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Abstract

Acoustic impinging gas jet tests were performed in the
reverberation chamber at the National Research Council's
Institute of Aerospace Research Aeroacoustics Facility. The
impinging acoustic gas jets were tested as a possible
alternative high frequency noise generating device for use in
acoustic testing of satellites.

The tests involved varying the controlling parameters of
supply air pressure, jet orifice size, wall standoff distance,
and jet geometry. The OASWL for the impinging gas jets
follows Lighthill's U* Law (eighth power of jet exit
velocity). The result of mixing and impingement of the two
jets increases the OASWL by 14 to 20 dB. On average the peak
Strouhal number was between 0.23 to 0.26 as comparea to the
theoretical value of 0.2. The test data has lead to the
development of an automated jet assembly and two methods of

selecting the jet configuration for a given test spectrum.
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Note to the Reader:

The National Research Council's IAR/SML Aeroacoustics
Facility, U-€6A was built in 1965 with the additions of the
reverberation chamber and inner preparation bay in 1980, and
the outer preparation bay in 1984. The IAR/SML facility
performs daily operations in both Metric and English units,
depending on the client and the application. Much of the
physical apparatus for this work is in standard English units.
Since this thesis was a joint funded project batween Carleton
University and the NRC, the units of choice are English. A

conversion table is provided iu Appendix A to convert all

pertinent units to Metric form.




CHAPTER 1

Introduction

This thesis reports experimental studies of noise
generated by acoustic gas jets in the triple corner of a
reverberation chamber. Data of this type is of particular
interest in the aerospace industry where structural integrity
tests are performed on satellites using acoustic gas jet.: as
a noise source. A description of the aeroacoustic facili:y
and how acoustic tests are performed will follow. A
discussion of the existing noise generating devices and the
associated problems with the devices will give insight into
the reason why the acoustic gas jet tests were performed.
After this discussion, a review of pertinent literature will
be made. Following the literature review there will be a

statement of the thesis objectives and goals.

1.1 Aeroacoustics Facility

The National Research Council’s, Institute for Aerospace
Research, Structures Materials Laboratories, Aeroacoustics
Facility is located at the Uplands Laboratories. The Uplands
Facility is located in building U-66 Annex which is adjoining
the High Speed 5 ft Blowdown Windtunnel Facility in U-66. A
layout of the aeroacoustics facility and the reverberation

chamber is shown in Figures 1.1 and 1.2.
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At the IAR/SML Aeroacoustics Facility, satellites,
antennae, and structure panels are tested for their structural
integrity based on predicted noise levels from the rockets
which will launch them into space. The client will generally
specify the acoustic levels and their tolerances in % octave
bands in the frequency range of 25 to 20000 Hz in advance of
the test date. The IAR/SML group will then use the various
noise generating devices to match the given spectrum in the
536 m’ reverberation chamber. Once the spectrum is matched,
the settings for the control devices are recorded and await
the arrival of the test specimen.

The aeroacoustic facility is well situated since an
abundant compressed air supply is available from the High
Speed Blowdown Windtunnel in U-66. Compressed air is sent
through the piping network to the six controllable stem
valves. Attached to these valves are flexible pressure hoses
which connect to the various noise generating devices. The
existing noise generating devices used are the Wyle Acoustic
Source (WAS) 3000, NAE Hartmann generator and the LING EPT.
The LING EPT has recently been removed from operation because
of corrosion problems. The noise generating devices are then
coupled to the reverberation chamber through exponentially
increasing horns with the following cut-on frequencies : 25,
32, 100 and 200 Hz. The horns are used to couple the sound
produced by the noise generating devices and prevent the

reflection of sound waves to the devices. Inside the
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reverberation chamber there are four microphone stands shown
in Figure 1.3. The microphone stands used are approximately
10 and 15 feet tall. At this height the microphones can
sufficiently measure the noise levels in the centre of the
reverberation chamber. The microphones are connected to
preamplifiers and their signals are sent to the measuring
amplifiers. The signals are multiplexed and averaged during
the test time. The signals are then received by a real-time
spectrum analyzer. The analyzer has the capability to store

the data in disk files for later analysis.

1.2 Noise Generating Devices

1.2.1 Wyle Acoustic Source

The Wyle Acoustic Source is manufactured in Huntsville,
Alabama. The acoustic source shown in Figure 1.4 & 1.5
consists of an exterior shell and a modulator. The modulator
contains two concentric aluminum cylinders approximately 4
inches in diameter and 8 inches in length. The inner cylinder
is solid aluminum with the last quarter of its length made up
of small circumferential slits 1 3/16 inches in length and 1/16
to 1/32 inches in width. The slits are in coliumns of 22, and
there are 12 columns around the circumference. The outer
cylinder is identical except for an electrodynamic voice coil
wrapped arsund the bottom of the cylinder and connected to the

terminals at the top of the modulator. The concentric sleeves
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are placed inside the Wyle shell and the flexible hose is
connected to the shell for the air supply. When the cylinders
are placed in the Wyle shell, the electrodynamic voice coil is
exposed to a permanent magnetic field. The Wyle is then
connected to the power amplifier and receives the drive
current. The resulting force causes the outer cylinder to
move over the inner cylinder. The resulting action is an
axial oscillation of the outer cylinder against the inner
cylinder. The overlapping slits continually open and close,
changing the effective area available for air flow. The
spectrum produced from this action is high intensity, low
frequency noise. The Wyle modulator units are a one-
dimensional system, and can be modelled as mass on a spring.
The natiural frequencies for the two Wyle modulator units are
calculated by the square root of the stiffness of the spring
slots divided by the mass of the material near the slits. The
natural frequencies for the MU-110 and MU-111 are 500 and 1000
Hz respectively. The Wyle Acoustic Source still produces
noise above these frequencies through a phenomenon known as
upspill. When a sound pressure of 180 to 185 dB is generated
in the throat of an acoustic horn, the higher pressure region
is at a higher temperature than the low pressure region.
Since sound travels faster at higher temperatures than at low
temperatures, the higher temperature region overtakes the

previous low pressure region. When this happens, a situation

develops in the horn throat where a sine wave will change to
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a sawtooth wave, having essentially zero rise time and a long
decay to the next low pressure region. A Fourier analysis of
the sawtooth wave will show that half of the original enerqgy
in the sine wave has transferred to harmonics of the original
frequency with theoretical amplitudes falling off at 3
decibels per octave. When random noise is generated by the
modulator, the same result occurs, except the sawtooth has
random amplitude and spacing. In actual practice, the
harmonic generation rolls cff at approximately 4 decibels per
octave.

The WAS~-3000 must be supplied with a gas flow of 3000
scfm at a pressure of 30 psig for maximum power operations.
This flow is converted to approximately 10 Acoustic Watts per
cfm. This airflow also cools the voice coil so that no
external cooling is required. Since the magnetic field avound
the voice coil is provided by a permanent magnet, there is no
need for a magnet power supply or cooling cf the magnet, as

required by the LING EPT.

1.2.2 NAE Hartmann Generator

The NAE title refers to the National Aeronautical
Establishment, which is the former name of the present
Institute for Aerospace Research. The NAE Hartmann Generator
is a patented design in which an original Hartmann generator
is inserted perpendicular to the air flow in a special adaptor

plate fitted to the exit plane of a Wyle Acoustic Source and
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either the 25 or 32 Hz horn. The configuration in which four
Hartmann generators are inserted in the adaptor plate on the
25 Hz horn is shown in Figure 1.6.

The Hartmann generator is simply a sonic jet impinging
into a resonant cavity of circular or rectangular cross-
section. The Hartmann generators implemented in this
application have rectangular cavities controlled through
servo-mechanisms. The noise spectrum produced by a Hartmann
generator is narrowband tones with associated harmonics and is
illustrated in Figure 1.7. The frequencies of the tones and
harmonics are controlled by the depth of the cavity. When the
Hartmann generator’s narrowband tones and harmonics are mixed
with the high intensity, low frequency broadband noise the
resulting noise spectrum is broadband noise. The Hartmann
generators will add supplementary noise levels above the cut-
off frequencies of the Wyle Acoustic Source. A typical

combined spectrum is shown in Figure 1.8.

1.3 Basis for Jet Test Experiments

The Wyle Acoustic Source simply can not produce
sufficient noise levels at frequencies greater than the cut-
off frequency of the modulator unit. Any attempt to modulate
at higher frequencies has no effect on the noise levels

produced.
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The problem with the Hartmann generators is that they
have a characteristic decay rate or roll-off rate (dB/octave)
which can not be varied with supply pressure and cavity depth.
If the decay rate is different from that of a targeted noise
spectrum supplied by a client, then the spectrum can not be
matched effectively.

It was determined that to remain competitive in the
aerospace testin: market, an improvement was needed in the
ability to match the high frequency range of the noise
spectrum. The idea for exploration in the acoustic gas jet
area was based upon successful implementation of acoustic gas
jets in the Tsukuba Acoustic Facility of NASDA in Japan.
Fujita and Iide [1] found that two opposed gas jets fixed on
the side wall of the chamber provided sufficient noise in the
higher frequency bands. The shape of these spectra can be
seen in Figure 1.9. 1Initially, it was hypothesized that the
sound pressure level results that the Japanese achieved could
be improved by taking advantage of the directivity factor of
a noise source. The directivity factor, Q,, is defined as the

ratio of the intensity of a directional source, I,;,, to the

intensity of a point source, I,.

Ty
IS

o (1.1)

Where intensity, I, is defined as the ratio of total sound

!

power, W, divided by the surface area over which it spreads.



=W (1.2)

® 4nr?

It is well known that an omnidirectional source emits sound
in all directions and therefore has a directivity factor of
one. If the same source is located near a non-absorptive wall
the directivity factor increases by a factor of two because
the same intensity is reflected into half the surface area.
Similarly, placing the source near a double wall (floor and
wall) the directivity factor becomes four. Finally, placing
the source in a triple corner increases the directivity factor
to eight times the omnidirectional source. It was iound that
the directivity factor of a noise source in a reverberation
chamber does not yield the expected results, since any energy
produced by the noise source is reflected around the chamber
and then dissipates slowly with time. The advantage of the
north-east corner, or any other triple corner for that matter,
is that the reverberation chamber contains thousands of cosine
wave modes and each of these modes has an anti-node in the
triple corner. By exciting the anti-node in the corner, one
can achie.c equal excitation of all of the chamber’s modes,
especially the modes in the low frequency region.

The acoustic gas jets have an advantage over the other
high frequency noise sources in the number of parameters which
may be varied to adjust the spectrum. Thus the experiments
performed in this work will vary the following parameters: (a)

supply pressure, (b) diameter of the jet (symmetrical or
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asymmetrical), (c) wall standoff (symmetrical or
asymmetrical), {d) nozzle geometry (sudden contraction ,
smooth conical nozzle and rectangular orifice), (e) single
sudden contraction jet , (f) separate pressure feed nozzles.
A schematic layout of the impinging jet apparatus is shown in

Figure 1.15.

1.4 Literature Review

1.4.1 General Theory

Jet noise first became a concern for man with the use of
jet engines in military aircraft duriry the Second World War.
Jet noise falls into a category known as aerodynamic noise
which is a combination of acoustics and unsteady aerodynamic
flow. In the late 1940’s there had been few actual
measurements on the intensity of far-field noise from
turbulent jets. These experiments showed that the sound power
level was proportional to the eighth power of the jet exit
velocity.

Present day knowledge of aerodynamic noise has its
foundation from Lighthill’s work on "sound generated
aerodynamically"”. There have been many subsequent studies
which stemmed from Lighthill’s work that not only verified the
eighth power 1law, but also confirmed Lis theories on
convective amplification with Mach number and changes in the

directivity of the sound.






