o et w o

o e At o PR i, e U T

oyl o a SR AR A LR oty

PM-1 3%"x4" PHOTOGRAPHIC MICROCOPY TARGET
NES 10108 ANSI/ IS0 #2 EQUIVALENT

L

ERER

";;rlz
FEF

'* of CmUbrary

du Canada

Direction des acquisitions et

Your tie Votre référence

Owr e Notre réterence

Acauisitions and
Bibliographic Services Branch des services bibliographiques
Wetiington St 395, rue Welingion
daeuséwa.ONano roet Onau?:(ﬂnmo
K1A ON4 K1A ON4
NOTICE

The quality of this microform is
heavily dependent upon the
quality of the original thesis
submitted for microfilming.
Every effort has been made to
ensure the highest quality of
reproduction possible.

if pages are missing, contact the
university which granted the
degree.

Some pages may have indistinct
print especially if the original
pages were typed with a poor
typewriter ribbon or if the
university sent us an inferior
photocopy.

Reproduction in full or in part of
this microform is governed by
the Canadian Copyright Act,
RS.C. 1870, c¢. C-30, and
subsequent amendments.

Canada

AVIS

La qualité de cette microforme
dépend grandement de la qualité
de Ila thése soumise au
microfilmage. Nous avons tout
fait pour assurer une qualité
supérieure de reproduction.

S$'il manque des pages, veuillez
communiquer avec [l'université
qui a conféré le grade.

La qualité d'impression de
certaines pages peut laisser a
désirer, surtout si les pages
originales ont été
dactylographiées a l'aide d'un
ruban usé ou si 'université nous
a fait parvenir une photocopie de
qualité inférieure.

La reproduction, méme partielle,
de cette microforme est soumise
a la Lol canadienne sur le droit
d'auteur, SRC 1970, c. C-30, et
ses amendements subséquents.

An Analysis of
Genetic Programming

by

Una-May O’Reilly

A thesis submitted to the Faculty of Graduate Studies
and Research in partial fulfillment of the requirements
for the degree of

Doctor of Philosophy

Ottawa-Carleton Institute for Computer Science

School of Computer Science
Carleton University, Ottawa, Ontario
Sept 22 , 1995

©1995. Una-May O'Reilly

National Library nationale
el 5 Fy
jions and Direction des acquisitions et
ic Services Branch des services bibliographiques
ot g Ot (Oreay
K1A ON4 K1A ON4

The author has granted an
irrevocable non-exclusive licence
allowing the National Library of
Canada to reproduce, loan,
distribute or sell coples of
his/her thesis by any means and
in any form or format, making
this thesis available to interested
persons.

The author retains ownership of
the copyright in his/her thesis.
Neither the thesis nor substantial

Yowr fde Votre riigrence

Owr e Noire riNrence

L'auteur a accordé une licence
irrévocable et non exclusive
permeftant a la Bibliothaque
nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de sa thése
de quelque maniére et sous
quelque forme que ce soit pour
mettre des exemplaires de cette
thése a la disposition des
personnes intéressées.

L'auteur conserve la propriété du
droit d'auteur qui protége sa
thése. Ni la thése ni des extraits

extracts from it may be printed or substantiels de celle-ci ne
otherwise reproduced without doivent étre Imprimés ou
his/her permission. autrement reproduits sans son

autorisation.

ISBN 0-612-08850-2

General 0473 ics0373 Home Economics 0386

The undersigned hereby recommend
to the Faculty of Graduate Studies and Research
acceptance of the thesis

An Analysis of Genetic Programming

submitted by Una-May O'Reilly, B.Sc. M.C.S.
in partial fulfillment of the requirements for
the degree of Doctor of Philosophy

Director, Sc mputer Science

Thesisﬁpésor
/
il ’

[
At
xaminer
{
{

v
,/"

Carleton University

September 22, 1995

An Analysis of Genetic Programming

This thesis analyzes Koza's Genetic Programming (GP) paradigm. a genetic
algorithm for program discovery. In order to improve upon our understanding of
GP and to improve GP, it provides a systematic analysis of GP that is based upon
experimentation and theory.

We assess the role of designer expertise in successfully using GP. Our experiments
show that its performance is influenced by propitious designer choices of the test suite
and primitive set. We also appraise whether GP proceeds in a hierarchical manner.
In experiments with the canonical earliest version of GP, GP did not appear to exploit
a hierarchical process.

The theoretical analysis develops a schema-based framework for describing GP
search behaviour. We formally develop a Schema Theorem for GP, define building
blocks and state a GP Building Block Hypothesis. We proceed to methodically ques-
tion the plausibility that GP exploits a building block process while searching.

We conduct further experimental analysis by comparing GP to alternative algo-
rithms. A mutation-based operator, HVL-Mutate, that generates a syntactically valid
and possibly structurally different program from another is introduced. Two adaptive
search algorithms, Stochastic Iterated Hill Climbing and Simulated Annealing. which
use either HVL-Mutate or GP crossover are implemented to solve exactly the same
class of program discovery problems as GP. The resulting algorithms are comparable
to GP and sometimes even outperform it on a small suite of these problems.

Because these algor.thms are relatively successful at solving the same problems
GP solves, we conjecture that synthesizing a localized search strategv into GP will
complement its global, population-based search and improve it. Qur experiments
with our problem suite confirm ¢ :is insight. When we hybridize GP by adding a hill
climbing component, various versions of the hybrid algorithm achieve higher likelihood
of success and process less candidate programs than GP.

iii

To my sister Glenn Crowder

for showing me courage and strength

Acknowledgments

I wish to thank Ken De Jong, Jean-Pierre Corriveau, John Goldak and Stan
Matwin for agreeing to serve on my thesis committee.

I would like to thank Franz Oppacher for acting as my supervisor. Franz is an
intellectual magnet. 1 will always be in awe of his creativity, analvsis. and compre-
hension. For seven years he has been a great source of ideas, knowledge and feedback
for me. I like to brain-storm with him, argue with him, subject my writing to his
critical eye, and simply hang around with him. If I had spent more time with him - -
this work, it would only have improved.

I would like to thank my family for loving me through all the ups and downs
of these five years. My parents, Bob and Glenda invited me into their home again
and gave me tremendously valuable support while I restructured my life in 1992-93.
When my courage and resolve returned, they confidently waved me off to Santa Fe.
They have always encouraged me to engage in activities that test me.

Unfortunately, working at SFI has meant more time away from my brother and
sister and their families. I miss them all and thank them for being supportive and
patient. My sister Glenn deserves special mention. She is presently engaged in the
toughest test of all - fighting for her life, and I am incredibly proud of the tenacity
and courage she has shown. Her illness forced me to place my life in perspective at
a time when I could have comfortably slipped into the narrow, intensive, isolating
endeavors of academics. She has been an inspiration to me and] would trade my
Ph.D. for a cure for her cancer.

I started my Ph.D. in Ottawa at Carleton University’s School of Computer Sci-
ence. Among the graduate students, I would like to especially thank Dwight Deugo
and Andrew Rau-Chaplin. I don’t know if I simply tried to keep up with Dwight and
Andrew or whether each of us was equally influential in pushing the others. Whatever,
Andrew and Dwight have been true friends. I also especially thank Mark Wineberg
and wish him the best of luck with finishing his dissertation.

The School of Computer Science is staffed by excellent people to whom [am
indebted for efficiently managing teaching assignments, technical reports, computer
administration, etc. as well as patiently replacing my lost keys and forwarding my
mail! I especially thank Marlene Wilson, Barbara Coleman. and Rosemary Carter.

vi

Other influential Ottawa people were Nicola Santoro. Darvl Graf. Laura and
Larry House, and Tony White. Thank you.

I thank Bell Northern Research for two vears of financial assistance.

I spent the greater part of two vears conducting my thesis research at the Santa
Fe Institute in Santa Fe, New Mexico. It is an unsurmountable task to state how
influential SFI has been. I would like to thank Melanie Mitchell and Stephanie Forrest
for considering my first (and second) request to visit. I would like to thank Mike
Simmons, Vice President of Research at SFI, for agreeing that I should stav on as a
graduate fellow once I got there.

SFI has an awesome visitor’s program. Crucial interactions with Peter Stadler
and Richard Palmer came this way. I profited tremendously from many debates with
Bill Macready. How ironic that I had to move to New Mexico to work with someone
from Kanata.

Terry Jones first greeted me standing atop a concrete slab. simultaneously jug-
gling and teasing passers by. His unicvcle was parked around the corner. He has
always offered his help, good cheer and attention. I value it highly. He was a crucial
link to a group of Stephanie Forrest's students. 1 would like to thank them. in par-
ticular Ron Hightower and Derek Smith. for allowing me to occasionally join their
meetings.

I felt at home at SFI almost from the moment I arrived. I would like to thank
Ginger Richardson, Andi Sutherland and Deborah Smith for their warm and friendlv
welcome. I would also like to thank Andi Sutherland for something extra. Marita
Prandoni’s cheerful dailv greeting was wonderful.

Among the many helpful people at SFI I especially thank Walter Fontana, Raja
Das, Nick Vriend. David Wolpert. and Emily Dickinson. [owe a great deal to dear
friends Mihaela Oprea (my first in Santa Fe!). Martijn Huvnen. Melanie Mitchell,
Ann Bell and Kai Nagel.

Last of all, I would like to thenk Blake LeBaron. Blake doggedly attacked the
technical issues that were obstacles to me working in Madison. He taught me that love
doesn’t have to always be romantically expressed. Instead, it can be communicated
by technical support. objectivity. patience. and the relinquishment of a CPU!

Chapter

1

2

TABLE OF CONTENTS

INTRODUCTION.

1.1. ProgramDiscovery
1.1.1. Program Discovery as an Induction Problem . . .
1.1.2. Motivation for Studying Program Discoverv
1.1.3. Thesis Definition of Program Discovery

1.2. Solving The Problem of Program Discovery.
1.2.1. Genetic Algorithms (GAs)
1.2.2. Genetic Programming (GP)

13. Goalofthe Thesis

1.3.1. Assessing the Roles of the Designer and Hierar-

chyinGP
1.3.2. A Schema-Based Theoretical Analysisof GP

1.3.3. Understanding GP through Comparison and Im-

provingUpon GP
14. Aheadinthe Thesis.

THESIS PROBLEM SUITE. GENETIC PROGRAMMING,

ANDITSEXTENSIONS

2.1.1. Motivation for the Problem Suite
2.1.2. 6-Mult: The 6 Bit Boolean Multiplexer
2.1.3. 11-Mult: The 11 Bit Boolean Multiplexer
214. Sort-A
215. Sort-B
2.16. BS:BlockStacking
2.1.7. Format of Experiment Description
2.2. Canonical Geretic Programming
2.3. Examples of Primitive Semantics
2.3.1. Directly Using Built-in Functions as Primitives .

2.3.2. “Firewalling” Built-in Functions as Primitives
2.3.3. Arithmetic Constants as Primitives
2.3.4. Recursion via a Primitive
2.3.5. Iteration via a Primitive
2.3.6. Assignment via a Primitive
2.3.7. Typing Parameters in Primitives
2.3.8. The advantagesof using LISP
2.4. Crossover Operator Properties
2.4.1. Blind choice of crossover points
2.4.2. Svntactically Correct Offspring
2.4.3. Flexible Program Length
2.4.4. Parent-Offspring Fitness Distribution
2.4.5. “True” Combination
2.5. Non-Canonical GP
251 NewOperators.
2.5.2. Alternate Selection and Generation Strategies
2.5.3. Representation Extensions
2.6. Chapter Summarv

AN EXPERIMENTAL PERSPECTIVE ON GENETIC PRO-
GRAMMING

3.1. Assessing Designer Choices and a Hierarchical Pro-
cessinGP
3.1.1. Test suite and Fitness Function Design Issues
3.1.2. Primitive DesignIssues
3.1.3. Primitive Sets for Assessing Hierarchical Process . .
3.1.4. Assessing the Presence of A Hierarchical Process . .
3.2. Improving Hierarchv m GP

3.3. Knowledge-Baser! Primitives and Fitness Function De-
sign as Factors n GP'ssuccess

3.3.1. Deriving Knowledge-Based Primitives from First
Principles
3.3.2. Using Knowledge-Based Primitives.
3.3.3. Designing a Fitness Function
34. GP as a GA for Program Discovery
3.4.1. Program-Based Encoding
342 GPCrossover

3.4.3. Variable Length Solutions. 116
3.4.4. Feature Correspondence Among Solutions 116
3.5. ChapterSummarv 117
4 THE TROUBLING ASPECTS OF A BUILDING BLOCK

HYPOTHESIS FOR GENETIC PROGRAMMING 118
4.1. Schema Definition and Related Concepts 119
42. AGPSchemaTheorem. 126
4.3. Building Block Definition and Building Block Hypothesis 130
44. Conclusion« . 0., 136
4.5. Summary e e e 136

5 SIMULATED ANNEALING AND HILL CLIMBING FOR

COMPARISONTOGP 138

5.1. Stochastic Iterated Hill Climbing (SIHC) for Program
Discovery Problems 138
5.2. Simulated Annealing (SA) for Program Discovery Problems141

5.3. A Hierarchical Variable Length Mutate Operator: HVL-

Mutate e 145
5.4. Experimental Approach 148
5.5. Experiment Results 150
55.1. 6-MultResults 150
55.2. 11-MultResults 152
533. SortingResults, 154
5.5.4. Block Stacking Results 157
5.53.5. Results of Other Literature 158
56. Summary e e 159

6 CROSSOVER HILL CLIMBING AND CROSSOVER SIM-

ULATED ANNEALING FOR COMPARISONTOGP 161
6.1. Combining GP Crossover with SAor SIHC 162
6.2. Crossover Based. Single Point Algorithms 166

6.2.1. Crossover Hill Climbing: XO-SIHC 167
6.2.2. Crossover Simulated Annealing: XOSA 167
6.3. Crossover Based Experiments 169
6.3.1. Results of XOSA, XO-SIHC and GP: 6-Mult 170
6.3.2. Results of XOSA, XO-SIHC and GP: 11-Mult . . . 171

ix

6.3.3. Results of XOSA, XO-SIHC and GP: Sorting 171
6.3.4. Results of XOSA, XO-SIHC and GP: Block Stacking 172

6.3.5. Summary of XO-SIHC and XOSA Results 173

6.4. Hybridization of GP and Local Search 174
6.5. Hybridized GP and Hill Climbing Algorithms 175
6.6. Hybrid Algorithm Experiments 177
6.6.1. Results of Hybrids: 6-Mult 177
6.6.2. Results of Hybrids: 11-Mult 178
6.6.3. Results of Hybrids: Sorting 179
6.6.4. Results of Hyvbrids: Block Stackiug 181

6.7. Summarv of Hvbrid Results 181
6.7.1. Results of Other Literature 182

6.8. Program Discovery Algorithms Reviewed 185
6.9. Chapter Summary 187
CONCLUSIONS ANDFUTUREWORK 189
1. Summarvof ThesisResults. 189
72, Future Work L. 207
73. FinalRemarks. 209
REFERENCES 211

Figure

(1]

-]

10

11

12

13

14

16

17

LIST OF FIGURES

The Value of Program Discovery
Genetic Algorithm (GA) Pseudocode
Single-Point Crossoverin GAs
The Hierarchical Representation of a Program
GPCrossover i i e e
Adaptive Search Algorithm Pseudocode
Genetic Programming (GP) Algorithm Pseudocode
The Compression Operator
Automatically Defined Functionsin GP
Test Suite Credit Functions
Sort-Th-0 Generations X Fitness Plot
Sort-Th-0 Generations X Fitness X Height X Size Plot
Sort-TH-0 Generations X Program Height Plot
Sort-TH-0 Generations X Program Size Plot
Sort-TH-0 Generations X Program Size:Height Plot
Sort-Th-0 Generations X Fitness Plot

Sort-Th-0 Generations X Fitness X Height X Size Plot

Page

93

93

18

19

20

21

22

23

24

26

27

28

29

30

31

32

33

34

36

37

38

Sort-TH-0 Generations X Program Height Plot 94

Sort-TH-0 Generations X Program SizePlot 94
Sort-TH-0 Generations X Program Size:Height Plot 94
Sort-TH-0 Hits Distribution Geperation0 95
Sort-TH-0 Hits Distribution Generation22 95
Sort-TH-0 Hits Distribution Generation33 95
Sort-TH-0 Hits Distribution Generation36 95
Sort-TH-0 Hits Distribution Generation37 95
Sort-TH-0 Hits Distribution Generation38 95
Sort-TH-0 Program Size Distribution Generation 0 96
Sort-TH-0 Program Size Distribution Generation 19 96
Sort-TH-0 Program Size Distribution Generation38 96
Sort-TH-0 Program Height Distribution Generation0 96
Sort-TH-0 Program Height Distribution Generation 19 96
Sort-TH-0 Program Height Distribution Generation 38 96
Sort-TH-1 Generations X Fitness Plot 99
Sort-TH-1 Generations X Fitness X Height X Size Plot 99
Sort-TH-1 Generations X Program Height Plot 99
Sort-TH-1 Generations X Program SizePlot 99
Sort-TH-1 Generations X Program Size:Height Plot 99
Sort-Th-1 Generations X Fitness Plot 100

xii

39
40
41
42
43

44

Sort-TH-1 Generations X Program Height Plot 101
Sort-TH-1 Generations X Program Size Plot 101
Sort-TH-1 Generations X Program Size:Height Plot 101
Sort-Th-2 Generations X Fitness Plot 102
Sort-Th-2 Generations X Fitness X Height X Size Plot 102
Sort-TH-2 Generations X Program Height Plot 103
Sort-TH-2 Generations X Program Size Plot 103
Sort-TH-2 Generations X Program Size:Height Plot 103
GP-schemas: Tree (A) versus Fragment (B) 121
Examplesof GP-schemas 124
Pseudocode for Stochastic Iterated Hill Climbing Algorithm 141
Pseudocode for Simulated Annealing Algorithm 144
Demonstration of HVL-Mutate 147
Plot of Successful SA executionon 6-Mult 151
Plot of Successful SIHC Climbon 6-Mult 151
Plot of Two SA executionson 11-Mult 154
Plot of 3 SIHC Climbson 11-Mult 154

xiii

Table

(v]

-1

10

11

12

13

14

16

17

xiv

LIST OF TABLES

Page
GP Crossoversand 6=Mult 38
GP Crossoversand 11-Mult 38
GP Crossoversand Sort=A 59
GP Crossoversand Sort-B 39
The Effect of Test Suite Sample on Generality: Sort-A 75
The Effect of Test Suite Sample on Generality: 6-Mult 76
The Effect of Fitness Credit Schemes 79
Potential Sort Experiment Primitives 81
Hierarchical Process in GP: All Problems 92
Hierarchical Process in GP: Sort-TH-C 100
Hierarchical Process in GP: Sort-TH-1 101
Hierarchical Process in GP: Sort-TH-2 102
Tr and Stepsize for SA Experiments 145
6-Bit Multiplexer: GP.SA.SIHC 151
6-Bit Multiplexer: SIHCData 152
6-Bit Multiplexer: SIHC Data for Successful Executions 152

Comparison of GP, SA and SIHC on 11-mult 153

18
19
20
21
22
23
24
25
26
27

28

3

31
32

33

36
37

38

SIHCand 11-Mult 153

Sort-A Comparison of GP,SAand SIHC 135
Sort-B Comparison of GP,SAand SIHC 135
Sort-A:SIHCData 156
Sort-A: SIHC Data for Successful Executions 156
Sort-B: SIHC Data 156
Sort-B: SIHC Data for Successful Executions 157
Block Stacking Comparison of GP, SA,SIHC 157
Block Stacking: SIHCData 158
Block Stacking: SIHC Data for Successful Executions 158
Successful Program Size and Structure Data: SIHC, SA.GP 159
GP, XOSA and XO-SIHC Results for 6=Mult 170
GP, XOSA and XO-SIHC Resultsof 11-Mult 171
GP, XOSA and XO-SIHC Resultsfor Sort-A 172
GP, XOSA and XO-SIHC ResultsforSort-B 172
GP, XOSA and XO-SIHC Results for Block Stacking 173
GP and Hybrid Results for 6-Mult 178
GP and Hybrid Results for 11-Mult 179
GP and Hybrid Resultsfor Sort-A 180
GP and Hybrid ResultsforSort-B 180
GP and Hybrid Results for Block Stacking 181

39
40
41
42

43

6-Mult: Comparison of All Algorithms 198

11-mult: Comparison of Al Algorithms 199
Sort-A: Comparison of All Algorithms 200
Sort-B: Comparison of All Algorithms 201
Block Stacking: Comparisonof AlRuns 203

xvi

ABBREVIATIONS

The following abbreviations are used in this dissertation:
§x(y) Section x on page y.
Al Artificial Intelligence.
ADF Automatically Defined Functions. §2.5(68)
AR-GP Adaptive Representation Genetic Programming. §3.2(110)
GA Genetic Algorithm. §1.2.1(8)
GLiB Genetic Library Builder §2.5(66)
GP Genetic Programming. §2.2(40)
HVL-Mutate Hierarchical Variable Leagth Mutate §5.3(145)
SIHC Stochastic Iterated Hill Climbing. §5.1(138)
SA Simulated Annealing. §5.2(141)
XO-SA Crossover Simulated Annealing. §6.2.2(167)
XO-STHC Crossover Stochastic Iterated Hill Climbing. §6.2.1(167)

xvii

CHAPTER 1

Introduction

This chapter gives an overview of the motivations, goals and results of the thesis. Sec-
tion 1.1 first introduces a general definition of program discovery. an inductive search
problem that has been pursued with a diverse set of approaches. After motivating
the study of program discovery, it describes the precise framework for program dis-
coverv used by the particular algorithm that this thesis focuses upon. The algorithm
is named Genetic Programming (GP) [69]. For the remainder of the thesis we adopt
GP’s restricted version of program discovery for the purposes of exposition, focus and
clarity.

GP is introduced in Section 1.2 using the background of Genetic Algorithms
(GAs). GP is an adaptive search algorithm that is based upon neo-Darwinian con-
cepts of evolution. We have chosen to study GP because it is a robust, successful
program discovery algorithm. Chapter 2 provides a detailed description of GP and
its related literature.

In Section 1.3 the goal of the thesis. to analvse and improve GP. is elaborated
upon and accompanied by a high level description of how it is approached and solved.
Section 1.4 succinctly lists the contents of the remaining chapters of the thesis.

1.1. Program Discovery

The goals of program discovery are:
Given a set of input-output pairs or formal specification of behaviour, produce a
computer program that

1. non-trivially computes correct outputs for the inputs of each test case. Non-

trivial computation implies that the program does not directly map from inputs
to outputs by means of some sort of table. Rather, the program is an encoding
of some algorithm.

2. computes outputs in such a way that, if the inputs have been representively
chosen, the program will compute correct outputs for novel inputs.

A diverse set of approaches to solving program discovery problems. including
Automatic Programming (e.g. [11, 8, 98]), Inductive Logic Programming (e.g. [84, 93,
94)), and evolution-based algorithms different from GP (e.g. [29, 110, 16. 30. 40. 109))
have been pursued. A exposition and comparison of them is beyond the scope of this
thesis. The focus of this thesis is to provide a systematic analysis of one program
discovery algorithm called Genetic Programming. Therefore, in Section 1.1.3. we state
a restricted version of program discovery which we shall assume in the remainder of
the thesis.

1.1.1. Program Discovery as an Induction Problem

In so far as a correct program must be induced from test cases, it is obvious that
program discovery is an induction task. Therefore, program discovery inherits all the
merits and pitfalls of inductive reasoning. While it is “creative” and ampliative by
suggesting new hypotheses to link the outputs to the inputs, inductive hypotheses are
always falsifiable and their ability to generalize out of sample (i.e., beyond the suite
of test cases in the case of program discovery) is intrinsically linked to how well the
sample represents the entire problem domain. The sample needs to be representative
of the entire space, if possible. By definition, program discovery is accomplished with-
out the introduction of new primitives, however, this does not preclude the definition
of new “concepts” to replace the original ones. This means that, although there is a
finite set of inductive hypotheses consisting of all possible combinations of them up
to a prespecified maximum depth parameter, the set of inductive hypotheses is very
large and potentially very expressive. The finiteness of this set is constraining only
if a fundamental behaviour (i.e. one that is more simple than any primitive in the
primitive set) can not be expressed by any combination.

1.1.2. Motivation for Studying Program Discovery

What generally makes program discovery special and different from other inductive
search tasks is, quite obviously, that its solutions are expressed as programs. A
program is a useful solution because it is an algorithm; in other words. a specification
of behaviour that works for a general class of problems because it is parameterized
by the use of variables. Finding algorithms is more difficult than finding a single
solution but obviously it is also more useful since generalized solutions work for an
entire class of tasks. Programs can encode high level program semantics such as rules,
logic, iteration, recursion, and sequence as well as simple numbers and numerical
relationships.

What makes a program discovery algorithm useful and, thus, important to study.
is the fact that many problems from a wide range of domains can be translated into
program discovery problems and. should the algorithm succeed, these same problems
will directly have solutions. Figure 1 illustrates this concept. It is also thoroughly em-
phasized and demonstrated in the book “Genetic Programming: on the programming
of computers by means of natural selection™ by John R. Koza. Koza states:

A wide variety of seemingly different problems from many different fields
can be recast as requiring the discovery of a computer program that pro-
duces some desired output when presented with particular inputs. That
is, many seemingly different problems can be reformulated as problems of
program induction. [69, pg. 3]

In Chapter 2 of his book Koza supplies a table that lists 13 problem domains,
describes how the concept of a computer program has an analogv in each. and names
the analogous program inputs and outputs of the domain. For example,

e in optimal control. a control strategy is the equivalent of a computer program.
The control strategy input is state variables and the output is a control variable.

e in planning, a plan mimics a program by using sensor or detector values as
input and producing effector actions.

e in sequence induction, a mathematical expression plays the role of a program
using an index position as input. Its output is a correct sequence element.

] o
i : | CLASS-
| NTROL : E ?
| co iPLANNlNG i | IFICATION ‘STRATEGY
| 2
aA N/ > o

PROGRAM DISCOVERY PROBLEM
FORMULATION

; PROGRAM DISCOVERY
ALGORITHM

SOLUTIONS

Figure 1. The value of Program Discovery: When many problems can be reformulated as program
discovery, a program discover algorithm is advantageous.

» in symbolic regression a mathematical expression is the equivalent of a program
that, using independent variabies. derives dependent variables.

¢ in game playing strategies, a strategy is a program that uses game and move
information as input and produces output that is the direction « ".noves.

e in empirical discovery and forecasting, a model is a form of program which
manipulates independent variables to output dependent variables.

The key to a program induction reformulation is to recognize that, despite dif-
ferent terminology, within the domain of interest there exists a basic need for some

(A1)

algorithm to provide solutions for multiple instances of a problem.

Reformulating tasks into program discovery problems means that. in the course of
the search for a correct program, many candidate programs will have to be executed
and assessed a fitness value. The execution of the programs may take place in a
simulated version of the problem domain or each program may actually be assessed
by using it in the actual lomain. A simulation approach in program discovery is no
different from simulation approaches elsewhere:; care must be taken to authenticate
the simulated environment so that it relays valid information on performance.

1.1.3. Thesis Definition of Program Discovery

In the GP framework of program discovery. the program discoverv algorithm is sup-
plied by the task designers (i.e., the persons who have chosen this approach program
discovery as a means of solving their problem) with a “test suite”. a set of “primi-
tives”, and a “fitness function”.

A “test suite” consists of test cases which are each a specific example of a problem
described in terms of inputs and desired outputs.

“Primitives” are functions or variables that can be used by the algorithm to comn-
pose a program. Each composition of primitives (or program) is a candidate solution
to the posed program discovery problem. The set of primitives must be chosen so that
it has the capacity to represent actual actions and objects (or. operators, operands,
results) that occur or exist in the problem domain. For example, in the task of
block stacking by a manipulator arm. the operators could be represented by the
functions remove-top-block. place-block-on-stack, find-next-needed-block,
etc. and the operands could be represented as the functions next-needed-block.
top-correct-block. Fitting the place-block-on-stack primitive together with
the next-needed-block primitive would form a syntactically correct invocation of
the place-block-on-stack function with its formal parameter being bound to the
result of the next-needed-block function. In this example, a single primitive directly
corresponds to an action or object of the problem domain but this is not necessary.
Instead, the correspondence can be achieved by using a primitive set from which
combinations of primitives correspond to actions or objects.

The set of primitives should be “closed” in the following sense: all primitives
which use parameters must be able accept as actual parameters any primitive in the

