global

competitive market. Canadian and Indian high technology firms were considered for the

study.

There are a number of Canadian and American companies using monetary advantages and
collaborating with Indian counterparts. For example, a major Ottawa based business unit
of Nortel that manufactures software for international markets is collaborating with

Infosys located at Koramangala in Bangalore, India.

Ottawa-based Canadian companies like Corel, Newbridge and Cognos involved in
software manufacturing for computers are world leaders. The Ottawa Silicon Valley is
considered to be a major force, involved in the best and sought after software used all over
in Canada and worldwide. They are also using worldwide intelligentsia available at low

cost for developing competitively priced software.

Bangalore, the remote capital of Karnataka in Southern India formerly known as an
overgrown village with a temperate climate is buzzing with commercial activity and is
becoming the world’s second largest software capital. Citibank, American Express,
General Electric, IBM, Reebok, Texas Instruments, Hewlett Packard, Compaq Computers
are some of the U.S. based world renowned companies who depend on software engineers
in Bangalore and other centers in India for software development. The major attractions
for American companies for using Bangalore as the personnel development point are low
wages, high intellect, and worldwide comparable services of engineers (Samyukta

Karnataka, 1996).

Ever increasing competition and super-fast technological changes emphasize the
importance of understanding and following a conceptual order of software development.

The conceptual order is the basis for development of efficient software.

The development of software entails the following stages: system and software
requirements, preliminary design, detailed design, code and debug, test and pre-
operations, operations and maintenance. The characteristics of a truly effective software
development model are that it is predictable and the cost estimates and schedule
commitments can be met with reasonable consistency. The quality of the resulting

products generally meet user needs if the software development model is effective.

Despite continuous efforts to improve management and control, problems continue to
exist in software development projects (Phan, Vogel and Nunamaker, 1995). In spite of
the efforts to improve the processes and techniques used in the development of software,
projects continue to suffer problems in meeting user expectations, schedule and budget. A
software project is a highly people-intensive effort that spans a very lengthy period, with
fundamental implications on the work and performance of many different classes of people
(Boehm and Ross, 1989). In software development, users and producers usually both play

an important role in the development process.

Over the years, researchers have studied the hardware development process in depth
(Shina, 1991, Urban and Hauser, 1980). However, there is a lack of studies of the
software development process. The processes followed in the hardware and software
industry cannot be equated due to some major differences in their development processes
(Mathur, 1993). One of the prominent differences is that when hardware is built, the
creative ideas are converted into a physical form. Software is different as it captures
information, produces information and is itself information. Software is a logical rather
than a physical system element. Moreover, it can be said that in software, the quality of the
program code decides the overall quality of the software. Also, much of the effectiveness
of software depends on its computational complexity in terms of time, and space of RAM,

and disks. Certain programming structures may not work well in certain time frames. A

software product may sometimes work perfectly with 100 records but may not work when
used with 10000 records. Many system developers expect software to compensate for the
deficiencies in the hardware design of a system. Software does not physically wear out as
a hardware product's components do. It does not degrade from use. However, software
has to be maintained throughout its life-span. These differences lead to the conclusion that

the development processes of hardware and software products vary to a great extent.

The primary functions of a software development process model are to portray the order
of the stages involved in software development and evolution and to establish the
transition criteria for the next stage (Boehm, 1995). These include completion criteria for
the current stage and entrance criteria for the next stage. The software industry is ever
developing and in order to stay ahead in the competition, firms have to follow software
development process models that will lead to the best product with the least expenditure in
terms of time and money. Software development process models are important because
they provide guidance on the order in which the project's major tasks should be carried
out. Many software projects, have come to grief because they pursued their various
development and evolution phases in the wrong order (Boehm, 1995). Software
development methodologies assist in transforming the development of the software into a
structured, engineered and managed approach that involves the user throughout the
process. While there is no shortcut to getting it right and getting it right the first time, with
good management skills being applied to the development of software, the outcome of the
finished product can be predicted in terms of technical content, time-scale and cost
(Pilkington, 1996). Thus, a deeper understanding of the software development process

and ways to improve its efficiency are critical issues faced by firms.

Therefore, the main purpose of this research is to understand the practices followed in the

software development process.

Software development starts off with the identification of an objective, usually a problem
or an opportunity and is terminated with a product tk 3 salves or fulfills it. Boehm (1995)
defines software engineering as "the practical application of scientific knowledge in the
design and construction of computer programs (software) and the associated
documentation required to develop, operate, and maintain them". There are two ways of
fulfilling a software requirement. It can be fulfilled by using some other existing software
package that will run the required application or by developing new software from scratch.

This research considered only the latter.

An important issue in software is the development time, which is the time taken for the
development of software from requirements specification to actual implementation of the
product. Users will not look too kindly to delays in the development of software and these
delays can lead to financial and reputational damage to the developer. The success of a
software also depends on the time it takes to enter the market. There is also a strong
possibility that as time elapses the user's requirements might change leading to more

delays.

Certain strategies that help reduce the software development time are cited in the
literature. The most commonly cited strategies to reduce the software development time in
the literature are the application of prototyping approach, application of object oriented
approach, use of reusable code and application packages, application of incremental
development approach, use of CASE/automated tools, use of advanced project
management techniques, use of structured methods and techniques, and verification of

requirements. All these strategies are discussed in the literature review section.

Application of prototyping approach, object oriented approach, and incremental
development approach, use of CASE/automated tools, and the use of structured methods
and techniques are strategies that lay emphasis on using technological know-how in order
to reduce the software development time. Use of reusable code and application packages
are strategies that advocate the use of existing code in building new software which will
help save time. Use of advanced project management techniques and verification of
requirements advocate the use of good project management skills to reduce the software

development time.

The ancillary purpose of this study, therefore, is to investigate the strategies being
adopted by high technology firms to reduce the software development time in order to
stay ahead in today's global competitive market.

This research considered software development projects undertaken in high technology
firms. Today, high technology firms are involved in various projects concerning software
development. High technology firms were selected since they gave a wider outlook to the

research than just software development firms would have.

Section 2 of this thesis discusses the literature review conducted. Section 3 explains the
research objectives and section 4 describes the methodology adopted for the study.

Sections 5 and 6 discuss the results. Finally, section 7 discusses the conclusions arrived at.

2. LITERATURE REVIEW

The literature review for this research is divided into three sections. Section 2.1 describes
the software development process models that are cited in the literature and also the
limitations of the existing models. Section 2.2 covers the literature on strategies to help
reduce the software development time. Finally, Section 2.3 focuses on an a priori

software development model developed as a basis for this research.

2.1 SOFTWARE DEVELOPMENT PROCESS

Software development normally follows a pattern called software development process
model. This model is a structured process of software development that encompasses
various stages of software development. A model constitutes various steps that lead to the
building of efficient software. An important step in developing efficient software is to treat
the entire development task as a process that can be controlled, measured, and improved.
A process can be defined as a sequence of tasks that, when properly performed, produces
the desired results (Humphrey, 1988). Software development process can be defined as a
series of activities regarding a software product from such time the need to which the
product is to respond is identified until such time the product is retired (Blum, 1994). In
software, specifications have the tendency to change frequently after program code is
written. However, most of the existing programming languages are too rigid when it
comes to incorporating changes. There usually is a mix-up between the higher and the
lower level constructs of the program so that one cannot be changed without affecting the
other (Rumbaugh, 1996). Software development models solve this problem by permitting
much of the code to be generated from a form that separates the high-level abstractions
from the low-level programming details clearly, so that changes can be made to the
implementation without affecting the logic (Rumbaugh, 1996).

~1

Before discussing the different software development models, it is imperative to describe
the characteristics that are inherent in all software process implementations. This will help
in identifying the problems in the process that lead tc imperfect software development
(Blum, 1992). A simplified software development model can be divided into only two
phases: decide what is needed and implement it (Blum, 1992). This implies that a software
development model can be divided into two main phases, the first being the specification
of requirements and the next being the development of the software to meet these

requirements.

Quality assurance plays a vital role in the development of software. For any software to be
developed and be useful, it has to be of a certain acceptable quality. The standards usually
cited to be followed are ISO 9001 for design and development, and ISO 9000-3 guidelines
for software. In software, the quality of the code determines the quality of the product. It
depends on how the initial problem was attacked and what steps (model) were taken to
solve the problem. The four major pointers to quality assurance are described below
(Blum, 1992). These quality functions are defined in context of the whole process rather
than in terms of the intermediate stages. Any software should follow these pointers in

order to attain the expected quality mark.

Correspondence: This indicates how well the delivered system corresponds to the needs
of the operational environment. The software is only as good as the requirements it

satisfies. It is also importaﬁt that the requirements are defined properly.

Correctness: This indicates the consistency of a product with respect to its specifications.
The software built has to comply with the requirements and do what it is supposed to do.

Hence, it is very important to build a software that fulfills the requirements.

Verification: This indicates whether or not the product is being built right. Care should be
taken to see that the software that is being developed is done in the right manner,

following the proper guidelines.

Validation: This indicates whether or not the product being built is the right one. It should
be seen that the software built is not only working well but also that it is doing what it was

build for.

Quality assurance ensures that the software development life-cycle used in developing a
quality software product adheres to standards set forth for that product (Burch, 1995). It
also includes monitoring of all software development stages from requirements stage to

maintenance stage and taking preventive and corrective measures as and if necessary.

2.1.1 SOFTWARE DEVELOPMENT MODELS

Two major software development models cited in the literature are the waterfall model
and the spiral model (Boehm, 1995). The classic life-cycle model is also cited in the
literature. However, it is not as popular as the other two models mentioned since it is not
in wide use anymore (Boehm, 1995). The waterfall and spiral models can be looked at as
refinements of the classic life-cycle model. A software product cannot be successfully
developed without the use of a software model. It is of critical importance that the

developers select the right model while developing the software.

Specification of requirements can be said to be the most important phase of any software
development process. It is the basis on which most of the software development projects
are based. A clear cut requirements phase almost guarantees a good software and an

unclear one almost always leads to disaster (Metzger, 1981).

Coding or writing the software in a machine readable language can be said to be the
second most important stage in a software development process after the requirements
specificé.tion stage. Software cannot be built without coding. Coding can be defined as a
procedure to map models into actual programming code. The ultimate end of a software

development project is to produce code.

The earliest model used for software development was the code-and-fix model (Boehm
and Ross, 1989). This model depended completely on the coding stage for developing the
software. Here, coding was done first and then the requirements, design, test and
maintenance were thought of. This model led to an unstructured code, and the final
product rarely met the user’s specific requirements. It was very difficult to match program
code to natural language requirements due to inadequate requirements specification phase.
This led to its replacement with the more practical model of software development, the
classic life-cycle model, which in turn led to the waterfall model and the spiral model. All

the software development models have the following five stages common.

@ System engineering and analysis
@® Design
® Coding
@ Testing

® Maintenance

We will discuss these stages before going in depth of the software development models.

System engineering and analysis: In this stage of the software development process, a

preliminary investigation regarding whether there really exists a need for the software is

10

undertaken. This stage encompasses requirements gathering at the system level which
includes the hardware and software parts with a small amount of top-level design and
analysis. This stage may be called system/software requirements stage. This stage decides
what is to be done or, what are the requirements that have to be fulfilled by the end
product (Blum, 1992). In other words, it is the stage which defines the user requirements.
The functional specifications for the software are given by the customer to the developer.
The technical specifications are to be determined by the developer. The requirements are
documented and reviewed with the customer. It also encompasses the feasibility study for
both hardware and software requirements (Burch, 1995). Feasibility factors which refer to
the likelihood of the software system being successfully developed and used are identified
at this stage. Strategic factors relating to the software's support of business goals are
determined. It also takes into consideration the cost and technical factors involved in the
project. The development plan, scheduling and resources plan are also undertaken in this
stage. A plan for the project is written and the technical problem is defined. During the
problem definition activity, ideas about solutions will inevitably be discussed, but adoption
of any specific programming solution is deferred until the design phase (Metzger, 1981).

Design: This stage translates the requirements into a representation of the software that
can be assessed for quality before coding begins. This stage decides how to go about
building the software so that it fulfills all the requirements (Blum, 1992). It also lays out
details required to develop the software. This stage creates conceptual design alternatives
and a description of the systems design concepts. Tools usually used to facilitate the
design stage of software development are structure charts such as hierarchical diagrams,
structured English which specifies detailed input and output, decision tables, decision
trees, equations, data directories, Warnier-orr diagrams, and Jackson diagrams (Burch,
1995). The other commonly used software development tools are data-flow diagrams,

control-flow diagrams and E-R diagrams. The design method, review procedures, and

11

technology plan are also a part of this stage. Either structured or object oriented approach
may be used in the design phase of software development. In the structured approach, top-
down method is most commonly cited in the literature. Here, usually a design document
describing an acceptable solution to the problem is written. Usually many solutions are

feasible, but one must pick the most suitable and go with it (Metzger, 1981).

Coding: The main objective of this stage is to convert software design applications into
well documented software programs (Burch, 1995). The coding stage can be called the
heart of the software development process. It is a very important stage in the software
development process. This stage translates the design into machine-readable form. The
language and structure to be used to develop the software are determined at this stage.
One of the existing software development languages is usually used and the coding is
usually done by software programmers in a modular form. Once the problem has been
defined and a solution has been blue-printed, one can now build and test a program system

according to that blueprint (Metzger, 1981).

One of the approaches that may be used in the coding stage is the use of fourth generation
languages (4GL). 4GL is a term generally used to define proprietary, non-procedural
languages developed to replace 3GLs such as COBOL (Burch, 1995). 4GLs use fewer
lines of code to achieve what would require many lines in a 3GL (Burch, 1995). This
approach calls upon one or more of the software development models to form a
framework in which non-procedural languages, code-generators, database query systems,
and other fourth generation approaches are applied. However, the use of fourth generation
techniques still tend to be application-domain specific and it is still not being used to a

large extent.

12

The 4GL enables the software developer to represent desired outputs in a manner that
results in automatic generation of code to generate these outputs. Also, in this approach,
the developer must conduct thorough testing, develop meaningful documentation, and
perform all other transition activities. However, a drawback is that the requirements
gathering phase requires that the requirements for the software be defined in a way that is
understandable to a 4GL tool. This is not the case in reality since there is a lot of

ambiguity in the actual requirements specifications.

Testing: This is the final stage of software development before its implementation. The
purpose of software testing is reliability. Reliability requires error detection and removal.
This stage focuses on the logical internals of the software, ensuring that all the statements
have been tested. It also conducts tests to uncover errors and ensure that the defined input
will produce actual results that agree with expected results. Software testing cannot turn a
poorly designed software program into a good one, but it can help to determine the level
of reliability before the software is released for use (Burch, 1995). After the programmers
have built a product they are happy with, a separate group performs a new set of tests in

as nearly a “live” environment as possible (Metzger, 1981).

Maintenance: Software maintenance is the modification of software after it has been
delivered. Software maintenance begins as soon as the new software has been developed
and converted to operations. All software systems are prone to change and these changes
are made at this stage. Such stage reapplies each of the preceding development cycle steps
to an existing program rather than a new one. Software maintenance begins after the
installation of the product and lasts the lifetime of the product. There is usually a post-
implementation audit done on the software by the customer regarding the status of the

software.

13

Usually, the maintenance of existing software is given lower priority than the development
of new software within an organization. If the software developed has to be modified on
implementation, managers of non-system development departments will lose confidence in
the abilities of developers. A serious consequence of this is the invisible application
backlog. This is where disillusioned managers cease to submit some project development
requests to the systems development department as they believe that they will never be
developed. This will in turn lead to a shortage of innovative ideas. Studies indicate that
organizations often have application development backlogs of between 2-4 years (Parker
and Case, 1993). This indicates that after a request for a new system is made, the users
may have to wait for many years before the software developers even start to work on the

project.

2.1.1.1 THE WATERFALL MODEL

The waterfall model is the most frequently cited software development process model in
the literature. It was developed by Boehm in 1976. It is a strong improvement on the
classic life-cycle model in that it recognizes the feedback loops between the stages, and
provides a guideline to confine the feedback loops to successive stages to minimize the
expensive rework involved in feedback across many stages. This model (Figure 1) has
become the basis for most software development projects today. It has also become the
basis for most software acquisition standards in government and industry (Boehm, 1995).
One of the reasons for the popularity of the waterfall model could be that it is easy to
write contracts for it (Blum, 1992). Another reason could be that it accounts for almost all

the stages that are usually followed in the software development process (Blum, 1994).

14

SYSTEMS
REQUIREMENTS

SOFTWARE
REQUIREMENTS

PRELIMINARY
DESIGN

DETAILED
DESIGN

CODE AND
DEBUG

TEST AND
PREOPERATIONS

OPERATIONS AND
MAINTAINANCE

FIGURE 1: THE WATERFALL MODEL (adapted from Blum, 1992)

The disadvantage in this model however is that it is not very suitable for changing the
requirements at a later stage in the development process (Boehm, 1995). The waterfall
model is usually suitable for projects that have strong requirements specification stage and
may prove to be useful when the software to be developed is structured as in the case of
developing a Transaction Processing System (TPS). TPS supports the processing of a
firm’s business transactions and keeps an organization running smoothly by automating
processing of the voluminous amounts of paperwork that must be handled daily (Parker
and Case, 1993). The waterfall model may also be successfully used in developing

complex applications and systems software.

However, using the waterfall model in cases such as building a Decision Support System
(DSS) wherein intuition plays a very important role and the requirements are not very
explicitly specified may prove to be a disadvantage. A DSS provides tools that enable
managers to develop information in the manner that best suits the decisions that they are
currently trying to make. DSS provides the manager with the computing and
communication capabilities to develop his/her own decision models, data bases and report
formats. DSS is a system that provides tools to managers to assist them in solving semi-
structured and unstructured problems in their own, somewhat personalized, way (Parker

and Case, 1993). This may lead to a breakdown in the waterfall model if used.

Expert Systems (ES) are software systems that imitate the reasoning processes of human

experts and provide decision makers with the type of advice they would normally receive

16

from such human experts (Parker and Case, 1993). It can be said that ES are being
developed to replace human experts. Building an ES with the waterfall model will most

likely result in failure.

In the waterfall model, most of the aforementioned stages are common. However, the

design stage is broken down into two parts, the preliminary design and the detailed design.

Preliminary design: In this stage, the details of the software product are chalked out and
the feasibility of developing the product are defined and assessed. Also, the requirements

and the facilities available to meet these requirements are assessed.

Derailed design: In this stage, the product is developed to the specifications. Detailed

design can be commenced only after the completion of the preliminary design stage.

There are some limitations in using the waterfall model. The major one is that this model
places emphasis on fully elaborated documents for early requirements and design phase
(Boehm and Ross, 1989). Document-driven standards have pushed many project engineers
to write elaborate specifications of poorly understood user interfaces followed by the
design and development of large quantities of unusable code and thus end up pursuing
stages in the wrong order (Boehm, 1995). In this model, one begins with a near complete
understanding of the need (Blum, 1992) i.e., the model assumes that the requirements are

obtained in one sitting with the customer. This is not always possible in reality with the

ever-increasing size and complexity of the software systems that need to be developed.
Another shortcoming is the sequential method to software development advocated by the
model. Moreover, in various classes of waterfall model applications, in which code is
optimized for performance, modification of the code has become increasingly hard
(Boehm, 1995). The waterfall model does not take into consideration the use or existence
of prototypes which may indeed play an important role in reality. Also, it cannot be used
successfully to build software wherein the requirements are semi-structured or
unstructured. These shortcomings of the waterfall model have led to the formulation of the

spiral model.

2.1.1.2 THE SPIRAL MODEL

This is an evolutionary approach to software deveiopment that incorporates the strengths
of the above discussed model and resolves many of the difficulties. It is viewed as more of
a refinement of the waterfall model through the years. The major feature of this model that
distinguishes it from the waterfall model is that it creates a risk-driven approach to the
software development process rather than the document or code driven approach of the
waterfall model. The other major difference is that the spiral model incorporates
prototypes into the development process while prototypes are visibly absent from the
waterfall model. The major advantage of the spiral model is that its range of options
accommodates the good features of the other model, while its risk-driven approach

eliminates many of the difficulties such as taking into account the requirements at every

18

phase of software development. The spiral model defines an iterative process that
incorporates four major components namely, management planning, risk analysis,
engineering, and customer evaluation. These four phases (Figure 2) are applied iteratively,

and with each iteration the software becomes more complete.

The four major activities involved in the spiral model are discussed below and they form

the four quadrants of Figure 2.

Management Planning: This activity deals with the determination of objectives,
alternatives, and constraints. It determines the requirements that the software has to
comply with, the feasibility of the software to be developed, the different alternatives that
can be used to develop the product and the limitations of these alternatives. Here, the
objectives of the portion of the product being elaborated are identified (Boehm and Ross,

1989).

Risk Analysis: This activity deals with the analysis of alternatives and identification and/or
resolution of risks. This is a kind of a cost/benefit analysis and there is a feasibility check
done. The alternative means of implementing the portion of the product are identified
(Boehm and Ross, 1989). One of the available alternatives is chosen depending on the

constraints pertaining to the project.

19

MANAGEMENT PLANNING RISK ANALYSIS

PROTOTYPING

AN

CUSTOMER EVALUATION ENGINEERING

FIGURE 2: THE SPIRAL MODEL (adapted from Boehm, 1995)

20

Engineering: This activity deals with the development of the higher-level product. Design

of the product is done at this stage. Coding of the software is also done at this stage.

Customer Evaluation: This activity deals with the assessment of the results of engineering.

Here, problems existing in the product developed are recognized and dealt with.

“The spiral model reflects the underlying concept that each cycle involves a progression
that addresses the same sequence of steps, for each of its levels of elaboration, from an
overall concept of operation document down to the coding of each individual program"
(Boehm, 1995). Each cycle of the spiral begins with the identification of the objectives for
the portion of the product being elaborated, the alternative means of implementing that
portion of the product, and the constraints imposed on the application of these
alternatives. The next step is to evaluate the alternatives relative to the objectives and
constraints and identify and resolve any risks. Once the risks are evaluated, the next step is
determined depending on the evaluation of the remaining risks. Then, a prototype is
developed and if this prototype is operationally useful and robust enough, the subsequent
steps would be the evolving series of evolutionary prototypes. These iterations continue
until a satisfactory prototype which can lead to the final software product is developed. It
is most likely that the spiral model may be used in primary parent firms rather than in the

subsidiary firms due to lack of autonomy in the subsidiary firms.

21

In the spiral model, a software product is developed in a sequence of software
development spirals, each loop around the spiral would correspond to one waterfall model
iteration (Davis and Sitaram, 1994). Each such loop results in a new, improved and
enhanced product, and the techniques used in developing the product on that loop are a
function of the risk present at the time of development. However, there are some
limitations in using the spiral model. First, there will be a high reliance on the expertise of
the risk assessment for success. Second, this is a relatively new model and it may not yet
be as widely accepted as the waterfall model and is not yet being extensively used (Boehm,
1995). The spiral model places a great deal of reliance on the ability of software
developers to identify and manage sources of project risk (Boehm, 1995). The risk-driven

specifications will be people-driven which can turn out to be a disadvantage.

The models of software development namely, the waterfall model and the spiral model

have been discussed above. The waterfall model would be modified (as discussed in

section 2.3) after thorough literature review and used as the basis of this study.

22

2.2 STRATEGIES TO REDUCE SOFTWARE DEVELOPMENT
CYCLE TIME

As information technology becomes more and more accepted in society, people demand
faster and better quality software. The time required to develop software plays a very
important role in the final outcome of the software product developed. Software
development time is the total time required for the development of the software from the
requirements specification stage to the implementation stage. Software developers and
their customers are often annoyed with the length of time it takes to develop a software.
Software development activities (such as requirements specification, design, coding, and
testing) usually take a great deal of time and resources. Product development time is very
critical to product development success and consequently to the firm's survival. However,
it seems almost inevitable that projects overrun planned completion dates (Vonk, 1990).
Thus, in order to stay ahead in the competition, firms are adopting various strategies to
reduce the software development time. A number of strategies that are used to reduce the
software development time are discussed in the literature. This section discusses the

software development time reducing strategies cited in the literature.

Application of Prototyping Approach: Prototyping is an approach that is most commonly
used in the requirements specification and design stages, however, it is sometimes used in
the other stages of the software development process too. The traditional modeling
techniques for requirements definition are often not adequate for communication between

developers and users, and mostly pay no attention to modeling the user interface of a

23

