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An Analysis of Genetic Programming

This thesis analyzes Koza's Genetic Programming (GP) paradigm. a genetic
algorithm for program discovery. In order to improve upon our understanding of
GP and to improve GP, it provides a systematic analysis of GP that is based upon
experimentation and theory.

We assess the role of designer expertise in successfully using GP. Our experiments
show that its performance is influenced by propitious designer choices of the test suite
and primitive set. We also appraise whether GP proceeds in a hierarchical manner.
In experiments with the canonical earliest version of GP, GP did not appear to exploit
a hierarchical process.

The theoretical analysis develops a schema-based framework for describing GP
search behaviour. We formally develop a Schema Theorem for GP, define building
blocks and state a GP Building Block Hypothesis. We proceed to methodically ques-
tion the plausibility that GP exploits a building block process while searching.

We conduct further experimental analysis by comparing GP to alternative algo-
rithms. A mutation-based operator, HVL-Mutate, that generates a syntactically valid
and possibly structurally different program from another is introduced. Two adaptive
search algorithms, Stochastic Iterated Hill Climbing and Simulated Annealing. which
use either HVL-Mutate or GP crossover are implemented to solve exactly the same
class of program discovery problems as GP. The resulting algorithms are comparable
to GP and sometimes even outperform it on a small suite of these problems.

Because these algor.thms are relatively successful at solving the same problems
GP solves, we conjecture that synthesizing a localized search strategv into GP will
complement its global, population-based search and improve it. Qur experiments
with our problem suite confirm ¢ :is insight. When we hybridize GP by adding a hill
climbing component, various versions of the hybrid algorithm achieve higher likelihood
of success and process less candidate programs than GP.
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CHAPTER 1

Introduction

This chapter gives an overview of the motivations, goals and results of the thesis. Sec-
tion 1.1 first introduces a general definition of program discovery. an inductive search
problem that has been pursued with a diverse set of approaches. After motivating
the study of program discovery, it describes the precise framework for program dis-
coverv used by the particular algorithm that this thesis focuses upon. The algorithm
is named Genetic Programming (GP) [69]. For the remainder of the thesis we adopt
GP’s restricted version of program discovery for the purposes of exposition, focus and
clarity.

GP is introduced in Section 1.2 using the background of Genetic Algorithms
(GAs). GP is an adaptive search algorithm that is based upon neo-Darwinian con-
cepts of evolution. We have chosen to study GP because it is a robust, successful
program discovery algorithm. Chapter 2 provides a detailed description of GP and
its related literature.

In Section 1.3 the goal of the thesis. to analvse and improve GP. is elaborated
upon and accompanied by a high level description of how it is approached and solved.
Section 1.4 succinctly lists the contents of the remaining chapters of the thesis.

1.1. Program Discovery

The goals of program discovery are:
Given a set of input-output pairs or formal specification of behaviour, produce a
computer program that

1. non-trivially computes correct outputs for the inputs of each test case. Non-




trivial computation implies that the program does not directly map from inputs
to outputs by means of some sort of table. Rather, the program is an encoding
of some algorithm.

2. computes outputs in such a way that, if the inputs have been representively
chosen, the program will compute correct outputs for novel inputs.

A diverse set of approaches to solving program discovery problems. including
Automatic Programming (e.g. [11, 8, 98]), Inductive Logic Programming (e.g. [84, 93,
94)), and evolution-based algorithms different from GP (e.g. [29, 110, 16. 30. 40. 109))
have been pursued. A exposition and comparison of them is beyond the scope of this
thesis. The focus of this thesis is to provide a systematic analysis of one program
discovery algorithm called Genetic Programming. Therefore, in Section 1.1.3. we state
a restricted version of program discovery which we shall assume in the remainder of
the thesis.

1.1.1. Program Discovery as an Induction Problem

In so far as a correct program must be induced from test cases, it is obvious that
program discovery is an induction task. Therefore, program discovery inherits all the
merits and pitfalls of inductive reasoning. While it is “creative” and ampliative by
suggesting new hypotheses to link the outputs to the inputs, inductive hypotheses are
always falsifiable and their ability to generalize out of sample (i.e., beyond the suite
of test cases in the case of program discovery) is intrinsically linked to how well the
sample represents the entire problem domain. The sample needs to be representative
of the entire space, if possible. By definition, program discovery is accomplished with-
out the introduction of new primitives, however, this does not preclude the definition
of new “concepts” to replace the original ones. This means that, although there is a
finite set of inductive hypotheses consisting of all possible combinations of them up
to a prespecified maximum depth parameter, the set of inductive hypotheses is very
large and potentially very expressive. The finiteness of this set is constraining only
if a fundamental behaviour (i.e. one that is more simple than any primitive in the
primitive set) can not be expressed by any combination.




1.1.2. Motivation for Studying Program Discovery

What generally makes program discovery special and different from other inductive
search tasks is, quite obviously, that its solutions are expressed as programs. A
program is a useful solution because it is an algorithm; in other words. a specification
of behaviour that works for a general class of problems because it is parameterized
by the use of variables. Finding algorithms is more difficult than finding a single
solution but obviously it is also more useful since generalized solutions work for an
entire class of tasks. Programs can encode high level program semantics such as rules,
logic, iteration, recursion, and sequence as well as simple numbers and numerical
relationships.

What makes a program discovery algorithm useful and, thus, important to study.
is the fact that many problems from a wide range of domains can be translated into
program discovery problems and. should the algorithm succeed, these same problems
will directly have solutions. Figure 1 illustrates this concept. It is also thoroughly em-
phasized and demonstrated in the book “Genetic Programming: on the programming
of computers by means of natural selection™ by John R. Koza. Koza states:

A wide variety of seemingly different problems from many different fields
can be recast as requiring the discovery of a computer program that pro-
duces some desired output when presented with particular inputs. That
is, many seemingly different problems can be reformulated as problems of
program induction. [69, pg. 3]

In Chapter 2 of his book Koza supplies a table that lists 13 problem domains,
describes how the concept of a computer program has an analogv in each. and names
the analogous program inputs and outputs of the domain. For example,

e in optimal control. a control strategy is the equivalent of a computer program.
The control strategy input is state variables and the output is a control variable.

e in planning, a plan mimics a program by using sensor or detector values as
input and producing effector actions.

e in sequence induction, a mathematical expression plays the role of a program
using an index position as input. Its output is a correct sequence element.
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Figure 1. The value of Program Discovery: When many problems can be reformulated as program
discovery, a program discover algorithm is advantageous.

» in symbolic regression a mathematical expression is the equivalent of a program
that, using independent variabies. derives dependent variables.

¢ in game playing strategies, a strategy is a program that uses game and move
information as input and produces output that is the direction « ".noves.

e in empirical discovery and forecasting, a model is a form of program which
manipulates independent variables to output dependent variables.

The key to a program induction reformulation is to recognize that, despite dif-
ferent terminology, within the domain of interest there exists a basic need for some
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algorithm to provide solutions for multiple instances of a problem.

Reformulating tasks into program discovery problems means that. in the course of
the search for a correct program, many candidate programs will have to be executed
and assessed a fitness value. The execution of the programs may take place in a
simulated version of the problem domain or each program may actually be assessed
by using it in the actual lomain. A simulation approach in program discovery is no
different from simulation approaches elsewhere:; care must be taken to authenticate
the simulated environment so that it relays valid information on performance.

1.1.3. Thesis Definition of Program Discovery

In the GP framework of program discovery. the program discoverv algorithm is sup-
plied by the task designers (i.e., the persons who have chosen this approach program
discovery as a means of solving their problem) with a “test suite”. a set of “primi-
tives”, and a “fitness function”.

A “test suite” consists of test cases which are each a specific example of a problem
described in terms of inputs and desired outputs.

“Primitives” are functions or variables that can be used by the algorithm to comn-
pose a program. Each composition of primitives (or program) is a candidate solution
to the posed program discovery problem. The set of primitives must be chosen so that
it has the capacity to represent actual actions and objects (or. operators, operands,
results) that occur or exist in the problem domain. For example, in the task of
block stacking by a manipulator arm. the operators could be represented by the
functions remove-top-block. place-block-on-stack, find-next-needed-block,
etc. and the operands could be represented as the functions next-needed-block.
top-correct-block. Fitting the place-block-on-stack primitive together with
the next-needed-block primitive would form a syntactically correct invocation of
the place-block-on-stack function with its formal parameter being bound to the
result of the next-needed-block function. In this example, a single primitive directly
corresponds to an action or object of the problem domain but this is not necessary.
Instead, the correspondence can be achieved by using a primitive set from which
combinations of primitives correspond to actions or objects.

The set of primitives should be “closed” in the following sense: all primitives
which use parameters must be able accept as actual parameters any primitive in the






